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We describe generalizations of the Pauli group, the Clifford group, and stabilizer states for qudits in a Hilbert
space of arbitrary dimensicth We examine a link with modular arithmetic, which yields an efficient way of
representing the Pauli group and the Clifford group with matrices @yeWe further show how a Clifford
operation can be efficiently decomposed into one and two-qudit operations. We also focus in detail on standard
basis expansions of stabilizer states.
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I. INTRODUCTION We present a decomposition of a general Clifford opera-

We study stabilizer states and Clifford operations for sys{ion: specified in full detail by a matrbC and h, into a
tems built from quditgsystems with a-dimensional Hilbert  S€lécted set of one and two-qudit operations, by thinking in
spacé. We work in a matrix framework using modular arith- ©€rMs of matrix manipulations o@ andh. We also focus in
metic, generalizing results for qubits from REE]. We put detail on the standard basis expansion of stab|I|_z¢r states.
special emphasis on the less studied case wheig not From Refs.[l;%—lE] formulas can be derived describing the
prime. standard basis expansion of graph states by means of a qua-

The stabilizer formalism has already proved to be usefufratical form. In Refs[14,19 this is done for the case when
in many applications such as quantum error correction, erthe one-qudit configuration spacd, ... d} is given the
tanglement distillation, and quantum computati@a5]. The  structure of a finite field. In Ref.13] this space can be any
n-qudit generalized Pauli group and Clifford group and thefinite Abelian group. In this paper we consider cyclic groups.
related concepts of stabilizer codes and states have be®&eference$l4,15 state the equivalence of graph states and
studied in various levels of detail in a number of papersgeneral stabilizer states. In Rg15] this equivalence is to be
[6-15. understood as local Clifford equivalence. That is, aryudit

Our motivation is not so much the study of stabilizer stabilizer statéwith a field as one-qudit configuration space
codes and their error correcting capacities, but the study afan be transformed into a graph state through the action of
mathematically interesting states and operations that COU'Qne-qudit Clifford operations. In our setting, however, as we
play a role in quantum algorithms. Although it is well known gre not focusing on codes, we want a description of the origi-
that building quantum algorithms with stabilizer states andhg| stapilizer statéwithout the local Clifford operationsas
Clifford operations only is not sufficient to disallow efficient \yg||. In Ref. [14] another notion of equivalence between
simulation on a classical computer, we think it is likely thatgraph states and stabilizer states is Ugetoducing the con-
the rich structure of this formali_sm will play a role in fu_ture cept of auxiliary nodes in the grapi\s a result the standard
quantum algorithms. Due to this focus, we pay attention tGyasijs expansion of a general stabilizer state is not described
describing and realizing Clifford operations in more detal|direct|y but as a sum of a large number of states. Moreover,
than is usually needed for coding applicatiofio specify &  for the case where the configuration space is not a field
Clifford operation “completely’(that is, up to only a global oy case that is whed is not prime not all stabilizer states
phasg, one has to specify the image under conjugationrof 2 are equivalent to graph states but an extra condition has to be
independent Pauli operations including the resulting phasgmposed. In the present paper we work with a more general
whereas to realize an encoding operator fdedimenional  gescription of stabilizer states without this extra condition
pode, onlyk images are needed and the phases are of MiNQfescribed below by matriceS with possibly more tham
importance} . . _columng and we give a direct descriptiamithout sum of

In addition to presenting known results in an often differ- the standard basis expansion of general stabilizer states. We
ent, and in our opinion practical language, we also preserielieve that standard basis expansions of stabilizer states can
results not contained in the references above. We give a d@ge an essential ingredient in understanding the action of non-
scription of am-qudit Clifford operation by a@X 2n matrix  cJifford operations on stabilizer states.

C with entries inZy and a 2-dimensional vectoh with This paper is structured as follows. Definitions of gener-
entries inZyq and derive necessary and sufficient conditionsyjizations of the Pauli group and the Clifford group for qudits
for C andh to define a Clifford operation. We give formulas zre given in Sec. II, together with their matrix representation.
for multiplying and inverting Clifford operations represented special Clifford operations, that are of particular interest in
in this way. the decomposition of a Clifford operation, are discussed in
Sec. lll. An efficient decomposition of a Clifford operation
on n qudits into a selected set of one and two-qubit Clifford
*Electronic address: erik.hostens@esat.kuleuven.ac.be operations, is explained in Sec. IV. In Sec. V, we define sta-
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bilizer states oh qudits and show the expansion in the stan-only necessary whed is even. Simplifications for odd are
dard basis can be described with linear and quadratic operaensidered in Appendix C.

tions.

In the following, byA=B mod d we mean that all corre-
sponding entries of matrice& and B are equal modulal,
whered is an integer different from 0. We will also write

=b mod c with a, b, andc vectors, as a shorthand notation

for a;=b; modc;, for everyi=1,... n.

Il. THE GENERALIZED PAULI GROUP
AND CLIFFORD GROUP

B. The generalized Clifford group

We now define a generalization of the Clifford groupron
qudits in an analogous way as for qubits. A Clifford opera-
tion Q is a unitary operation that maps the Pauli groupnon
qudits to itself under conjugation or

QPQ"'=7P,
Because QXZ(a)XZ(b)Q'=[QXZ(@a)Q[QXZ(b)Q'], it is

In this section, we discuss the description of the generalsufficient to know the image of a generating set of the Pauli
ized Pauli group om qudits and the generalized Clifford group in order to know the image of all Pauli group ele-
group in modular arithmetic. Generalizations of the Pauliments.Q is then defined up to a global phase factor. This can
group to systems of arbitrary dimensions are discussed ihe seen as follows. Suppose that two Clifford operatiQps
Refs.[6-8]. The Clifford group is defined as the group con- and Q, give rise to the same |mage for every Pauli group
taining all unitary operations that map the Pauli group toelement or for ever)AeP :QAQ]=Q,AQL. It follows for
itself under conjugation. every A that QJQ,;A=AQ!Q,. The only unltary operations
that commute with every single Pauli group element are mul-
tiples of the identity[18], which completes the proof. We
take the generating set of the Pauli group toX&E,), k

Let d be the Hilbert space dimension of one qudit. We=1 x, whereE, are the standard basis vectors 3.
define unitary operation&'® andZ@ as follows: We denote their images under conjugation ky as

A. The generalized Pauli group

XO[jy = j + 1) MXZ(C,). We will assemble the vectols, as the columns
’ of a matrix C e 73" and the scalardy, in a vectorh
70}y = wl]j) (1) & The |mage§fXZ(b) of £°XZ(a) under conjugation by

wherej e 74 and w is a primitivedth root of unity. Addition
in the ket is carried out moduld. Tensor products of these

Q, wherea is an arbitrary vector md , can be found by
repeated application of E¢4). This yields

b=Camodd,

operatlons will be denoted as follows: forw e Zj, and a
=[] e 73", we denote

XZ(a) :=
From Egs.(1) and(2), it follows that, forx e Zj,

€=0+[h=V4iagCTUC)]"a+a’[2P,,,dCTUC)

XZM @ -
+ Peiad C'UC) Ja mod 2,

® XvnZWn, 2

(7
where VM) is defined as the vector containing the diag-
onal ofM, Py M) the diagonal matrix with the diagonal of
M, andPy,p,d M) the strictly upper triangular part ofl. The
Clifford operationQ is (up to a global phase faciocom-
pletely defined byC and h. Note that the right-hand side
(RHS) of Eq. (7) is calculated modulo & although it con-
tains matrices ovel,. It can be verified that every entry
modulod in the expression is multiplied by an even factor.

We can compose two Clifford operatio@sandQ’, which
again yields a Clifford operatio®”=Q’Q. To find its corre-
spondingC” and h” we have to find the images under the
second operation of the images under the first operation of
the standard basis vectors. By using E, we get

C”"=C'C modd,

Z(@)|x) = " |x+v).

()

We define the Pauli grou@, on n qudits to contain ald®"
tensor product$2) with an additional complex phase factor
£%, where( is a square root oy and & e Z,q. In the follow-
ing, we will omit the superscriptd) and refer to the gener-
alized Pauli group simply as Pauli group.

Multiplication of two Pauli group elements can be trans-
lated into operations on vectors #3" as follows:

X Z(a){XZ(b) = {722 UXZ(a + b), (4)

whereU:= [O" 0"] Addition in the argument oKZ is done

modulod, and addition in the exponent gfis done modulo
2d. Equation(4) yields the commutation relation

h"=h+CTh’" + Vyiag(CT[2P,ppdC' TUC")
+ Paiag(C' TUC')]C) = C™V4ia C'TUC") mod .
(8

The inverseQ' of a Clifford operatiorQ defined byC and
h is defined byC’ andh’, where

C'=C ! modd,

XZ(a)XZ(b) = w® PPXZ(b)XZ(a), (5)

whereP=U - U" modd. (6)

Note that the order oKZ(a) dividesd unlessd is an even
number anda'Ua is odd. In the latter case the order id.2
Indeed, with Eq.(4) one can easily verify thaiXZ(a)“

= (d(@-Da'V3) The introduction of a phas# rather thanw? is
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h' == C {h+ Vgiag( CT[2Pyppd CTUC™)
+ Peiad CTUC™H]C) = CTV4in CTUC™)} mod A,
9

which can be verified with Eq8). M~ is short for(M™)T.
We will show below thaiC™*=-PCTP modd.

C. Conditions on C and h

Not all C e 7Z3™*?" andh e 73] define a Clifford operation.
To see this, consider a Clifford operati@with correspond-
ing C and h. From the commutation relatiob) it follows
that C is a symplectic matrix, i.eC satisfiesC"TPC=P mod
d. Indeed, we have

XZ(a)XZ(b) = w® PPXZ(b)XZ(a),

QXZa)Q'QXZ(b)Q" = w? PPQXZ(b)Q'QXZ(a)Q",

XZ(Ca)XZ(Ch) = w? PPXZ(Ch)XZ(Ca),

where we omitted global phase factors on the LHS and RHS,

as they cancel each other. Also,

XZ(Ca)XZ(Ch) = w? € PCOXZ(Ch)XZ(Ca).

Since this holds for every value afandb, it follows thatC
is symplectic. Note that the inverse of a symplectic maiix
is simply C"1=-PC"P mod d. Secondlyh satisfies

(d=1)V4aC'UC) +h=0 mod 2, (10)

for {"XZ(C,)=QXZ(E)Q" has, similar toXZ(E,), orderd.
With Eq. (4) we have[Z%XZ(C,)]¢= f@-DCUCH) | and it
follows that Eq.(10) is satisfied. We will prove below that
every symplecticC and h satisfying Eqg.(10) define a Clif-
ford operationQ.

Ill. SPECIAL CLIFFORD OPERATIONS

In this section we present a number of special Cliffor

operations and their defining andh. These will be of par-

ticular interest for the decomposition of an arbitrary Clifford

operation into one and two-qubit Clifford operations.

The Pauli group elemend$Z(a) are a special class of the

PHYSICAL REVIEW A 71, 042315(2005

Any invertible linear transformation of the configuration
spacex)— [Tx) can be realized by a Clifford operation, with
x e ZqandT e Zg*" an invertible matrix modulal. This op-
eration is defined by

T O
C= 0 T modd,

h=0 mod 4.

This can be verified by looking at the image XZ(a), with
an arbitrarya=[ !] e 72"

QXZa)Q' = ( > |Tx><x|)<

n
XeZq

> WMy v><y|)

yeZg

x( > |z><Tzl>

n
zely

= YTy +ToxTy|
yezg

=3 " Yy +To)y|

yezg

|5 ])

As CTUC=U modd, we see with Eq(7) thath=0 mod 2.
Special cases of this class of Clifford operations are qudit
permutations, witlC=[ {! %], wherell is a permutation ma-
trix, and the two-quditsum gate [x)|y) — [x)[x+Yy) with X,y

e 7q, With

100 O
110
C= modd.
00 -
000 1

gNote that this operation is a natural generalization of the

two-qubit controlledNOT (CNOT) gate.

The_ d-dimensional discrete Fourier transfornix)
— (1/Nd)2E20k) on one qudit, withx e Zg, is defined by
C=[ 9,4 mod d and h=0 mod 2I. We verify this in the

Clifford operations. Note that, as for any Clifford operation, Same way as for the invertzible configuration space transfor-
. H 1 —[ v 2
the global phase factor of a Pauli group element cannot bEation, now witha=[ ] € Z:

represented. Considering the imagesXa(E,), it can be
easily verified thaiXZ(a) is defined by

C=I1 modd,

h=-2Pa mod A.

A Clifford operation acting on a subset_{1, ... n} of n

qudits gives rise to a symplectic matrix on the rows and

columns with indices intU (a+n), embedded in an identity
matrix [that is, Cy=1 modd, for everyk ¢ aU (a+n) and
Cqy=0 modd if k#!| andk or | ¢ «U (a+n)]. Also h,=0
mod A if ke aU (a+n).

QXZ(a)QT=<,—15 > wt“|t><ul)(

V 1,UEZd

> wwy|y+v><y|)

yEZd

1
X(? > w‘lez><><|)
\’dx,ZEZd

:} > @y
dt,y,XEZd

:} E @ TW=x)y E

o®|t)(x|
dyE Zd txe %d
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=> @)% — wy(x| we can switch two rows andj in the upper block: at the
same time, rows1+i and n+j in the lower block are also

xeZ
‘ switched. This operation is defined by
-W
:w‘”WXZq D 0100
v 1000
As C'UC=-UT mod d, we see with Eq(7) thath=0 mod C= 000 1 modd.
2d. This operation is the qudit equivalent of the Hadamard 0010

gate on one qubit.

Analogous to the qubit phase gate, a phase gate on o
qudit can be defined gs) — **9|x), with x e Zy. This op-
eration corresponds ©=[ 1 9] modd andh=[ §**] mod 2.
Indeed, for alla=[ 4] e 7%

rﬁultiplying a row i with an invertible number e 74 results
in multiplying the corresponding row+i in the other block
by r't. A numberreZy has an inverse ifr and d are
coprime, i.e., gctt,d)=1. This operation is defined b§

QXZa)Qt= > g2wyHyro) (yrordi=yyrd)ly gy =[5 ?_1]. The last configuration space transformation we con-
yeZg sider, is adding one row multiplied by an arbitrary factor
R ge 74 tO anqther rowj. At the same time, rom+]j, mu[t|-
= oo+ )y}‘é @Yy +v)y]. plied by —g, is added to rown+i. This operation is defined
€/ d b

As CTUC=[ 1 3] mod d, v(v+d) must be equal téh—[ 3))T

a+v? mod 2 according to Eq(7), which is the case for the 100 O

givenh. gl10 0
C= modd.

001-g

IV. DECOMPOSITION OF A CLIFFORD OPERATION
IN ONE AND TWO-QUDIT OPERATIONS 000 1

Secondly, we will also need operations that combine rows

In order to prove that any symplectic matrx and h
P y Symp of different blocks. Switching two rows and n+i can be

satisfying Eq.(10) define a Clifford operation, we will ex- : i : i
pand an arbitrary symplecti€ into symplectic elementary carrled_ out_ by th(_a discrete thﬂler transforr_n. Recall that this
row operations that can be realized as Clifford operations offPeration is defined byC=[ 7 7]. After switching of the
maximally two qudits at the same time. What is more, thisrfOWS. rowi is multiplied by —1. By applying the inverse of
decomposition is a worthy candidate as a practical realizalh® discrete Fourier transform, rowi(lj instead of rowi is
tion of a Clifford operation. The possibility of this kind of Multiplied by —1. ApplylngEXEnggX(.x %] (which is the
decomposition into a selected set of one and two-qudit opsame as applying the phase ggtéimes on theith qudit,
erations is briefly discussed in RE8]. Our scheme is related With g € Zg, results in the addition of rowmultiplied byg to
to the method of Ref[6] in which Euclid’s algorithm is its corresponding rom+i, according to
incorporated in order to generate any one-qudit Clifford op-
eration. c= {1 0] modd

First, we mention that the main problem is realiziGg g1 '
not h, for once a Clifford operatio® defined byC andh is ) ) )
realized, we can realiz®' defined byC and an arbitranjn’ We could introduce more row operations that define one

satisfying Eq.(10) by doing an extra operatiokZ{CP[(h’ or two-qudit Clifford operations, but the ones described so
~h)/2]} on the left orXZ{P[(h'—h)/2]} on the right ofQ far suffice. Next we give a constructive way of transforming
Note that as botih andh’ satisfy(10), h'—h is even ' C into the identity matrixl. If we are able to transforn®

We first give an overview of the elementary row opera—into C' by transforming column€; andC,, into the corre-

tions that we will use to transform an arbitrary symplectiCSpon.d'.ng colu,mnEl and E.”” of I, it follows from the,sym—
matrix C into the X 2n identity matrix!. As | is formed by plecticity of C' that the .f'rSt andn+1)-th row of C" are
left multiplication of such elementary row operations@na ~ €du@! to the corresponding rows lof\We then have
decomposition ofC then consists of the inverses of these B
operations in reverse order. Since these operations act on 10 .. 000 .. 0
maximally two qudits at the same time, they are defined by a 0 0
symplectic 4<4 or 2X2 matrix embedded in the identity : c : c
matrix as explained in the preceding section. In the follow- ) @ )
ing, we will only show this part of the operations. c 0 0

First, we consider some configuration space transforma- 00 ... 0010 .. 0o
tions (of the form C=[ g$_T]). These operations combine 0 0
only rows from the same blockwve call rows 1,...n the . c/ . c
upper block and rows+1, ..., the lower block and have : (29 : (22
a similar action in both blocks at the same time. For instance, 0 0
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Leaving the first qudit out, we can continue by transforming gcdCyy, ... .Cona) 1
the second anén+2)-th column ofC’ into the correspond- 0 0
ing columns ofl, and so on. This recursive procedure even-
tually leads tol. Now we only have to show how columns

C, and C,,; are transformed intcE; and E,.;. Let us -~ 0 10
first consider the case where the upper left eriyy has 0 0
an inverse inZy. Multiplying the first row byCH changes 0 0

this entry to 1. Next we add the first row, multiplied by
-C,1, to rowk, and this fork=2, ... n, setting thekth entry
of C; to 0. The first column now has the form 0 0

[10,...,0C011Criz, - Conal™. Now we add the first | this way, C is decomposed int®[n? In(d)] elementary
row multiplied by -Cf,, ; to row n+1, setting then+1)-th  gperations, as the computational complexity for finding the
entry of C; to 0. The discrete Fourier transform on the firstgcd of two positive integers less thanwith Euclid’s algo-
qudit change€; into [0 0, ...,41 Chipy,...,.Conal™- Inthe  rithm is O[In(d)] [16].

same way as for the upper half 6f, we make zeros below

the (n+1)-th position. Note that nothing happens to the up- V. STABILIZER STATES

per half, for all entries there are 0. Switching the fifrsow
we use the inverse of the discrete Fourier transjomith the
(n+1)-th row again yield€;. We call the matrix made so far

In this section we define stabilizer states for qudits of
arbitrary dimensions. A stabilizer state is a state ohajudit

" " . " _ system that is a simultaneous eigenvector, with eigenvalues
C". From the symplecticity o€" it follows that Cy, ., =1 1, of a subgroup ofd"” commuting elements of the Pauli

modd, and we can repeat.for te+1)-th column the same group, which is called the stabiliz&t of the stabilizer state.
procedure we did for the first column. Note that none of therpg giapilizer state is completely determined by a generating

operations yielding,., out of Cy,; will affect C1=E;, eX- gt forS. The description of such a generating set in modular
cept the discrete Fourier transform and its inverse on the firs§sithmetic provides an efficient tool of describing the stabi-
qudit, but they cancel each other. Since the number of elizer state and its behavior under the action of a Clifford
ementary operations for one column@¢n), the total num-  gperation. Finally, we give an expansion of an arbitrary sta-
ber of operations transforming into | is O(n?). bilizer state in the standard basis.

If the entryC,4 has no inverse moduld, but there is &,
in the first row that does have an inverse, this entry can be  A. Definition and description in modular arithmetic

switched into the first position by a permutation of two qu-
dits and possibly the discrete Fourier transform on the ﬁrs[eigenvalues 1, of a subgroup df commuting elements of

qudit. Note that it is possible that none of the entrie€Cef  he payli group which does not contain multiples of the iden-
has an inverse. Indeed, sinCds invertible, the only restric- ity other than the identity itself. We call this subgroup the
tion on one single column ot is that the greatest common stapilizer S of |4). A generating set folS consists of ele-
divisor of all its entries has an inverse. For every two entrieSnents [XZ(S), k=1,...m, where S, e Zgn and fy e Zyg.

Cip andC,; ; or Cj; andCj, from the same block, the ged of \we will assemble the vecto§, as the columns of a matrix
these two can be formed in one of the two entries by recurse 72™™ and the scalar$, in a vectorf e Z1. We callS a
sively substracting a multiple of one row from the other fol- generator matrix and the corresponding phase vector that
lowing Euclid’s algorithm[16]. The other entry can then be together define. The fact that the elements Sfcommute is
made O since it is a multiple of the gcd. A worst case scereflected bySTPS=0 modd. We choosen to be the minimal
nario would be that all @ combinations of A—1 entries cardinality of a generating set & Note that, as opposed to
have a gcd that is not invertible. The procedure goes as fokhe situation for qubitsm can be larger tham. It can be
lows: verified that ifm>n, the imposed condition in Ref14] for

a stabilizer state to be equivalent to a graph state, is not

fulfilled. If d has only single prime factors, then=n. If d

A stabilizer state) is the simultaneous eigenvector, with

- - m - has multiple prime factors, thens=ms=2n. A simple ex-
Cn 9cdC;1,Cpri10) ample ford=4 andn=1 is the state 1y2(|0)+|2)) with sta-

c C..C bilizer {I,X?,Z?,X?Z?}: in this casem=2. We will describe
21 9cdCy1,Chiz,0) . .
. below how to construct such a minimal generating set. The
: fact thatS does not contain multiples of the identity other
Cu gcdCpy,Con 1) than the identity itself implies that the phase vedtsatisfies

N
gn+1,1 0 [f = Vaiad STUTTT + 1 [Pyiag(STUS) + 2P, STUS) Ir
0
et =0modad, Or e ZJ|Sr=0 modd (12)
Con1 0 The description ofS by S and f is not unique, as they
- -k - represent a generating set {6r By applying an invertible
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linear transformatiorR e Z3™™ to the right onS and trans- S —
forming f appropriately, another generating g“élelXZ(S;) is S = { T}SR: Qo = {Q} modd,
formed. By repeated application of E@l), one finds o T B B B
S' =SRmodd, — -
f'T=[f'T 7] mod A, (16)
f'=RI[f —Vdiag(STUS)] +Vdiag(RT[27?upp48TUS) whereQ is a pseudodiagonal matrix in Smith normal form
+Pdiag(STUS)]R) mod . (12) and Q"B mod d is symmetric.Q and B are the left square

nXxn parts ofQ andB.
We will refer to this as a stabilizer generator matrix change. (ii) The statel¢) can be expanded in the standard basis
If | is operated on by a Clifford operati@, defined by  (up to a normalization factpras
C andh, thenQ|y) is a new stabilizer state whose stabilizer

TMt+p T oy *
is given byQSQ'. By application of Eq(7), we can calcu- ly)= 2 MPIT(QE+X), (17
late anS' andf’ for this stabilizer, resulting in teZq
S =CS modd, WhereM::Q_Bmod d, p::F—Vdiag(MHZETx* mod A
If we define the vectoq of flengthn with entries
£ = f + S'Th = Vgia CTUC) ] + Vijia(ST2Pppd C'UC) d if Qu=0 modd,
+ Pyiad C'UC)]S)  mod . (13) | Qu if Qu#0 modd, k=1,...n

We can construct a minimal generating $&XZ(S,), k  and the vectoq of lengthm as
=1, ... m, for an arbitrary stabilize§, given a generating set =% ot
MNXZ(S), 1=1,... m, for S using the Smith normal form =i
(see Appendix A This can be done as follows. T8 are
assembled in the matri®. Now we compute the Smith nor-
mal form F=KSL of S, with K e ZZ™®" and L e zJ ™
invertible matricesS'L is just another generator matrix of B™x=y modq, (18)
the stabilizer. From the definition of the Smith normal form it )
follows thatS'L is a generator matrix having a minimal num- Wherey e G4 has entries
ber of nonzero columns. The rightmast-m’ columns of

Thenx e Gz:=7

qi=24q, X =+ X Zq_is defined as the unique solu-
1 n
tion of

S'L that are zerdasS'L=K™'F) can be omitted. We call this - % modgq,, fork=1,...n,
new generator matris and f is formed out off’ with Eq. = 2

(12). Note that no linear combination of the columfgsof S o= i

is zero unless the coefficients in this linear combination are a -2 moday, fork=n+1,...m.

multiple of the order of the columns or, fée=1, ... m, 2

Note that from the stabilizer phase conditi¢tb) (choose
if > nS=0 modd, thenr,S;=0 modd. (14) r:=d), it follows that the numerators in the expressions for
k y, are even. An efficient way of solving Eq18) can be
found in Appendix B. A definition of the Smith normal form
of a matrix e Z§*™ is given in Appendix A.
Proof. (i) We assume th& already has a minimal number

With this, the stabilizer phase conditighl) can be simpli-
fied to, fork=1, ... m:

(re— 1)rkS[[USK+ rfi=0 mod 2, of columnsm as described above and we wrieas [ ;2;]
with S41),S2) € Z§“™ Then we defin® as the Smith normal
Org € ZgInS=0 modd. (15 form of §y with invertible transformation matriceE™* and

R, i.e., Q=T1§;R With B=T'S,R, this yields the expres-
sion forS' in Eq. (16). According to Egs(12) and(13), f is
B. Description of a stabilizer state with linear transformed tdf’, yielding
and quadratic forms

I — T T U T
We provide an expansion of an arbitrary stabilizer state in P2 R~ Vaiad S U T+ Via RT2Puppd SUS)
the standard basis for arqudit state. This is stated in the +73diag(STUS)]R) mod 2.
following theorem. 1o 1o )
Theorem 1(i) If Se 7Z2™™ andf e 7, define a stabilizer Note that[ o ]'U[ o +]=U mod d. It follows directly
state|y) as described above, th&andf can be transformed from STPS=0 modd that Q"B is symmetric modulal.

by a configuration space transformatiph— |T~x), with T (i) We show that Eq(17) is a simultaneous eigenvector
e 70", and a stabilizer generator matrix chari@e 7™  with eigenvalue 1 of™*XZ(S,), k=1, ... m. Equivalently, the
into the formS’ andf’, with state
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'y = > ZMHPTQL+ )

n
teZy

(19

is a simultaneous eigenvector with eigenvalue 1 o
gfﬁXZ(S,Q), k=1,... m. First, note that in Eq(19), different
values oft may yield the same basis std@ﬁx*), since
Qt+x" modd is periodic. The coefficient o|£gt+_x*) in Eq.
(19) displays the same periodic behaviorQf=Qt" modd
thent™™t+p't=t'TMt’ +p't’ mod 2. It is sufficient to check
this for t'=t+(d/q E,, k=1,... n, whereE, are the stan-
dard basis vectors dfj. We have

<t+9E>TM(t+EE)+pT(t+9E)—tTMt—th
Ok “ Ok “ Ok «

d *
q_[(d - qk)Bkk+ fé + ZBIX ] =0 modd
k

for k=1...n. Indeed, from the definition of": B/x"=-[(d
-qWBwt+fd/2 mod q,, k=1,...,n, it follows that
2(d/q)BiX ==(d/q[(d—-qYByc+f] mod A, k=1,...n.
We made use of the fact thtd =QB mod d0 M=QB+D
mod A, where every entry dd mod 2 can be eithed or 0O,
i.e., 2D=0 mod 2.

Next, we check fok=1,... n that Eq.(19) is an eigen-

vector of{fﬁXZ(SQ) with eigenvalue 1. We have

gfﬁxzqgj)iw»

=S AMERTE2BIQEO O 4 + Q)

IEZQ

= - Ek)TM(t—Ek)+pT(t—Ek)+f,’(+2B[(6(t—Ek)+x*)|6t +X)
IEZS

= 3 LMPQE ) = ).
tEZS

Finally, gfl;XZ(SL) acting on the left of Eq(19) yields, for
k=n+1,... m,

g”flLXZ( {s :|)|‘//> — 2 é«tTMt+th+fi;+ZBk(Qt+x*)|6t + X*>
k n

teZy

= X MQEH ) = ().

n
teZy

In Appendix B we prove that Eq18) has a unique solution
X e &q [ |

f
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whereG. :=Zgq, X -+ X Zgyq . Note that the normalizing fac-

tor is just the inverse of the square root of the number of
terms in the summation, as each basis state is orthogonal to
the others and occurs only once. Finally, it is interesting to
mention that, for an arbitra andf defining a stabilizer state

|), we have(up to a normalization factpr

= Mg t+x),

tezg‘

r

i=1 d T T
. E gt M(r)t+p<r)t

d teGx

Qunt+Xq)

—

X

¥

where S:[z((g], M=5,Sz mod d, p=f=Vgiag M) +25,x’

mod A, andx’=TX modd, whereT andx” are the same as
in Eq. (17). Yet, this formula has two disadvantages: first, to
find x’, we still have to calculate the Smith normal form of
Sy and second, in Eq.17) it is clearer which basis states
have nonzero coefficients.

VI. CONCLUSION

We have shown that for the Pauli group, the Clifford
group and stabilizer states, straightforward extensions in Hil-
bert spaces of arbitrary dimensions can be compactly de-
scribed with matrices ovéfy. We have given a way of effi-
ciently decomposing an-qudit Clifford operation inO(n?)
one and two-qudit operations. With these tools in modular
arithmetic, we provide an expansion of an arbitrary stabilizer
state ofn qudits in the standard basis.
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It is possible to remove all identical terms in the summa-

tion of expressiori17) as follows. We define as the number
of nonzero diagonal elements Qf We denote the upper left
r Xr part of a matrixA asA,, the upper part of a vectoia

asa) and the part of below a;;) asa;). Then Eq.(17) is
equivalent to

APPENDIX A: THE SMITH NORMAL FORM

The Smith normal form is a canonical diagonal form for
equivalence of matrices over a principal ideal rRRgin this
paper we consider matrices ov&y. For anyA e 7™ there
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exist invertible matriceX e 7" andL e Z7™™ such that

m
q.
- - 1= . .
) i=1 9 Hzlgj i=1 i=1

thus the number of elements of both groups are the same.
fy Next we show thaB™x=0 modq if and only if x=0 modgq.

F=KAL= 0 modd We rewrite this as

(v € Z3B™x=Q™v modd)
L O_ = (X € Zg:x=Qx modd), Oxe Zj.

with eachf; a nonzero and witl | f;,, for 1<i<r—1. Thef; (B2)
are unique up to units. Uniguenesskofcan be ensured by
specifying that eaclfy should be a positive divisor af in Z.
There exist fast algorithms for computing the Smith normal
form [17].

Proof. <) Q"B is symmetric modula. We therefore have
B'™x=B'Qx'=Q'Bx’ modd, sov=Bx’ modd.
=) We show that the number afe 7 satisfying the LHS
of Eg. (B2) is equal to the number of satisfying the RHS.
The number of elements generated by the columns of a ma-
APPENDIX B: A UNIQUE SOLUTION OF EQ. (18) trix is equal to the product of the orders of the diagonal
elements of its Smith normal form. Therefore the columns of
Here we prove that Eq18) B'x=y mod g has a unique ST, similar to the columns of, also generatel elements.
solutionx” e Ggi=7Zq, X - -+ X Z,, . We rewrite Eq(18) as the  Consequently, the mappir a e 72"— S'a e 7T is a homo-
following system of equations: morphism fromZ3" to a groupYCZ{, with |Y|=d". The
kernel in Z3" of s contains|Z3"/|Y|=d" elements. Equiva-
lently, with a"=[v" w'], s is @ homomorphism frorigx Z{

> Bijx=y; modg;, j=1,...m. (Bl  tov:
i=1

n

1% 1% 1%
If, for fixed j, theB;; andq; have a common factor, then also Squ = ST{W} =[QT BT]{W} =Q'v +B'w.
y; must be a multiple of this factor, otherwise there is no
solution. Definegj:=gcdBy;, ... ,By;,q;) andr:=d/g;. Note  There are exactlyl” different pairs(v,w) that satisfyQ'v
thatr; is the order of5. A necessary condition for solvability +B™w=0 mod d. Replacingw by -x, we have exactlyd"
of Eq. (B1) is or rjy;=0 modd, for everyk=1,... m. We pairs(x,v) satisfyingB"™x=Q"v modd. Fixing such arx, we
show that this condition holds. We haw& =0 modd. From  have a total ofIiL,q; differentv for which, together withx,

the stabilizer phase conditigi5) it follows that the equality still holddthis is because we can add an arbi-
trary multiple ofd/q; to v;). Therefore, the total number &f
(rj=DrjgiBj +r;f, =0 mod 2, 1<j=n, for which av exists such thaB"™x=Q"v mod d, is equal to
d"/TIL,q;. This is equal to the number afthat can be writ-
ten asx=Qx'. |

rifi=0 moda, j>n, Next, we describe a method for easily finding the solution

X" of Eq. (18). We define a diagonal matri e Z§™™ with

and by definition ofy, consequentlyrjy;=0 mod d, j  giagonal entries equal @/, k=1, ... m. Equation(18) is

=1,... m. . equivalent to the equatiahB"x=Zy modd. We calculate the
An equivalent system to Eq4B1) is now Smith normal formF=KZB'L mod d. Defining x":=L"1x

n modd andy’:=KZy modd, we have the following equation

s %lx- Y mogd i=1,..m Fx'=y’ mod d, for which a solutionx’ € Z{} can be easily
19 ! 9 g/ T found (note that this solution is most likely not unigu&Ve

then findx"=Lx"" modq.
We define the map b:  Xx=[xg,... X, —b(x)
=[EL(Bi/goxi| - [ZLy(Bim/gmx]T  mod  [ai/gs, ..,
G/ 9ml", Which is a homomorphism from the group of vec-  In this section we consider the special case of ddslost
tors of lengthn with entriesx; modulog;, i=1,... nto the of the formulas in this paper can be simplified for atldVe
group of vectors of lengtim with entriesy; modulog;/g;,  will only give an overview and omit the derivations, as they
j=1,....m. Equation(B1) has a unique solution if is an  are completely analogous to the general casel i odd,
isomorphism. We prove this by showing that the number ofthen 2 has an inverse ify, equal to(d+1)/2, which we will
elements in both groups are the same and that only O is in théenote by 2.
kernel. It follows from Eq.(14) and the fact that, by defini- For oddd, we can use a restricted definition for the Pauli
tion, the columns ofs generate a set af” elements, that the group: it contains ald® tensor product$2) with an addi-
product of the orders of the columns 8fis equal tod", or  tional complex phase factap® (instead of a power of).
Hj’T;lrj:d“. Therefore, Equation(4) becomes

APPENDIX C: SIMPLIFICATIONS FOR ODD d
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0XZ(2) 0XZ(b) = 02 VX Z(a+b). (C1)

PHYSICAL REVIEW A 71, 042315(2005

Thus, nothing is lost by restricting the definition of the Pauli
group for oddd. A generating set for the stabilizérconsists

The order of an arbitrary element of this newly defined Pauliof elementsw®XZ(S), k=1, ... m, whereS e Zgn and by
group is never equal tod2 In the same way as for the gen- < 7M. Analogously to the definition of, b is equal to half

eral case, we find the imagefXZ(b) of w°XZ(a) under con-
jugation by a Clifford operation, which is now defined 8y
andg=h/2:

b=Ca modd,

€=0+[g- 2V C'UC)Ta
+27"(C'UC-U)a modd. (C2)

Note that, contrary to the general cages a vector inZﬁ”.
There is no longer a restriction ap Indeed, from Eq(10),

it follows thath in the general setting is always even for odd
d. Symplecticity ofC is of course still required. The product

of two Clifford operationsQ”=Q’Q corresponds t&€” and
g’, where

C’=C'C modd,

g// =g + CTg/ + 2—1[Vdiag(cT(C/TUC/ _ U)C)
~ CTV4adC'TUCY)]  modd. (C3)

The inverseQ' of a Clifford operationQ defined byC andg
is defined byC’ andg’, where

C'=C'=-PC'"P modd,
g’ =-C g+ 27 [C TV, C'UC)

+ Vdiag(C_TUC_l)] modd. (C4)

the value off in the general settin¢as it is the exponent of
w instead of¢). The stabilizer phase conditiofil) on b
simplifies to

[20 = V4iagSTUSTr +r"(STUSYr=0 modd, (C5)

Or e Z§|Sr=0 modd.

A stabilizer generator matrix change, by applying an invert-
ible linear transformatioR e Z7™ to the right onS, results
in

S '=SR modd,
b’ = R[b~ 2"V SU ] + 2 Vyiag R'STUSR  mod d.
(Ce)

A stabilizer state defined b$ andb, operated on by a Clif-
ford operation defined b andg, is a new stabilizer state
defined by

S =CS modd,

b'=b+ ST[g - 2_1Vdia§£CTU C)]
+ 2 Wyd S(CTUC-U)S] modd.  (C7)
It is not hard to verify that paii) of theorem 1 simplifies to

= o MPYTQL+X)), (C8)

n
teZy

The definition of a stabilizer state remains the same ex- — _ _
cept for the fact that now the stabilizer is a subgroup of thevhereM:=2"1QB modd, p:=b’~Vgag(M)+B™X" modd. In
restricted Pauli group. Note that for odfl no subgroup of this settingX” e Gg:= Lq, X -+ X1 _is defined as the unique
the general Pauli group can be found that fulfills all stabilizersolution of B'x=-b’ mod qg. For calculatingx we refer to
conditions but is not a subgroup of the restricted Pauli groupAppendix B.
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