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We consider systems of interacting spins and study the entanglement that ¢acalimed on average,
between two separated spins by performing local measurements on the remaining spins. This concept of
localizable entanglemer{tE) leads naturally to notions like entanglement length and entanglement fluctua-
tions. For both spin-1/2 and spin-1 systems, we prove that the LE of a pure quantum state can be lower
bounded by connected correlation functions. We further propose a scheme, based on matrix-product states and
the Monte Carlo method, to efficiently calculate the LE for quantum states of a large number of spins. The
virtues of LE are illustrated for various spin models. In particular, characteristic features of a quantum phase
transition such as a diverging entanglement length can be observed. We also give examples for pure quantum
states exhibiting a diverging entanglement length but finite correlation length. We have numerical evidence that
the ground state of the antiferromagnetic spin-1 Heisenberg chain can serve as a perfect quantum channel.
Furthermore, we apply the numerical method to mixed states and study the entanglement as a function of

temperature.
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[. INTRODUCTION The LE is the maximum entanglement that can be local-

The creation and distribution of entangled states plays &€d. On average, between two parties of a multipartite sys-
central role in quantum information, because it is the key!€M: Py performing local measurements on the other parties.
ingredient for performing certain quantum information tasks,H€Nnce. LE is defined in an operational way and has a clear
such as teleportatiofil] or quantum computation. In this physlcal meaning. For instance, it can be used as a figure of
respect, multiparticle quantum states can be considered ert to charact_erlze the performance O.f quantum repeaters
entanglement resources, naturally appearing in many physi: 6]. Note that, in the <_:or_1te_xt of LE, particles are not traced
cal systems. On the other hand, it is believed that the stud@ut Put measured. This is in contrast to earlier approaches,
of multipartite entanglement might prove fruitful in other here the concurrence of the reduced density operator of two

fields of physics, such as condensed matter, e.g., for undef€Parated spins in a spin chain has been calculags e.g.,
standing the complex physics of strongly correlated state 4,5]). Although the Concurrence_e_xh|b_|ted characteristic fea-
[2,3]. In particular, it has been showd—9] that the ground- tures at a quantum pha;e transition, it does not detect long-
state entanglement of various spin systems may exhibit chaf2Ng€ quantum correfations.

acteristic features at a quantum phase transition. Hence it s 1€ fundamental difference between tracing and measur-

desirable to find ways of characterizing and quantifying enin9 ¢an be illustrated with two simple examples: For both the

tanglement in multipartite systems. GHZ state[17] and the cluster §ta1§[8], it can readily be _
In [10] an entanglement measure, calledalizable en- checked that the reduced density operator of any two qubits
tanglemen(LE), has been defined. It quantifies the bipartite€ONtaiNs no entanglement at all. On the other hand, one can
entanglement contained in a multipartite system. The concef?d & local measurement basis, such that the LE is maximal.
of LE allows one to define the notion of entanglement length \/& further note that in the case of the GHZ state, the en-
which characterizes the typical distance up to which bipartitd@nglement properties could also have been revealed by
entanglement can be localized in the system. Moreover, ﬁtudylng the connected version of the two-point correlation
has been shown for general pure qubit states that the LE caHnction. Indeed, the GHZ state is one of many examples
always be lower bounded by connected correlation functions0] for which correlations can be identified with quantum
[10]. Hence quantum phase transitions, characterized by gorrelations, i.e., entanglement. However, this intimate con-
diverging correlation length, are equivalently detected by dection does not hold true for all pure quantum stdes
diverging entanglement length. In fact, the concept of LE hashown in[11]). For instance, in the case of the cluster state,
already proven useful in several studies of entanglemerthe LE is maximal, whereas the connected correlations are all
properties of spin systenj40-14. Indeed, for ground states zero.
of many spin-1/2 models, one finds that correlations and The intention of this paper is to provide a framework for
entanglementas given by LE typically exhibit the same using LE as a measure for localizable bipartite entanglement
qualitative behavior. In gapped spin-1 systems, which exhibibf multipartite quantum systems. Starting from the original
finite correlation length$15], however, a ground state has definition[10], we introduce several variants of LE, and es-
been found for which the entanglement length is infifit#. tablish basic relations between them. Apart from the notion
This example also shows that the concept of LE can serve tof entanglement length, we also give meaning to the notion
detect hidden order in certain states. of entanglement fluctuatioris terms of LE. Moreover, we
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generalize the earlier result that the LE is lower bounded bHilbert space. For simplicity, in the following we refer to the
connected two-particle correlation functions to pure qutritparticles as spins.
states, e.g., ground states of spin-1 systems. Apart from these

analytical findings, we present a method for the numerical _—
computation of the LE for arbitrary one-dimensional spin A. Definition

systems. It allows us to efficiently simulate chains with even  The localizable entanglemefitE) of a multispin state
more than 100 sites and also works for finite temperaturess defined as the maximal amount of entanglement that can
We apply this method for the study of LE present in groundpe createdi.e., localized, on average, between two spins at
states of various SpinS models. We find that the entanglemeﬁbsitionsi andj by performing |0ca| measurements on the
fluctuations as well as the LE exhibit characteristic featuregiher spins. More specifically, every measuremefispeci-

at a quantum phase transition. For instance, we observe g 5 state ensemblg,  :={ps,pll}. Here p, denotes the

discontinuity in the first derivative of the LE at a Kosterlitz- . : ; ; ij

o L probability to obtain thegnormalized two-spin statepd for
Thouless transitiofil9]. These findings can be understood as, . outcomes} of the measurements on the-2 remaining
a direct consequence of the numerical observation that for

spin-1/2 systems, the LE and the maximal connected correxPINS. The average entanglement for a specificis then
lation function are typically equal to each other. In the caséVen by

of the spin-1 Heisenberg antiferromagnet, however, we “ME i

rather observe the opposite behavior, namely an infinite en- Lij(p) = 2 PEP), (1)
tanglement length but finite correlation length. In this con- s

text, we also comment on a possible connection between thghere E(pg) is the entanglement qu Suitable entangle-
presence of hidden order in the state and the existence @fient measures will be discussed later in this section. The

long-range entanglement. In particular, we present examplagcalizable entanglement is defined as the largest possible
showing that, in general, such a connection does not exist. A erage entanglement

a further application of our numerical method, we study the
effect of fi.nite temperature on the LE. For th'e AKLT model ijE(p) = SUpY, pSE(pg), (2)
[20], we find that the entanglement length increases expo- MeCg

nentially with the inverse temperature. ) )
The paper is organized as follows. We start by giving aWith C denoting the class of allowed measurements. We call

formal definition of LE and derive quantities such as en-the measurementt which maximizes the average entangle-
tanglement length and entanglement fluctuations. We furtheéhent theoptimal basis It is important to note that the only
connect the concept of LE with the idea of quantum repeattestriction on M is that the measurements are performed
ers. In Sec. lIl, we recapitulate the earlier result for the lowedocally, i.e., on individual spins. Apart from that, the measur-
bound of LE in terms of connected correlation functions andnent basis is arbitrary and can also vary from site to site. We
generalize it to pure qutrit systems. Next, we present in Sedistinguish three class&sof measurements: projective von
IV a numerical method to compute the LE for spin chains.Neumann measuremer(f8M), those corresponding to posi-
The numerical scheme is based on the matrix-product statéve operator-valued measuréBOVM), and general local
(MP9) [21,22 representation of ground states and the Montemeasurements that allow also for classical communication of

Carlo(MC) [23] method. In Sec. V, this method is applied to measurement resultsOCC). In terms of LE, the following
calculate the LE and the entanglement fluctuations foke|ationship between these classes hoRig:

ground states of various standard spin-1/2 chains. In Sec.

VI, we study the LE of gapped spin-1 models. In particular, LIS (p) < LPPYME(p) < LIP““F(p). (3)

we present numerical calculations for the ground state of thlf’i‘ hi il b inl d with I
Heisenberg antiferromagnet, showing that the entanglemerit IS paper, we will be mainly concerned with projective
length diverges. Furthermore, we comment on a possib@easuremer)ts. To simplify the notation, we omit in this case
connection between a diverging entanglement length an'® SUPerscript PM. _

hidden order in the system. In Sec. VII, we demonstrate that 1 1€ definition(2) still leaves operi1j the choice of the en-
our numerical method can also be used to calculate the LE dRnglement measu for the stategpg}. Suitable measures
mixed states. As an example, we compute the entanglemefPend on aspects such as the dimensionality of the spins
length as a function of the temperature for the AKLT model.2nd the purity of the state. In the following, we specify for

In Appendix A, we present an extended version of the proof€ cases of both pure and mixed spin-1/2 and spin-1 sys-
in [10], leading to the lower bound of LE. We connect in tems appropriate entanglement measures used in this article.
Appendix B the entanglement of pure two-qubit and two- FOF pure multipartite statesp, the states{pg} after the
qutrit states to the maximum connected correlation functioif€asurements are also pure, and then there exists, in prin-
of those states. Finally, in Appendix C, we show how toCiPle, a special entanglement measi], i.e., the entropy
calculate the LEand the string order parametamnalytically ~ Of entanglement. For a pure bipartite staig=|¢)(y], the

for pure states, represented by MPS with qubit bonds. ~ €ntropy of entanglemerif is defined as the von Neumann
entropy of the reduced density operapo¥tr;(pj;),
II. DEFINITION AND BASIC PROPERTIES

OF LOCALIZABLE ENTANGLEMENT Ee(pij) = —tr(pi 10g, py) - (4)

We consider a multipartite system composedNopar-  In the case of a pure two-qubit stalé), it can be shown that
ticles. With each particle we associate a finite-dimensionathe Eg is a convex, monotonously increasing functidgy
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=f(C), of the concurrenc¢26]. Th'e concur'rencé:(zp) for A R Nods B
pure states and the convex functibare defined as
C) =[]y © o), (5) A =yl o ) o -. .o @
] ]
1+\1-C? .
f(C):=H| ——— |, (6) FIG. 1. lllustration of the quantum repeater scheme for trapped
2 atoms connected by optical fibers. Qubits are represented by the

internal states of the atoms. Applying laser beams, the internal
H(x) == = xlog, X~ (1 = X)logy(1 = X). (7)  states of atoms in adjacent cavities become entangled via the trans-
. . . mission of photonic states. Collective measurements on the nodes
Here,[¢/) denotes the complex conjugate|g} in the stan-  (ingicated by arrowsfollowed by purification lead to the genera-

dard basis _andH(x) is the Shannon entropy. In this article, ton of a nearly perfectly entangled pair of qubits between A and B.
we will typically use the concurrence to measure the en-

tanglement of two qubits, because it can be simply related t
connected correlati_on functiomsee_Appendix B However, drop the indexM in Eq. (10).
due to the convexity of th functlof(C), the LE as mea- The study of both the entanglement length and the en-
sured by the concurrency, yields lower and upper bounds tanglement fluctuations could provide further inside into the
for the LE as measured by the entropy of entanglentgf, complex physics of quantum phase transitions by revealing

Cy—Ee—(C characteristic features at the quantum critical point. Ex-

f(L5) < LiE< L{. ®) . .
amples for this are presented in Sec. V.

Therefore, the qualitative behavior of these two variants of

Which maximizes the average entanglement. In this case, we

LE will be very similar. C. Connection to quantum repeaters
In the case omixedstates, the entanglement can be cal- ] ] o
culated using, e.g., the entang'ement of formaﬁar[27] or So far we have given a purely mathematical definition of

the negativity[28]. For two qubits, an explicit formula for LE (2). However, it is evident that the LE is defined in an
the Er in terms of the concurrend@ exists, which reduces to Operational way that can directly be implemented on certain
Eq. (5) in the case of pure states. The negativitycan in physical systems. In addition, the concept of LE may also

principle be calculated for any spin dimension. play an essential role in some interesting applications of
quantum information theory. To be more precise, LE can
B. Entanglement length and fluctuations serve as a figure of merit for the “performance” of certain

In the field of strongly correlated systems and more spekinds of quantum repeate(QR). _ , _
Many tasks in quantum information processing require

cifically in the study of quantum phase transitions, the cor- , e ,
relation length, is of great importance. The concept of LE long-distance quantum communication. This means quantum

readily lends itself to define the relatedtanglement Iength states have to be transmitted with hlgh communication fidel-

&, as the typical length scale at which it is possible to creatd Via & guantum channel between two distant parties, Alice

Bell states by doing local measurements on the other spinénd Bob. Since quantum transport is also possible via tele-
portation [1], this problem is equivalent to establishing

£ lim (— In LiFTi+n) nearly perfect entanglement between two distant nodes. All
E = —_——— .

n—o

©) realistic schemes for quantum communication are presently
based on the use of photonic channels. However, the degree
The entanglement length is finite if the LE[,,  of entanglement generated between distant sites typically de-
—exp(-n/ &) for n—, and the entanglement lengéh is  creases exponentially with the length of the connecting
defined as the constant in the exponent in the limit of arphysical channel, due to light absorption and other channel
infinite system(see also Aharono}29]). noise. To overcome this obstacle, the concept of quantum
Let us now have a closer look at the statistical nature ofepeaters has been introducgib]. The central idea is to
LE, as it is defined as an average over all possible measureivide the channel into segments and to include additional
ment outcomegsee Eq(2)]. For practical purposes, one can nodes. Entanglement between adjacent nodes can be ex-
only control the measurement basis but not a specific outtended to larger distances using entanglement swapping fol-
come. Therefore, it would be useful to have an estimate ofowed by purification. After several rounds, one obtains a
how much the entanglement of a particular measuremergair of almost maximally entangled nodes, shared by Alice
outcome deviates from the mean value as given by the LEand Bob, that can be used for perfect quantum transport via
This information is contained in the variance of the entangleteleportation. A possible physical realization of the QR using
ment remaining after measurements. We can thus define theapped atoms is sketched in Fig[30].

notion of entanglement fluctuations Let us now discuss how a QR setup can be characterized
. by the LE. First of all, let us identify the particles sitting at
ME2 . _ 2\ _ | ME? ) N o
(61_”- )%= (E PsE(pS) ) L (10 different nodes by spins. It is important to note that, by com-
S

bining several spins to a larger Hilbert space of dimension
The entanglement fluctuations can be defined for any medhe operations required for purification and entanglement
surementM. Typically, we choose foM the optimal basis, swapping on this set of spins can be interpreted as local
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operations on a single spin of dimensidnThus the QR can o= trp(Sy ® )] - tp(Sy @ Dtrfp(1 @ ). (12)
be treated as a system of interacting spins being in a gtate
In order to assess and quantify the usefulness of such a set . _ .
as a QR, one has to compute the following figure of meritjé%r qubits, the operatorS,, S can be parametrized by di-
What is the maximum amount of entanglement that can bgectionsa, b, representing unit vectors in a 3D real space:
generated between the two end spins by performing loca$,=a- o, Ss=b-g with 5=(0y, 0y, 0>).
operations on the intermediate spins? But this number is We start out by quoting the central result[aD].
merely the LE. The question of which variant of L@) (1.i) Given a(pure or mixed state ofN qubits with con-
should be used depends on the class of available local opergected correlation functio®}z between the spinsandj and
tions (PM, POVM, or LOCQ. Typically, classical communi- girectionsa, b, there always exists a basis in which one can
cation is allowed so thdt;=™> has to be taken as the figure 541y measure the other spins such that this correlation does
of merit. However, not every measurement might be physiy, ¢ decrease, on average.
cally realizable. Therefore, the LE will ?n general give an  ap extended version of the proof is presented in Appen-
upper bound for the performance of a given QR setup. iy A. There we also show that this result can be generalized
to a setup, where the spinsandj can be of any dimension,
but the remaining spin®n which the measurements are per-
IIl. BOUNDS ON LE formed are still qubits. In a spin-1/2 system, such a situa-
Due to its variational definition, the LE is very difficult to tion can arise, for example, when considering correlations
calculate in general. Moreover, typically one does not havéetween two blocks of spins.
an explicit parametrization of the state under interest, but just Next, we relate correlations with entanglement. We note
information about the classical one- and two-particle correfhat after the measurement process and for an initially pure
lation functions(which allows one to parametrize completely State, we end up with a pure state of two qubits. For such a
the two-spin reduced density operatgp. It would therefore ~ State, we have proven the following res{it0] (see also
be interesting to derive tight upper and lower bounds to thé\Ppendix B:

LE solely based on this information. (1.ii) The entanglement of a pure two-qubit st{a}q) as
measured by the concurrence is equal to the maximal corre-

lation function
A. Upper bound

The upper bound can readily be obtained using the con- Clyy) = ma}AQi}\B(zpij)L (13
cept of entanglement of assistan@OA) [31]. The EOA ab

depends only on the reduced density operafofor spinsi - . - .
andj and can be defined for any spin dimension. In the case Cpmb_lnlng(1.|) and(l._u), vye k?OYV that for a glven. pure
of a pair of qubits, an explicit formula for EOA can be de- multiqubit state|y) and directionsd, b there always exists a

rived [32]. Given p; and a square rodt, p; =XX', then the =~ Measurement{ such that
EOA as measured by the concurrence reads

E(py) o= tXT(0), @ o)X, (11) Qhe(¥) < ES) PQl(s) < 233 pCly). (14

with |A|=VATA. HenceE(p;) == 0, where o} are the

singular values of the matriX'(sy® o})X. Note that for  The term on the very right is equal to the average entangle-
pure four-qubit states, a variant of EOA with local measurement as measured by the concurreh¢é®, which trivially

ments was considered [82]. is a lower bound to the LE as defined hy. Since the
directionsa, b can be chosen arbitrarily, relati¢i4) holds
B. Lower bound in particular for directions maximizin®4g(¢). Hence we
] o ) can establish the desired lower bound on[1E].
First, from the definition of LE(2) it follows that any (1.iii) Given a pure statiy) of N qubits, then the LE as

specific measurement, e.g., in the computational basis, trivieasured by the concurrence s larger than or equal to the
ally provides a lower bound on the LE. More interestingly, it j,5ximal correlation

has been proven 0] that for generapure qubit states, the

LE can be lower bounded by connected correlation func- c N

tions. In the following, we recapitulate the central results Li7(¢) = maX{Qig(¥)|. (15)
leading to this bound for spin-1/2 systems and present some ab

extensions. Next we show to what extent these findings can \jaking use of the basic properties of LE, presented in the
be generalized to higher-dimensional spin systems. previous section, we can immediately derive analogous
bounds for some other variants of LE; for example,
1. Spind/2 systems

The basic idea is to establish a connection between the LE ijE(z/;) = f(maxQllg(4))), (16
and connected correlation functions of the form ab

042306-4



LOCALIZABLE ENTANGLEMENT PHYSICAL REVIEW A 71, 042306(2005

), (17) suitable entanglement measure for pure bipartite states. In
the special case of qutrits, we were able to show the follow-
ing relation(Appendix B.

(2.ii) The entanglement of a pure two-qutrit st&ﬁg) as
measured by the entropy of entanglement can be lower
bounded by

2. Higher-dimensional spin systems EE(%_) = f(maAQRB(%)D: (18)
We now try to extend the previous findings beyond spin- AB

1/2 systems. First, we look for a generalized version ofwheref is the convex functioit6) andS, Ss in Qllg (12) are
statement(1.i). Unfortunately, the techniques used in the operators, whose eigenvalues lie in the interjal;1].
pI’OOf for qubItS seem to fail already for qutritS. NeVertheIESSCOmbining aga|r(2|) and (2”)' we can formulate a bound
a generalization is still possible by changing the perspectivgn LE for spin-1 systems.
a little bit. For this we embed a sp#®-in a higher- (2.iii) Given a pure statpy) of N qutrits, then the LE as
dimensional Hilbert space, being composedne#log,(2S  measured by the entropy of entanglement and which allows
+1) virtual qubits. Let us denote th€2S+1)X2" matrix  for POVM's is lower bounded by the maximum connected

LTPMEE(y) = f(maoi Q)
ab

with f being the convex function defined in E®&). We will
see below that relatiofl7) can be generalized to spin-1
systems.

governing this transformation bfy. correlation function in the following way:
In the case 3+1=2", the embedding is trivial and the POVME .
situation becomes equivalent to the qubit case. Thus the re- L~ (y) = f(T%ﬁQAB(@D- (19

sult (1.i) can immediately be generalized, because local mea-

surements on the virtual qubit systems can be chosen such In summary, we have shown for pure qubit and qutrit

that (1.i) holds. states that connected correlation functions provide a lower
In the case 3+1<2", a similiar argument applies if we bound on LE. This bound allows for two intriguing limiting

allow for POVM measurements on the si@rsystem. To be cases(i) Entanglement and correlations may exhibit similiar

more precise, let us consider a mixed statef three spinS  behavior.(ii) Spins may be maximally entangled although

particles. The spin on which the measurement is performethey are uncorrelated in the classical sense. In the forthcom-

(let us denote it with the index)3is embedded in a ing sections, we will present examples for both scenarios.

2"-dimensional system. The embedded state is then given by

the transformationp’ =(1,,® Pg)p(lu@ P3). In the Hilbert IV. COMPUTATION OF LE BASED ON MATRIX

space of then virtual qubits, one always finds local projec- PRODUCT STATES AND THE MONTE CARLO METHOD

tive  measurements {M,, .., }={|ap{(a|® - ®[ap)(anl} In this section, we propose different techniques to calcu-
such thatthe generalized version ofL.i) holds for the state |54 the LE numerically for ground states of 1D spin systems.

p'. In terms of the original statp, this measurement in the | ot us consider a chain df spins of dimensiord=25+1.
2"-dimensional space corresponds to a POVM measuremey,e ground state of the system can be determined exactly by

{PM,..PTh on a  spins system,  because diagonalization of the Hamiltonian. However, the state is
Eal---anPMal--unPT:Plznxz”PT:l(zgl)XQSﬂ)- characterized by an exponential amount of parameters as a
Thus one can generalize the resdlti) to arbitrary spin  function of N, thus limiting the exact treatment of the prob-

dimensions in the following way. lem to relatively small system sizes.

(2.i) Given an arbitrary multispin state with connected As an alternative approach, we can start out with an ap-
correlation functionQJ between spins andj for arbitrary  proximation of the exact ground state in terms of the so-
operatorsS,, S, then there always exists a local POVM called matrix product state®1PS) [21,22],
measurement on the other spins such that this correlation
does not decrease, on average.

We note that the lower bound if2.i) can already be [VSEDY ) Tr(AR - A)lsy, - s (20)
reached by applyingpcal measurements on the virtual qubit R
system. Performing joint measuremefsy., Bell measure- Here the state is described bymatricesA] of dimensionD.
ments on pairs of qubits as shown [ibl]) can lead to a We note that the MP$20) is written in the computational
considerable enhancement of the average correlations. If ibasis and accounts for periodic boundary conditiPBC).
addition 2'-(2S+1) joint measurements can be chosen sucHt has been showf22,33 that MPS appear naturally in the
that they are orthogonal to the projecfrthe resulting mea- context of the density-matrix renormalization group
surement on the spiB-system corresponds to a projective (DMRG) method[34]. Assuming we are able to calculate the
von Neumann measurement. ground state in MPS fornR0), let us now present a scheme

The most difficult part is to establish a connection be-to compute the LE from that. For translationally invariant
tween correlations and entanglement for pure two-spin statezystems, it is sufficient to consider the LE between the spins
in analogy of(1.ii). In the case of qubits, we made explicit 1 and j=1+n. The (pure normalized state of these two
use of the fact that the group %) is the covering group of spins, after local measurements on the remaining ones have
SQ(3). Moreover, the concurrence served as an entanglemebeen performed, is conditioned on the measurement out-
measure, which was easy to handle. For higher spin dimersomes denoted by th@N-2)-tuple {s}:={s," - *Sj_1Sj1" " S\}
sions, we refer to the entropy of entanglem&at(4) as a and proportional to

d
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d zation of the average entanglement. Alternatively, the opti-
| by = (S} thwp) = > Tr(AR--AIspls). (21)  mal basis can also be extracted directly from the MPS
sp.=1 matricesA; in (21). Using a generalization of the concur-

Without loss of generality, we can assume that the computd€Nce for pure bipartit® X D states, it has been shown in
tional basis is the optimal one. Otherwise we can make alll (foran open chain wit-dimensional spins at the ends

change of basis in Eq21). Hence the LE is given by that the.optimal ba_sizs/Dis the same basis thgt maximizes-the
expressiors [de(A%)|*P. Hence we can consider the matri-
Lﬁ(l//Mp) => p{s}E(:f’{s})' (22)  cesA; as(unnormalizedlpureD X D X d states, for which we
{s} want to calculate the LE with respect to tBex D system.

_ ; o Since we measure only on a single site, this problem is
whgre Ps=( s ¢{S}>/_<¢MP| ) I the probability for l(/)zb_ equivalent to calculating the EOA of the reduc@® x D?)
taining the normalized  statelig)=[¢byg)/ (i | brs))™ '™ density matrix, which can be done numericalge also Ap-
Though the MPS representation allows us to efficiently calpendix Q. For the models we studied, our numerical analysis
culate the states after the measurements, we still face thgdicates that these findings hold independent of the choice
problem that the sur(22) involves an exponential number of of hoth the entanglement measure and the boundary condi-
terms(d"~?). To find a good approximation of this sum, we tions. As a further numerical result, we find that the optimal
propose a scheme based on the Monte CaMG) method,  basis appears to be independent of the system size. Hence

which will now be explained in more detail. exact diagonalization and numerical optimization for small
systems usually provides the most efficient way to find the
A. Monte Carlo method optimal measurement strategy.
The Monte Carlo method provides an efficient way of C. Determination of the MPS

selectingM states| ¢, sequentially from theégiven) prob-

ability distribution{p;y}. The LE can thus be approximated In the following, we are interested in finding a good ap-

proximation of the true ground state in terms of M@8) for

by systems with PBC. We choose PBC in order to minimize
M 1 boundary effects and to better mimic the behavior in the

LFMC)]”WMP) ~ Mz E(¢,) * ?&5(¢MP)_ (23)  thermodynamic limit already for small system sizes. Let us

u=1 M now introduce a method to determine translationally invari-

nt MPS. It is based on the following idea: We use the

MRG algorithm for an infinite chain to extract a site-
independent set of matricés$, defining a translationally in-
variant MPS(20) for infinite N. We then use the same &t
to construct a MPS with PBC for arbitrafy. It is obvious
that this method is very efficient, particularly for large
because we have to run the DMRG only once to obtain the
MPS representation for any system size. One might expect
that this increase in efficiency happens at the cost of preci-
sion. However, an optimum in accuracy on the part of the
MPS is not crucial for the numerical calculation of the LE,

ince the limiting factor for the accuracy is typically the MC

Note that the accuracy of the MC method depends on th
entanglement fluctuationsﬁLﬁ, which can be computed
within the MC scheme as well.

For selecting the staté%}, we follow the METROPOLIS
algorithm [23] and use single-spin-flip dynamics. We start
with an initial statd%) corresponding to a specific measure-
ment outcomgs}. From this we create a trial staté,) by
randomly picking a sité and changing the state of this spin
with equal probability according t§ —mods+1,d) for s
=0,1,... d-1. For a spin-1/2 this simply amounts to a spin
flip. The probability p, for obtaining the trial state after a
measurement can conveniently be computed using the MP

. . : . . ethod.
_representaﬂonéZl). The trial state is accepted with probabil- We start by briefly reviewing the variant of DMRG, rep-
ity resented byBeB [33], for an infinite 1D chain. At some
P, . particular step, the chain is split into two blocks and one spin
— TP, <P in between. The left blockL) contains spins 1,..M-1,
P(4— 1) =1 P, - (24) kL) P M

and the right ongR) spinsM+1,... N. Then a set oD

X D matricesA™ is determined such that the state
If the trial state is accepted, it serves as a starting point for
creating a new trial state. AftéN—2 steps, defining one MC
sweep, the entanglement of the current state is calculated
[36]. After M sweeps, the algorithm stops and the average
(23) is performed. minimizes the energy. The state®,_r are orthonormal, and
have been obtained in previous steps. They can be con-
structed using the recurrence relations

D d

1 otherwise.

d D
= X ZZ'\,A[ACY)L ® [9m @ [B)r (25

s=1 a,5=1

B. Finding the optimal measurement basis

The definition of the LE?2) requires an optimization over _ M-1].s ,
all possible measurement strategies. A good guess for the | = 2_: gluw’ ISm-1® ey,
optimal basis can typically by found using exact diagonaliza- =t
tion for small system sizes, followed by numerical maximi- where the block.’ contains the spins 1,..M-2.

(26)
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Numerically we find that the matricés’! can be chosen S NE
in such a way that they converge (site-independeitma- max(|QlL., QUL IQL) < L < f (30)
trices U® at the fixed point of the DMRG algorithm. Apply-
ing an appropriate transformatié these matricesl® can be N o . .
used to construct a translationally invariant ME2®) with si = (1+(0y00)* = (o) (o).
A*=RUR'=RAR' [37]. Note that starting from these The fact that the lower bound is usually tight can also be
states, it is possible to calculate expectation values of prodderived from the numerical observation that for Hamilto-
ucts of local observablg®1,22,33, since nians of the form(29), measurements in thestandard o,
_ 1 N basis (M =2Z2) yield in most cases the optimal result. Ex-
(P[0, O\[¥) = Tr(E[O;E E[Ouj)’ (27) panding the ground state in that ba$i®o==c;_.; |i1"**in),
where it is straightforward to show that, e.g., in the case of constant
(site-independeitcoupling y, and y,, the ground-state en-
. - ergy is minimized if all expansion coefficients.., have
E%(] = 2 (O0dsHA @ (AQ)". (28) the same sign. This guarantees, together with tlheNparity sym-
ss=1 metry, that the average entanglemefit” for measurements
We applied this method to compute ground-state expectatioih the standard basis is equal to either ¥ or y-y corre-
values using expressiof27) for various 1D spin systems lation. To be more precise, we distinguish the following
with PBC[38]. Our numerical analysis of systems with finite cases:
N shows that both the energy and the correlations can be

d

i (A1 ji N [P s
computed rather accurately. The achieved accuracy is several X = WOk +A) =0: Lij~= Koyl (313
orders of magnitude higher than finite-size effects, but also L sc o
several orders of magnitude lower compared to the varia- (K= A +A) <0 L"=[oyo)|, (31b

tional method[35], which has been introduced recently.

These findings even hold for system sizes as lowas10 where the conditions refer to all sitésand j of the chain.

C . ost of the prominent spin Hamiltonians studied in the lit-
and are rather surprising, because the MPS is Cor]Sm"Cté(\eArature, like the Heisenbergy, or XXZmodel, etc., trivially

from the infinite chain. We further checked that also thefquiII one of the conditions31), because their coupling co-
long-range behavior of correlations and entanglement is re- ! piing

produced correctly by our translationally invariant MPS. efﬂm(;ents sre_ateqnﬁjep_erlléant. II_—|erk1)(|:e, measurementis n the
To sum up, our numerical results indicate that translation-s’r:an ar as'? W(I)ud yield ocdakljza Ie qyarlltum CIOfFe ations
ally invariant states can be sufficiently well approximated byt at are completely determined by classical correlations.
a single set of MPS matrices® for almost arbitrary system
size N. This observation, together with the findings|[iti], B. Ising model
might shed some light on our previous numerical finding that

) . . . ) As an illustration, let us now discuss the LE of the Isin
the optimal measurement basis for LE is typically both site- 9

model in a transverse magnetic figtd =\ 8, 45;41; ¥=1 in

and size-independent. Eg. (29)], which has been solved exacfly9] and exhibits a
quantum phase transition &&1. In this case, the maximal
V. EXAMPLES OF LE IN SPIN-1/2 MODELS connected correlation function is always given@y,, which

) ) ) thus yields the best lower bound on LE. Numerical optimi-

In this section, we apply the concept of LE to quantify the z5tion for a finite chain indicates that the standard basis is
localizable ground-state entangle_ment_ of various spin-1/3ndeed the optimal one and thus the lower bound is equal to
models. After some general conS|derat|ons,. we compute th@icl_ [10]. We checked analytically, using perturbation theory,
LE as measured by the concurrerige numerically for two  hat for an infinite chain this numerical result is indeed true.
specific examples. However, for a spin distance=|i—j| one has to go to
nth-order perturbation theory, limiting this analytical treat-
ment to rather smath.

Consequently, we can use exact results for the connected

A. General considerations

We consider spin-1/2 Hamiltonians of the form correlation functionQ,, [39] to completely characterize the
TS » behavior of the LE in the Ising chain. The Ising system is
- _ i o =
H= % a;yz 2% 2 7 0%, (29) therefore also an ideal candidate for testing the performance

. of our numerical method outlined in Sec. IV. In Fig. 2, we
with parity symmetry,[H,I1,]=0, andIl=®Y 0, Exten- plot L+, and Qi as a function of the spin distanoefor a

sive numerical calculations on systems of up to 20 qubitshain withN=80 sites.

showed that our lower bound is always close to the LE as For\ <1, the LE decreases exponentially withand the
measured by concurrend:f%, and typically is exactly equal entanglement length is finite. At the quantum critical point
to it: this is surprising and highlights the tightness of theA=1, the behavior of the LE changes drastically, because it
given lower bound. Note also that whenever parity symmetrysuddenly decreases as a power Ih,§y+n~ n~'4 thus leading

is present, the upper and lower bound are given as follow$o a diverging entanglement lengép. In Fig. 2, we observe
[10]: that the MC method becomes less accurate at the critical
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FIG. 2. Calculation of thd:,c,+n (diamonds for the ground state of the Ising chain in a transverse [i¢]p:)\5a X0} j+1; Y=11in Eqg.(29]
as a function of the spin distanae For comparison, we plot the exact red@@] for the correlation functioi®; N Left: A=0.8, exponential
decrease; right: critical poink=1, power-law decreasé~n=4; numerical parameterésee Sec. I} N=80, D=16, MC sweepsV
=20 000.

point. As we will see later, one reason is that the statisticallepends on the distanae of the two spins. For nearest
error due to entanglement fluctuations becomes rather largeeighbors(n=1), we observe that the maximum 6f_ﬁ+1 is

at the critical point(see Fig. 3. Another (systemati¢ error  somewhat shifted to the right of the critical poifk,,
might be induced by the single-spin-flip dynamics used to~1.025. For all distancesn>1, however, our numerical
create the trial state. Better results for the critical regioncalculations show that the maximum is positioned\at 1
could possibly be achieved by applying the Wolff algorithm put becomes asymptotically close to the critical point with
[41]. Here, a cluster of spins depending on their spin orienincreasingn (for n=4, see Fig. 8 Furthermore, in Fig. 3 we
tation is flipped, which accounts for the formation of do- see that the absolute value of the maximum increasesmwith
mains. and becomes comparable wlifji itself [42]. The strong fluc-

In [10] it was shown that for the case>1, we also get tuations inherent to the Ising model lead to large statistical
=, since the LE saturates to a finite value givenM§  errors in the numerical calculation of LE using the Monte
=2(1-\")Y4 Indeed, the ground state is then close to theCarlo methodsee Eq.(23)]. The errors become even more
GHZ state. In a more realistic setup, however, the paritypronounced for the calculation of the fluctuations. This is the
symmetry of the Ising Hamiltonian will be broken by a per- main reason why we have restricted ourselves here to exact
turbation and the ground state for large coupling will also becalculations for a small system with PBC. However, we con-
separable, as it is given by a superposition of two GHZ statefirmed that the data foN=16 represent the behavior in the
with different parity[40]. largeN limit reasonably well and no qualitative changes oc-

Let us now study the behavior of entanglement fluctua-cur.
tions 51_C inherent to the statistical definition of L[Eee Eq

(10)] as a function of the coupliny. In Fig. 3, we plotoL; C. XXZ model
for different parametera andN. Let us now turn to the discussion of another exactly solv-

The maximum of the fluctuations is always located in theable 1D spin system, the so-callédXZ model [43]. This
vicinity of the critical pointA=1 and gets shifted to largé&r  model not only appears in condensed-matter physics in the
values with increasindN. Thus the increasing entanglement context of ferro- or antiferromagnetic materials, but recently
fluctuations reflect very well the increasing complexity of theit has been shown that it can also effectively describe the
wave function close to the critical region. The location of thephysics of ultracold atoms in a deep optical lattid&]. The
maximum\,, in the thermodynamic limi¢N— o) apparently ~ Hamiltonian can be written as

0.2 0.3
015 T 0.25 ',.’
’
' / 0.2 o
1 13
o 0.1 ! 0.15 ;
[ [
/ 0.1 ’
0.05f Y
p 0.05

% 0.5 1 1.5 2 % 0.5 1 1.5 2

FIG. 3. Exact calculation of entanglement fluctuati<m§i+n (10) as a function of the coupling parametefor a finite Ising chain in a
transverse magnetic field with PBC. Left: distancel, N=6 (dashegl N=12 (dotted, N=16 (solid); right: distancen=4, N=9 (dashedq,
N=12 (dotted, N=16 (solid).
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FIG. 4. Schematic drawing of the phase diagram of XXZ
model[Eq. (32)] as a function of the anisotropy and the magnetic 1k =-=--
field h/J [43]. In regions A and C, the ground state has an energy \
gap, whereas in region B the system becomes gagtadal).
Point E is the ferromagnetXX point and point D corresponds to
the antiferromagnetiXXX point.

HXXZ:_E (TIX0'|X+1+ O'IyOJy+l+AO'IZO'IZ+1+30'|Z y (32)
i

where we have introduced two dimensionless parameters,
which can be varied independently: the anisotrdpgnd the
magnetic fieldh/J in units of the exchange coupling. The :
phase diagram of th¥XZ model as a function of these two 0 2 4
parameter$43] is depicted in Fig. 4. Ly
The XXZ model can be solved exactly using the Bethe
ansatZ44]. Unfortunately, analytical expressions for the cor-
relation functions, which would yield lower bounds for LE, lower boundsQQX*” (solid) and Qg;n (dotted as a function of the
have only been worked out in special cases. For example, fqfe|q h/J for the ground state of thXZ model(32). The numerical
the antiferromagnetiXxXX model in a magnetic fieldine of  cajcylation is performed using exact diagonalization of a chain with

constantA=-1 in Fig. 4, analytical solutions for the corre- N=16 sites and PBC. The distance of the two spinsd sites; up:
lations are summarized [12]. Numerics on a finite chain of A=0.5: down:A=-2.

up to 14 spins show that again measurements irotheasis

appear to be optimal. Using the res(@.a), this implies that At the critical point the LE becomes zero, because the
|_i<’3i+n:<gi(0{(+n>_ Hence the bounds given [12] are tight. In ~ ground state is given by a product state. Note that this phase

particular, this means that the entanglement length is zero fdfansition (indicated by linea in Fig. 4) is sharp even for
h/J>4 and infinite forh/J<4. finite systems, since it is due to level cross[dg].

After these introductory remarks, let us study the ground- e now investigate the regioh <-1, which contains a
state entanglement properties of %%z model in more de- S€cond quantum phase transiti@ndicated by lineb in Fig.
tail. In particular, we are interested in finding characteristic®)- The dependence of the LE and its bounds on the magnetic
features in the LE at the quantum phase transitions indicate{!d for fixed A=-2 is depicted in Fig. 5. We again observe
by the linesa and b in the phase diagram Fig. 4. For this & Sharp phase transition htJ~6, when the system enters
purpose, we calculate in the following the L(Er fixed n) ~ the unentangled phase(Rig. 4). At h/J~=1.6, the LE expe-

numerically, using exact diagonalization, as a function of thdi€nces a sudden drop-off. However, it remains to be checked
two parametera andh/J. whether this step is due to finite-size effects or a character-

istic feature of a quantum phase transition. Note that for
h/J=1.6 we obtain thaij: ), This feature can be under-
) ) stood by considering the limiting case of zero field akd

In Fig. 5, we pIotLiCM and the lower bound®}, andQ}, =~ ——c. There, the Hamiltoniahxy, commutes with the par-
as a function of the fieldh/J for fixed A=0.5. We find that ity operator in thex direction, II,=®}, 0!, and the(doubly
Lﬁ+n:<a'anx+”>. This result can be understood as a consedegenerate ground state for everN is given by |)
guence of the numerical observation that the standard basisl /\2(/0101: --01)+|1010 --10)). After suitable projective
appears to be optimal in the entire half-space —1. measurements in thedirection, these states reduce to maxi-

FIG. 5. Calculation of the localizable entanglemdaﬁ}+n (dia-
monds, the upper bound given by the EQA1) (dashegl and the

1. LE as a function of the magnetic field hJ

042306-9



POPPet al. PHYSICAL REVIEW A 71, 042306(2005

%% - - ' ther note that, according to our numerical analysis, the rea-
0615| son for the cusp ir1_i‘?‘i+1 is that the optimal measurement
basis changes at the critical point abruptly from theo the
0.61} oy basis.
So far this is a purely numerical finding for a finite-
0.6051 dimensional system. However, given that the average en-
tanglement can be maximized by applying the same unitary
0.6 transformation on all spins, one can rigorously show that
0595} indeed a cusp in the LE must occur exactly at the critical
' point and independently of the sidé The argument goes at
0.50+ ] follows: At the antiferromagneticXXX point, the Hamil-
tonian (32) possesseSU(2) symmetry. This means that any
0.585¢ . . . measurement basis yields the same LE. In particular, we
-1.05 -1 -0.95 -0.9 know from Eq.(31a that for measurements in the standard
A basis, the LE is equal to the correlation functi*. At the
critical point, we thus have,,=Q,"=Q}"". Since con-

FIG. 6. Calculation oﬂ.fm (diamond$ and the lower bounds

Qi** (solid) andQ!** (dotted as a function of the anisotrogy for nected correlation functions yield a lower bound_fg)+1 (see

the XXZ model (32) with zero fieldh/J. At the critical pointa  S€C- Il the localizable entanglemenf;,, must exhibit a

o : i+l 4 AL
=-1, the LE exhibits a cusp, in contrast to the monotonic behavioCUSP at the critical point, wher®;, " and Q" cross.
of the correlation functions. The calculation is performed using ex- N sSummary, our discussion of the LE in various spin-1/2
act diagonalization and numerical optimization for a chain of length0dels has shown in which parameter regimes these systems

N=10 with periodic boundary conditions. can be used for, e.g., localizing long-range entanglement as
indicated by the entanglement length. We have further seen
that the study of LE as well as the entanglement fluctuation
provides a valuable tool for detecting and characterizing
guantum phase transitions. In addition, our numerical results
indicate that the ground-state entanglement of spin-1/2

) . Hamiltonians with two-spin nearest-neighbor interactions is
region C(Fig. 4).

For h/J=1.6, we observe in Fig. 5 one of the rare ex- typically very well described by the maximum correlation

amoles for which the LE is not exactly equal to the rnaXi_function. We will now see that this observation is not neces-
P Y €q sarily true for spin-1 systems.

mum correlation function. Note also that in this region, the
maximum correlation function changes fro@), to Q.
When approaching the critical poiit/J=6, the standard VI. LE IN THE SPIN-1 ANTIFERROMAGNETIC
basis becomes close to optimal again aﬁpu Q. HEISENBERG CHAIN

In the following, we take a closer look at the phase tran-
sition between the regions B and C in Fig. 4.

mally entangled Bell statd®*)=1/12(|01)+|10)). Hence in
this limit LiCJ:QgZ—>1 and theoy basis turns out to be the
optimal one. This line of reasoning strictly holds only in the

limit A— —o, but can qualitatively be extended to the whole

We study the ground-state entanglement of (dpeneral-
ized antiferromagnetic Heisenberg chain,

2. LE as a function of the anisotropyA N-1

We consider the case of zero magnetic field and study the Har= E [SSu-B(S S, (33
LE as a function ofA in the vicinity of the antiferromagnetic =1
XXX point. At the critical pointA=-1, the ground state un- which includes a biquadratic term. In a recent w@Bk] it
dergoes a Kosterlitz-Thoule§9] quantum phase transition. has been demonstrated that quantum Hamiltonians of this
In Fig. 6, we have calculated numerically the localizable enkind can be implemented with ultracold atoms trapped in an
tanglement_{;, , for nearest neighbors and the correspondingoptical lattice potential.
lower boundsQ!"* and Q)+,

One sees thaitffi+1 is equal to the maximum correlation
function. However, at the critical point the maximum corre-
lation function changes, due to the crossing(@ij’x+1 and For the Heisenberg antiferromagn@F) (8=0), it has
Q'Z";l, thus leading to a cusp in the LE. Hence the quantunbeen shown by Haldar{&1] that in the case of half-integer
phase transition is characterized by a discontinuity in the firsgpins the spectrum is gapless in the thermodynamic limit,
derivative ofoHl. This result is remarkable, because for thisand thus the correlation length of the ground state is infinite.
Kosterlitz-Thouless transtion the ground-state enefigy, For integer spins, however, an energy gap emerges, resulting
nearest-neighbor correlation functiorand all of its deriva-  in a finite correlation length. Let us now investigate whether
tives are continou$45]. As shown in[46,47), the concur- a similiar connection holds for the LE and the corresponding
rence(or the derivative of the reduced density matry;,;  entanglement length.
also does not exhibit a discontinuity at the critical point. This  From the lower bound15) it follows that the predicted
result is expected, because the concurrence is a function affinite correlation length in spin-1/2 systerhsith integer
one-particle and two-particle correlation functions. We fur-log?(2S+1)] automatically implies a diverging entanglement

A. General considerations
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length. However, in the case of integer spins the correlation
length is finite. Hence the lower bourt6) for spin-1 sys-

tems includes the intriguing possibility that correlations and 17
entanglement may exhibit a completely different behavior.
Indeed, for gapped spin-1 systems, an example for this has 0.8r
already been found11]. At the AKLT [20] point (8

=-1/3), the entanglement length of the ground state di- 067
verges, although the correlations decrease exponentially. )
Since the AKLT model is closely related to the Heisenberg 0.4t
AF, one might expect that both systems show qualitatively

the same behavior. 0.2}

B. Numerical study

5 10 15

Let us now take a closer look at the spin-1 Heisenberg AF. n

Since in this case we cannot resort to an analytical solution
as for the AKLT, we have to rely on numerical methods. FIG. 7. Calculation oLFE,, (diamonds for the ground state of

We start our analysis by performing exact diagonaliza+he antiferromagnetic spin-1 Heisenberg chain W80 sites as a
tions for an open chain of up to 10 sites. At the end points Weunction of the spin distance. For comparison, we plot the corre-
couple toS=1/2spins, thus making sure that the system is injation functionQ\*" computed directly from the MP&@quaresand
the singlet ground state. We are interested in the LE betweelising the Monte Carlo methddircles. Numerical parametetsee
the end points of the chain. Sec. IV): D=16, MC sweep$vi =20 000.

Since the end spins are represented by qubits, we can still

refer to the LE as measured by the _concurrenxfg}\;. Our  the localizable entanglement. We have also seen that this
numerical analysis shows that the optimal measurement basigng-range order is not reflected in the behavior of the two-

is given by the same local unitary transformation, particle correlation functions. However, one can define a
1 0 1 multiparticle correlation function, the so-callettfing order
— correlation function[52], which detects thisiidden orderin

U:/_E 0 v2 0, (34) the ground state. The string order correlation function has

-1 0 1 been argued to be of a topological nature and is defined as
as for the AKLT. This strategy produces a maximally en- L= (el IR] ® S, (35)

tangled state between the end spin§,=1). This surprising . _ . - .
result can be understood from the analytical study of the' ith Rk_exd'ﬁ?,?' A nonvanishingstring order parameter

AKLT model in [11]. In a singlet valence bond picture, mea- 530:: I'rg”%AQSO ’ mgjlt_:ates the prel_sert1_ce offl?ﬁg-r?_r(g&j- q
surements in the basi84) can be interpreted as Bell mea- en order. As an obvious generalization of the string order

surements on &irtual) spin-1/2 system, which lead to en- correlation function to arbitrary models, let us define a con-
tanglement swapping ’ nected version in a variational way. Consider the set of all
Let us now investigate whether this effect depends on th@bservablegO} with bounded spectruml<O=1. We de-
choice of the boundary condition or the number of sites. Fofine the connected string order correlation function g
this purpose we apply our numerical method outlined in Sec(and the related parametés;y) for a given translational in-
IV. The LE in its variantL{® [see Eq(4)] is computed for a variant state as
chain with PBC and a large number of sii@é=80). Cisn el AKe AN
In Fig. 7, we see that the LE saturates at a finite value tso = Max  (Oy[@102]01 e (36)
LFe,,—0.960+0.003 for large, whereas the correlations de- ~1=0105=!
crease exponentially. This demonstrates that the ground staere (AA,- - - A,)). denotes the connectadpoint correlation

of the antiferromagnetic Spin-l Heisenberg chain could qunction' which can be defined in a recursive way,
used to distribute EPR-like entanglement over arbitrary dis-

tances by performing local operations on the intermediate (A =(Ar)c, (37)
spins. As mentioned in Sec. Il D, this result might be particu-
larly interesting in the context of quantum repeaters. (ArA2) = (AD (A + (AdAg)c, (39

Let us now come back to Haldane’s result for the Heisen-
berg AF stated in the beginning of this section. Our numeri- (A1AAg) = (A (AR (Ag)c + (AD (A + (A (A1 Ag)e
cal study of the spin-1 case might give a first indication that, F A CAA -+ (AAA 39
unlike the correlation length, the entanglement length is in- Ao)clArhgle + (Arhohy)e, (39)
finite for both half-integer and integer spins.

C. Hidden order and string order parameter Note that the connected part assures Bf" measures a

Our numerical results show that the ground state of thenonlocal correlation, and that the string order parameter of

spin-1 Heisenberg AF exhibits long-range order in terms othe AKLT ground state is indeed recovered by this definition.
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It has been verified numerically thdt, is finite for the o & /
ground state of the spin-1 Heisenberg AF. This fact can rig- MPS =D A @ (AS ). (42
orously be proven for the related AKLT ground stago]. a=1

For this state, it was further shown that the LE saturates aFhe statep can be purified into a MPS by including ancilla
well with the spin distance [11]. Hence one might expect a states{|ay)} of dimensiond,

connection between the existence of long-range order in the
entanglement and long-range order indicated by the string N
order parameter. However, one can find examples for which ~ [¥)= > > Tr(]_[ Aﬁﬂ'ak)|sla1, Sy (49
this connection does not hold. SpeooSNALAN k=L

For instance, i11] it has been shown that already an |, 149] a method has been introduced that allows one to

infinitesimal deformation of the AKLT model leads t0 an yetermine the matrices, iteratively for a given Hamiltonian
exponentially decreasing LE, wheredg, stays finite. On 54 temperature.

the other hand, ground states exist that exhibit a diverging Starting from the mixed state in MPDO representation

entanglement length but vanishings, A simple example  (41) the LE can be computed along the same lines, using the
can be found in the class of MRS0) defined on qubitsd 1o method, as for pure states. However, we note that the
=2) and with qubit bond§D=2). Note that all these MPS matricesM, in Eq. (41) have dimensio?x D2, compared
are guaranteed to be ground states of some local Hamiltqg the D x D matricesA, for pure states. Thus in the case of
nians. Furthermore, for MPS with qubit bonds the string or-pgc the computation time for the MC part scales at least
der parameter and the LE can easily be computed analytiyith d D5 for mixed states, but only witB3 for pure states.
cally (see[11] and Appendix Q. In particular, let us study | et us also comment briefly on the optimal measurement
the state defined by basis. In contrast to pure states, the optimal basis for mixed
Al=o,+ 0, A= o,-il. (40) states can no longer be deduced directly from the matrices
M,. Alternatively, a good guess for the best measurement
The entanglement length can easily be proven to be infinitestrategy can be found by exact diagonalization of the Hamil-
A necessary condition foé.s, to be nonzero is that there tonian for smallN, followed by numerical optimization of

exist a unitary operatoD, for which the largest eigenvalue LE.

of E{JZ has the same magnitude as the maximal eigenvalue of

E, (Appendix Q. For the example given, this is impossible, B. Example: AKLT model
hence providing an example of a ground state with a diverg-

ing entanglement length but no long-range hidden order. Next we apply this numerical method to a specific ex-

ample. Interesting candidates can be found in gapped spin-1
systems, such as the AKLT model or the Heisenberd #&e
VII. MIXED STATES Eqg. (33)]. We have seen that the ground state of these two
models exhibits an infinite entanglement len§ii]. Thus
In this section, we apply the concept of LE to characterizethe natural question arises as to what extent this feature holds
the entanglement of multipartite mixed states. Note that theéor small but finite temperatures and how the entanglement
definition of LE(2) already includes the possibility of having length scales with temperature.
a mixed statep. This implies that the statesy=({s}|pl{s}) For our numerical study, we choose the AKLT model. The
after the measurements are also mixed. Hence we refer in theason is simply that, here, mixed states can be approximated
following to the LE as measured by the negativil;ﬁf. In  rather well by matrices with dimensions as smalllxs 10,
order to provide a tool for the computation lof let us now even for very small temperatures. This makes the computa-
generalize the numerical method, outlined in Sec. IV, totion of LE much more efficient compared to the Heisenberg
mixed states. AF. Efficiency is also the reason for choosing OBC.
Let us now discuss the optimal measurement strategy.
First of all, we point out that with OBC the ground state of
A. Numerical method the AKLT is fourfold degeneratg53]. Thus for T—0, the
The key point is to find a representation of a mixed statedensity matrix is an equal mixture of these four states, which
in terms of low-dimensional matrice,, analogous to the strongly reduces the LE compared to, e.g., the singlet ground
MPS (20) This prob|em has been considered recenﬂy inState studied IIﬁll] On the other hand, it is known that the
[49]. There the concept of MPS is generalized to matrixdegeneracy results only from the end spins of the chain.
product density operatof®PDO), which are defined as Thus, one can strongly reduce this boundary effect by choos-
ing the two spinsi andi+n, to be far away from the bound-
B 5., sk , , aries. For this situation, we found that the optimal measure-
p= 2 THMPT MRy, s, S ment scheme for LE is given by measurements indteasis
18] - SNSEL (34) on the spins between siteandi+n, and in the standard
(41) basis everywhere else. This result is not very surprising in
, terms of the valence bond picture [A1]. Entanglement
where M** are DZX DZ,, matrices. They can be decom- swapping is only needed between the two spins of interest,
posed as whereas the effect of the degeneracy can be minimized by

d
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72010 cal scheme to study the LE of various spin models. The
results can be summarized as follows.

The LE, as well as the entanglement fluctuations, exhibit
characteristic features at a quantum phase transition. This
result is a direct consequence of the numerical observation
that, for ground states of spin-1/2 systems with two-spin
interactions, the lower bound is typically tight, i.e., the LE is
completely characterized by the maximal connected correla-
tion function. However, connected correlation functions give
only a coarse-grained picture for the LE. As an example, we
have shown for the spin-1 Heisenberg AF that the entangle-
. . ment length diverges, whereas the correlation length is finite.
15 20 25 This numerical result might suggest that, in terms of LE and
n opposed to connected correlation functions, no distinction
has to be made between the scaling behavior of integer and
half-integer spin Heisenberg AF’s. To confirm this idea, fur-
ther studies of the integer spin case are desired.

We further note that preliminary results indicate that the

that our results are already close to the thermodynamic limit. Nu_entanglement features of the Heisenberg AF might hold

merical parameter@ee also Sec. IV matrix dimensiorD=10, Mc  qualitatively for the whole class of gapped spin-1 models
sweepsM =5000. defined by Eq(33). This finding would allow one to distin-
guish the Haldane phase from the dimerized phase based on
Ithe scaling of LE. Let us also mention in this context that
gsapped spin-1 systems also appear to be ideal candidates to
look for quantum phase transitions, being detected solely by
the entanglement length and not the correlation lekagHor
Re generalized AKLT model if11]).
The data indicate an exponential increase of the entangle- In (_)rder to illustrate that our numerical method works also
ment lengthée ~ e2/T with @~ 0.8, thus leading smoothly to For mixed states, we computed the LE of the AKLT model
L E o Y0 for finite temperatures. We found that the entanglement in-
an infinite entanglement length at zero temperature. This be-

havior is not unexpected for a 1D system from the perspec(-:reases exponentially with the inverse temperature. This

tive of the Mermin-Wagner theoref5]. However, it is not smooth behavior indicates the absence of a phase transition
. 9 : " ' in terms of LE for the 1D case. However, we have reason to
clear whether this theorem is really applicable to phase tra

sitions in terms of LE. It is more inspiring to treat this prob—rbelleve that such a phase transition might occur for the 2D

lem on the basis oprojected entangled-pair stat¢56]. In system.

this picture, a finite-temperature phase transition for LE

could possibly occur for two or more dimensions. We note ACKNOWLEDGMENTS
that recently such a transition has been shown to exist for 3D
cluster state§14].

FIG. 8. Calculation of the LE as given b§}|\,‘i+n for the AKLT
model as a function of the spin distanc@and for various tempera-
turesT. We have chosen a chain with OBC aNg50 sites. We
note that almost identical data can be obtained\fe20, indicating

measuring the outer spins in the standard basis. Using th
strategy, we plot in Fig. 8 the LE, as given by,ﬂn' depend-
ing on the spin distanca for various temperature$. The
temperatures are chosen to be of the order of the enery g
[54].

We acknowledge helpful discussions with J.-J. Garcia-
. . . Ripoll, who also provided the numerical program for com-
tanzllr:a?n”g'n\t,vleer\:\g/:]?ﬁl?)flIlt(rfetzIEIC_)'II'mrnCZ)L:jtetIh;t’fi?llittzogd%QE)heiten- puting MPDO’s in the case of finite temperaturg. We also
can still be considerably large for sufficiently low ten’1pera-thank D. Loss for suggesting we address the ISsue of en-
turesT=0.2. Thus for practical purposes this system migh,[tanglement _fluctuatlons. This work was supported in part by
still be~USGIfL.J| e.g., for quantum repeater setups EU IST projects(RESQ and QUPRODIS the DFG (SFB
v ' 631), the “Kompetenznetzwerk Quanteninformationsverar-
beitung” der Bayerischen Staatsregierung, the DGS under
Contract No. BFM 2003-05316-C02-01, and the Gordon and
Betty Moore Foundatiofthe Information Science and Tech-

In this article, we have presented a detailed discussion dtology Initiative, Caltech
the idea and basic properties of LE, as defineflLii. Apart
from that, we also found the following results: The central APPENDIX A: CONNECTED CORRELATION FUNCTIONS

finding of [10], namely the lower bound of LE in terms of AND LOCAL MEASUREMENTS ON PURE
connected correlation functions, has been generalized to pure QUBIT STATES

qutrit states. Moreover, we have proposed a numerical )

method, applicable to both pure and mixed states, that allows Here we present an extended version of the pro¢fi0j

us to calculate the LE efficiently even for large 1D spinfor the following statement: o

systems. In future work, we are planning to generalize this Given a(pure or mixed statep of N qubits with con-
numerical scheme to two- and higher-dimensional spin sysbected correlation functio@)s between the spinisandj and
tems based on the methfgb]. We have applied our numeri- directionsa, b, there always exists a basis in which one can

VIll. CONCLUSION
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locally measure the other spins such that this correlation does a BT
not decrease, on average. S:=R'(0, ® 0y)R= , (A9)

-

Proof. Formally, we have to show that there exists a mea- B Q
surementM such that - _ _
and 3,Q are defined as 8 1 and 3x 3 blocks, respectively.
|QiAj\B(Pij)| <> pS|QH\B(p2)|' (A1) Without loss of generality, we can assume thas positive
s and thus remove the absolute value sign in &g). Some

. ) . : . ightf I ields then th fficient i li
To this end, let us first consider mixed states of three qubltss.tralg tforward algebra yields then the sufficient inequality

A mixed three-qubit density operator can be parametrized by X"(A+B)x=0, (A10)

four 4x 4 blocks, .
with

B)(. B BE"

p={’” ‘T} (A2) 5
] e ) o

g p2

Since local unitary operations can be absorbeg, iit is .. _ .

sufficient to consider th@!2 correlations. Thus the original Wherec is such thap, =(1x¢ X)/2. We now have to show
correlations are completely determined by the diagonal elethat the matrixA+B has at least one positive eigenvalue.
ments of the reduced density operajgrp,. A von Neu-  From the form ofA, one immediately sees that it is positive

mann measurement in the basis semidefinite(a> 0). The matrixB requires more work. First
_ we note that the matrix, ® oy in Eq. (A9) has two negative
| +) == cog6/2)|0) + sin(6/2)€'?|1), (A3)  and two positive eigenvalues. Assuming nonsingwRarit
follows from Sylvester’s law of inerti§57] that S also has
|- ) := — sin(6/2)e7'|0) + cog 6/2)|1), (A4) two positive and two negative eigenvalyés8], and so has

_ _ ) - ] the inverseS ™. Now B is the inverse of the Schur comple-
on the third qub|t results in the Hermitian unnormalized tWO'ment Ofa, and hence Corresponds to a principad 3 block

qubit operators of the matrixS?,
o _Pitp; pr7p2 it
X; = (t|p|£)= > +cog6) > +sin(6) Si= (* g1/ (A12)
t ; t ; :
ogto . i(c—0o') where the entries are of no interest here. Let us denote the
X(COE(¢) 2 + sin(¢) 2 ) (AS) eigenvalues 06! in algebraic increasing order by;---\,

and those oB™* by u;- - - u3. From the interlacing properties

with probabilities p;=Tr(X,) conditioned on the outcome ot gigenvalues of principal blocks7], we obtain the follow-
{+} or {~}. From these equations, we see that the(23U ing relation:

transformation on the third qubit can be accounted for by a
SO3) rotation of thez axis, defined by the unit vector, M S USSP S NS U< N\ (A13)

7. . i Cai ; Knowing that\;>0, we deduce thaB™! posesses at least

X:= [cod6);sin(G)cod #);sin(O)sin($)]. (A6) one positive eigenvalue, and so d@sThe existence of one
As noted above, we have to consider only the diagonal partgositive eigenvalue i\+B ensures that one can always find
of the measurement outcomxs, which can be represented a measurement directionsuch that the inequalityA10) is
in terms of the column vectors, fulfilled. We have proven the theorem for a mixed three-

qubit state. However, this result can immediately be ex-

v 1 ( 1 ) (A7) tended to arbitraryN. To see this, let us consider, e.g., the
= 2 \xx/’ correlation |Q,(X,/p,)| for one of the measurement out-
comes on the third qubit. The two-qubit stafe can be ex-
panded in a basis corresponding to a measurement of the
fourth qubit(X,=Y,+Y_). The theorem can now be applied
with respect to the state, and so forth, completing the

whereR is the real 4<4 matrix whose columns consist of
the diagonal elements of the matricgs +p,), (p1—p2), (o
+o"), andi(o-o").

Provided with these definitions, the inequali®yl) can be

. . proof. O
written in the form Note that the proof is constructive and allows us to deter-
P4 QzAXp)| + P_|QzAX1p)| = |QAX, + X1)| mine a measurement strategy that would at least achieve the
z -INz2N-TP-) = z =/

bound reported.
Insertingl =tr(X./p.), this inequality can be transformed ina L€t us now show that the above result can also be gener-
bilinear form inxX alized to a setup where the spinandj can have any dimen-
sion, but the measurements are still performed on qubits. To

1 I T 1 be more specific, we consider the operg#pr S; acting on
o (1X°) % o (1-x7) _z/1 = [4a]. (A8) g pipartite state;; of arbitrary dimension. Since local unitary
transformations can always be absorbed in the definition of
Here « is the first element of the matrix, pij, we can choos8, and$; to be diagonal. The correlation
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function can then be written in the bilinear form
Qip=trlpyj (S, ® Sp)] - trlpyj(Sy ® D]trlp; (1 ® Sp)]

1.1 ~- e T
> T@1"-1a") ® (b1" - 1b"x, (A14)
where the column vectors, 3, andb are representing the
diagonal elements of the matricgg, S,, andS, and 1is a
column vector with all ones. Thus the matri:=(al"

-1a" ® (b1T-1b") replaces the matrixy ® oy, in the defini-

tion (A9). Z is the tensor product of two antisymmetric ma-

PHYSICAL REVIEW A 71, 042306(2005

2. Two-qutrit states

As in the qubit case, we consider correlations of the form
(B1). In generalization to the usual spin-1 operators, we want
to maximize with respect to the bounded operatofs -
=S, S=<1. In the forthcoming discussion, we will only
consider pure states. In Schmidt decomposition we have
l==2 \liy® iy with \j=0 and\2+\3+\3=1. Let us be-
gin with rewriting the correlation function

trices of rank 2 and therefore has two positive and two nega-

tive eigenvalues. This property is sufficient to fulfill the
inequality (A10).

APPENDIX B: MAXIMUM CORRELATION FUNCTIONS
AND ENTANGLEMENT OF PURE
BIPARTITE STATES

1. Two-qubit states

For an arbitrary two-qubit state, we want to maximize
the correlation function,

he=tp(Sy ® )] - trfp(S, ® Dtrlp(l @ ).
(B1)
For qubits, we can parametriz8, and S; by the three-
dimensional unit vectora, b,

(B2)

(B3)

where 6= (0y0y0,). The correlation can then be written in
the form

Qag= 2 a,Qugbs= a'Qb (a,B=xY,2). (B4)
ap

The matrix elementg,; of the 3x 3 matrix Q are defined
by Eqg. (B1) with Sy=0,, S3=0,. Clearly the maximum
value for Qug is given by the largest singular value of the
matrix Q.

For a pure statg=|#)(i{, the matrixQ can be computed
using the Schmidt decompositidm)==\;|ia) ® |ig) with \;

=0. Note that local unitary transformations can always be

absorbed in the definition &, andS;. In this representation,

the matrixQ is diagonal and one can show that the maximum

value is given byQ,,=2\\,. It can easily be checked that
this expression is equal to the concurreri@s defined in

Qpg = tra[Sa(p1 — BD)] (B6)
=trg[Sg(p2 — aD)]. (B7)
Here we have defined theXx33 matrices
p1:=trg(1® Spp) = DVED, (B8)
po = trA(Sy ® 1p) = DY?S,DY2, (B9)
D := diag\{, A5, \3), (B10)

and the scalara=tr(p,), S=tr(p;). We further introduce the
eigenvalue decompositiony — 8D=UEU'. Note that the di-
agonal matrixE has zero trace and thus has at least one
negative entry. Now one immediately sees from @B§) that
Qag is maximized if Sy has the same eigenvectors gs
—-pD and if its eigenvalues are given by the sign of the
matrix E. Hence we can formulate the following relations
that hold for the maximum correlation function:

(i) Sy = U sgn(E)UT with tr(E) = 0, (B11)
(i) [SA1P1 - ,BD] =0, (B12)
(ii) [Sg,pp — aD]=0. (B13)

These conditions lead to the simple commutator relation
[D,M]=0, where M:=U(|E|-aE)U'. Since M commutes
with the diagonal matrixXD, it has to be diagonal. Trivially
this is fulfilled for diagonalU implying also a diagonal op-
erator Sy. A nondiagonalU is only possible if the matrix
(|E|-aE) is degenerate. Hence we arrived at the surprising
result that the operat@, that maximizes the correlatidQug

is either diagonaB,=diag1,-1,-1 or can be parametrized
in the form

1 0 0
S,=|0 cog6) sin(h)e? (B14)
0 sin®)e? -cog6)

As Qug is symmetric in A and B, an equivalent expression

Eq. (5). Thus we have shown that the entanglement of a pur&ith rotation anglest’ and ¢’ holds for the operato6s.

two-qubit state|y) as measured by the concurrenCeis
equal to the maximum correlation function,

max{ Qas(|¥)] = Qul|¥)) = C(|¥)) =2\ A2, (BS)
&b

From this we can deduce the relations-\?+cog6')(\5
-\3) and B=\3+cogf)(N\5—-\3).

The required degeneracy of the matf{€|-«E) puts a
constraint ona (or the optimal rotation anglé’) as a func-
tion of B: a=F(B) (for simplicity we do not specify the

This relation is central for establishing the strong connectiorfunction F herg. Due to symmetry, it also holds tha
between classical and quantum correlations in pure multipa=F(«). Clearly a fixpoint of the maximization procedure is

tite qubit stategsee Sec. I\

given by the symmetric solutioa=g (or §=6"). However,
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there also exists an asymmetric solution. In order to obtairE(|)). Hence then; =0 caseE(|y)) =f( 2\,Aaly =), with f
nice analytical expressions for these solutions, it is moréyeing the convex functiof6), yields alower bound on the
convenient to parametrize the functi@g using the form  entropy of entanglement. From this it follows that the en-
(B14) and then maximize with respect to the rotation anglesanglement of a pure two-qutrit state is lower bounded by the
fandé¢’, maximum correlation function,

Qag=\2+c0S6cosf (A\5+\3) + 2 sinfsin 0’ A\,

E = f(QXRY. B24
-2+ (2= 2coslNZ + (N2~ \Dcos e (1) =1Qss (B24
(B15)
Here we made the choicé=-¢’, which maximizesQag. APPENDIX C: ANALYTICAL CALCULATION OF THE
We further note that in this expression the role of the STRING ORDER PARAMETER AND THE LE
Schmidt coefficient\; is special, which results from the or- FOR MATRIX PRODUCT STATES
dering\;<\,=<M\g3. For the symmetric cas@=6'), we ob- . ] .
tain the optimal rotation angle We consider a MP$20) with qubit boerS(D:Z). In the
ya o case of OBC and qubits at the end poifits0,N+1), this
_ AN -3 (unnormalized MPS state can be written in the form
COY fopy) = 7 2 22 (B16)
()\2 - )\3) - (7\2 - )\3)
which yields the maximum correlation function = > aAL--- ANBa)is-i]B),  (CD)
AMNA\2 e
= —238 (B17) N
2Nohs— N whered andb are two-dimensional row and column vectors,

Notice that for \;=0, this reduces to the qubit solution 'espectively, andr, 8 < {0,1}. We are interested in the string
QUE=2)\,\5. As for the symmetric cas@,g Eq. (B15) is  order paramete(35) between the end spins. Using expres-
quadratic in cogf), the maximum can also be reached at theSion (27) for calculating expection values of MPS, we can
boundaries ca®)=+1. This leads to diagonal operatagg ~ W''t€

=S and the maximum correlation is given by

ae9=1-\-(\3+A\D 2 (B19) QoM =
SO —

The asymmetric solution can also be worked out, but is dif- é?(EﬂNé?
ficult to cast in a nice analytical form. For our purpose, it is

enou_gh to establish the following relation for the optimal|n the limit of largeN and diagonalizabl€x(E,), only the
rotation angles: maximum eigenvaluag(\;) will survive,

a[coq6) +cog8')]=—-b[1+cogb)cog8')], (B19

E2 (EQVED
—z =z (C2)

a >\ £b
(Eor R REs) ( AR

N
S ) : (C3
(ETFD(th) M

a:=\+\5-(\3-2\)?, (B20) £so'= im Q36" =

b= N2(A53-\3). (B21)

It can easily be verified that,b>0 anda=b. Inserting Eq.  Wherelp andr, denote the left and right eigenvectorsiy.
(B19) in Qug [Eq. (B15)], it follows that the asymmetric In the case of the AKLT model and for the baé#l), we

solution can be upper bounded by haVeAl:iO'y, AZ:O'Z, andA3=0'X. Hence one finds
b2
PYM< N2 \] - o + 2\5\3. (B22) Ei=0x® oy~ 0y ® 0y +0,® 0y, (C4H

Straightforward analysis shows that the two-qubit lifNg
=0) yields anupperbound for the maximum correlation in Er=-0x® oyt 0y ® 0y + 0, ® 0, (CH
the two-quitrit case,
max, _ sym ~diag ~asym and\g=X\,=3. Realizing thafi* andb” are representing unit
e’ += MaX QR Qha” Qae") = Zrokaho- (B2 vectors in the standarcgj basis, we obtain thpe residt 19
The maximum correlation function decreases if the number Let us now show how to calculate the LE between the end
of nonzero Schmidt coefficients increases. TR cannot  points of the chain for states of the for(@1). Since the end
be used for measuring entanglement as in the qubit case. Tlspins are represented by qubits, we can use the concurrence
entropy of entanglemeri(|#)) [25], on the contrary, in- (5) as an entanglement measure, which simplifies the calcu-
creases with the number of nonzero Schmidt coefficients, ktion considerably. For the basis1={i)i[}, the average
fact that follows directly from the concavity property of entanglement can be written Fkl]
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e Eill__iN2|deI(A'1~--A'N)| Ea(A) := Sj\l;llpz |detA)| = tr|AT(oy ® 0)Al.  (CB)
Lona= . (C) |
Ef(E)"E?
Since the determinant factorizes, we obtain The elements of thé2S+1) x D? matrix A are given by
SN Ai,(aB):Ala,,B' Hence we found a necessary and sufficient con-
MC 2 Ei |detA)| dition for long-range order in the entanglemén¢., nonva-
Lo — (énaﬁ)(ﬂléﬁ)) N ' (€7 nishing LS’N+1 for N—): The expressiorEa(A) has to be

equal to the largest eigenvalue, of the matrixE,. For the
in the limit of largeN. The basis which maximizeds*:Cis ~ AKLT model, one can easily check that this condition is
clearly the same basis, which maximizes the expressiomdeed fulfilled, and that§y.,=1.

>;|defA)|. This problem is equivalent to calculating the
EOA of the D? X D? stateA'A,

The ground state of the AKLT thus exhibits long-range
order both in terms of the LE and the string order parameter.
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