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Quantum-state transfer in imperfect artificial spin networks
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High-fidelity quantum computation and quantum state transfer are possible in short spin chains. We exploit
a system based on a dispersive qubit-boson interaction to n¥icoupling. In this model, the usually
assumed nearest-neighbor coupling is no longer valid: all the qubits are mutually coupled. We analyze the
performances of our model for quantum state transfer showing how preengineered coupling rates allow for
nearly optimal state transfer. We address a setup of superconducting qubits coupled to a microstrip cavity in
which our analysis may be applied.
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I. INTRODUCTION off-resonant interaction of a group of qubits with a common
Many protocols for quantum-information processing bus. Our motivations are manifold. First of all, in our model

(QIP) assume an arbitrary amount of control over the evolv-the nearest-neighbor restriction is naturally relaxed. We con-
ing system. However, any external influence may introducéider a configuration of couplings which can be efficiently
errors and decoherence. Moreover, having a fine single-qubftescribed in terms of complete graphs. We study the effi-
control over a large register may be hard, especially foiciency of a state transfer process in these multi-qubit inter-
closely spaced subsystems. This has motivated some recexttions showing that, for uniform coupling distributions, the
proposals in order to reduce the amount of the control over &ffectiveness of quantum state transfer can be lost. However,
gquantum computdrl]. A way to achieve control-limited QIP by properly designing the coupling rate between only the
is given by the engineering of interactions specifically de-first and last physical qubits, the transfer fidelity in the chain
signed to accomplish a prefixed task and a process can I restored to a nearly optimal value. Under proper condi-
formulated according to the program: initialization of the tions, once we set the strengths of the inter-qubit couplings
register, evolution by the designed interactions, and measuré? a chain ofN elements, the quantum state to be transferred
ment (with no other interference on the dynanics can be collected at specific times at any of khek qubits of
Looking for a scenario suitable for control-limited evolu- the chain(k=0,1,...,N-2). This can be more advantageous
tions, quantum spin systems represent promising candidatethan strategies that bypass the chain and connects directly the
Spin systems are intrinsically interesting because quantursender qubit to the receiver. In this latter case, the couplings
phase transition§2] and their relations with entanglement have to be redesigned each time the receiver’s position is
[3] can be studied. Very recently, it has been recognized thathanged.
Heisenberg anY interactions with nearest-neighbor cou-  On the other hand, the appealing possibilities offered by
plings can be used to transfer a quantum state through even simple networks motivate the research for practical sys-
network of qubits, virtually without external contrp4—6].  tems in which qubit-qubit interactions with possibly tunable
For XY couplings, linear chains of three nearest-neighboicouplings can be realized. As we stress in this paper, this is
coupled qubits achieve a perfect transfer fidelity and can béhe case of anXY coupling simulated by our dispersive
used as building blocks for a longer communication wire.qubits-boson interaction. The insight we gain through this
This strategy is useful in those situations where the use of kind of simulation under controllable conditions could then
photonic bugconventionally accepted as a good informationbe applied to real systems of solid-state physics where the
carriep is not easy or convenient. It is worth stressing thatamount of control is in general smaller. A setup is addressed
this approach to quantum state transfer is radically differencombining quantum optics and superconducting quantum in-
from an architecture of the transfer process in terms, foterference device§SQUIDS [9] that can embody our model.
instance, of concatenated SWAP gates. The requirement dhis setting is chosen in light of the possibility of achieving
local control, which is necessary in order to realize such dhe strong-coupling regime and because of the advantages of
guantum circuit, is abandoned in favor ofjfbal interaction  the fixed positions of the qubits in the cavity and the long
that collectively involves the element of a register. Thislifetime achievable in a high-quality factghigh-Q) cavity.
change of perspective turns out to be successfully exploitabléhese features have been recently exploited for solid-state—
in other contexts. Indeed, a three-qubit chain of¥%cou-  quantum-optics interfacd4.0].

pling allows for universal quantum computatidid] and The paper is organized as follows. In Sec. I, we set the
guantum cloning is possible in many-qubit networks con-scenario in which our study is developed. We describe the
nected through Heisenberg aXd coupling[8]. general conditions under which the adiabatic evolution of a

In this paper, we address the problem of quantum statgroup of qubits, induced by an off-resonant photonic bus,
transfer through arXY coupling model engineered via the can be derived. An effectivkY model in a completely con-
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nected graph is obtained. The features characterizing the dis- We take(); < w,, Ey; under the rotating-wave approxima-
tribution of coupling rates in the qubit network are singledtion (RWA). In the interaction picture and with the tunable
out. Section Il is devoted to the description of the quantumgetunings &= w,- Eqi(®), the Hamiltonian is H(t)
state transfer process in the specific case of the Hamiltoniaz_:zbilﬂiéf&_—eiaiqH_C_’hc 8> (), the qubits act as a disper-
model derived in Sec. Il. The efficiency of the state transfersivé" intrac:lslvity medium that changes, according tow,

is evaluated for the case of a uniform distribution of cou-_, , +3.0%/ 5. No real energy exchange is possible, in this
plings and as a function of the dimension of the network. Wegase which allows us to eliminate the bosonic mode from
demonstrate that the effectiveness of the process is lost so0j,e dynamics of the qubits. Using standard techniques for
in this condition. We describe in detail a strategy that allows, giapatic eliminatiofil3], the interaction between the qubits
for the restoration of the transfer efficiency by simply engi-is ryled by an effective time-averaged Hamiltonian which is
neering the coupling of the first and last qubits in the chaingpained through iterative formal integrations of the corre-
In Sec. IV, we analyze the details of the physical settinggnonding Schrodinger equation. Stopping the iteration at the
based on the interaction between SQUIDs and a strip-linggcong step, which is justified under the above assumptions
cavity mode, where our proposal can be implemented. Ougg 0i/E4; <1, the required adiabatic Hamiltonian can be for-

results are summarized in Sec. V. mally written asHg=—iH(t) fd™H(7)| =, where the integral
has to be considered indefinite and then evaluated=at
[13]. Working out this expression, we eventually find the
We consideiN=2 qubits placed inside a cavity providing generalizedXY model
a single boson mode. We assume that, via an external poten- o s R
tial ®, we can modulate the transition enery; of the He= 2, 2x;(&767 + 757 = 2 (7o + 6a))  (2)
qubits. This is possible in many QIP devices such as trapped 1<l 1<l
ions, neutral atoméhrough Stark fields and SQUID-based  with x; =(,€);/24; and the sum runs over the qubits having
systems(via a magnetic flux modulating the Josephson en-5= s [14]. In order to get this equation, highly oscillating
ergy [9]). R terms(at frequencys; or highe) have been discarded. Their
The free Hamiltonian of the qubit system Ei'\ilHi contribution, mediated over the long evolution time scale
:(1/2)2{11qui(d>)6f, wherea is thez-Pauli operator of the determined by the coupling rateg;, is indeed negligible
ith qubit. Its eigenstatel$+)}; are the basis for thigh qubit.  compared to the contribution by the time-independent terms
The dependence of the qubit energies ®nis explicity ~— appearing in Eq.(2). Similar adiabatic interactions were
shown. In many cases, the single addressing of the qubits istudied elsewherésee[15] for some recent examplesin
a register is a difficult task. We thus assume tHatacts particular, Biswas and Agarwal considered a quantum state
collectively on the qubits that are closely spaced in the cavtransfer in a particle chain. For longer chains, however, their
ity. The cavity field mode of its frequenay,, described by proposal turns out to be experimentally quite demanding
the annihilation(creation operatora(a"), is coupled to the [15]. Christandlet al. [5] considered arXY model showing
qubits. The wavelength of the field is taken much longer that, in the case of all equal couplings, perfect state transfer
than the dimensionl of each qubit and their separation so iS Possible in linear chains of two and three qubits with
that any dependence on the position in the cavity is nehearest-neighbor couplings7] or between the antipodes of
glected. This assumption can be relaxed if necessary. Wa hypercube. _ _ o
consider the generally valid field-qubit interaction model Equation(2) is a long-range interaction which, in general,
mutually connects all the qubits in a network. In this paper,
we study the effect of the redundant connectionsliron the
efficiency of quantum state transfer.

Il. THE SYSTEM

N
H=X Hi.= > @ +8)(67+6) (h=1), (1)
i=1 i

where we assume the Rabi frequeriey depends on a di-

mensionless parametef which can be designed qubit by lll. ENGINEERED STATE TRANSFER

qubit and set once for all. This is in the spirit of program- We denotdid= (e |- +): for a state where onlv the

ming the system to accomplish a given task without interfer- SETP D)= (®pezi[ ) @[ +), tate w ly

ences to its evolution. We have introduced the operaifrs Ith qubitis 'n|f>‘ and® denotes tensorial product. Itis easy

=(67)T=|+)(~|. Altogether, the dynamics of the system is t0 Verify that[He, =,67]=0, so that the numbef of qubits
iven bvb =SSN B+ +SN {1 with A= w.4'3 the free in the excited state representscanstant of motiorin this

9 Y o™ 2i=1Hi T Ha® 2iz1Mia a’ "a - system. The Hilbert space is partitioned into subspdoes

energy of the field mode. Motivated by the recent achieve- ~

ment of highQ cavities(planar strip-line cavities, which are Sector$ labeled by¢, andH, can never couple states of the

characterized by quality factors larger tharf,1are relevant total qubit system belonging to sectors having differént
to this work; experimentally, strip-line cavities wit) Thus, the Hamiltonian can be diagonalized within each sub-

~10f have already been producdd2]) and the strong- SPace. In particular,_ the subspace withO (i.e., all _the qu-
coupling regime in some systems that can embody our mod&its in the|-) statg is spanned _bm)- The dynamic of an
[10,11], we start without considering dissipation. The main arbitrary state with just one excited qubit is instead confined

sources of decoherence in our proposal will be addressefl the subspace witi=1, spanned by the orthonormal basis
later. {lb} (i=1,...,N). With the decompositionU,(t)=eHe
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FIG. 1. Coupling configuration foN=3, 4. If the qubits are M

0.5 / ¥
connected by all equal coupling rates, the systems are equivalent to _
triangular and square clusters that can be represented by three- and FIG. 2. (a): 7 against the rescaled timefor N=3. The straight
four-vertex complete grapHganels(a) and(c)]. In this plot, each line is the bound for classical transfer. We sh@wor the all-equal
edge represents a coupling. If one connection is broken by reducingpuplings case (dotted ling and theengineeredcases withf=10
its coupling rate, the system becomes topologically equivalent to gsqjiq ling), f=5 (dashed ling (b) F againstr for the 1— 2 transfer

t\ﬁojqu(t:ji)t chain(b) or, generally, to a superposition of inequivalent process forf=1.1 (dotted ling and f=>5 (solid line).
chains(d).

k The degenerate eigenspace is diagonalizable and an orthogo-
=Spgered|yf)(yf], we calculate the evolved state of the nal basis can be built through the Gram-Schmidt algorithm.

network. Here,Hq, is the restriction of Eq.2) to the We get
n-dimensional subspace with a giv;fr%andég is the eigen-
value corresponding to the eigenstafe). N . e KN Nelo) N-1
Let the initial state|in) of the network have the qubit Us(t) :e'Xt2 [+ e NDHGT (5)
labeled 1 in a superposition ¢f), and |+); while all the k=0
other qubits are i), i.e., [in)=4|0)+v|1). By choosing an ) S a ) oN [ _
input state with just one excited qubit, we automatically se-W'thA|‘W )=(LANZL,D). The transfer probak?|llty is then
lect the subspaces with=0 and¢=1 as those relevant to the [(N|U1(7)|1)]*=(2/N)[1-cogN7)], where r=xt is the res-

evolution of the entire qubit network. This state evolves as caled interaction time. The resulting average ﬁdeﬁyis
plotted against in Fig. 2 (dotted ling. The maximum of this
) i function has to be contrasted with 2/3, the best fidelity
lin) — BI0) + VKE e Up|yh) (3)  achievable for the transfer of a qubit state through a classical
=0

channel[16]. It is clear thatF may be higher than the clas-
with the projections;)kl:(wﬂ;}. For quantum state transfer, sical limit. However, trying to extend the system, we find
. . . : ~ that already folN=4, F,,.x=2/3 and the quantum channel
we are interested in the transition amplituds|U,(t)|1) b | h q i q
Nk . _ becomes useless. Fbi=3, the unwanted coupling,; does
=2}0€ " TP Py Whose square modulus gives the probabil-not compromise the state transfer, even if the fidelity is not
ity for the procesg+); —|+)y to occur. In general, thdlith  optimal. However, a strategy to enlarge the rangeNdbr

N-2

N-1

qubit at a timet is in a mixed state, which this quantum process is still worthy is desirable. An
intuitive approach is to get rid of the redundant connections.
pN:Tr12---N—1[0(t)|in><in|0T(t)]- (4)  For example, as shown in Figstbl and Xd), by cutting the

coupling 1+ N, the clusters become equivalent to a chain of

The fidelity of the process is defined as the quantitythree qubitsb) and to a superposition of elementary chains

FB, V)=~ +¥)pn(B-)+7]+)). To cancel depen- [three elementary and inequivalent paths connecting 1 to 4

o _can be found in Fig. @), namely the paths +2—4, 1
dences on the initial state, we averaggs, y) over the sur .34, and 132 4. Any other path can be built by

the surface element. N ~ The cut may be realized by properly settial initio the
We start with a simple case that captures the spirit of thigp frequencies);’s. This is possible by an appropriate
study. The topology of a network depends crucially on thechoice of eachy, defined to be related t6); in Eq. (1). For
configuration of the couplings; in Eq. (2). In general, for  N=3, for example, we takd);=Q3<Q, 0 get X;,=Xo3
equald’s and();'s, the coupled qubits form a graph of con- .y . This reduces the complexity of the network to a three-
“i‘?t‘;d vert||cgs. In Fig. Il WedShOW the gaslesNGf& 4 qubit chain. We sek;, ,s=x and x;3=x/f, with f>1. The
which result in a triangular and a squared cluster, respecy, ., ositi " . .
; ; o ) position ofH.; can be found analytically with the
tively [Figs. Xa) and Xc)]. Each vertex and solid line repre aeiigenvaluesr?:—x/f, e}'zz(x/2f)(11 \1+8f2). They corre-

sent a qubit and a nonzero coupling, respectively. The natur N Ton( ,
question raised here is the performance of the state transfépond to ;‘? states i) =(1/v2)(-|D+[3)) and Y172
in this network of connections. To analyze it, we explicitly ~V14|D~(e&77/X)[2+[3)] with the normalizations\; ,

solve the problem formulated above, considering just the rel=x[2x2+(e292]"Y2  We  find  (3|Us(t)|1)=—(1/2)e"¥!
evant subspace with=1 but for a generic number of qubits. +N§e—ieh+/\/§e-ie§t, which reveals the competition between
For simplicity, we sek; =x. We notens=N and find thaH.;  the different paths the system can follow from the sender to
admits N-1 degenerate eigenvalug§=-x(k=0,...,N-2)  the receiver: the path connecting 1 to 3 ¥ig and the one
and the eigenvalug)'=(N-1)x completes the spectrum. through [2)xA,Y¢2)-N;Y¥t). The transfer fidelity
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F(0,)= |<§|LAJ1(t)|;>|2 resulting from this interference effect Fdelity
is

2
F(0,1) = % + 2APAZ cogASH) + 3 AP - A2 cogAe)
i=1

(6)
with Ael=€,-€(i,j=0,1,2. Equation (6) is maximized Average Fidelity
whenAef't=2, with A&% = andAe}%=-m(k= 1), which 09

correspond to the cade—«. In this case, the cut we have
operated is perfect and the configuration reduces to a chail 0.65
of three nearest-neighbor coupled qubits. For this coupling-

;":A P
i

VN
\
iy

engineered system, it is7(0,1)=0.973 for f=10 and () 1530 30 30" I" 50 15 20"
F(0,1)=0.898 for f=5 at 7=2f=/\1+8f°. As time goes
by, the interferences lead to collapses and revivals of the FIG. 3. (a) Fidelity 7(0, 1) againstr for N=4, 5, 6 andf =5. (b)

0.6

0.9
07t alklalld
A

Amplitude A of the fast oscillations of(0, 1) potted againsi (left

fidelity. The average fideliy” can be computed and it is vertical axig for f=1.1 (#) and f=5 (). The right vertical axis

shown in Fig. 2a), where it is seen that it can be much IargershoﬂsFm againsiN for =11 (M) andf=5 (A). (c) Average fidel-

than the classical bound. . _ i ) o
Increasing the dimension of the network, the diagonalizaly 7 for the values in(@). (d) F of the “1—4" (solid line) and
1 — 3" (dotted ling process foN=4 andf=1.1.

tion of EqQ.(2) becomes demanding due to the dimension of
the subspace witi=1. However, a recurrence law fnand _ o
N for the spectrum ofi, can be found to allow an analytical ments. The instantaneous value/&f0, 1) thus loses signifi-

expression for the transfer fidelity regardless of the length of@NCe€ in favor of a mean valug, defined as the semidis-
the cluster. It is worth stressing here that by takingl, we  t@nceé between the maximum and the minimum of the

effectively engineer the coupling strengths of all the connecoscillations. Becaus%_cifNEQe decreasing contribution by the
tions in a network. Whem,y=x/f is the smallest coupling, Peatingterm scogAe; "], the amplitudeA of the fast
oscillations decreases & and f grow. This stabilizes the

fidelity around the slower behavior. A compromise between a
fast process and the uncertainty#0, 1) is desirable. From

we find thatI:Ie hasN-3 degenerate eigenvalues. The corre-
sponding eigenvectors have no projection onto the $héte
Thus, for the purpose of transferring the input state to the last. S . )
physical qubit of the system, the inclusion of these degene Illg 3(b) (*hf'ir;]df_Ad),l_\;ve Ifei (t)hgff—Sl\lls>a4$u¢?hple 02%'86’
ate eigenvectors in the decomposition of time-evolution op2"°WIN9 @ Nigh TIdel Y (Fm= : or N=4) W'_ 'n.T_W
erator is ineffective. The rest of the energy spectrum is madélp to N=10) and nearly optimal average fidelit§, as
by the eigenvalues) *=-x/f and shown in Fig. ). However, forf=1.1 and 4<N<10 we
Nek 5 5 find F,=0.7[Fig. 3b), @] and F=0.9. It is noticeable that,
b _ _ 1+(N-3)f % {1 + ng\/l + 4N - Df } even for values of that do not optimize the above analysis,

X 2f [1+(N-3)f?]? we still get very good values of. Furthermore, we stress
(7)  that, once we set;’s allowing for the “1— N transfer, the
. same network can be used, under proper conditions, for “1
for k=1, 2 and sg{F+, sgn=-. U; can thus be effectively — j” processes as well<j<N-1). This is shown in Fig.
decomposed just by considering the eigenstdﬁﬂ';é_‘?) 2(b) for N=3 and in Fig. 8d) for N=4.
=(1/V2)(-|1)+|N)) (which corresponds te}®) and

— —ky N-1
~ (2 + o IV. THE PROPOSED SETUP
Iy k>:NN_k[|;>+lm>+—l 2] ® N _ _
x(N=-2) 5 As a setup combining the strong-coupling regime and

fixed positions for the qubits in the cavity, we address a
system of superconducting qubits in a cavity0,11]. An
array of mutually coupled Josephson junctions may be used
Nyk=X(N=2)[2(N - 2)%? + (52‘_3‘* E’I‘-k)Z(N -2 as a high-fidelity quantum channgl8]. Our approach is
different as we exploit the advantages of a dispersive bus.
The fidelity keeps the structure of E¢B) with &— €)™ (k  we takeN SQUIDs[9] in a 1D superconducting strip-line
=1,2), &— €% As f increases N1 —0, Ny2—1/\2, resonator (Q=10% w,~10 GHzA=1 cm>d=1 um).
and anN-dependent value of such that7(0,1)=1 can be The whole setup could be fabricated via nanolithographic
found. This is shown foN=4, 5, 6 in Fig. 3a), wheref  techniques allowing for a precise control and calibration of
=5 has been taken. The plot shows the fast oscillations ahe characteristics of the system. The strip-line cavity mini-
F(0,1) around an average which is sinusoidal withPrac-  mizes the photon losses and protects, to some extent, the
tically, this may be a problem as the value of the fidelity qubits from the environment. The dephasing due to charge-
depends on the ability of stopping the process at precise ma@oupled, low-frequency noise is a dangerous source of deco-

which are relative ta) 2 and€,~*. The normalization factor
is written as
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herence[19]. However, at thedegeneracy pointof the N0

SQUIDs[9,10], each qubit is encoded in the space spanned dip, = > 52—'1—2{—i5i[&j 07,pg] + k(267 pgo| = 675} pq
by the equally charged statgs);=(1/12)(|0)£|2€e)) (2e is ij=1 O T K

the charge of a Cooper paiiThe environment is not able to — P05} (10)
distinguish between these states which are less sensitive to

external charge fluctuatiof0,21. For Q;~100 MHz and ~ The spontaneous decay of the qubits can be easily included
8~1 GHz, the Purcell effect in this off-resonant setup en-in this analysis as the corresponding Liouvillian superopera-
hances the characteristic life-times up t6)/8)72I;t  tors do not include fche fi_elq de_grees of freedom and are not
=50 us (T is the spontaneous decay rate of the qubits affected by the cavity ellmlngtlon_. For the range of param-
which is suitable for quantum state transfer upNe10(f ~ €ters used here, taking for simplicify, ;=Q(Cr,s) it turns

=5). out thatQ23,/(82+k?) = 02/ §> 02/ (£+«?). Thus, by ne-

It is possible to include the effect of losses due to thedlecting the term proportional te in Eq. (10), we retrieve
finite quality factor of the cavity in our model. In order to the Hermitian dynamics described by E@). It is thus not
describe the decay of the cavity field, we have considered th@urprising that, by solving E¢10) for up toN=5 qubits in
usual Liouvillian used in quantum-optics-related problem.the network and calculating the fidelity of transpgit0, 1),

The cavity field is assumed to be in a thermal state as n#e found a similar trend in Fig.(8) without any significant
coherence of the field mode is required in this dispersivedeviation.
scheme. In details, together with the dynamics described in In this setup, the qubits energi€g; are the Josephson

Eq. (1) (within the RWA), we consider the term coupling energies and the contblis a proper magnetic flux
piercing thewhole group of SQUIDs. Small relative differ-

- - A At afa At At ences between the detunings to 1 MH2 do not affect the
Leap=k(n+1)(28pa" -{a'a,p}) + kn(2a'pa - {aa", p}) transfer fidelity. In Refs[10,11], qubits and cavity mode are
(9) capacitively coupled and the parametegsthat can be set
properly designing, at the building stage, the capacities be-
tween the qubits and the cavity. The initialization of the sys-
tem can be performed if two values @f can be arranged.
SForCI>:(I>1, we assume tha;'s are small enough to turn off
the mutual couplings. At low temperatur@ssumed to guar-
Bntee the charging regini®]), the off-resonant coupling to
the cavity makes the probability that a qubit is| #); negli-
gible. An electrode coupled to qubit 1, then, provides a pulse
that prepares the desired state. Switching to the prdper

to be used in the master equatip=—i[H,p]+L.yp (We
neglect, for a moment, the spontaneous decay of the qubit
Here,p is the density matrix of thgubits+cavity system,«

is the cavity decay rate, and the curly brackets denote ant
commutator. We have indicated withthe average photon
number in the thermal state of the cavity field. However, it is
experimentally possible to cool the resonator down to tem
perature such that<l[11]. For instance, for a temperatgre <®,, suitable for state transfer, the process begins. Setting
of =300 mK, we gen=0.06. Thus, from now on, we will - 6= the interaction can be stopped

neglect the contribution from temperature-dependent terms. b '
This Liouvillian description of SQUID-cavity open systems
has been proven to be rigorous for temperatures well above V. REMARKS
those assumed in this work. Indeed, exactly this optical mas-

ter equation results starting from the Bloch-Redfield equas A dlspers_lve qublts-boson_mteracnon Is able to mimic an
XY model with tunable couplings. However, unwanted non-

tions when the secular approximation is relaxed and a Iargﬁearest-neighbor connections appear, complicating the dy-

n_umber of elements of the Redfield tensor ha}ve o _be COMamics of the network. We have studied gquantum state trans-
sidered[22]. However, for slow frequency noise, this ap-

- . fer in this generalizecKY model. The presence of redundant
proach is in general no longer valid as, usually, the correla- . -
A ; : connections affects the efficiency of the state transfer, mak-
tion times are too long for a Markovian master equation to be : .
valid ing a quantum wire useless. We have analyzed a way in
Uﬁder the conditions of off-resonant interaction Wherewhlch the spoiling effect of these unwanted connections can
. ) . L be bypassed with only small modifications in the coupling
the detuning of the qubits effectively participating in the evo- .- "7 " . . . L
- . distribution. As a practical system where our investigation
lution is much larger than botkh andQ);(0 j), the degrees of , . 2
! can be applied, we have considered a setup combining quan-

freedom of the bath can be traced out. Using general stan; ; :
. o ) Z7tum optics and SQUIDs. The relevant parameters discussed
dard techniquef23], within the first Born-Markov approxi- v theoretical model have been identified and a suitable

matlon, the reduced mafterAquamr)p for the qubits can be Py rategy for quantum state transfer in this system has been
into the formatpq:Trcavfodt,‘COeﬁcavt Lopgq® peay th- HETE,pq described.

is the density matrix for the qubit£p=-i[H, p], andpcg, tn
stands for the thermal state of the cavity field. Behind this
expression, there is the consideration that the dispersive
qubit-cavity coupling is not able to affect the state of the We acknowledge support by UK EPSRC and Korea Re-
cavity field which thus stays in its steady state throughout theearch Foundatio2003-070-C00024 M.P. acknowledges
interaction with the qubits. After a lengthy calculation, the IRCEP for financial support. We thank R. Fazio for discus-
reduced qubits dynamics reads sions.
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