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We propose feasible implementations of basic continuous-variablesCVd interactionsssqueezer, parametric
amplifier, and quantum nondemolition interactiond between light modes without the requirement for in-line
nonlinear couplings in a strongly pumped optical medium. The method is based entirely on linear optics,
homodyne detection, and off-line squeezed ancillary states and therefore represents the CV analog of the
measurement-induced nonlinearity approach, previously used in single-photon qubit experiments to probabi-
listically implement a controlled-NOT gate.
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I. INTRODUCTION

Quantum optics is well suited for applications in quantum
communication and information processing. To achieve high
fidelity in these applications, feasible and efficient quantum
interactions between light pulses are normally required.
However, a successful demonstration of complex quantum
protocols is often hindered by the low efficiency and poor
quality of coupling between signal modes in a nonlinear me-
dium. Recently, it has been shown that a basic two-qubit
controlled-NOT gate between the individual photons, requir-
ing nonlinear interaction, can be conditionally implemented
using only linear coupling between the input and ancillary
photonsf1,2g. A nonlinear interaction is induced by the mea-
surement of ancillary qubits and feedforward postselection
procedure. Probabilistic gates of this kind yield the desired
operation only when a specific outcome from a detector
event is obtained. Thus the interaction can be implemented
only conditionally, for some fraction of events.

Beyond the experiments with individual photons, there is
an experimentally interesting alternative for quantum com-
munication and information processing—namely, quantum
optical experiments with continuous variablessCVsd sfor a
review seef3gd. CV quantum information processing is usu-
ally executed by a combination of active optical devices such
as squeezers, amplifiers, and quantum nondemolitionsQNDd
interactions. They are based on strongly pumped nonlinear
processes in the optical crystals or optical fibers. Therefore
the efficiency of such quantum information protocols relies
on the efficiency of the individual active devices. Unfortu-
nately, however, the efficient coupling of optical fields inside
a nonlinear medium poses severe practical problems render-
ing experimental implementation of these devices difficult.
To obtain sufficient gain of the active device, the power of
the pump beam must be large and the effective interaction
length of the crystal or optical fiber must be long. Strong
pump power can be obtained by using a very short pumping
pulse and the interaction length can be enlarged by embed-
ding the crystal inside a cavity or using a long fiber. Such
enhancement techniques make it difficult to inject an un-
known quantum state into the system. Coupling of the quan-
tum state in the fiber and the cavity is a lossy process unless

extreme care has been taken to spatially and temporally over-
lap the fiber or cavity modes with the signal modes. Further-
more, by using cavities the impedance-matching condition
can also hinder successful coupling. Another drawback of
these traditional approaches is that the strongly pumped non-
linear processes are normally not pure and they introduce
excess noise into the quadratures.

In this paper, we demonstrate that single-mode squeezers
and phase-insensitive amplifiers as well as QND interactions
can be accomplished by using only linear optical elements,
homodyne measurements, and off-line squeezed light beams.
In these schemes signal modes are coupled to ancillary
modes in passive devices, the ancillary modes are subse-
quently detected, and the measurement results are used either
to modulate the freely propagating output optical signals us-
ing electro-optic feedforward or equivalently to postcorrect
the measured results after the protocol is terminated. Thus
strongly pumped nonlinear devices are not used in line but
only off line to prepare squeezed vacuum states in the ancil-
lary modes. Contrary to the experiments with individual pho-
tonsf2g, such measurement-induced CV Gaussian operations
are deterministic without any postselection. The proposed
methods can overcome previous experimental problems in
achieving efficient quantum interaction between light beams
and may pave the way for further experiments in CV quan-
tum information science.

Some previous proposals have been made on the use of
linear optics and electro-optics feed forward loops to circum-
vent cumbersome nonlinear interactions in the CV regime. In
Ref. f4g a scheme based on linear optics and measurement
was employed to perform noiseless amplification of a single
quadrature and in Ref.f5g the same techniques were used to
accomplish a quantum nondemolition measurement of a
single quadrature. A serious drawback of this scheme is that
it only performs a part of the interaction on a single quadra-
ture of the signal. Here we propose a method how to ap-
proach the interaction which will work completely for both
complementary quadratures.

In Sec. II, we introduce the measurement-induced squeez-
ing operation which illustrates the basic concepts of our ap-
proach. In Sec. III we discuss how our method can be em-
ployed in various implementations of the QND interactions.
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First we address two schemes implementing QND interac-
tion with nonunity transfer gain where the interaction takes
place either locally or at a distance, and at the end of this
section we discuss an implementation of unity-gain QND. In
Sec. IV we discuss the implementation of a phase-insensitive
optical parametric amplifier. Finally, in Sec. V, the results are
summarized with a discussion of the experimental viability.

II. SINGLE-MODE SQUEEZER

First we discuss a basic ingredient of all the schemes pro-
posed below—a measurement-induced single-mode phase-
sensitive optical parametric amplifier or equivalently a
single-mode squeezer. The optimal squeezing operation re-
duces the mean value and variance of a certain quadrature
variable of an incident optical mode at the cost of minimal
increase of the mean value and variance of the complemen-
tary quadrature. Previously, such an operation has been
implemented by injecting a signal into a nonlinear medium
that is intensively pumpedf6g.

Our alternative—the measurement-induced squeezing
scheme—is depicted in Fig. 1. We assume that the signal is
carried by a linear polarization mode 1 while the squeezed
ancillary modeA is prepared in the orthogonal polarization
mode. To controllably couple the signal mode and squeezed
vacuum ancillary mode, a coupling device, CD, comprising a
half-wave plate sandwiched by two polarizing beam splitters,
is used. Such a device effectively controls the linear coupling

X18 = ÎTX1 + Î1 − TXA, P18 = ÎTP1 + Î1 − TPA,

XA8 = ÎTXA − Î1 − TX1, PA8 = ÎTPA − Î1 − TP1 s1d

between the two input polarization modes with a beam split-
ting ratio given by the angleQ of the HWP, where the trans-
mittance T of the CD is T=cos2 Q and Xi ,Pi sXi8 ,Pi8d, i
=1,A, are inputsoutputd pairs of quadrature operators asso-
ciated with the light modes.

If the ancillary modeA is prepared in a vacuum state that
is strongly squeezed in theXA quadrature, the passive cou-

pling at the CD approaches a squeezing operation ofX1 by a
degree equal to the transmittanceÎT. To achieve a corre-
sponding amplificationsantisqueezingd of the P1 quadrature,
we perform a measurement of thePA8 quadrature using a
homodyne detection system and subsequently use the gained
information to finalize the appropriate squeezing operation.
This is done by amplifying photocurrent fluctuationsid~ p̄A
swherep̄A is the measured valued with an appropriate gaing
and imposing information onto the mode 1:P18→P18+gid.
This displacement operationsit is not shown in the figured
can be performed either electro-optically onto the optical
modes or purely electronically onto the measurement results
after the experiment has been terminated.

These two displacement transformations are thus identical
under the assumption that any Gaussian operation on the
signal mode following this squeezing procedure is described
by linear transformations of the quadrature operators. To
complete the interaction by a postcorrection of the measured
data we only need to explicitly know the Gaussian operations
that have been performed on the output of the operation. The
data postcorrections remain deterministic and hence they do
not rely on postselection, in contrast to the measurement-
induced operations with single photonsf2g.

After an appropriate postcorrectionP18→P18+gid, the re-
sults of any measurement on the mode 1 are produced by the
output quadrature operators

X18 = ÎTX1 + Î1 − TXA,

P18 =
1
ÎT

P1 −
Îs1 − Tds1 − hd

ÎTh
P0, s2d

where P0 is the quadrature operator of a mode exhibiting
vacuum fluctuations. The overall efficiency of this homodyne
detector is given byh. We see that the success of the squeez-
ing operation of the input signal is limited by the squeezing
of the ancillary state as well as the nonunity detector effi-
ciency of the homodyne detection system. More precisely,
the uncertainty of the squeezed quadrature is enhanced by
s1−TdVA due to finite squeezing of the ancillary state, while
the uncertainty of the antisqueezed quadrature is enlarged by
fs1−Tds1−hd /ThgV0 due to imperfect detectors. HereVA

and V0 are the variances ofXA and P0, respectively. The
mean values of the input signal are, however, transformed
perfectly since the ancillary state is assumed to be vacuum
squeezed. For a strongly squeezed input ancilla and high
detection efficiency we approach the ideal squeezing opera-
tion: X1=ÎTX1, P1=s1/ÎTdP1. In this case the squeezing op-
eration is optimal and the degrees of squeezing and anti-
squeezing are uniquely controlled only by the beam splitter
transmittance.

We can easily control the quadrature being squeezed by
simple adjustment of the relative phase between the ancillary
and signal modessby using phase shifter PS1d. The measured
quadrature can be controlled by the phase shifter PS2 which
introduces a phase shift between the local oscillator and sig-
nal mode 1. Therefore, an appropriate adjustment of the
phase shifters PS1 and PS2 enables the squeezing operation
to be performed on any quadrature of the signal state.

FIG. 1. Schematic setup of the measurement-induced squeezing
operation. PBS, polarizing beam splitter; SQ, single-mode vacuum
squeezer; PS, phase shifter; HOM, homodyne detection system;
CD, coupling device; HWP, half-wave plate; and LO, local
oscillator.
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III. QND INTERACTIONS

An optimal CV QND interaction with unit transfer gain is
a coupling between two optical modes 1 and 2 described by
X18=X1, P28=P2, X28=X2+GX1, P18=P1−GP2, where
X1,P1,X2,P2 are the complementary quadrature operators
f7g. After the interaction, information carried by a single
nondemolitionvariableX1 sP2d is transferred to the output
variable X28 sP18d of the other mode. The noise inevitably
associated with such an interaction is transferred to the
complementary output variableP18 sX28d keeping the non-
demolition variable noise-free. Previously, the complete
QND interaction was generated by coupling two optical
modes in a nonlinear optical crystalf8g. We now outline
three different methods for the complete QND interaction
without the need for efficient coupling inside a nonlinear
medium.

A. Local QND interaction with nonunity transfer gain

A measurement-induced implementation of the QND in-
teraction requiring only a single source of squeezing is de-
picted in Fig. 2. An ancillary linear polarization modeA is
mixed with two orthogonally polarized modes 1 and 2 in the
two coupling devices CD1 and CD2 with the transmission
coefficientsT1 and T2, respectively. In the next step, the
quadraturePA8 of the ancillary mode is measured by a homo-
dyne detector with the efficiencyh. Consequently, we obtain
a photocurrentid which is proportional to the random mea-
surement outcomesp̄A. According to these measurement out-
comes, the modes 1 and 2 can be displacedP18→P18+g1id,
P28→P28+g2id in the data postcorrection procedure, whereg1
andg2 are suitable scaling factors. Then the scheme in Fig. 2
effectively implements the following transformation:

X18 = ÎT1X1 + Î1 − T1XA,

P18 =
1

ÎT1

P1 −
Îs1 − T1ds1 − T2d

ÎT1T2

P2 −
Îs1 − hds1 − T1d

ÎhT1T2

P0,

X28 = ÎT2X2 + Îs1 − T1ds1 − T2dX1 − ÎT1s1 − T2dXA,

P28 =
1

ÎT2

P2 −
Îs1 − hds1 − T2d

ÎhT2

P0, s3d

whereP0 is the quadrature operator of a mode prepared in
vacuum state. The QND interactions3d transfers information
about the quadratureX1 to the quadratureX28 and similarly
aboutP2 to the P18 quadrature. The efficiency of the former
information transfer is limited by the squeezing in the ancil-
lary modeA, whereas the efficiency of the latter information
transfer is degraded only by the detector efficiencyh.

Assuming that the ancillary modeA is prepared in a
strongly squeezed vacuum state and the detection efficiency
h is almost unity, we can approach the perfect nonunity gain
QND interaction:

X18 = ÎT1X1, P28 =
1

ÎT2

P2,

P18 =
1

ÎT1

P1 −
Îs1 − T1ds1 − T2d

ÎT1T2

P2,

X28 = ÎT2X2 + Îs1 − T1ds1 − T2dX1. s4d

In this limit, the QND variableX1 is not influenced by noise
and information is perfectly transmitted to the variableX28,
but at the cost of the inevitable addition of noise inP18. Note
that if the quadratureP2 is taken to serve as the nondemoli-
tion variable, quantum optical tappingf7,9g betweenP1 and
P2 can be achieved without any squeezing. Both theP1 and
P2 variables are amplified at the outputs and the QND gain
G=Îs1−T1ds1−T2d /ÎT1T2 can be arbitrarily high. On the
other hand, takingX1 as the nondemolition variable, we have
quantum optical tapping betweenX1 andX2 without the need
of a measurement. Here, however, the two outputs are at-
tenuated by the factorÎT2. Any quadrature of the input
modes can be chosen to be the nondemolition one by adjust-
ing the phase shifter PS1 with respect to the phase of the
input modes and adjusting the phase of the local oscillator
LO in the homodyne measurement accordinglysusing the
phase shifter PS2d. We can easily prove that the outlined
QND scheme described by Eqs.s4d approaches the optimal
QND transformation with unit transfer gain by implementing
squeezing operations with gainsT1 andT2 onto the two out-
put modes:

X18 = X1, P28 = PB,

P18 = P1 −
Îs1 − T1ds1 − T2d

ÎT2

P2,

X28 = X2 +
Îs1 − T1ds1 − T2d

ÎT2

X1. s5d

This transformation is the optimal QND interaction with
unity transfer gain and the QND interaction gain is given by
G=Îs1−T1ds1−T2d /T2. Let us stress that the squeezing op-
erations can be implemented using the scheme discussed in
Sec. II ssee also Fig. 1d.

FIG. 2. Schematic setup of the measurement-induced QND in-
teraction with nonunity transfer gains. The abbreviations are ex-
plained in the caption text of Fig. 1.
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B. Distant QND interaction with nonunity transfer gain

The QND scheme can be modified using a CV entangled
state shared between two distant partiessAlice and Bobd.
This can be useful when two distant parties want to perform
a QND coupling using only local linear operations and clas-
sical communication. The proposed scheme is depicted in
Fig. 3. The entanglement is carried by a two-mode squeezed
vacuum state of which one halfsdenoted modeAd is pre-
served by Alice and the other halfsdenoted modeBd is sent
to Bob via a quantum channel. The two-mode squeezed
vacuum state can be prepared by mixing two orthogonally
squeezed states at a balanced beam splitter. Alice mixes the
modes 1 andA in the coupling device CDA with transmit-
tanceT1, and similarly Bob couples the modes 2 andB with
the coupling device CDB with transmittanceT2. Then Alice
measures the quadratureXA8 and she obtains a photocurrentix
proportional to the resultx̄A while Bob measures the conju-
gate quadraturePB8 which yields the photocurrentip~ p̄P. Fi-
nally, they mutually exchange these classical data by two-
way classical communication and thus they can achieve the
transformations

X18 =
1

ÎT1

X1 −
Îs1 − hds1 − T1d

ÎhT1

X0,

P18 = ÎT1P1 −
Îs1 − T1ds1 − T2d

ÎT2

P2 +
Îs1 − hds1 − T1d

ÎhT2

P0

+ Î1 − T1sPA + PBd,

X28 = ÎT2X2 +
Îs1 − T1ds1 − T2d

ÎT1

X1 −
Îs1 − hds1 − T2d

ÎhT1

X0

− Î1 − T2sXA − XBd,

P28 =
1

ÎT2

P2 −
Îs1 − hds1 − T2d

ÎhT2

P0, s6d

if the local postcorrectionsXi8→Xi8+gXiix and Pi8→Pi8
+gPiip, where gXi ,gPi si =1,2d are appropriate scaling fac-
tors, are used on the signal data after termination of the pro-
tocol. The quadraturesX0 and P0 describe noncommuting

vacuum modes. As the two-mode squeezing increases
smeaning that the uncertainties of the joint operatorsXA
−XB andPA+PB decreased and the efficiencyh of the homo-
dyne detectors approaches unity, the QND interaction is
achieved at a distance. However, the QND interaction is per-
formed with a nonunity transfer gain. The nondemolition
variablesX1 and P2 are amplified whereas the conjugate
quadraturesP1 and X2 are attenuated. As in the previous
section the optimality of the QND interaction can be proved
by implementing local single-mode squeezing operations in
Alice’s and Bob’s modes. Then we obtain the optimal QND
coupling with unity transfer gain between two distant parties
with the interaction gainG=Îs1−T1ds1−T2d /T1T2.

C. QND interaction with unity transfer gain

The implementation of the measurement-induced QND
coupling depicted in Fig. 2 utilized only a single squeezing
source to accomplish the basic features of a QND coupling in
both complementary variables. However, as already pointed
out, the nondemolition quadratures are not transferred with
unity gain. Here we show that by adding an extra squeezed
vacuum ancillary mode to the scheme we can approach the
optimal QND interaction with unity transfer gain. The
scheme is shown in Fig. 4. The two input signals are carried
by two orthogonally polarized modes denoted 1 and 2. These
modes are mixed by a half-wave plate HWP1 aligned at an
angleq with respect to the optical axis. The degree of mix-
ing can be quantified by the transmission coefficientT1
=sinq. Subsequently, the input signals are coupled on a
polarization-insensitive beam splittersBS with a transmis-
sion coefficient ofTd with two ancillary orthogonally polar-
ized modes denotedA and B. The two ancillary modes are
assumed to be squeezed in conjugate quadraturesPA andXB,
respectively. After the linear coupling, the ancillary modes
are decoupled by a polarizing beam splittersPBSd and the
amplitude quadratureXA8 of modeA is measuredswith the
result x̄Ad while the phase quadraturePB8 is measured on
modeB swith the resultp̄Bd by using two homodyne detec-
tors with identical efficiencies. The measurements give rise

FIG. 3. Schematic setup for the measurement-induced QND in-
teraction at a distance with nonunity transfer gain. The abbrevia-
tions are explained in the caption of Fig. 1.

FIG. 4. Schematic setup for measurement-induced QND inter-
action with unity transfer gain, and the measurement-induced
phase-insensitive amplifier. The abbreviations are explained in the
caption of Fig. 1.
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to the photocurrentsiX~ x̄A and iP~ p̄B which will be used in
the postcorrection procedure. The signal outputs modes 1
and 2 are once more coupled by a half-wave platesHWP2d
which is aligned at an angleq8 with respect to the optical
axis corresponding to a transmission coefficient ofT2
=sinq8. Adjusting the coupling and transmission coefficients
such that

T1 = 1/s1 + Td, T2 = T/s1 + Td, s7d

we have generated the following transformation:

X18 = X1 − ÎaX0 − ÎbXA,

P28 = P2 − ÎaP0 + ÎbPA,

P18 = P1 − S 1
ÎT

− ÎTDP2 + ÎTbPA + Îa/TP0,

X28 = X2 + S 1
ÎT

− ÎTDX1 + ÎTbXA − Îa/TX0, s8d

if the appropriate postcorrectionsXi8→Xi8+gXiiX, Pi8→Pi8
+gPiiP, i =1,2, areapplied to the signal data. Herea=s1
−Tds1−hd / s1+Tdh, b=s1−Td / s1+Td, and X0,P0 are
quadrature operators of the commuting modes exhibiting
vacuum noise. As the squeezing of the ancillary modes in-
creases and the efficiency of the homodyne detectors ap-
proaches unity, the QND interaction with unit transfer gain,

X18 = X1, P28 = P2,

P18 = P1 − S 1
ÎT

− ÎTDP2,

X28 = X2 + S 1
ÎT

− ÎTDX1, s9d

is generated with an arbitrary accuracy. Through control of
the transmission coefficientT, the gainG=1/ÎT−ÎT of the
optimal QND interaction can be freely adjusted.

IV. PHASE-INSENSITIVE OPTICAL
PARAMETRIC AMPLIFIER

A phase-insensitive optical parametric amplifier based on
off-line squeezers, linear optics, and measurements can also
be implemented. The phase-insensitive amplifier optimally
amplifies any quadrature of the signal with the same gain at
the cost of the addition of excess noise. To date, parametric
amplification has been achieved by merging signal and idler
modes with a strong pump inside a nonlinear optical crystal
f10g. Our implementation of the optical parametric amplifier
without the necessity to couple the signal modes within a
nonlinear medium is similar to the setup depicted in Fig. 4.
Now, however, the wave plates HWP1 and HWP2 must be
oriented such that a balanced coupling between the polariza-
tion modes is achieved, i.e., sinq=sinq8=1/Î2. Then by
controlling the transmittanceT of the beam splitter and after

appropriate data postcorrectionsXi8→Xi8+gXiiX, Pi8→Pi8
+gPiiP, i =1,2, wehave implemented the following transfor-
mation:

X18 = ÎGX1 − ÎG − 1X2 +
Îl

Î2
X0 +

Î1 − T
Î2

XA,

P18 = ÎGP1 + ÎG − 1P2 +
Îl

Î2
P0 +

Î1 − T
Î2

PB,

X28 = ÎGX2 − ÎG − 1X1 −
Îl

Î2
X0 +

Î1 − T
Î2

XA,

P28 = ÎGP2 + ÎG − 1P1 −
Îl

Î2
P0 +

Î1 − T
Î2

PB, s10d

whereG= 1
4s1/ÎT+ÎTd2 is the gain of the amplifier,l=s1

−Tds1−hd /Th, and X0,P0 are quadrature operators of the
commuting modes prepared in vacuum state. The perfor-
mance of this device is limited, as in the previous sections,
by the detection efficiencyh of the homodyne detectors as
well as by the finite squeezing of the ancillary modes. As-
suming almost perfect homodyne detectors and high degrees
of squeezing in the ancillary modes we approach the phase-
insensitive amplifier transformation

X1,28 = ÎGX1,2− ÎG − 1X2,1,

P1,28 = ÎGP1,2+ ÎG − 1P2,1 s11d

with an arbitrary accuracy.

V. DISCUSSION

In this paper we have proposed schemes for
measurement-induced parametric amplifiers and quantum
nondemolition measurements without the necessity of a cum-
bersome interaction between signal and pump modes in an
active medium. They avoid the difficulties mentioned in the
Introduction. Linear coupling of two modes in a linear de-
vice slike a beam splitterd is relatively easy and can be per-
formed very efficiently by carefully overlapping the modes.
Therefore the proposed schemes based on linear optics and
measurements represent a remarkable practical simplification
of the traditional two-mode nonlinear interaction schemes. In
addition to the practical simplifications, the measurement-
induced interaction schemes have some distinct features.
First, they are deterministic schemes that employ every input
state. This is in contrast to the measurement-induced nonlin-
earities on single-photon level where events are probabilisti-
cally postselected which renders these protocols rather inef-
ficient f2g. In our approaches the states are not postselected
but only deterministically postcorrectedsdisplacedd accord-
ing to data from the measurement on some ancillary modes.
However, similar to experiments with qubits, we can perform
this displacement simply on the measured data after the ex-
ecution of the optical experiment. Finally, the various trans-
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formations presented above are independent of the anti-
squeezed quadrature of the ancillary states. This means that
the eventual excess noise in the antisqueezed quadrature of
the ancilla is not transferred to the output signal state. Hence,
a minimum uncertainty operation can be approached even
with a nonminimum uncertainty squeezed ancillary state.

The performance of our schemes is ultimately hampered
by imperfections. For a successful demonstration, strongly
squeezed ancillary modes and good homodyne detectors are
required. Strongly squeezed states can be prepared using
present technology for a wide range of the frequencies based
on either optical parametric oscillationf11g or the optical
Kerr effect in fibersf12g in both the continuous-wave regime
and the pulse regime. In both cases a suppression to −6 dB is
reliably achievable. A squeezing near −10 dB could be
achieved once all the components and material are opti-
mized. Efficient implementation of the feedforward loops
can be attained by employing high-quantum-efficiency pho-
todiodes in the detectors and simultaneously using a circuitry
with low electronic dark noise. Electronic noise is taken by
the detector as classical noise of the ancillary modes, which
is uncorrelated with the output signal modes and therefore

introduces noise in the correction procedure. A first genera-
tion of such detectors was used in previous feedforward ex-
perimentsf4,5g and the development of the next generation
of detectors with low electronic noise is one recent experi-
mental task.

Note added in proof. Similar methods are used in the re-
cent experimental demonstration of quantum cloning of light
to accomplish a phase insensitive interactionf13g.
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