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I. INTRODUCTION

We study stabilizer states and Clifford operations for sys-
tems built from quditsssystems with ad-dimensional Hilbert
spaced. We work in a matrix framework using modular arith-
metic, generalizing results for qubits from Ref.f1g. We put
special emphasis on the less studied case whered is not
prime.

The stabilizer formalism has already proved to be useful
in many applications such as quantum error correction, en-
tanglement distillation, and quantum computationf2–5g. The
n-qudit generalized Pauli group and Clifford group and the
related concepts of stabilizer codes and states have been
studied in various levels of detail in a number of papers
f6–15g.

Our motivation is not so much the study of stabilizer
codes and their error correcting capacities, but the study of
mathematically interesting states and operations that could
play a role in quantum algorithms. Although it is well known
that building quantum algorithms with stabilizer states and
Clifford operations only is not sufficient to disallow efficient
simulation on a classical computer, we think it is likely that
the rich structure of this formalism will play a role in future
quantum algorithms. Due to this focus, we pay attention to
describing and realizing Clifford operations in more detail
than is usually needed for coding applications.fTo specify a
Clifford operation “completely”sthat is, up to only a global
phased, one has to specify the image under conjugation of 2n
independent Pauli operations including the resulting phase,
whereas to realize an encoding operator for ak-dimenional
code, onlyk images are needed and the phases are of minor
importance.g

In addition to presenting known results in an often differ-
ent, and in our opinion practical language, we also present
results not contained in the references above. We give a de-
scription of ann-qudit Clifford operation by a 2n32n matrix
C with entries inZd and a 2n-dimensional vectorh with
entries inZ2d and derive necessary and sufficient conditions
for C andh to define a Clifford operation. We give formulas
for multiplying and inverting Clifford operations represented
in this way.

We present a decomposition of a general Clifford opera-
tion, specified in full detail by a matrixC and h, into a
selected set of one and two-qudit operations, by thinking in
terms of matrix manipulations onC andh. We also focus in
detail on the standard basis expansion of stabilizer states.
From Refs.f13–15g formulas can be derived describing the
standard basis expansion of graph states by means of a qua-
dratical form. In Refs.f14,15g this is done for the case when
the one-qudit configuration spaceh1, . . . ,dj is given the
structure of a finite field. In Ref.f13g this space can be any
finite Abelian group. In this paper we consider cyclic groups.
Referencesf14,15g state the equivalence of graph states and
general stabilizer states. In Ref.f15g this equivalence is to be
understood as local Clifford equivalence. That is, anyn-qudit
stabilizer stateswith a field as one-qudit configuration spaced
can be transformed into a graph state through the action ofn
one-qudit Clifford operations. In our setting, however, as we
are not focusing on codes, we want a description of the origi-
nal stabilizer stateswithout the local Clifford operationsd as
well. In Ref. f14g another notion of equivalence between
graph states and stabilizer states is usedsintroducing the con-
cept of auxiliary nodes in the graphd. As a result the standard
basis expansion of a general stabilizer state is not described
directly but as a sum of a large number of states. Moreover,
for the case where the configuration space is not a fieldsin
our case that is whend is not primed not all stabilizer states
are equivalent to graph states but an extra condition has to be
imposed. In the present paper we work with a more general
description of stabilizer states without this extra condition
sdescribed below by matricesS with possibly more thann
columnsd and we give a direct descriptionswithout sumd of
the standard basis expansion of general stabilizer states. We
believe that standard basis expansions of stabilizer states can
be an essential ingredient in understanding the action of non-
Clifford operations on stabilizer states.

This paper is structured as follows. Definitions of gener-
alizations of the Pauli group and the Clifford group for qudits
are given in Sec. II, together with their matrix representation.
Special Clifford operations, that are of particular interest in
the decomposition of a Clifford operation, are discussed in
Sec. III. An efficient decomposition of a Clifford operation
on n qudits into a selected set of one and two-qubit Clifford
operations, is explained in Sec. IV. In Sec. V, we define sta-*Electronic address: erik.hostens@esat.kuleuven.ac.be
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bilizer states ofn qudits and show the expansion in the stan-
dard basis can be described with linear and quadratic opera-
tions.

In the following, byA=B mod d we mean that all corre-
sponding entries of matricesA and B are equal modulod,
whered is an integer different from 0. We will also writea
=b mod c with a, b, andc vectors, as a shorthand notation
for ai =bi mod ci, for every i =1, . . . ,n.

II. THE GENERALIZED PAULI GROUP
AND CLIFFORD GROUP

In this section, we discuss the description of the general-
ized Pauli group onn qudits and the generalized Clifford
group in modular arithmetic. Generalizations of the Pauli
group to systems of arbitrary dimensions are discussed in
Refs.f6–8g. The Clifford group is defined as the group con-
taining all unitary operations that map the Pauli group to
itself under conjugation.

A. The generalized Pauli group

Let d be the Hilbert space dimension of one qudit. We
define unitary operationsXsdd andZsdd as follows:

Xsddu jl = u j + 1l,

Zsddu jl = v ju jl, s1d

where j PZd andv is a primitivedth root of unity. Addition
in the ket is carried out modulod. Tensor products of these
operations will be denoted as follows: forv,wPZd

n, and a
ª f w

v gPZd
2n, we denote

XZsad ª Xv1Zw1 ^ ¯ ^ XvnZwn. s2d

From Eqs.s1d and s2d, it follows that, forxPZd
n,

XZsaduxl = vwTxux + vl. s3d

We define the Pauli groupPn on n qudits to contain alld2n

tensor productss2d with an additional complex phase factor
zd, wherez is a square root ofv anddPZ2d. In the follow-
ing, we will omit the superscriptsdd and refer to the gener-
alized Pauli group simply as Pauli group.

Multiplication of two Pauli group elements can be trans-
lated into operations on vectors inZd

2n as follows:

zdXZsadzeXZsbd = zd+e+2aTUbXZsa + bd, s4d

whereUª f In
0n

0n

0ng. Addition in the argument ofXZ is done
modulod, and addition in the exponent ofz is done modulo
2d. Equations4d yields the commutation relation

XZsadXZsbd = vaTPbXZsbdXZsad, s5d

whereP = U − UT modd. s6d

Note that the order ofXZsad divides d unlessd is an even
number andaTUa is odd. In the latter case the order is 2d.
Indeed, with Eq. s4d one can easily verify thatXZsadd

=zdsd−1daTUaI. The introduction of a phasezd rather thanvd is

only necessary whend is even. Simplifications for oddd are
considered in Appendix C.

B. The generalized Clifford group

We now define a generalization of the Clifford group onn
qudits in an analogous way as for qubits. A Clifford opera-
tion Q is a unitary operation that maps the Pauli group onn
qudits to itself under conjugation or

QPnQ
† = Pn.

Because QXZsadXZsbdQ†=fQXZsadQ†gfQXZsbdQ†g, it is
sufficient to know the image of a generating set of the Pauli
group in order to know the image of all Pauli group ele-
ments.Q is then defined up to a global phase factor. This can
be seen as follows. Suppose that two Clifford operationsQ1
and Q2 give rise to the same image for every Pauli group
element or for everyAPPn:Q1AQ1

†=Q2AQ2
†. It follows for

every A that Q2
†Q1A=AQ2

†Q1. The only unitary operations
that commute with every single Pauli group element are mul-
tiples of the identityf18g, which completes the proof. We
take the generating set of the Pauli group to beXZsEkd, k
=1, . . . ,2n, whereEk are the standard basis vectors ofZd

2n.
We denote their images under conjugation byQ as
zhkXZsCkd. We will assemble the vectorsCk as the columns
of a matrix CPZd

2n32n and the scalarshk in a vector h
PZ2d

2n. The imagezeXZsbd of zdXZsad under conjugation by
Q, wherea is an arbitrary vector inZd

2n, can be found by
repeated application of Eq.s4d. This yields

b = Ca modd,

e = d + fh − VdiagsCTUCdgTa + aTf2PuppssCTUCd

+ PdiagsCTUCdga mod 2d, s7d

whereVdiagsMd is defined as the vector containing the diag-
onal ofM, PdiagsMd the diagonal matrix with the diagonal of
M, andPuppssMd the strictly upper triangular part ofM. The
Clifford operationQ is sup to a global phase factord com-
pletely defined byC and h. Note that the right-hand side
sRHSd of Eq. s7d is calculated modulo 2d, although it con-
tains matrices overZd. It can be verified that every entry
modulod in the expression is multiplied by an even factor.

We can compose two Clifford operationsQ andQ8, which
again yields a Clifford operationQ9=Q8Q. To find its corre-
spondingC9 and h9 we have to find the images under the
second operation of the images under the first operation of
the standard basis vectors. By using Eq.s7d, we get

C9 = C8C modd,

h9 = h + CTh8 + Vdiag„C
Tf2PuppssC8TUC8d

+ PdiagsC8TUC8dgC… − CTVdiagsC8TUC8d mod 2d.

s8d

The inverseQ† of a Clifford operationQ defined byC and
h is defined byC8 andh8, where

C8 = C−1 modd,
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h8 = − C−Thh + Vdiag„C
Tf2PuppssC−TUC−1d

+ PdiagsC−TUC−1dgC… − CTVdiagsC−TUC−1dj mod 2d,

s9d

which can be verified with Eq.s8d. M−T is short forsM−1dT.
We will show below thatC−1=−PCTP mod d.

C. Conditions on C and h

Not all CPZd
2n32n andhPZ2d

2n define a Clifford operation.
To see this, consider a Clifford operationQ with correspond-
ing C and h. From the commutation relations5d it follows
that C is a symplectic matrix, i.e.,C satisfiesCTPC=P mod
d. Indeed, we have

XZsadXZsbd = vaTPbXZsbdXZsad,

QXZsadQ†QXZsbdQ† = vaTPbQXZsbdQ†QXZsadQ†,

XZsCadXZsCbd = vaTPbXZsCbdXZsCad,

where we omitted global phase factors on the LHS and RHS,
as they cancel each other. Also,

XZsCadXZsCbd = vaTCTPCbXZsCbdXZsCad.

Since this holds for every value ofa andb, it follows thatC
is symplectic. Note that the inverse of a symplectic matrixC
is simply C−1=−PCTP mod d. Secondly,h satisfies

sd − 1dVdiagsCTUCd + h = 0 mod 2, s10d

for zhkXZsCkd=QXZsEkdQ† has, similar toXZsEkd, order d.

With Eq. s4d we havefzhkXZsCkdgd=zdfsd−1dCk
TUCk+hkgI, and it

follows that Eq.s10d is satisfied. We will prove below that
every symplecticC and h satisfying Eq.s10d define a Clif-
ford operationQ.

III. SPECIAL CLIFFORD OPERATIONS

In this section we present a number of special Clifford
operations and their definingC andh. These will be of par-
ticular interest for the decomposition of an arbitrary Clifford
operation into one and two-qubit Clifford operations.

The Pauli group elementsXZsad are a special class of the
Clifford operations. Note that, as for any Clifford operation,
the global phase factor of a Pauli group element cannot be
represented. Considering the images ofXZsEkd, it can be
easily verified thatXZsad is defined by

C = I modd,

h = − 2Pa mod 2d.

A Clifford operation acting on a subseta, h1, . . . ,nj of n
qudits gives rise to a symplectic matrix on the rows and
columns with indices inaø sa+nd, embedded in an identity
matrix fthat is,Ckk=1 mod d, for everyk¹aø sa+nd and
Ckl=0 mod d if kÞ l and k or l ¹aø sa+ndg. Also hk=0
mod 2d if k¹aø sa+nd.

Any invertible linear transformation of the configuration
spaceuxl→ uTxl can be realized by a Clifford operation, with
xPZd

n andTPZd
n3n an invertible matrix modulod. This op-

eration is defined by

C = FT 0

0 T−TG modd,

h = 0 mod 2d.

This can be verified by looking at the image ofXZsad, with
an arbitrarya=f w

v gPZd
2n:

QXZsadQ† = S o
xPZd

n

uTxlkxuDS o
yPZd

n

vwTyuy + vlkyuD
3S o

zPZd
n

uzlkTzuD
= o

yPZd
n

vwTyuTy+ TvlkTyu

= o
yPZd

n

vwTT−1yuy + Tvlkyu

=XZSF Tv

T−Tw
GD .

As CTUC=U mod d, we see with Eq.s7d that h=0 mod 2d.
Special cases of this class of Clifford operations are qudit
permutations, withC=f 0

P
P
0 g, whereP is a permutation ma-

trix, and the two-quditSUM gate uxluyl→ uxlux+yl with x,y
PZd, with

C = 3
1 0 0 0

1 1 0 0

0 0 1 − 1

0 0 0 1
4 modd.

Note that this operation is a natural generalization of the
two-qubit controlled-NOT sCNOTd gate.

The d-dimensional discrete Fourier transformuxl
→ s1/Îddok=0

d−1vkxukl on one qudit, withxPZd, is defined by
C=f 1

0
0
−1g mod d and h=0 mod 2d. We verify this in the

same way as for the invertible configuration space transfor-
mation, now witha=f w

v gPZd
2:

QXZsadQ† = S 1
Îd

o
t,uPZd

vtuutlkuuDS o
yPZd

vwyuy + vlkyuD
3S 1

Îd
o

x,zPZd

v−xzuzlkxuD
=

1

d
o

t,y,xPZd

vtsy+vd+wy−xyutlkxu

=
1

d
o

yPZd

vst+w−xdy o
t,xPZd

vtvutlkxu
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= o
xPZd

vsx−wdvux − wlkxu

=v−vwXZSF− w

v
GD .

As CTUC=−UT mod d, we see with Eq.s7d that h=0 mod
2d. This operation is the qudit equivalent of the Hadamard
gate on one qubit.

Analogous to the qubit phase gate, a phase gate on one
qudit can be defined asuxl→zxsx+dduxl, with xPZd. This op-
eration corresponds toC=f 1

1
1
0g modd andh=f 0

d+1g mod 2d.
Indeed, for alla=f w

v gPZd
2:

QXZsadQ† = o
yPZd

z2wy+sy+vdsy+v+dd−ysy+dduy + vlkyu

= zvsv+dd o
yPZd

vsv+wdyuy + vlkyu.

As CTUC=f 1
1

0
0g mod d, vsv+dd must be equal tosh−f 0

1gdT

a+v2 mod 2d according to Eq.s7d, which is the case for the
given h.

IV. DECOMPOSITION OF A CLIFFORD OPERATION
IN ONE AND TWO-QUDIT OPERATIONS

In order to prove that any symplectic matrixC and h
satisfying Eq.s10d define a Clifford operation, we will ex-
pand an arbitrary symplecticC into symplectic elementary
row operations that can be realized as Clifford operations on
maximally two qudits at the same time. What is more, this
decomposition is a worthy candidate as a practical realiza-
tion of a Clifford operation. The possibility of this kind of
decomposition into a selected set of one and two-qudit op-
erations is briefly discussed in Ref.f8g. Our scheme is related
to the method of Ref.f6g in which Euclid’s algorithm is
incorporated in order to generate any one-qudit Clifford op-
eration.

First, we mention that the main problem is realizingC,
not h, for once a Clifford operationQ defined byC andh is
realized, we can realizeQ8 defined byC and an arbitraryh8
satisfying Eq.s10d by doing an extra operationXZhCPfsh8
−hd /2gj on the left orXZhPfsh8−hd /2gj on the right ofQ.
Note that as bothh andh8 satisfy s10d, h8−h is even.

We first give an overview of the elementary row opera-
tions that we will use to transform an arbitrary symplectic
matrix C into the 2n32n identity matrixI. As I is formed by
left multiplication of such elementary row operations onC, a
decomposition ofC then consists of the inverses of these
operations in reverse order. Since these operations act on
maximally two qudits at the same time, they are defined by a
symplectic 434 or 232 matrix embedded in the identity
matrix as explained in the preceding section. In the follow-
ing, we will only show this part of the operations.

First, we consider some configuration space transforma-
tions sof the form C=f 0

T
T−T
0 gd. These operations combine

only rows from the same blockswe call rows 1, . . . ,n the
upper block and rowsn+1, . . . ,2n the lower blockd and have
a similar action in both blocks at the same time. For instance,

we can switch two rowsi and j in the upper block: at the
same time, rowsn+ i and n+ j in the lower block are also
switched. This operation is defined by

C = 3
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
4 modd.

Multiplying a row i with an invertible numberr PZd results
in multiplying the corresponding rown+ i in the other block
by r−1. A number r PZd has an inverse ifr and d are
coprime, i.e., gcdsr ,dd=1. This operation is defined byC
=f 0

r
r−1
0 g. The last configuration space transformation we con-

sider, is adding one rowi multiplied by an arbitrary factor
gPZd to another rowj . At the same time, rown+ j , multi-
plied by −g, is added to rown+ i. This operation is defined
by

C = 3
1 0 0 0

g 1 0 0

0 0 1 − g

0 0 0 1
4 modd.

Secondly, we will also need operations that combine rows
of different blocks. Switching two rowsi and n+ i can be
carried out by the discrete Fourier transform. Recall that this
operation is defined byC=f 1

0
0
−1g. After switching of the

rows, row i is multiplied by −1. By applying the inverse of
the discrete Fourier transform, rown+ i instead of rowi is
multiplied by −1. ApplyingoxPZd

zgxsx+dduxlkxu swhich is the
same as applying the phase gateg timesd on the ith qudit,
with gPZd, results in the addition of rowi multiplied byg to
its corresponding rown+ i, according to

C = F1 0

g 1
G modd.

We could introduce more row operations that define one
or two-qudit Clifford operations, but the ones described so
far suffice. Next we give a constructive way of transforming
C into the identity matrixI. If we are able to transformC
into C8 by transforming columnsC1 andCn+1 into the corre-
sponding columnsE1 andEn+1 of I, it follows from the sym-
plecticity of C8 that the first andsn+1d-th row of C8 are
equal to the corresponding rows ofI. We then have

C8 = 3
1 0 . . . 0 0 0 . . . 0

0 0

] Cs11d8 ] Cs12d8

0 0

0 0 . . . 0 1 0 . . . 0

0 0

] Cs21d8 ] Cs22d8

0 0

4 .
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Leaving the first qudit out, we can continue by transforming
the second andsn+2d-th column ofC8 into the correspond-
ing columns ofI, and so on. This recursive procedure even-
tually leads toI. Now we only have to show how columns
C1 and Cn+1 are transformed intoE1 and En+1. Let us
first consider the case where the upper left entryC11 has
an inverse inZd. Multiplying the first row byC11

−1 changes
this entry to 1. Next we add the first row, multiplied by
−Ck1, to row k, and this fork=2, . . . ,n, setting thekth entry
of C1 to 0. The first column now has the form
f1 0, . . . ,0uCn+1,18 Cn+2,1, . . . ,C2n,1gT. Now we add the first
row multiplied by −Cn+1,18 to row n+1, setting thesn+1d-th
entry of C1 to 0. The discrete Fourier transform on the first
qudit changesC1 into f0 0, . . . ,0u1 Cn+2,1, . . . ,C2n,1gT. In the
same way as for the upper half ofC1, we make zeros below
the sn+1d-th position. Note that nothing happens to the up-
per half, for all entries there are 0. Switching the firstsnow
we use the inverse of the discrete Fourier transformd with the
sn+1d-th row again yieldsE1. We call the matrix made so far
C9. From the symplecticity ofC9 it follows that Cn+1,n+19 =1
modd, and we can repeat for thesn+1d-th column the same
procedure we did for the first column. Note that none of the
operations yieldingEn+1 out of Cn+19 will affect C19=E1, ex-
cept the discrete Fourier transform and its inverse on the first
qudit, but they cancel each other. Since the number of el-
ementary operations for one column isOsnd, the total num-
ber of operations transformingC into I is Osn2d.

If the entryC11 has no inverse modulod, but there is aCk1

in the first row that does have an inverse, this entry can be
switched into the first position by a permutation of two qu-
dits and possibly the discrete Fourier transform on the first
qudit. Note that it is possible that none of the entries ofC1

has an inverse. Indeed, sinceC is invertible, the only restric-
tion on one single column ofC is that the greatest common
divisor of all its entries has an inverse. For every two entries
Ci1 andCn+i,1 or Ci1 andCj1 from the same block, the gcd of
these two can be formed in one of the two entries by recur-
sively substracting a multiple of one row from the other fol-
lowing Euclid’s algorithmf16g. The other entry can then be
made 0 since it is a multiple of the gcd. A worst case sce-
nario would be that all 2n combinations of 2n−1 entries
have a gcd that is not invertible. The procedure goes as fol-
lows:

3
C11

C21

]

Cn1

Cn+1,1

Cn+2,1

]

C2n,1

4 → 3
gcdsC11,Cn+1,1d
gcdsC21,Cn+2,1d

]

gcdsCn1,C2n,1d
0

0

]

0

4

→3
gcdsC11, . . . ,C2n,1d

0

]

0

0

0

]

0

4 → 3
1

0

]

0

0

0

]

0

4 .

In this way, C is decomposed intoOfn2 lnsddg elementary
operations, as the computational complexity for finding the
gcd of two positive integers less thand with Euclid’s algo-
rithm is Oflnsddg f16g.

V. STABILIZER STATES

In this section we define stabilizer states for qudits of
arbitrary dimensions. A stabilizer state is a state of ann-qudit
system that is a simultaneous eigenvector, with eigenvalues
1, of a subgroup ofdn commuting elements of the Pauli
group, which is called the stabilizerS of the stabilizer state.
The stabilizer state is completely determined by a generating
set forS. The description of such a generating set in modular
arithmetic provides an efficient tool of describing the stabi-
lizer state and its behavior under the action of a Clifford
operation. Finally, we give an expansion of an arbitrary sta-
bilizer state in the standard basis.

A. Definition and description in modular arithmetic

A stabilizer stateucl is the simultaneous eigenvector, with
eigenvalues 1, of a subgroup ofdn commuting elements of
the Pauli group which does not contain multiples of the iden-
tity other than the identity itself. We call this subgroup the
stabilizer S of ucl. A generating set forS consists of ele-
ments z fkXZsSkd, k=1, . . . ,m, where SkPZd

2n and fkPZ2d.
We will assemble the vectorsSk as the columns of a matrix
SPZd

2n3m and the scalarsfk in a vectorf PZ2d
m . We call S a

generator matrix andf the corresponding phase vector that
together defineS. The fact that the elements ofS commute is
reflected bySTPS=0 modd. We choosem to be the minimal
cardinality of a generating set ofS. Note that, as opposed to
the situation for qubits,m can be larger thann. It can be
verified that ifm.n, the imposed condition in Ref.f14g for
a stabilizer state to be equivalent to a graph state, is not
fulfilled. If d has only single prime factors, thenm=n. If d
has multiple prime factors, thennømø2n. A simple ex-
ample ford=4 andn=1 is the state 1/Î2su0l+ u2ld with sta-
bilizer hI ,X2,Z2,X2Z2j: in this casem=2. We will describe
below how to construct such a minimal generating set. The
fact thatS does not contain multiples of the identity other
than the identity itself implies that the phase vectorf satisfies

ff − VdiagsSTUSdgTr + rTfPdiagsSTUSd + 2PuppssSTUSdgr

= 0 mod 2d, ∀ r P Zd
muSr= 0 modd s11d

The description ofS by S and f is not unique, as they
represent a generating set forS. By applying an invertible
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linear transformationRPZd
m3m to the right onS and trans-

forming f appropriately, another generating setz fk8XZsSk8d is
formed. By repeated application of Eq.s4d, one finds

S8 = SRmodd,

f8 = RTff − VdiagsSTUSdg + Vdiag„R
Tf2PuppssSTUSd

+ PdiagsSTUSdgR… mod 2d. s12d

We will refer to this as a stabilizer generator matrix change.
If ucl is operated on by a Clifford operationQ, defined by

C andh, thenQucl is a new stabilizer state whose stabilizer
is given byQSQ†. By application of Eq.s7d, we can calcu-
late anS8 and f8 for this stabilizer, resulting in

S8 = CS mod d,

f8 = f + STfh − VdiagsCTUCdg + Vdiag„S
Tf2PuppssCTUCd

+ PdiagsCTUCdgS… mod 2d. s13d

We can construct a minimal generating setz fkXZsSkd, k
=1, . . . ,m, for an arbitrary stabilizerS, given a generating set

z f l8XZsSl8d, l =1, . . . ,m8, for S using the Smith normal form
ssee Appendix Ad. This can be done as follows. TheSl8 are
assembled in the matrixS8. Now we compute the Smith nor-

mal form F=KS8L of S8, with KPZd
2n32n and LPZd

m83m8

invertible matrices.S8L is just another generator matrix of
the stabilizer. From the definition of the Smith normal form it
follows thatS8L is a generator matrix having a minimal num-
ber of nonzero columns. The rightmostm−m8 columns of
S8L that are zerosasS8L=K−1Fd can be omitted. We call this
new generator matrixS and f is formed out off8 with Eq.
s12d. Note that no linear combination of the columnsSk of S
is zero unless the coefficients in this linear combination are a
multiple of the order of the columns or, fork=1, . . . ,m,

if o
k

rkSk = 0 modd, thenrkSk = 0 modd. s14d

With this, the stabilizer phase conditions11d can be simpli-
fied to, fork=1, . . . ,m:

srk − 1drkSk
TUSk + rkfk = 0 mod 2d,

∀rk P ZdurkSk = 0 modd. s15d

B. Description of a stabilizer state with linear
and quadratic forms

We provide an expansion of an arbitrary stabilizer state in
the standard basis for ann-qudit state. This is stated in the
following theorem.

Theorem 1. sid If SPZd
2n3m and f PZ2d

m define a stabilizer
stateucl as described above, thenSand f can be transformed
by a configuration space transformationuxl→ uT−1xl, with T
PZd

n3n, and a stabilizer generator matrix changeRPZd
m3m

into the formS8 and f8, with

S8 = FT−1 0

0 TTGSR=FQ̄ 0

B̄ B%
G = FQ

B
G mod d,

f8T = f f̄8T f%8Tg mod 2d, s16d

whereQ is a pseudodiagonal matrix in Smith normal form

and QTB mod d is symmetric.Q̄ and B̄ are the left square
n3n parts ofQ andB.

sii d The stateucl can be expanded in the standard basis
sup to a normalization factord as

ucl = o
tPZd

n

ztTMt+pTtuTsQ̄t + x*dl, s17d

whereMªQ̄B̄ mod d, pª f̄8−VdiagsMd+2B̄Tx* mod 2d.
If we define the vectorq̄ of flengthn with entries

qk ª Hd if Qkk = 0 modd,

Qkk if Qkk Þ 0 modd, k = 1, . . . ,n
J

and the vectorq of lengthm as

Thenx* PGq̄ªZq1
3 ¯ 3Zqn

is defined as the unique solu-
tion of

BTx = y mod q, s18d

whereyPGq has entries

yk ª 5−
sd − qkdBkk + fk8

2
mod qk, for k = 1, . . . ,n,

−
fk8

2
mod qk, for k = n + 1, . . . ,m.6

Note that from the stabilizer phase conditions15d schoose
rkªdd, it follows that the numerators in the expressions for
yk are even. An efficient way of solving Eq.s18d can be
found in Appendix B. A definition of the Smith normal form
of a matrixPZd

n3m is given in Appendix A.
Proof. sid We assume thatSalready has a minimal number

of columnsm as described above and we writeS as f
Ss2d

Ss1dg

with Ss1d,Ss2dPZd
n3m. Then we defineQ as the Smith normal

form of Ss1d with invertible transformation matricesT−1 and
R, i.e., Q=T−1Ss1dR. With B=TTSs2dR, this yields the expres-
sion for S8 in Eq. s16d. According to Eqs.s12d ands13d, f is
transformed tof8, yielding

f8 = RTff − VdiagsSTUSdg + Vdiag„R
Tf2PuppssSTUSd

+ PdiagsSTUSdgR… mod 2d.

Note that f 0
T−1

TT
0 gTUf 0

T−1

TT
0 g=U mod d. It follows directly

from STPS=0 modd that QTB is symmetric modulod.
sii d We show that Eq.s17d is a simultaneous eigenvector

with eigenvalue 1 ofz fkXZsSkd, k=1, . . . ,m. Equivalently, the
state
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uc8l ª o
tPZd

n

ztTMt+pTtuQ̄t + x*l s19d

is a simultaneous eigenvector with eigenvalue 1 of

z fk8XZsSk8d, k=1, . . . ,m. First, note that in Eq.s19d, different

values of t may yield the same basis stateuQ̄t+x*l, since

Q̄t+x* mod d is periodic. The coefficient ofuQ̄t+x*l in Eq.

s19d displays the same periodic behavior: ifQ̄t=Q̄t8 mod d
thentTMt+pTt= t8TMt8+pTt8 mod 2d. It is sufficient to check
this for t8= t+sd/qkdEk, k=1, . . . ,n, whereEk are the stan-
dard basis vectors ofZd

n. We have

St +
d

qk
EkDT

MSt +
d

qk
EkD + pTSt +

d

qk
EkD − tTMt − pTt

=
d

qk
fsd − qkdBkk + fk8 + 2Bk

Tx*g = 0 mod 2d

for k=1. . .n. Indeed, from the definition ofx* : Bk
Tx* =−fsd

−qkdBkk+ fk8g /2 mod qk, k=1, . . . ,n, it follows that
2sd/qkdBk

Tx* =−sd/qkdfsd−qkdBkk+ fk8g mod 2d, k=1, . . . ,n.

We made use of the fact thatM =Q̄B̄ mod d⇒M =Q̄B̄+D
mod 2d, where every entry ofD mod 2d can be eitherd or 0,
i.e., 2D=0 mod 2d.

Next, we check fork=1, . . . ,n that Eq.s19d is an eigen-

vector ofz fk8XZsSk8d with eigenvalue 1. We have

z fk8XZSFQk

Bk
GDuc8l

= o
tPZd

n

ztTMt+pTt+fk8+2Bk
TsQ̄t+x* duQ̄t + x* + Qkl

= o
tPZd

n

zst − EkdTMst−Ekd+pTst−Ekd+fk8+2Bk
TsQ̄st−Ekd+x* duQ̄t + x*l

= o
tPZd

n

ztTMt+pTtuQ̄t + x*l = uc8l.

Finally, z fk8XZsSk8d acting on the left of Eq.s19d yields, for
k=n+1, . . . ,m,

z fk8XZSF 0

Bk
GDuc8l = o

tPZd
n

ztTMt+pTt+fk8+2Bk
TsQ̄t+x* duQ̄t + x*l

= o
tPZd

n

ztTMt+pTtuQ̄t + x*l = uc8l.

In Appendix B we prove that Eq.s18d has a unique solution
x* PGq̄. j

It is possible to remove all identical terms in the summa-
tion of expressions17d as follows. We definer as the number
of nonzero diagonal elements ofQ. We denote the upper left
r 3 r part of a matrixA asAsrd, the upperr part of a vectora
asasrd and the part ofa below asrd as āsrd. Then Eq.s17d is
equivalent to

ucl =Îpi=1

r
qi

dr o
tPG*

ztTMsrdt+psrd
T tUTFQsrdt + xsrd

*

x̄srd
* GL ,

whereG* ªZd/q1
3 ¯ 3Zd/qr

. Note that the normalizing fac-
tor is just the inverse of the square root of the number of
terms in the summation, as each basis state is orthogonal to
the others and occurs only once. Finally, it is interesting to
mention that, for an arbitraySand f defining a stabilizer state
ucl, we havesup to a normalization factord

ucl = o
tPZd

m

ztTMt+pTtuSs1dt + x8l,

where S=f
Ss2d

Ss1dg, M =Ss1d
T Ss2d mod d, p= f −VdiagsMd+2Ss2d

T x8

mod 2d, andx8=Tx* modd, whereT andx* are the same as
in Eq. s17d. Yet, this formula has two disadvantages: first, to
find x8, we still have to calculate the Smith normal form of
Ss1d and second, in Eq.s17d it is clearer which basis states
have nonzero coefficients.

VI. CONCLUSION

We have shown that for the Pauli group, the Clifford
group and stabilizer states, straightforward extensions in Hil-
bert spaces of arbitrary dimensions can be compactly de-
scribed with matrices overZd. We have given a way of effi-
ciently decomposing ann-qudit Clifford operation inOsn2d
one and two-qudit operations. With these tools in modular
arithmetic, we provide an expansion of an arbitrary stabilizer
state ofn qudits in the standard basis.
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APPENDIX A: THE SMITH NORMAL FORM

The Smith normal form is a canonical diagonal form for
equivalence of matrices over a principal ideal ringR. In this
paper we consider matrices overZd. For anyAPZd

n3m there
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exist invertible matricesKPZd
n3n andLPZd

m3m such that

F = KAL = 3
f1

�

f r

0

�

0

4 mod d

with eachf i a nonzero and withf i u f i+1 for 1ø i ø r −1. Thef i
are unique up to units. Uniqueness ofF can be ensured by
specifying that eachf i should be a positive divisor ofd in Z.
There exist fast algorithms for computing the Smith normal
form f17g.

APPENDIX B: A UNIQUE SOLUTION OF EQ. (18)

Here we prove that Eq.s18d BTx=y mod q has a unique
solutionx* PGq̄ªZq1

3 ¯ 3Zqn
. We rewrite Eq.s18d as the

following system of equations:

o
i=1

n

Bijxi = yj mod qj, j = 1, . . . ,m. sB1d

If, for fixed j , theBij andqj have a common factor, then also
yj must be a multiple of this factor, otherwise there is no
solution. DefinegjªgcdsB1j , . . . ,Bnj ,qjd andr jªd/gj. Note
thatr j is the order ofSj. A necessary condition for solvability
of Eq. sB1d is or r jyj =0 mod d, for every k=1, . . . ,m. We
show that this condition holds. We haver jSj =0 modd. From
the stabilizer phase conditions15d it follows that

sr j − 1dr jqjBjj + r j f j8 = 0 mod 2d, 1 ø j ø n,

r j f j8 = 0 mod 2d, j . n,

and by definition of y, consequentlyr jyj =0 mod d, j
=1, . . . ,m.

An equivalent system to Eq.sB1d is now

o
i=1

n
Bij

gj
xi =

yj

gj
mod

qj

gj
, j = 1, . . . ,m.

We define the map b: x=fx1, . . . ,xngT→bsxd
=foi=1

n sBi1/g1dxiu¯ uoi=1
n sBim/gmdxigT mod fq1/g1, . . . ,

qm/gmgT, which is a homomorphism from the group of vec-
tors of lengthn with entriesxi moduloqi, i =1, . . . ,n to the
group of vectors of lengthm with entriesyj8 modulo qj /gj,
j =1, . . . ,m. EquationsB1d has a unique solution ifb is an
isomorphism. We prove this by showing that the number of
elements in both groups are the same and that only 0 is in the
kernel. It follows from Eq.s14d and the fact that, by defini-
tion, the columns ofS generate a set ofdn elements, that the
product of the orders of the columns ofS is equal todn, or
p j=1

m r j =dn. Therefore,

p
j=1

m
qj

gj
=

dm−n

p j=1

m
gj

p
i=1

m

qi = p
i=1

m

qi

thus the number of elements of both groups are the same.
Next we show thatBTx=0 modq if and only if x=0 modq̄.
We rewrite this as

s∃v P Zd
n:BTx = QTv mod dd

⇔ s∃x8 P Zd
m:x = Qx8 mod dd, ∀ x P Zd

n.

sB2d

Proof. ⇐d QTB is symmetric modulod. We therefore have
BTx=BTQx8=QTBx8 mod d, so v=Bx8 mod d.

⇒d We show that the number ofxPZd
n satisfying the LHS

of Eq. sB2d is equal to the number ofx satisfying the RHS.
The number of elements generated by the columns of a ma-
trix is equal to the product of the orders of the diagonal
elements of its Smith normal form. Therefore the columns of
ST, similar to the columns ofS, also generatedn elements.
Consequently, the mappings: aPZd

2n→STaPZd
m is a homo-

morphism fromZd
2n to a groupY,Zd

m, with uYu=dn. The
kernel in Zd

2n of s containsuZd
2nu / uYu=dn elements. Equiva-

lently, with aT=fvT wTg, s is a homomorphism fromZd
n3Zd

n

to Y:

sSFv

w
GD = STFv

w
G = fQT BTgFv

w
G = QTv + BTw.

There are exactlydn different pairssv ,wd that satisfyQTv
+BTw=0 mod d. Replacingw by −x, we have exactlydn

pairssx,vd satisfyingBTx=QTv modd. Fixing such anx, we
have a total ofpi=1

n qi different v for which, together withx,
the equality still holdssthis is because we can add an arbi-
trary multiple ofd/qi to vid. Therefore, the total number ofx
for which av exists such thatBTx=QTv mod d, is equal to
dn/pi=1

n qi. This is equal to the number ofx that can be writ-
ten asx=Qx8. j

Next, we describe a method for easily finding the solution
x* of Eq. s18d. We define a diagonal matrixZPZd

m3m with
diagonal entries equal tod/qk, k=1, . . . ,m. Equations18d is
equivalent to the equationZBTx=Zy modd. We calculate the
Smith normal formF=KZBTL mod d. Defining x8ªL−1x
modd andy8ªKZy modd, we have the following equation
Fx8=y8 mod d, for which a solutionx*8PZd

n can be easily
found snote that this solution is most likely not uniqued. We
then findx* =Lx*8 mod q̄.

APPENDIX C: SIMPLIFICATIONS FOR ODD d

In this section we consider the special case of oddd. Most
of the formulas in this paper can be simplified for oddd. We
will only give an overview and omit the derivations, as they
are completely analogous to the general case. Ifd is odd,
then 2 has an inverse inZd, equal tosd+1d /2, which we will
denote by 2−1.

For oddd, we can use a restricted definition for the Pauli
group: it contains alld2n tensor productss2d with an addi-
tional complex phase factorvd sinstead of a power ofzd.
Equations4d becomes
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vdXZsadveXZsbd = vd+e+aTUbXZsa + bd. sC1d

The order of an arbitrary element of this newly defined Pauli
group is never equal to 2d. In the same way as for the gen-
eral case, we find the imageveXZsbd of vdXZsad under con-
jugation by a Clifford operation, which is now defined byC
andg=h/2:

b = Ca mod d,

e = d + fg − 2−1VdiagsCTUCdgTa

+ 2−1aTsCTUC − Uda mod d. sC2d

Note that, contrary to the general case,g is a vector inZd
2n.

There is no longer a restriction ong. Indeed, from Eq.s10d,
it follows thath in the general setting is always even for odd
d. Symplecticity ofC is of course still required. The product
of two Clifford operationsQ9=Q8Q corresponds toC9 and
g9, where

C9 = C8C mod d,

g9 = g + CTg8 + 2−1fVdiag„C
TsC8TUC8 − UdC…

− CTVdiagsC8TUC8dg mod d. sC3d

The inverseQ† of a Clifford operationQ defined byC andg
is defined byC8 andg8, where

C8 = C−1 = − PCTP mod d,

g8 = − C−Tg + 2−1fC−TVdiagsCTUCd

+ VdiagsC−TUC−1dg mod d. sC4d

The definition of a stabilizer state remains the same ex-
cept for the fact that now the stabilizer is a subgroup of the
restricted Pauli group. Note that for oddd, no subgroup of
the general Pauli group can be found that fulfills all stabilizer
conditions but is not a subgroup of the restricted Pauli group.

Thus, nothing is lost by restricting the definition of the Pauli
group for oddd. A generating set for the stabilizerS consists
of elementsvbkXZsSkd, k=1, . . . ,m, where SkPZd

2n and bk

PZd
m. Analogously to the definition ofg, b is equal to half

the value off in the general settingsas it is the exponent of
v instead ofzd. The stabilizer phase conditions11d on b
simplifies to

f2b − VdiagsSTUSdgTr + rTsSTUSdr = 0 modd, sC5d

∀r P Zd
muSr= 0 modd.

A stabilizer generator matrix change, by applying an invert-
ible linear transformationRPZd

m3m to the right onS, results
in

S8 = SR mod d,

b8 = RTfb − 2−1VdiagsSTUSdg + 2−1VdiagsRTSTUSRd mod d.

sC6d

A stabilizer state defined byS andb, operated on by a Clif-
ford operation defined byC and g, is a new stabilizer state
defined by

S8 = CS mod d,

b8 = b + STfg − 2−1VdiagsCTUCdg

+ 2−1VdiagfSTsCTUC − UdSg mod d. sC7d

It is not hard to verify that partsii d of theorem 1 simplifies to

ucl = o
tPZd

n

vtTMt+pTtuTsQ̄t + x*dl, sC8d

whereMª2−1Q̄B̄ mod d, pª b̄8−VdiagsMd+B̄Tx* mod d. In
this setting,x* PGq̄ªZq1

3 ¯ 3Zqn
is defined as the unique

solution of BTx=−b8 mod q. For calculatingx* we refer to
Appendix B.
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