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For a general entangling probe attacking the Bennett-Brassard 1984 protocol in quantum key distribution, I
calculate three classes of optimized unitary transformations, all yielding the same maximum information to the
probe. The simplest one corresponds to a probe having a two-dimensional Hilbert space of states, and is
uniquely determined by the error rate induced by the probe in the legitimate receiver. The second class
corresponds to a probe having a four-dimensional Hilbert space of states, and is determined by the error rate
and two continuous angle parameters which are mutually constrained by the error rate. The third class corre-
sponds to a probe having a four-dimensional Hilbert space, and is determined by the error rate and two
continuous angle parameters, one of which is constrained by the error rate. Furthermore, I show that the
simplest quantum circuit representing the optimal entangling probe consists of a single controlled-NOT gate in
which the control qubit consists of two polarization-basis states of the signal, the target qubit consists of two
probe-basis states, and the initial state of the probe is set by the error rate. A method is determined for
measuring the appropriate correlated state of the probe. Finally, a possible implementation of the entangling
probe is described.
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I. INTRODUCTION

For the standard four-state Bennett-Brassard 1984sBB84d
protocol f1g of key distribution in quantum cryptography,
Slutskyet al. f2g performed an eavesdropping probe optimi-
zation, which on average yields the most information to the
eavesdropper for a given error rate caused by the probe. The
most general possible probe consistent with unitarity was
consideredf2–7g, in which each individual transmitted bit is
made to interact with the probe so that the carrier and the
probe are left in an entangled state, and measurement of the
probe then yields information about the carrier state. The
probe optimization is based on maximizing the Renyi infor-
mation gain by the probe on corrected data for a set error rate
induced by the probe in the legitimate receiver.fRecall that
the Renyi informationf2,4g on anl-bit stringX, having prob-
ability PXsXd, is l +log2oXPX

2sXd.g The results of the optimi-
zation were obtained for the standard protocol with an angle
of 45° between the signal bases.

In more recent workf3,5,6g, a larger set of optimum probe
parameters was found than was known previously. It consists
of three distinct optimum sets, and although they all yield the
same maximum Renyi information gain by the probe, alter-
native options are made available for optimum probe design.
In Sec. II of the present work, the corresponding optimized
unitary transformations, representing the action of the probe
on the signal, are calculated. I have determined three classes
of optimized unitary transformations, all yielding the same
maximum information to the probe. The simplest one corre-
sponds to a probe having a two-dimensional Hilbert space of
states, and is uniquely determined by the error rate. The sec-
ond class corresponds to a probe having a four-dimensional

Hilbert space of states, and is determined by the error rate
and two continuous angle parameters which are mutually
constrained by the error rate. The third class corresponds to a
probe having a four-dimensional Hilbert space, and is deter-
mined by the error rate and two continuous angle parameters,
one of which is constrained by the error rate. Furthermore, it
is shown in Sec. III that the simplest quantum circuit repre-
senting the entangling probe is one corresponding to the sim-
plest optimal unitary transformation, for which the Hilbert
space of the probe is only two dimensional. The quantum
circuit consists of a single controlled-NOT sCNOTd gate in
which the control is a polarization-basis state of the signal,
the target is a probe-basis state, and the initial state of the
probe is set by the error rate. In Sec. IV, a method is deter-
mined for measuring the appropriate correlated states of the
probe. In Sec. V, I propose an implementation of the entan-
gling probe. Section VI contains a brief summary.

II. OPTIMUM ENTANGLING PROBE

The unitary transformation describing the interaction of
the entangling probe with the BB84 signal basis states is
determined by Eqs.s2d–s4d of Ref. f2g, namely,

uem ^ wl → Uuem ^ wl = o
n

uenl ^ uFmnl. s1d

Here uem^ wl is the tensor product of the initial stateuwl of
the probe with the orthonormal basis stateueml in the two-
dimensional Hilbert space of the signal. The signal basis
states are given by

ue0l = cos
p

8
uul − sin

p

8
uūl, s2d
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ue1l = cos
p

8
uvl − sin

p

8
uv̄l, s3d

expressed in terms of the BB84 linearly-polarized-photon
signal stateshuul , uūl , uvl , uv̄lj, for a=p /8. Herea is half the
complement of the angle between the nonorthogonal signal
baseshuul , uūlj andhuvl , uv̄lj and the stateuūl is orthogonal to
uul, and the stateuv̄l is orthogonal touvl. sHere and through-
out, only linear polarization states are considered.d It is to be
understood here that the statesuul, uūl, uvl, and uv̄l corre-
spond to Boolean statesu1l, u0l, u1l, andu0l, respectivelyf2g.
Also in Eq. s1d, uFmnl are the states in the Hilbert space of
the probe and are neither normalized nor orthogonal. Using
Eqs. s3ad, s3bd, and s4d of Ref. f2g, they can be written as
follows in terms of the probe basis states
huw0l , uw1l , uw2l , uw3lj with probe parametershl ,m ,u ,fj:

uF01l = X5uw1l + X6uw2l, s4d

uF10l = X6uw1l + X5uw2l, s5d

uF00l = X0uw0l + X1uw1l + X2uw2l + X3uw3l, s6d

uF11l = X3uw0l + X2uw1l + X1uw2l + X0uw3l, s7d

where

X0 = sinl cosm, s8d

X1 = cosl cosu cosf, s9d

X2 = cosl cosu sinf, s10d

X3 = sinl sinm, s11d

X5 = cosl sinu cosf, s12d

X6 = − cosl sinu sinf, s13d

and

0 ø l,m,u,f ø p. s14d

The unitary transformation representing the optimum en-
tangling probe can be obtained from Eqs.s1d–s13d by substi-
tuting the optimum probe parameters as determined in Eqs.
s89d, s90d, ands119d in Ref. f6g. In summary, the three sets of
optimum probe parameters for the standard BB84 protocol
with a=p /8 are

Ss1d ; hl,m,u,f;cosl = 0,sin 2m = 1 − 4Ej, s15d

Ss2d ; hl,m,u,f;sin 2m sin2 l = 1 − 4E

− cos2 l sin 2f,cos 2u = 1j, s16d

Ss3d ; hl,m,u,f;sin 2f = − 1,sin 2m sin2 l = 1 − 4E

+ cos2 lj, s17d

where

0 ø E , 1/2. s18d

All three sets of probe parameters Eqs.s15d–s17d yield the
identical maximum Renyi information gainIopt

R to the probe,
namelyf2,3,5,6g,

Iopt
R = log2F2 −S1 − 3E

1 − E
D2G . s19d

We first evaluate the unitary transformationUs1d corre-
sponding to the setSs1d of optimum probe parameters Eq.
s15d. In Eq. s15d one has

sin 2m = 1 − 4E. s20d

Using a trigonometric identity, it follows that

cos 2m = ± s1 − sin2 2md1/2. s21d

Then substituting Eq.s20d in Eq. s21d, one obtains

cos 2m = ± f1 − s1 − 4Ed2g1/2 s22d

or

cos 2m = ± f8Es1 − 2Edg1/2. s23d

Also, the following trigonometric identities are true:

cos
x

2
= ± S1 + cosx

2
D1/2

, s24d

sin
x

2
= ± S1 − cosx

2
D1/2

, s25d

in which the sign depends on the quadrant in whichx/2 lies.
Consistent with Refs.f2–6g, in the case ofUs1d, I extend the
range in Eq.s14d to −pø sl ,mdøp. Then substituting Eq.
s23d in Eqs.s24d and s25d, one obtains

cosm = ± F1

2
h1 ± f8Es1 − 2Edg1/2jG1/2

, s26d

sinm = ± F1

2
h1 7 f8Es1 − 2Edg1/2jG1/2

. s27d

Using Eqs.s26d and s27d, Eq. s15d can be rewritten as fol-
lows:

Ss1d = Hl,m,u,f;cosl = 0,

cosm = ± X1

2
h1 ± f8Es1 − 2Edg1/2jC1/2

,

sinm = ± X1

2
h1 7 f8Es1 − 2Edg1/2jC1/2J . s28d

Next, substituting Eq.s28d in Eqs.s8d–s13d, one obtains

X0 = F1

2
h1 ± f8Es1 − 2Edg1/2jG1/2

, s29d

X1 = 0, s30d

X2 = 0, s31d
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X3 = F1

2
h1 7 f8Es1 − 2Edg1/2jG1/2

, s32d

X5 = 0, s33d

X6 = 0. s34d

Note that in Eqs.s29d and s32d, the overall signs must be
positive in order to yield Eq.s19d. Then substituting Eqs.
s29d–s34d in Eqs.s4d–s7d, one obtains

uF01l = 0, s35d

uF10l = 0, s36d

uF00l = uA1l, s37d

uF11l = uA2l, s38d

where

uA1l ; X1

2
h1 ± f8Es1 − 2Edg1/2jC1/2

uw0l

+ X1

2
h1 7 f8Es1 − 2Edg1/2jC1/2

uw3l, s39d

and

uA2l ; X1

2
h1 7 f8Es1 − 2Edg1/2jC1/2

uw0l

+ X1

2
h1 ± f8Es1 − 2Edg1/2jC1/2

uw3l. s40d

The signal states, expressed in terms of the basis states
Eqs.s2d and s3d, are given by Eq.s1d of Ref. f2g, namely,

uul ; cos
p

8
ue0l + sin

p

8
ue1l, s41d

uūl ; − sin
p

8
ue0l + cos

p

8
ue1l, s42d

uvl ; sin
p

8
ue0l + cos

p

8
ue1l, s43d

uv̄l ; cos
p

8
ue0l − sin

p

8
ue1l. s44d

To see how the initial stateuu^ wl transforms, we use Eq.
s41d to write

uu ^ wl = Scos
p

8
ue0l + sin

p

8
ue1lD ^ uwl, s45d

or

uu ^ wl = cos
p

8
ue0 ^ wl + sin

p

8
ue1 ^ wl, s46d

so that using Eq.s1d in Eq. s46d, the transformed state is
described by

uu ^ wl → cos
p

8o
n

uenl ^ uF0nl + sin
p

8o
n

uenl ^ uF1nl,

s47d

or performing the summations, then

uu ^ wl → cos
p

8
sue0l ^ uF00l + ue1l ^ uF01ld

+ sin
p

8
sue0l ^ uF10l + ue1l ^ uF11ld. s48d

Next, substituting Eqs.s2d and s3d in Eq. s48d, one gets

uu ^ wl → cos
p

8
FScos

p

8
uul − sin

p

8
uūlD ^ uF00l

+ Scos
p

8
uvl − sin

p

8
uv̄lD ^ uF01lG

+ sin
p

8
FScos

p

8
uul − sin

p

8
uūlD ^ uF10l

+ Scos
p

8
uvl − sin

p

8
uv̄lD ^ uF11lG , s49d

or

uu ^ wl → uul ^ Scos2
p

8
uF00l + sin

p

8
cos

p

8
uF10lD

+ uūl ^ S− sin
p

8
cos

p

8
uF00l − sin2 p

8
uF10lD

+ uvl ^ Scos2
p

8
uF01l + sin

p

8
cos

p

8
uF11lD

+ uv̄l ^ S− sin
p

8
cos

p

8
uF01l − sin2 p

8
uF11lD .

s50d

Next substituting Eqs.s35d–s38d in Eq. s50d, one obtains

uu ^ wl → cos2
p

8
uul ^ uA1l − sin

p

8
cos

p

8
uūl ^ uA1l

+ sin
p

8
cos

p

8
uvl ^ uA2l − sin2 p

8
uv̄l ^ uA2l,

s51d

or equivalently,

uu ^ wl → 1

4
fs2 + 21/2duul ^ uA1l − 21/2uūl ^ uA1l

+ 21/2uvl ^ uA2l − s2 − 21/2duv̄l ^ uA2lg. s52d
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It is evident from Eqs.s52d, s39d, ands40d that the effect of
the transformation is to entangle the probe statesuw0l and
uw3l with the signal statesuul, uūl, uvl, and uv̄l.

Next consider the transformation of the stateuū^ wl also
for the optimum parameter setSs1d. According to Eq.s42d,
one has

uū ^ wl = S− sin
p

8
ue0l + cos

p

8
ue1lD ^ uwl, s53d

or

uū ^ wl = − sin
p

8
ue0 ^ wl + cos

p

8
ue1 ^ wl, s54d

so that using Eq.s1d in Eq. s54d, the transformed state is
described by

uū ^ wl → − sin
p

8o
n

uenl ^ uF0nl + cos
p

8o
n

uenl ^ uF1nl,

s55d

or performing the summations, and substituting Eqs.s2d and
s3d, one obtains

uū ^ wl → uul ^ S− sin
p

8
cos

p

8
uF00l + cos2

p

8
uF10lD

+ uūl ^ Ssin2 p

8
uF00l − sin

p

8
cos

p

8
uF10lD

+ uvl ^ S− sin
p

8
cos

p

8
uF01l + cos2

p

8
uF11lD

+ uv̄l ^ Ssin2 p

8
uF01l − sin

p

8
cos

p

8
uF11lD .

s56d

Next substituting Eqs.s35d–s38d in Eq. s56d, one obtains

uū ^ wl → 1

4
f− 21/2uul ^ uA1l + s2 − 21/2duūl ^ uA1l

+ s2 + 21/2duvl ^ uA2l − 21/2uv̄l ^ uA2lg. s57d

Again, the probe states are entangled with the signal states.
Next consider the transformation of the stateuv ^ wl also

for the optimum parameter setSs1d. Using Eq.s43d, one has

uv ^ wl = Ssin
p

8
ue0l + cos

p

8
ue1lD ^ uwl, s58d

or

uv ^ wl = Ssin
p

8
ue0 ^ wl + cos

p

8
ue1 ^ wlD , s59d

so that using Eq.s1d in Eq. s59d, the transformed state is
described by

uv ^ wl → sin
p

8o
n

uenl ^ uF0nl + cos
p

8o
n

uenl ^ uF1nl,

s60d

or performing the summations, and substituting Eqs.s2d and
s3d, one obtains

uv ^ wl → uul ^ Ssin
p

8
cos

p

8
uF00l + cos2

p

8
uF10lD

+ uūl ^ S− sin2 p

8
uF00l − sin

p

8
cos

p

8
uF10lD

+ uvl ^ Ssin
p

8
cos

p

8
uF01l + cos2

p

8
uF11lD

+ uv̄l ^ S− sin2 p

8
uF01l − sin

p

8
cos

p

8
uF11lD .

s61d

Then substituting Eqs.s35d–s38d in Eq. s61d, one gets

uv ^ wl → 1

4
f21/2uul ^ uA1l − s2 − 21/2duūl ^ uA1l

+ s2 + 21/2duvl ^ uA2l − 21/2uv̄l ^ uA2lg. s62d

Again, the probe states are entangled with the signal states.
Next consider the transformation of the stateuv̄ ^ wl also

for the optimum parameter setSs1d. According to Eq.s44d,
one has

uv̄ ^ wl = Scos
p

8
ue0l − sin

p

8
ue1lD ^ uwl, s63d

and substituting Eqs.s1d–s3d in Eq. s63d, the transformed
state is described by

uv̄ ^ wl → uul ^ Scos2
p

8
uF00l − sin

p

8
cos

p

8
uF10lD

+ uūl ^ S− sin
p

8
cos

p

8
uF00l + sin2 p

8
uF10lD

+ uvl ^ Scos2
p

8
uF01l − sin

p

8
cos

p

8
uF11lD

+ uv̄l ^ S− sin
p

8
cos

p

8
uF01l + sin2 p

8
uF11lD .

s64d

Next substituting Eqs.s35d–s38d in Eq. s64d, one obtains

uv̄ ^ wl → 1

4
fs2 + 21/2duul ^ uA1l − 21/2uūl ^ uA1l

− 21/2uvl ^ uA2l + s2 − 21/2duv̄l ^ uA2lg. s65d

Again, the probe states are entangled with the signal states.
Assembling together Eqs.s52d, s57d, s62d, and s65d, one

may simply represent them in matrix form as follows:
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1
uu ^ wl
uū ^ wl
uv ^ wl
uv̄ ^ wl

2→ 1

41
s2 +Î2duA1l − Î2uA1l Î2uA2l − s2 −Î2duA2l

− Î2uA1l s2 −Î2duA1l s2 +Î2duA2l − Î2uA2l
Î2uA1l − s2 −Î2duA1l s2 +Î2duA2l − Î2uA2l

s2 +Î2duA1l − Î2uA1l − Î2uA2l s2 −Î2duA2l
21

uul
uūl
uvl
uv̄l
2 . s66d

In Eq. s66d, if one multiplies rows by the column vector, the
entanglement of the probe states with the signal states is
manifest, the probe statesuA1l and uA2l being given by Eqs.
s39d and s40d, respectively. SinceuA1l and uA2l depend only
on the two probe basis statesuw0l and uw3l, the probe states,
for the case of the optimum parameter setSs1d, Eqs.s15d or
s28d, lie in a two-dimensional Hilbert space.

From the geometry of the two-dimensional Hilbert space
of the signal states in the BB84 protocol, it follows thatf2g

uvl = 2−1/2uul + 2−1/2uūl, s67d

uv̄l = 2−1/2uul − 2−1/2uūl, s68d

uul = 2−1/2uvl + 2−1/2uv̄l, s69d

uūl = 2−1/2uvl − 2−1/2uv̄l. s70d

Using Eqs. s67d–s70d, it is useful to rewrite Eq.s66d in
block-diagonal form:

3
uuluwl
uūluwl
uvluwl
uv̄luwl

4→ 1

43
ua+l ual 0 0

ual ua−l 0 0

0 0 ua−l − ual
0 0 − ual ua+l

43
uul
uūl
uvl
uv̄l
4 ,

s71d

where

ua+l = fs21/2 + 1ds1 ± hd1/2 + s21/2 − 1ds1 7 hd1/2guw0l

+ fs21/2 + 1ds1 7 hd1/2 + s21/2 − 1ds1 ± hd1/2guw3l,

s72d

ua−l = fs21/2 − 1ds1 ± hd1/2 + s21/2 + 1ds1 7 hd1/2guw0l

+ fs21/2 − 1ds1 7 hd1/2 + s21/2 + 1ds1 ± hd1/2guw3l,

s73d

ual = f− s1 ± hd1/2 + s1 7 hd1/2guw0l

+ f− s1 7 hd1/2 + s1 ± hd1/2guw3l, s74d

h ; f8Es1 − 2Edg1/2. s75d

It is to be noted in Eq.s71d that the projected probe state
ucuul correlated with the correct received signal statesin the
notation of Refs.f2,6gd, in which the stateuul is sent by the
transmitter, and is also received by the legitimate receiver, is
ua+l. Analogously, the correlated probe stateucūūl is ua−l.

The two statesua+l and ua−l are to be distinguished by the
measurement of the probe. Also in Eq.s71d, the same two
probe statesua+l and ua−l are the appropriate correlated
statesucv̄v̄l anducvvl, respectively. This is consistent with the
assumption in Sec. II of Ref.f2g that only two probe states
must be distinguished by the probe. Also, using Eqs.s74d and
s75d, it can be shown that, for small induced error rates, the
disturbance of the signal states scales as 2s2Ed1/2.

We next evaluate the unitary transformationUs2d, corre-
sponding to the setSs2d of optimum probe parameters, Eq.
s16d. In Eq. s16d, one has

sin 2m sin2l = 1 − 4E − cos2 l sin 2f, s76d

or equivalently,

sin 2ms1 − cos2 ld = 1 − 4E − cos2 lsin 2f, s77d

and therefore

cos2 l =
sin 2m − 1 + 4E

sin 2m − sin 2f
. s78d

Since, according to Eq.s14d, l lies in quadrant I or II, it then
follows from Eq. s78d that one must require sin 2f
,sin 2mù1−4E, or sin 2f.sin 2mø1−4E, and then

cosl = elSsin 2m − 1 + 4E

sin 2m − sin 2f
D1/2

, s79d

where

el ; ± 1. s80d

Summarizing Eqs.s79d and s80d, one hassletting ø de-
note “or”d

cosl = elr, sin 2f , sin 2m ù 1 − 4E ø sin 2f

. sin 2m ø 1 − 4E, s81d

and

sinl = s1 − r2d1/2, sin 2f , sin 2m ù 1

− 4E ø sin 2f . sin 2m ø 1 − 4E, s82d

where

r ; Ssin 2m − 1 + 4E

sin 2m − sin 2f
D1/2

. s83d

Also, according to Eq.s16d, one has

cos 2u = 1, s84d

and therefore
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cosu = eu, s85d

where

eu ; ± 1. s86d

Next, using Eqs.s81d, s82d, s85d, ands86d, Eq.s16d can be
rewritten as follows:

Ss2d = hl,m,u,f;cosu = eu, sinu = 0,j

cosl = elr, sinl = s1 − r2d1/2,

hsin 2f , sin 2m ù 1 − 4E ø sin 2f . sin 2m ø 1 − 4Ej.

s87d

We proceed by substituting Eq.s87d in Eqs. s8d–s13d, and
obtain

X0 = cosms1 − r2d1/2, s88d

X1 = eleur cosf, s89d

X2 = eleur sinf, s90d

X3 = sinms1 − r2d1/2, s91d

X5 = 0, s92d

X6 = 0. s93d

Then substituting Eqs.s88d–s93d in Eqs.s4d–s7d one obtains

uF01l = 0, s94d

uF10l = 0, s95d

uF00l = uB1l, s96d

uF11l = uB2l, s97d

in which

uB1l = s1 − r2d1/2cosmuw0l + eleur cosfuw1l

+ eleur sinfuw2l + s1 − r2d1/2sinmuw3l s98d

and

uB2l = s1 − r2d1/2sinmuw0l + eleur sinfuw1l

+ eleur cosfuw2l + s1 − r2d1/2cosmuw3l. s99d

Next substituting Eqs.s94d–s97d in Eqs. s50d, s56d, s61d,
and s64d, one obtains

1
uu ^ wl
uū ^ wl
uv ^ wl
uv̄ ^ wl

2→ 1

41
s2 +Î2duB1l − Î2uB1l Î2uB2l − s2 −Î2duB2l

− Î2uB1l s2 −Î2duB1l s2 +Î2duB2l − Î2uB2l
Î2uB1l − s2 −Î2duB1l s2 +Î2duB2l − Î2uB2l

s2 +Î2duB1l − Î2uB1l − Î2uB2l s2 −Î2duB2l
21

uul
uūl
uvl
uv̄l
2 . s100d

In Eq. s100d, if one multiplies rows by the column, the en-
tanglement of the probe states with the signal states is mani-
fest, the probe statesuB1l and uB2l being given by Eqs.s98d
ands99d. SinceuB1l and uB2l depend on the four probe basis
statesuw0l, uw1l, uw2l, anduw3l, the probe states, for the case
of the optimal parameter setSs2d, lie in a four-dimensional
Hilbert space.

Using Eqs.s67d–s70d, one can rewrite Eq.s100d in the
following block-diagonal form:

3
uuluwl
uūluwl
uvluwl
uv̄luwl

4→ 1

43
ub+l ubl 0 0

ubl ub−l 0 0

0 0 ub−l − ubl
0 0 − ubl ub+l

43
uul
uūl
uvl
uv̄l
4 ,

s101d

where

ub±l = s1 − r2d1/2fs2 7 21/2dsinm + s2 ± 21/2dcosmguw0l

+ s1 − r2d1/2fs2 ± 21/2dsinm + s2 7 21/2dcosmguw3l

+ eleurfs2 7 21/2dsinf + s2 ± 21/2dcosfguw1l

+ eleurfs2 ± 21/2dsinf + s2 7 21/2dcosfguw2l,

s102d

ubl = 21/2s1 − r2d1/2ssinm − cosmdsuw0l − uw3ld

+ 21/2eleurssinf − cosfdsuw1l − uw2ld, s103d

in which r is given by Eq.s83d, andm andf are restricted by
Eq. s87d. It is to be noted in Eq.s101d that the projected
probe stateucuul correlated with the correct received signal
statesin the notation of Refs.f2,6gd, in which the stateuul is
sent by the transmitter, and is also received by the legitimate
receiver, isub+l. Analogously, the correlated probe stateucūūl
is ub−l. The two statesub+l and ub−l are to be distinguished
by the measurement of the probe. Also in Eq.s101d, the same
two probe statesub+l and ub−l are the appropriate correlated
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statesucv̄v̄l anducvvl, respectively. This is consistent with the
assumption in Sec. II of Ref.f2g that only two probe states
must be distinguished by the probe.

We next evaluate the unitary transformationUs3d, corre-
sponding to the setSs3d of optimum probe parameters Eq.
s17d. In Eq. s17d, one has

sin 2m sin2 l = 1 − 4E + cos2 l. s104d

Using the trigonometric identity,

cos2 l = 1 − sin2 l s105d

in Eq. s104d, one gets

sin 2m sin2 l = 2 − 4E − sin2 l, s106d

and therefore

sin2 l =
2s1 − 2Ed
1 + sin 2m

. s107d

But one has the inequality

0 ø sin2 l ø 1, s108d

and then substituting Eq.s107d in Eq. s108d, one requires

0 ø 2 − 4E ø 1 + sin 2m, s109d

or equivalently,

sin 2m ù 1 − 4E, s110d

sinceE,1/2. Also, one requires

sin 2m ø 1, s111d

and combining Eqs.s110d and s111d, one requires

1 ù sin 2m ù 1 − 4E. s112d

Next, from Eqs.s107d, s14d, ands105d, one obtains

sinl = p, s113d

and

cosl = ± s1 − p2d1/2, s114d

where

p ; F 2s1 − 2Ed
1 + sin 2m

G1/2

. s115d

Also, according to Eq.s17d, one has

sin 2f = − 1. s116d

It then follows that

sinf = 2−1/2 s117d

and

cosf = − 2−1/2. s118d

Next, using Eqs.s112d–s115d, s117d, and s118d, Eq. s17d
can be rewritten as follows:

Ss3d = hl,m,u,f;sinf = 2−1/2, cosf = − 2−1/2, sinl = p,

cosl = ± s1 − p2d1/2, 1 ù sin 2m ù 1 − 4Ej. s119d

We proceed by substituting Eq.s119d in Eqs. s8d–s13d, and
obtain

X0 = p cosm, s120d

X1 = 7 2−1/2s1 − p2d1/2cosu, s121d

X2 = ± 2−1/2s1 − p2d1/2cosu, s122d

X3 = p sinm, s123d

X5 = 7 2−1/2s1 − p2d1/2sinu, s124d

X6 = 7 2−1/2s1 − p2d1/2sinu. s125d

Then substituting Eqs.s120d–s125d in Eqs. s4d–s7d, one ob-
tains

uF01l = uS0l, s126d

uF10l = uS0l, s127d

uF00l ; uS1l, s128d

uF11l ; uS2l, s129d

in which

uS0l ; 7 2−1/2s1 − p2d1/2sinusuw1l + uw2ld, s130d

uS1l ; p cosmuw0l 7 2−1/2s1 − p2d1/2cosuuw1l

± 2−1/2s1 − p2d1/2cosuuw2l + p sinmuw3l, s131d

uS2l ; p sinmuw0l ± 2−1/2s1 − p2d1/2cosuuw1l

7 2−1/2s1 − p2d1/2cosuuw2l + p cosmuw3l.

s132d

Next substituting Eqs.s126d–s129d in Eq. s50d, one ob-
tains

uu ^ wl → 1

4
fs2 + 21/2duul ^ uS1l + 21/2uul ^ uS0l

− 21/2uūl ^ uS1l − s2 − 21/2duūl ^ uS0l

+ s2 + 21/2duvl ^ uS0l + 21/2uvl ^ uS2l

− 21/2uv̄l ^ uS0l − s2 − 21/2duv̄l ^ uS2lg,

s133d

or equivalently,

uu ^ wl → 1

4
fs2 + 21/2duul ^ uS11l − 21/2uūl ^ uS11l

+ 21/2uvl ^ uS12l − s2 − 21/2duv̄l ^ uS12lg,

s134d

in which we define
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uS11l ; uS1l + s21/2 − 1duS0l, s135d

uS12l ; uS2l + s21/2 + 1duS0l. s136d

Substituting Eqs.s130d–s132d in Eqs. s135d and s136d, one
obtains

uS11l = p cosmuw0l 7 2−1/2s1 − p2d1/2fcosu + s21/2 − 1dsinug

3uw1l ± 2−1/2s1 − p2d1/2fcosu − s21/2 − 1dsinuguw2l

+ p sinmuw3l s137d

and

uS12l = p sinmuw0l ± 2−1/2s1 − p2d1/2fcosu − s21/2 + 1dsinug

3uw1l 7 2−1/2s1 − p2d1/2fcosu + s21/2 + 1dsinuguw2l

+ p cosmuw3l. s138d

Also, substituting Eqs.s126d–s129d in Eq. s56d, one ob-
tains

uū ^ wl → 1

4
f− 21/2uul ^ uS1l + s2 + 21/2duul ^ uS0l

+ s2 − 21/2duūl ^ uS1l − 21/2uūl ^ uS0l

− 21/2uvl ^ uS0l + s2 + 21/2duvl ^ uS2l

+ s2 − 21/2duv̄l ^ uS0l − 21/2uv̄l ^ uS2lg,

s139d

or equivalently,

uū ^ wl → 1

4
f− 21/2uul ^ uS21l + s2 − 21/2duūl ^ uS21l

+ s2 + 21/2duvl ^ uS22l − 21/2uv̄l ^ uS22lg,

s140d

in which we define

uS21l ; uS1l − s21/2 + 1duS0l, s141d

uS22l ; uS2l − s21/2 − 1duS0l. s142d

Substituting Eqs.s130d–s132d in Eqs. s141d and s142d, one
obtains

uS21l = p cosmuw0l 7 2−1/2s1 − p2d1/2fcosu − s21/2 + 1dsinug

3uw1l ± 2−1/2s1 − p2d1/2fcosu + s21/2 + 1dsinuguw2l

+ p sinmuw3l s143d

and

uS22l = p sinmuw0l ± 2−1/2s1 − p2d1/2fcosu + s21/2 − 1dsinug

3uw1l 7 2−1/2s1 − p2d1/2fcosu − s21/2 − 1dsinuguw2l

+ p cosmuw3l. s144d

Also, substituting Eqs.s126d–s129d in Eq. s61d, one gets

uv ^ wl → 1

4
f21/2uul ^ uS1l + s2 + 21/2duul ^ uS0l − s2 − 21/2d

3uūl ^ uS1l − 21/2uūl ^ uS0l + 21/2uvl ^ uS0l

+ s2 + 21/2duvl ^ uS2l − s2 − 21/2duv̄l ^ uS0l

− 21/2uv̄l ^ uS2lg, s145d

or equivalently,

uv ^ wl → 1

4
f21/2uul ^ uS31l − s2 − 21/2duūl ^ uS31l + s2 + 21/2d

3uvl ^ uS32l − 21/2uv̄l ^ uS32lg, s146d

in which we define

uS31l ; uS1l + s21/2 + 1duS0l, s147d

uS32l ; uS2l + s21/2 − 1duS0l. s148d

Substituting Eqs.s130d–s132d in Eqs. s147d and s148d, one
obtains

uS31l = p cosmuw0l 7 2−1/2s1 − p2d1/2fcosu + s21/2 + 1dsinug

3uw1l ± 2−1/2s1 − p2d1/2fcosu − s21/2 + 1dsinuguw2l

+ p sinmuw3l s149d

and

uS32l = p sinmuw0l ± 2−1/2s1 − p2d1/2fcosu − s21/2 − 1dsinug

3uw1l 7 2−1/2s1 − p2d1/2fcosu + s21/2 − 1dsinuguw2l

+ p cosmuw3l. s150d

Substituting Eqs.s126d–s129d in Eq. s64d, one gets

uv̄ ^ wl → 1

4
fs2 + 21/2duul ^ uS1l − 21/2uul ^ uS0l − 21/2uūl

^ uS1l + s2 − 21/2duūl ^ uS0l + s2 + 21/2duvl ^ uS0l

− 21/2uvl ^ uS2l − 21/2uv̄l ^ uS0l + s2 − 21/2duv̄l

^ uS2lg, s151d

or equivalently,

uv̄ ^ wl → 1

4
fs2 + 21/2duul ^ uS41l − 21/2uūl ^ uS41l − 21/2uvl

^ uS42l + s2 − 21/2duv̄l ^ uS42lg, s152d

in which we define

uS41l ; uS1l + s1 − 21/2duS0l, s153d

uS42l ; uS2l − s1 + 21/2duS0l. s154d

Substituting Eqs.s130d–s132d in Eqs. s153d and s154d,
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one obtains

uS41l = p cosmuw0l 7 2−1/2s1 − p2d1/2fcosu − s21/2 − 1dsinug

3uw1l ± 2−1/2s1 − p2d1/2fcosu + s21/2 − 1dsinuguw2l

+ p sinmuw3l s155d

and

uS42l = p sinmuw0l ± 2−1/2s1 − p2d1/2fcosu + s21/2 + 1dsinug

3uw1l 7 2−1/2s1 − p2d1/2fcosu − s21/2 + 1dsinuguw2l

+ p cosmuw3l. s156d

Therefore, summarizing Eqs.s134d, s140d, s146d, and
s152d, one has

1
uu ^ wl
uū ^ wl
uv ^ wl
uv̄ ^ wl

2→ 1

41
s2 +Î2duS11l − Î2uS11l Î2uS12l − s2 −Î2duS12l

− Î2uS21l s2 −Î2duS21l s2 +Î2duS22l − Î2uS22l
Î2uS31l − s2 −Î2duS31l s2 +Î2duS32l − Î2uS32l

s2 +Î2duS41l − Î2uS41l − Î2uS42l s2 −Î2duS42l
21

uul
uūl
uvl
uv̄l
2 . s157d

In Eq. s157d, if one multiplies rows by the column, the en-
tanglement of the probe states with the signal states is mani-
fest, the probe statesuSijl being given by Eqs.s137d, s138d,
s143d, s144d, s149d, s150d, s155d, s156d, s115d, s112d, and
s14d. Since the probe statesuSijl depend on the four probe
basis statesuw0l, uw1l, uw2l, anduw3l, the probe states for the
case of the optimal parameter setSs3d lie in a four-
dimensional Hilbert space.

Using Eqs.s67d–s70d, it is useful to rewrite Eq.s157d in
block-diagonal form:

3
uuluwl
uūluwl
uvluwl
uv̄luwl

4→ 1

43
us+l usl 0 0

usl us−l 0 0

0 0 ud+l udl
0 0 udl ud−l

43
uul
uūl
uvl
uv̄l
4 ,

s158d

where

us+l = pfs2 − 21/2dsinm + s2 + 21/2dcosmguw0l

7 2s1 − p2d1/2ssinu + cosuduw1l 7 2s1 − p2d1/2

3ssinu − cosuduw2l + pfs2 + 21/2dsinm

+ s2 − 21/2dcosmguw3l, s159d

us−l = pfs2 + 21/2dsinm + s2 − 21/2dcosmguw0l

± 2s1 − p2d1/2ssinu + cosuduw1l ± 2s1 − p2d1/2

3ssinu − cosuduw2l + pfs2 − 21/2dsinm

+ s2 + 21/2dcosmguw3l, s160d

usl = 21/2pssinm − cosmdsuw0l − uw3ld 7 2s1 − p2d1/2

3ssinu − cosuduw1l 7 2s1 − p2d1/2

3ssinu + cosuduw2l, s161d

ud+l = pfs2 + 21/2dsinm + s2 − 21/2dcosmguw0l

7 2s1 − p2d1/2ssinu − cosuduw1l

7 2s1 − p2d1/2ssinu + cosuduw2l

+ pfs2 − 21/2dsinm + s2 + 21/2dcosmguw3l,

s162d

ud−l = pfs2 − 21/2dsinm + s2 + 21/2dcosmguw0l

± 2s1 − p2d1/2ssinu − cosuduw1l ± 2s1 − p2d1/2

3ssinu + cosuduw2l

+ pfs2 + 21/2dsinm + s2 − 21/2dcosmguw3l, s163d

udl = 21/2ps− sinm + cosmdsuw0l − uw3ld

7 2s1 − p2d1/2ssinu + cosuduw1l

7 2s1 − p2d1/2ssinu − cosuduw2l, s164d

in which p is given by Eq.s115d, andm is restricted by Eq.
s112d. It is however significant to note in Eq.s158d that the
projected probe stateucuul correlated with the correct re-
ceived signal statesin the notation of Refs.f2,6gd, in which
the stateuul is sent by the transmitter, and is also received by
the legitimate receiver, isus+l. Analogously, the correlated
probe stateucūūl is us−l. The two statesus+l and us−l are to
be distinguished by the measurement of the probe. But one
also notes in Eq.s158d that probe statesud+l andud−l, distinct
from us+l and us−l, are the correlated statesucvvl and ucv̄v̄l,
respectively. However, the setshus+l , us−lj and hud+l , ud−lj
have the same overlapQ and theysand usl and udld go into
each other under the reflection symmetry of Ref.f2g in which
the basis vectorsuw0l and uw3l, and alsouw1l and uw2l, are
interchanged. AlsoUs3d does in fact yield the same maximum
information asUs1d andUs2d.
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III. QUANTUM CIRCUIT

Although all three optimum unitary transformationsUs1d,
Us2d, and Us3d produce the identical maximum information
gain by the entangling probe, Eq.s19d, the transformation
Us1d, given by Eq.s66d or Eq.s71d is clearly the simplest, and
should therefore be the easiest to implement. In this section,
I exploit the quantum-circuit model of quantum computation
to determine the quantum circuit corresponding to the opti-
mum unitary transformationUs1d. From Eq. s1d, it follows
that for a signal basis stateue0l or ue1l entering the probe in
initial stateuwl, the probe produces the following states, re-
spectively:

ue0 ^ wl → ue0l ^ uf00l + ue1l ^ uf01l s165d

and

ue1 ^ wl → ue0l ^ uf10l + ue1l ^ uf11l. s166d

Then substituting Eqs.s35d–s38d in Eqs.s165d ands166d, one
obtains

ue0 ^ wl → ue0l ^ uA1l s167d

and

ue1 ^ wl → ue1l ^ uA2l, s168d

expressed in terms of the probe statesuA1l anduA2l, given by
Eqs. s39d and s40d. Equivalently, using Eqs.s39d and s40d,
one has

ue0 ^ wl → ue0l ^ uA1l = ue0l ^ sa1uw0l + a2uw3ld
s169d

and

ue1 ^ wl → ue1l ^ uA2l = ue1l ^ sa2uw0l + a1uw3ld,

s170d

where

a1 = 2−1/2s1 ± hd1/2, s171d

a2 = 2−1/2s1 7 hd1/2, s172d

and

h = f8Es1 − 2Edg1/2. s173d

Next, consider the quantum controlled-NOT gate in Fig. 1,
in which the control qubit consists of the two signal basis
stateshue0l , ue1lj, and the target qubit consists of the probe
basis stateshuw0l , uw3lj. The associated truth table is shown
in Fig. 2. It then follows that a simple quantum circuit ef-
fecting the transformationss169d and s170d, and thereby
faithfully representing the entangling probe, is that shown in
Fig. 3, in which, according to Eqs.s169d and s170d,

uA1l = a1uw0l + a2uw3l, s174d

uA2l = a2uw0l + a1uw3l. s175d

The associated truth table is shown in Fig. 4.
Next, according to Eqs.s41d–s44d, the legitimate signal

stateshuul , uūl , uvl , uv̄lj, with which the probe states become
entangled, can be written in terms of the signal basis states as
follows:

uul = cue0l + sue1l, s176d

uūl = − sue0l + cue1l, s177d

uvl = sue0l + cue1l, s178d

uv̄l = cue0l − sue1l, s179d

in which, for notational convenience in Figs. 5–8 I define

s; sin
p

8
=

1

2
s2 − 21/2d1/2, s180d

c ; cos
p

8
=

1

2
s2 + 21/2d1/2. s181d

In Fig. 5, for initial probe stateuA2l, the effect of the quan-
tum circuit on signal stateuul, Eq. s176d, is shown. It then
follows from Fig. 5 that the quantum circuit effects the fol-
lowing transformation:

FIG. 1. QuantumCNOT gate: Signal basis stateshue0l , ue1lj;
probe basis stateshuw0l , uw3lj.

FIG. 2. Truth table forCNOT gate.

FIG. 3. Quantum circuit for entangling probe; initial probe state
uA2l.

FIG. 4. Truth table for entangling probe.
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uul ^ uA2l → cue0l ^ uA1l + sue1l ^ uA2l, s182d

or substituting Eqs.s2d ands3d in Eq. s182d, one has equiva-
lently

uul ^ uA2l → cscuul − suūld ^ uA1l + sscuvl − suv̄ld ^ uA2l,

s183d

or, using Eqs.s180d and s181d,

uul ^ uA2l → 1

4
fs2 + 21/2duA1l ^ uul − 21/2uA1l ^ uūl

+ 21/2uA2l ^ uvl − s2 − 21/2duA2l ^ uv̄lg,

s184d

which agrees with Eq.s66d.
Analogously, in Figs. 6–8, the effects of the quantum cir-

cuit on signal statesuūl, uvl, and uv̄l are shown. It then fol-
lows that the quantum circuit effects the following transfor-
mations:

uūl ^ uA2l → 1

4
f− 21/2uA1l ^ uul + s2 − 21/2duA1l ^ uūl

+ s2 + 21/2duA2l ^ uvl − 21/2uA2l ^ uv̄lg,

s185d

uvl ^ uA2l → 1

4
f21/2uA1l ^ uul − s2 − 21/2duA1l ^ uūl

+ s2 + 21/2duA2l ^ uvl − 21/2uA2l ^ uv̄lg,

s186d

uv̄l ^ uA2l → 1

4
fs2 + 21/2duA1l ^ uul − 21/2uA1l ^ uūl

− 21/2uA2l ^ uvl + s2 − 21/2duA2l ^ uv̄lg,

s187d

all of which also agree with Eq.s66d.
One concludes that the quantum circuit of Fig. 3 does

faithfully represent the action of the unitary transformation
Us1d in optimally entangling the signal statesuul, uūl, uvl, and

uv̄l with the probe statesuA1l anduA2l. It is to be emphasized
that the initial state of the probe must beuA2l, given by Eq.
s40d. fA sign choice in Eq.s40d is made below in Sec. IV,
consistent with the measurement procedure defined there.g

IV. PROBE MEASUREMENT CORRELATIONS

According to the block-diagonal form of the transforma-
tion Us1d, Eq. s71d, and the analysis of Sec. III, the probe
produces the following entanglements for initial probe state
uwl= uA2l and incoming signal statesuul, uūl, uvl, or uv̄l, re-
spectively:

uul ^ uA2l → 1

4
sua+l ^ uul + ual ^ uūld, s188d

uūl ^ uA2l → 1

4
sual ^ uul + ua−l ^ uūld, s189d

uvl ^ uA2l → 1

4
sua−l ^ uvl − ual ^ uv̄ld, s190d

uv̄l ^ uA2l → 1

4
s− ual ^ uvl + ua+l ^ uv̄ld. s191d

Then, according to Eqs.s188d and s189d, if, following the
public reconciliation phase of the BB84 protocol, the signal
basis mutually selected by the legitimate transmitter and re-
ceiver is publicly revealed to behuul , uūlj, then the probe
measurement must distinguish the projected probe stateua+l,
when the signal stateuul is both sent and received, from the
projected probe stateua−l, when the signal stateuūl is both
sent and received. In this case one has the correlations

uul ⇔ ua+l, s192d

uūl ⇔ ua−l. s193d

The same two statesua+l and ua−l must be distinguished, no
matter which basis is chosen during reconciliation. This is
indeed the case since, according to Eqs.s190d and s191d, if,
following the public reconciliation phase of the BB84 proto-

FIG. 5. Action of quantum circuit on signal stateuul.

FIG. 6. Action of quantum circuit on signal stateuūl.

FIG. 7. Action of quantum circuit on signal stateuvl.

FIG. 8. Action of quantum circuit on signal stateuv̄l.
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col, the signal basis mutually selected by the legitimate
transmitter and receiver is publicly revealed to behuvl , uv̄lj,
then the probe measurement must distinguish the projected
probe stateua−l, when the signal stateuvl is both sent and
received, from the projected probe stateua+l, when the signal
stateuv̄l is both sent and received. In this case one has the
correlations

uvl ⇔ ua−l, s194d

uv̄l ⇔ ua+l. s195d

Next, one notes that the correlations of the projected
probe statesua+l and ua−l with the probe’s two orthogonal
basis statesuw0l and uw3l are indicated, according to Eqs.
s72d and s73d, by the following probabilities:

zkw0ua+lz2

ua+u2
=

zkw3ua−lz2

ua−u2
=

1

2
±

fEs1 − 2Edg1/2

s1 − Ed
, s196d

zkw0ua−lz2

ua−u2
=

zkw3ua+lz2

ua+u2
=

1

2
7

fEs1 − 2Edg1/2

s1 − Ed
. s197d

At this point I make a choice of the positive sign in Eq.
s196d, and correspondingly the negative sign in Eq.s197d.
This choice serves to define the Hilbert-space orientation of
the probe basis states, in order that the probe basis stateuw0l
be dominantly correlated with the signal statesuul and uv̄l,

and that the probe basis stateuw3l be dominantly correlated
with the signal statesuūl and uvl. With this sign choice, and
enforcing monotonicity inE, Eqs.s196d and s197d become

zkw0ua+lz2

ua+u2
=

zkw3ua−lz2

ua−u2
=

1

2
+

fEs1 − 2Edg1/2

s1 − Ed
, s198d

zkw0ua−lz2

ua−u2
=

zkw3ua+lz2

ua+u2
=

1

2
−

fEs1 − 2Edg1/2

s1 − Ed
, s199d

and one then has the following state correlations:

ua+l ⇔ uw0l, s200d

ua−l ⇔ uw3l. s201d

Next combining the correlationss192d–s195d, s200d, and
s201d, one then establishes the following correlations:

huul,uv̄lj ⇔ ua+l ⇔ uw0l, s202d

huūl,uvlj ⇔ ua−l ⇔ uw3l, s203d

to be implemented by the probe measurement method. This
can be simply accomplished by a von Neumann–type projec-
tive measurement of the orthogonal probe basis statesuw0l
and uw3l, implementing the probe projective measurement
operatorshuw0lkw0u , uw3lkw3uj. The chosen geometry in the
two-dimensional Hilbert space of the probe is displayed in
Fig. 9, in which the sign choice is enforced in Eqs.s72d and
s73d, namely,

ua+l = fs21/2 + 1ds1 + hd1/2 + s21/2 − 1ds1 − hd1/2guw0l

+ fs21/2 + 1ds1 − hd1/2 + s21/2 − 1ds1 + hd1/2guw3l,

s204d

ua−l = fs21/2 + 1ds1 − hd1/2 + s21/2 − 1ds1 + hd1/2guw0l

+ fs21/2 + 1ds1 + hd1/2 + s21/2 − 1ds1 − hd1/2guw3l,

s205d

where

FIG. 9. Geometry of states in the two-dimensional Hilbert space
of the probe; correlated probe stateshua+l , ua−lj; probe basis states
huw0l , uw3lj.

FIG. 10. Entangling probe
schematic.
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h = f8Es1 − 2Edg1/2, s206d

as in Eq.s75d. This geometry is consistent with the symmet-
ric von Neumann test, which is an important part of the
optimization in Refs.f2–6g.

V. ENTANGLING PROBE IMPLEMENTATION

Based on the results of Secs. III and IV, I invent the en-
tangling probe implementation shown in Fig. 10f8g. Here,
an incident photon coming from the legitimate transmitter is
received by the probe in one of the four signal-photon polar-
ization statesuul, uūl, uvl, or uv̄l. The signal photon enters the
control port of theCNOT gate of Figs. 1 and 2. The initial
state of the probe is a photon in linear-polarization stateuA2l
and entering the target port of theCNOT gate. The probe
photon is produced by a single-photon source and is appro-
priately timed with reception of the signal photon by first
sampling a few successive signal pulses to determine the
repetition rate of the transmitter. The linear-polarization state
uA2l, according to Eq.s40d with the sign choice made in Sec.
IV, is given by

uA2l = F1

2
h1 − f8Es1 − 2Edg1/2jG1/2

uw0l

+ F1

2
h1 + f8Es1 − 2Edg1/2jG1/2

uw3l, s207d

and can be simply set for an error rateE by means of a
polarization rotator. In this way the device can be tuned to
the chosen error rate induced by the probe. The outgoing
gated signal photon is relayed on to the legitimate receiver,
and the gated probe photon enters a Wollaston prism, ori-
ented to separate orthogonal photon linear-polarization states
uw0l and uw3l, and the photon is then detected by one of two
photodetectors. If the basis, revealed during the public basis-
reconciliation phase of the BB84 protocol, ishuul , uūlj, then
the photodetector located to receive the polarization state
uw0l or uw3l, respectively, will indicate, in accord with the
correlationss202d and s203d, that a stateuul or uūl, respec-
tively, was most likely measured by the legitimate receiver.
Alternatively, if the announced basis is{huvl , uv̄lj}, then the
photodetector located to receive the polarization stateuw3l or
uw0l, respectively, will indicate, in accord with the correla-

tions s202d ands203d, that a stateuvl or uv̄l, respectively, was
most likely measured by the legitimate receiver. By compar-
ing the record of probe-photodetector triggering with the se-
quence of bases revealed during reconciliation, then the
likely sequence of ones and zeros constituting the key, prior
to privacy amplification, can be assigned.sRecall that the
statesuul, uūl, uvl, and uv̄l correspond to Boolean statesu1l,
u0l, u1l, andu0l, respectivelyf2g.d In any case the net effect is
to yield, for a set error rateE, the maximum information gain
to the probe, which is given by Eq.s19d, namely,

Iopt
R = log2F2 −S1 − 3E

1 − E
D2G . s208d

The geometry of the initial and shifted probe polarization
statesuA2l and uA1l, respectively, and probe basis statesuw0l
anduw3l in the two-dimensional Hilbert space of the probe is
shown in Fig. 11. Here, the angled0 between the probe state
uA1l and the probe basis stateuw0l is given by

d0 = cos−1S kw0uA1l
uA1u D , s209d

or, substitutinguA1l, given by Eq.s39d with the sign choice
made in Sec. IV, namely,

uA1l = F1

2
h1 + f8Es1 − 2Edg1/2jG1/2

uw0l

+ F1

2
h1 − f8Es1 − 2Edg1/2jG1/2

uw3l, s210d

in Eq. s209d, one obtains

d0 = cos−1S1

2
h1 + f8Es1 − 2Edg1/2jD1/2

. s211d

This is also the angle between the initial linear-polarization
stateuA2l of the probe and the probe basis stateuw3l. Also in
Fig. 11, the shiftd in polarization between the initial probe
statesuA2l and the stateuA1l, in accord with the truth table in
Fig. 4, is given by

d = cos−1S kA1uA2l
uA1uuA2uD , s212d

or, substituting Eqs.s207d and s210d, one obtains

d = cos−1s1 − 4Ed. s213d

Possible implementations of theCNOT gate are under consid-
eration, including ones based on cavity-QED, solid state,
and/or linear opticsf8,9g. However, a sufficiently robust
high-fidelity CNOT gate, for control and target qubits based
on single-photon orthogonal polarization states, is not yet
available.

VI. SUMMARY

Using the sets of optimum probe parameters Eqs.
s15d–s17d, three corresponding optimized unitary transforma-
tions were calculated, representing an entangling probe at-
tacking the BB84 protocol of quantum key distribution. The

FIG. 11. Geometry of probe stateshuA1l , uA2lj; uA2l is the initial
state of the probe.

QUANTUM-CRYPTOGRAPHIC ENTANGLING PROBE PHYSICAL REVIEW A71, 042312s2005d

042312-13



corresponding entanglements of the probe states with the sig-
nal states are given by Eqs.s66d, s100d, and s157d, or,
equivalently, by the corresponding block-diagonal forms
Eqs. s71d, s101d, and s158d. All three transformations yield
the identical maximum information gain Eq.s19d to the
probe, expressed in terms of any set error rate induced by the
probe. The simplest of the optimal unitary transformations is
represented by Eq.s66d, or, equivalently, Eq.s71d, in which
the Hilbert space of the probe is only two dimensional. Ex-
ploiting the quantum-circuit model of quantum computation,
the quantum circuit Fig. 3 needed to implement this simplest
unitary transformation, was determined and shown to yield
the correct entangled states, Eqs.s184d–s187d. Thus, the
quantum circuit, faithfully representing the optimum entan-
gling probe, consists of a single quantum-controlled-NOT

gate in which the control qubit consists of two photon-
polarization basis states of the signal, the target qubit con-
sists of the two probe-photon polarization basis states, and
the probe photon is prepared in the initial linear-polarization
state Eq.s207d set by the induced error rate. The initial po-
larization state of the probe photon can be produced by a
single-photon source together with a linear-polarization rota-
tor. The gated probe photon, optimally entangled with the
signal, enters a Wollaston prism which separates the appro-
priate correlated states of the probe photon to trigger one or
the other of two photodetectors. Basis selection, revealed on
the public channel during basis reconciliation in the BB84
protocol, is exploited to correlate photodetector clicks with
the signal transmitting the key, and to assign the most likely
binary number 1 or 0, such that the information gain by the
probe of the key, prior to privacy amplification, is maximal.

Explicit design parameters for the entangling probe are ana-
lytically specified, includings1d the explicit initial polariza-
tion state of the probe photon, Eq.s207d; s2d the transition
state of the probe photon, Eq.s210d; s3d the probabilities that
one or the other photodetector triggers corresponding to a 0
or 1 of the key, Eqs.s198d ands199d; s4d the relative angles
between the various linear-polarization states in the Hilbert
space of the probe, Eqs.s209d, s213d, ands5d the information
gain by the probe, Eq.s208d. The probe is a simple special-
purpose quantum-information processor that will improve
the odds for an eavesdropper in gaining access to the pre-
privacy-amplified key, as well as impose a potentially severe
sacrifice of key bits during privacy amplificationf4g. The
successful implementation of the probe awaits the develop-
ment of a single robust high-fidelityCNOT gate, and also a
practical single-photon source.
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