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High-fidelity quantum computation and quantum state transfer are possible in short spin chains. We exploit
a system based on a dispersive qubit-boson interaction to mimicXY coupling. In this model, the usually
assumed nearest-neighbor coupling is no longer valid: all the qubits are mutually coupled. We analyze the
performances of our model for quantum state transfer showing how preengineered coupling rates allow for
nearly optimal state transfer. We address a setup of superconducting qubits coupled to a microstrip cavity in
which our analysis may be applied.
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I. INTRODUCTION

Many protocols for quantum-information processing
sQIPd assume an arbitrary amount of control over the evolv-
ing system. However, any external influence may introduce
errors and decoherence. Moreover, having a fine single-qubit
control over a large register may be hard, especially for
closely spaced subsystems. This has motivated some recent
proposals in order to reduce the amount of the control over a
quantum computerf1g. A way to achieve control-limited QIP
is given by the engineering of interactions specifically de-
signed to accomplish a prefixed task and a process can be
formulated according to the program: initialization of the
register, evolution by the designed interactions, and measure-
ment swith no other interference on the dynamicsd.

Looking for a scenario suitable for control-limited evolu-
tions, quantum spin systems represent promising candidates.
Spin systems are intrinsically interesting because quantum
phase transitionsf2g and their relations with entanglement
f3g can be studied. Very recently, it has been recognized that
Heisenberg andXY interactions with nearest-neighbor cou-
plings can be used to transfer a quantum state through a
network of qubits, virtually without external controlf4–6g.
For XY couplings, linear chains of three nearest-neighbor
coupled qubits achieve a perfect transfer fidelity and can be
used as building blocks for a longer communication wire.
This strategy is useful in those situations where the use of a
photonic bussconventionally accepted as a good information
carrierd is not easy or convenient. It is worth stressing that
this approach to quantum state transfer is radically different
from an architecture of the transfer process in terms, for
instance, of concatenated SWAP gates. The requirement of
local control, which is necessary in order to realize such a
quantum circuit, is abandoned in favor of aglobal interaction
that collectively involves the element of a register. This
change of perspective turns out to be successfully exploitable
in other contexts. Indeed, a three-qubit chain of itsXY cou-
pling allows for universal quantum computationf7g and
quantum cloning is possible in many-qubit networks con-
nected through Heisenberg andXY coupling f8g.

In this paper, we address the problem of quantum state
transfer through anXY coupling model engineered via the

off-resonant interaction of a group of qubits with a common
bus. Our motivations are manifold. First of all, in our model
the nearest-neighbor restriction is naturally relaxed. We con-
sider a configuration of couplings which can be efficiently
described in terms of complete graphs. We study the effi-
ciency of a state transfer process in these multi-qubit inter-
actions showing that, for uniform coupling distributions, the
effectiveness of quantum state transfer can be lost. However,
by properly designing the coupling rate between only the
first and last physical qubits, the transfer fidelity in the chain
is restored to a nearly optimal value. Under proper condi-
tions, once we set the strengths of the inter-qubit couplings
in a chain ofN elements, the quantum state to be transferred
can be collected at specific times at any of theN−k qubits of
the chainsk=0,1,… ,N−2d. This can be more advantageous
than strategies that bypass the chain and connects directly the
sender qubit to the receiver. In this latter case, the couplings
have to be redesigned each time the receiver’s position is
changed.

On the other hand, the appealing possibilities offered by
even simple networks motivate the research for practical sys-
tems in which qubit-qubit interactions with possibly tunable
couplings can be realized. As we stress in this paper, this is
the case of anXY coupling simulated by our dispersive
qubits-boson interaction. The insight we gain through this
kind of simulation under controllable conditions could then
be applied to real systems of solid-state physics where the
amount of control is in general smaller. A setup is addressed
combining quantum optics and superconducting quantum in-
terference devicessSQUIDsd f9g that can embody our model.
This setting is chosen in light of the possibility of achieving
the strong-coupling regime and because of the advantages of
the fixed positions of the qubits in the cavity and the long
lifetime achievable in a high-quality factorshigh-Qd cavity.
These features have been recently exploited for solid-state–
quantum-optics interfacesf10g.

The paper is organized as follows. In Sec. II, we set the
scenario in which our study is developed. We describe the
general conditions under which the adiabatic evolution of a
group of qubits, induced by an off-resonant photonic bus,
can be derived. An effectiveXY model in a completely con-
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nected graph is obtained. The features characterizing the dis-
tribution of coupling rates in the qubit network are singled
out. Section III is devoted to the description of the quantum
state transfer process in the specific case of the Hamiltonian
model derived in Sec. II. The efficiency of the state transfer
is evaluated for the case of a uniform distribution of cou-
plings and as a function of the dimension of the network. We
demonstrate that the effectiveness of the process is lost soon,
in this condition. We describe in detail a strategy that allows
for the restoration of the transfer efficiency by simply engi-
neering the coupling of the first and last qubits in the chain.
In Sec. IV, we analyze the details of the physical setting,
based on the interaction between SQUIDs and a strip-line
cavity mode, where our proposal can be implemented. Our
results are summarized in Sec. V.

II. THE SYSTEM

We considerNù2 qubits placed inside a cavity providing
a single boson mode. We assume that, via an external poten-
tial F, we can modulate the transition energyEq,i of the
qubits. This is possible in many QIP devices such as trapped
ions, neutral atomssthrough Stark fieldsd, and SQUID-based
systemssvia a magnetic flux modulating the Josephson en-
ergy f9gd.

The free Hamiltonian of the qubit system isoi=1
N Ĥi

=s1/2doi=1
N Eq,isFdŝi

z, whereŝi
z is thez-Pauli operator of the

ith qubit. Its eigenstateshu± lji are the basis for theith qubit.
The dependence of the qubit energies onF is explicitly
shown. In many cases, the single addressing of the qubits in
a register is a difficult task. We thus assume thatF acts
collectively on the qubits that are closely spaced in the cav-
ity. The cavity field mode of its frequencyva, described by
the annihilationscreationd operatorâsâ†d, is coupled to the
qubits. The wavelengthl of the field is taken much longer
than the dimensiond of each qubit and their separation so
that any dependence on the position in the cavity is ne-
glected. This assumption can be relaxed if necessary. We
consider the generally valid field-qubit interaction model

Ĥ = o
i=1

N

Ĥi,a = o
i

Visâ† + âdsŝi
− + ŝi

+d s" = 1d, s1d

where we assume the Rabi frequencyVi depends on a di-
mensionless parameterhi which can be designed qubit by
qubit and set once for all. This is in the spirit of program-
ming the system to accomplish a given task without interfer-
ences to its evolution. We have introduced the operatorsŝi

+

=sŝi
−d†= u+lik−u. Altogether, the dynamics of the system is

given byĤtot=oi=1
N Ĥi +Ĥa+oi=1

N Ĥi,a with Ĥa=vaâ
†â the free

energy of the field mode. Motivated by the recent achieve-
ment of high-Q cavitiessplanar strip-line cavities, which are
characterized by quality factors larger than 104, are relevant
to this work; experimentally, strip-line cavities withQ
.106 have already been producedf12gd and the strong-
coupling regime in some systems that can embody our model
f10,11g, we start without considering dissipation. The main
sources of decoherence in our proposal will be addressed
later.

We takeVi !va, Eq,i under the rotating-wave approxima-
tion sRWAd. In the interaction picture and with the tunable

detunings di =va−Eq,isFd, the Hamiltonian is Ĥstd
=oi=1

N Viâ
†ŝi

−eidit+H.c. If di @Vi, the qubits act as a disper-
sive intracavity medium that changesva according tova
→va+oiVi

2/di. No real energy exchange is possible, in this
case, which allows us to eliminate the bosonic mode from
the dynamics of the qubits. Using standard techniques for
adiabatic eliminationf13g, the interaction between the qubits
is ruled by an effective time-averaged Hamiltonian which is
obtained through iterative formal integrations of the corre-
sponding Schrödinger equation. Stopping the iteration at the
second step, which is justified under the above assumptions
of Vi /Eq,i !1, the required adiabatic Hamiltonian can be for-

mally written asĤe=−iĤstdedtĤstdut=t, where the integral
has to be considered indefinite and then evaluated att= t
f13g. Working out this expression, we eventually find the
generalizedXY model

Ĥe . o
i, j

2xijsŝi
+ŝ j

− + ŝi
−ŝ j

+d = o
i, j

xijsŝi
xŝ j

x + ŝi
yŝ j

yd s2d

with xij =ViV j /2d j and the sum runs over the qubits having
di =d j f14g. In order to get this equation, highly oscillating
termssat frequencydi or higherd have been discarded. Their
contribution, mediated over the long evolution time scale
determined by the coupling ratesxij , is indeed negligible
compared to the contribution by the time-independent terms
appearing in Eq.s2d. Similar adiabatic interactions were
studied elsewheressee f15g for some recent examplesd. In
particular, Biswas and Agarwal considered a quantum state
transfer in a particle chain. For longer chains, however, their
proposal turns out to be experimentally quite demanding
f15g. Christandlet al. f5g considered anXY model showing
that, in the case of all equal couplings, perfect state transfer
is possible in linear chains of two and three qubits with
nearest-neighbor couplingsf17g or between the antipodes of
a hypercube.

Equations2d is a long-range interaction which, in general,
mutually connects all the qubits in a network. In this paper,

we study the effect of the redundant connections inĤe on the
efficiency of quantum state transfer.

III. ENGINEERED STATE TRANSFER

We denoteuil=s^kÞi
N u−lkd ^ u+li for a state where only the

ith qubit is inu+li and^ denotes tensorial product. It is easy

to verify thatfĤe,oi=1
N ŝi

zg=0, so that the number, of qubits
in the excited state represents aconstant of motionin this
system. The Hilbert space is partitioned into subspacessor

sectorsd labeled by,, andĤe can never couple states of the
total qubit system belonging to sectors having different,.
Thus, the Hamiltonian can be diagonalized within each sub-
space. In particular, the subspace with,=0 si.e., all the qu-
bits in the u−l stated is spanned byu0l. The dynamic of an
arbitrary state with just one excited qubit is instead confined
in the subspace with,=1, spanned by the orthonormal basis

huilj si =1,… ,Nd. With the decompositionÛ,std=e−iĤe,,t
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=ok=0
ns−1e−ie,

ktuc,
klkc,

ku, we calculate the evolved state of the

network. Here,Ĥe,, is the restriction of Eq.s2d to the
ns-dimensional subspace with a given,, ande,

k is the eigen-
value corresponding to the eigenstateuc,

kl.
Let the initial stateuinl of the network have the qubit

labeled 1 in a superposition ofu−l1 and u+l1 while all the
other qubits are inu−l, i.e., uinl=bu0l+gu1l. By choosing an
input state with just one excited qubit, we automatically se-
lect the subspaces with,=0 and,=1 as those relevant to the
evolution of the entire qubit network. This state evolves as

uinl → bu0l + go
k=0

N−1

e−ie1
ktpk1uc1

kl s3d

with the projectionspk1=kc1
k u1l. For quantum state transfer,

we are interested in the transition amplitudekNuÛ1stdu1l
=ok=0

N−1e−ie1
ktpk1pkN

* , whose square modulus gives the probabil-
ity for the processu+l1→ u+lN to occur. In general, theNth
qubit at a timet is in a mixed state,

rN = Tr12̄ N−1fÛstduinlkinuÛ†stdg. s4d

The fidelity of the process is defined as the quantity
Fsb ,gd=sk−ub* +k+ug*drNsbu−l+gu+ld. To cancel depen-
dences on the initial state, we averageFsb ,gd over the sur-

face of the Bloch sphere asF̄=s1/4pdeFsb ,gddS with dS
the surface element.

We start with a simple case that captures the spirit of this
study. The topology of a network depends crucially on the
configuration of the couplingsxij in Eq. s2d. In general, for
equaldi’s andVi’s, the coupled qubits form a graph of con-
nected vertices. In Fig. 1, we show the cases ofN=3, 4
which result in a triangular and a squared cluster, respec-
tively fFigs. 1sad and 1scdg. Each vertex and solid line repre-
sent a qubit and a nonzero coupling, respectively. The natural
question raised here is the performance of the state transfer
in this network of connections. To analyze it, we explicitly
solve the problem formulated above, considering just the rel-
evant subspace with,=1 but for a generic number of qubits.

For simplicity, we setxij =x. We notens=N and find thatĤe,1
admits N−1 degenerate eigenvaluese1

k=−xsk=0,… ,N−2d
and the eigenvaluee1

N−1=sN−1dx completes the spectrum.

The degenerate eigenspace is diagonalizable and an orthogo-
nal basis can be built through the Gram-Schmidt algorithm.
We get

Û1std = eixto
k=0

N−2

uc1
klkc1

ku + e−isN−1dxtuc1
N−1lkc1

N−1u s5d

with uc1
N−1l=s1/ÎNdoi=1

N uil. The transfer probability is then

zkNuÛ1stdu1lz2=s2/N2df1−cossNtdg, where t=xt is the res-

caled interaction time. The resulting average fidelityF̄ is
plotted againstt in Fig. 2 sdotted lined. The maximum of this
function has to be contrasted with 2/3, the best fidelity
achievable for the transfer of a qubit state through a classical

channelf16g. It is clear thatF̄ may be higher than the clas-
sical limit. However, trying to extend the system, we find

that already forN=4, F̄max.2/3 and the quantum channel
becomes useless. ForN=3, the unwanted couplingx13 does
not compromise the state transfer, even if the fidelity is not
optimal. However, a strategy to enlarge the range ofN for
which this quantum process is still worthy is desirable. An
intuitive approach is to get rid of the redundant connections.
For example, as shown in Figs. 1sbd and 1sdd, by cutting the
coupling 1↔N, the clusters become equivalent to a chain of
three qubitssbd and to a superposition of elementary chains
fthree elementary and inequivalent paths connecting 1 to 4
can be found in Fig. 1sdd, namely the paths 1→2→4, 1
→3→4, and 1→3→2→4. Any other path can be built by
superimposing these threeg.

The cut may be realized by properly settingab initio the
Rabi frequenciesV j’s. This is possible by an appropriate
choice of eachhi defined to be related toVi in Eq. s1d. For
N=3, for example, we takeV1=V3!V2 to get x12=x23
@x13. This reduces the complexity of the network to a three-
qubit chain. We setx12,23=x and x13=x/ f, with f .1. The

decomposition ofĤe,1 can be found analytically with the
eigenvaluese1

0=−x/ f, e1
1,2=sx/2fds17Î1+8f2d. They corre-

spond to the statesuc1
0l=s1/Î2ds−u1l+ u3ld and uc1

1,2l
=N1,2fu1l−se1

2,1/xdu2l+ u3lg with the normalizationsN1,2

=xf2x2+se1
2,1d2g−1/2. We find k3uÛ1stdu1l=−s1/2deixt/f

+N1
2e−ie1

1t+N2
2e−ie1

2t, which reveals the competition between
the different paths the system can follow from the sender to
the receiver: the path connecting 1 to 3 viax13 and the one
through u2l~N2

−1uc1
2l−N1

−1uc1
1l. The transfer fidelity

FIG. 1. Coupling configuration forN=3, 4. If the qubits are
connected by all equal coupling rates, the systems are equivalent to
triangular and square clusters that can be represented by three- and
four-vertex complete graphsfpanelssad and scdg. In this plot, each
edge represents a coupling. If one connection is broken by reducing
its coupling rate, the system becomes topologically equivalent to a
two-qubit chainsbd or, generally, to a superposition of inequivalent
chainssdd.

FIG. 2. sad: F̄ against the rescaled timet for N=3. The straight

line is the bound for classical transfer. We showF̄ for theall-equal
couplingscasesdotted lined and theengineeredcases withf =10

ssolid lined, f =5 sdashed lined. sbd F̄ againstt for the 1→2 transfer
process forf =1.1 sdotted lined and f =5 ssolid lined.
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Fs0,1d;uk3uÛ1stdu1lu2 resulting from this interference effect
is

Fs0,1d =
1

4
+ 2N1

2N2
2 cossDe1

21td + o
i=1

2

Ni
4 − Ni

2 cossDe1
i0td

s6d

with De1
i j =e1

i −e1
j si , j =0,1,2d. Equation s6d is maximized

whenDe1
21t=2p, with De1

20t=p andDe1
10t=−pskù1d, which

correspond to the casef →`. In this case, the cut we have
operated is perfect and the configuration reduces to a chain
of three nearest-neighbor coupled qubits. For this coupling-
engineered system, it isFs0,1d.0.973 for f =10 and
Fs0,1d.0.898 for f =5 at t.2fp /Î1+8f2. As time goes
by, the interferences lead to collapses and revivals of the

fidelity. The average fidelityF̄ can be computed and it is
shown in Fig. 2sad, where it is seen that it can be much larger
than the classical bound.

Increasing the dimension of the network, the diagonaliza-
tion of Eq. s2d becomes demanding due to the dimension of
the subspace with,=1. However, a recurrence law inf and

N for the spectrum ofĤe can be found to allow an analytical
expression for the transfer fidelity regardless of the length of
the cluster. It is worth stressing here that by takingf Þ1, we
effectively engineer the coupling strengths of all the connec-
tions in a network. Whenx1N=x/ f is the smallest coupling,

we find thatĤe hasN−3 degenerate eigenvalues. The corre-
sponding eigenvectors have no projection onto the stateuNl.
Thus, for the purpose of transferring the input state to the last
physical qubit of the system, the inclusion of these degener-
ate eigenvectors in the decomposition of time-evolution op-
erator is ineffective. The rest of the energy spectrum is made
by the eigenvaluese1

N−3=−x/ f and

e1
N−k

x
=

1 + sN − 3df2

2f
3 H1 + sgnkÎ1 +

4sN − 1df2

f1 + sN − 3df2g2J
s7d

for k=1, 2 and sgn1=+, sgn2=−. Û1 can thus be effectively
decomposed just by considering the eigenstatesuc1

N−3l
=s1/Î2ds−u1l+ uNld swhich corresponds toe1

N−3d and

uc1
N−kl = NN−kFu1l + uNl +

se1
N−3 + e1

N−kd
xsN − 2d o

i=2

N−1

uilG , s8d

which are relative toe1
N−2 ande1

N−1. The normalization factor
is written as

NN−k = xsN − 2df2sN − 2d2x2 + se1
N−3 + e1

N−kd2sN − 2dg−1/2.

The fidelity keeps the structure of Eq.s6d with e1
k→e1

N−ksk
=1,2d, e1

0→e1
N−3. As f increases,NN−1→0, NN−2→1/Î2,

and anN-dependent value oft such thatFs0,1d.1 can be
found. This is shown forN=4, 5, 6 in Fig. 3sad, where f
=5 has been taken. The plot shows the fast oscillations of
Fs0,1d around an average which is sinusoidal witht. Prac-
tically, this may be a problem as the value of the fidelity
depends on the ability of stopping the process at precise mo-

ments. The instantaneous value ofFs0,1d thus loses signifi-
cance in favor of a mean valueFm defined as the semidis-
tance between the maximum and the minimum of the
oscillations. Because of the decreasing contribution by the
beating term ~cosfDe1

N−1,N−2tg, the amplitudeA of the fast
oscillations decreases asN and f grow. This stabilizes the
fidelity around the slower behavior. A compromise between a
fast process and the uncertainty inFs0,1d is desirable. From
Fig. 3sbd s. and md, we see thatf =5 is a suitable choice,
allowing a high fidelitysFm*0.9 for Nù4d within t&60

sup to N=10d and nearly optimal average fidelityF̄, as
shown in Fig. 3scd. However, for f =1.1 and 4,N,10 we

find Fm*0.7 fFig. 3sbd, jg andF̄*0.9. It is noticeable that,
even for values off that do not optimize the above analysis,

we still get very good values ofF̄. Furthermore, we stress
that, once we setxij ’s allowing for the “1→N” transfer, the
same network can be used, under proper conditions, for “1
→ j” processes as wells2ø j øN−1d. This is shown in Fig.
2sbd for N=3 and in Fig. 3sdd for N=4.

IV. THE PROPOSED SETUP

As a setup combining the strong-coupling regime and
fixed positions for the qubits in the cavity, we address a
system of superconducting qubits in a cavityf10,11g. An
array of mutually coupled Josephson junctions may be used
as a high-fidelity quantum channelf18g. Our approach is
different as we exploit the advantages of a dispersive bus.
We takeN SQUIDs f9g in a 1D superconducting strip-line
resonator sQ*104,va.10 GHz,l.1 cm@d.1 mmd.
The whole setup could be fabricated via nanolithographic
techniques allowing for a precise control and calibration of
the characteristics of the system. The strip-line cavity mini-
mizes the photon losses and protects, to some extent, the
qubits from the environment. The dephasing due to charge-
coupled, low-frequency noise is a dangerous source of deco-

FIG. 3. sad Fidelity Fs0,1d againstt for N=4, 5, 6 andf =5. sbd
AmplitudeA of the fast oscillations ofFs0,1d potted againstN sleft
vertical axisd for f =1.1 sld and f =5 s.d. The right vertical axis
showsFm againstN for f =1.1 sjd and f =5 smd. scd Average fidel-

ity F̄ for the values insad. sdd F̄ of the “1→4” ssolid lined and
“1 →3” sdotted lined process forN=4 and f =1.1.
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herence f19g. However, at thedegeneracy pointof the
SQUIDs f9,10g, each qubit is encoded in the space spanned
by the equally charged statesu± li =s1/Î2dsu0l± u2eld s2e is
the charge of a Cooper paird. The environment is not able to
distinguish between these states which are less sensitive to
external charge fluctuationsf20,21g. For Vi ,100 MHz and
di ,1 GHz, the Purcell effect in this off-resonant setup en-
hances the characteristic life-times up tosVi /did−2Gi

−1

*50 ms sGi is the spontaneous decay rate of the qubitsd
which is suitable for quantum state transfer up toN=10sf
=5d.

It is possible to include the effect of losses due to the
finite quality factor of the cavity in our model. In order to
describe the decay of the cavity field, we have considered the
usual Liouvillian used in quantum-optics-related problem.
The cavity field is assumed to be in a thermal state as no
coherence of the field mode is required in this dispersive
scheme. In details, together with the dynamics described in
Eq. s1d swithin the RWAd, we consider the term

L̂cavr = ksn̄ + 1ds2ârâ† − hâ†â,rjd + kn̄s2â†râ − hââ†,rjd

s9d

to be used in the master equation]tr=−ifĤ ,rg+L̂cavr swe
neglect, for a moment, the spontaneous decay of the qubitsd.
Here,r is the density matrix of thequbits1cavity system,k
is the cavity decay rate, and the curly brackets denote anti-
commutator. We have indicated withn̄ the average photon
number in the thermal state of the cavity field. However, it is
experimentally possible to cool the resonator down to tem-
perature such thatn̄!1 f11g. For instance, for a temperature
of .300 mK, we getn̄.0.06. Thus, from now on, we will
neglect the contribution from temperature-dependent terms.
This Liouvillian description of SQUID-cavity open systems
has been proven to be rigorous for temperatures well above
those assumed in this work. Indeed, exactly this optical mas-
ter equation results starting from the Bloch-Redfield equa-
tions when the secular approximation is relaxed and a large
number of elements of the Redfield tensor have to be con-
sideredf22g. However, for slow frequency noise, this ap-
proach is in general no longer valid as, usually, the correla-
tion times are too long for a Markovian master equation to be
valid.

Under the conditions of off-resonant interaction, where
the detuning of the qubits effectively participating in the evo-
lution is much larger than bothk andV js∀ jd, the degrees of
freedom of the bath can be traced out. Using general stan-
dard techniquesf23g, within the first Born-Markov approxi-
mation, the reduced master equation for the qubits can be put

into the form]trq=Trcave0
`dt8L̂0e

L̂cavt8L̂0rq ^ rcav,th. Here,rq

is the density matrix for the qubits,L̂0r=−ifĤ ,rg, andrcav,th

stands for the thermal state of the cavity field. Behind this
expression, there is the consideration that the dispersive
qubit-cavity coupling is not able to affect the state of the
cavity field which thus stays in its steady state throughout the
interaction with the qubits. After a lengthy calculation, the
reduced qubits dynamics reads

]trq = o
i,j=1

N
ViV j

di
2 + k2h− idifŝ j

+ŝ j
−,rqg + ks2ŝi

−rqs j
+ − ŝi

+ŝ j
−rq

− rqŝi
+ŝ j

−dj. s10d

The spontaneous decay of the qubits can be easily included
in this analysis as the corresponding Liouvillian superopera-
tors do not include the field degrees of freedom and are not
affected by the cavity elimination. For the range of param-
eters used here, taking for simplicityVr,s=Vs∀r ,sd it turns
out thatV2dr / sdr

2+k2d.V2/d@V2k / sdr
2+k2d. Thus, by ne-

glecting the term proportional tok in Eq. s10d, we retrieve
the Hermitian dynamics described by Eq.s2d. It is thus not
surprising that, by solving Eq.s10d for up to N=5 qubits in
the network and calculating the fidelity of transportFs0,1d,
we found a similar trend in Fig. 3sad without any significant
deviation.

In this setup, the qubits energiesEq,i are the Josephson
coupling energies and the controlF is a proper magnetic flux
piercing thewhole group of SQUIDs. Small relative differ-
ences between the detuningssup to 1 MHzd do not affect the
transfer fidelity. In Refs.f10,11g, qubits and cavity mode are
capacitively coupled and the parametershi that can be set
properly designing, at the building stage, the capacities be-
tween the qubits and the cavity. The initialization of the sys-
tem can be performed if two values ofF can be arranged.
For F=F1, we assume thatxij ’s are small enough to turn off
the mutual couplings. At low temperaturessassumed to guar-
antee the charging regimef9gd, the off-resonant coupling to
the cavity makes the probability that a qubit is inu+li negli-
gible. An electrode coupled to qubit 1, then, provides a pulse
that prepares the desired state. Switching to the properF2
!F1, suitable for state transfer, the process begins. Setting
backF=F1, the interaction can be stopped.

V. REMARKS

A dispersive qubits-boson interaction is able to mimic an
XY model with tunable couplings. However, unwanted non-
nearest-neighbor connections appear, complicating the dy-
namics of the network. We have studied quantum state trans-
fer in this generalizedXY model. The presence of redundant
connections affects the efficiency of the state transfer, mak-
ing a quantum wire useless. We have analyzed a way in
which the spoiling effect of these unwanted connections can
be bypassed with only small modifications in the coupling
distribution. As a practical system where our investigation
can be applied, we have considered a setup combining quan-
tum optics and SQUIDs. The relevant parameters discussed
in the theoretical model have been identified and a suitable
strategy for quantum state transfer in this system has been
described.
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