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We consider systems of interacting spins and study the entanglement that can belocalized, on average,
between two separated spins by performing local measurements on the remaining spins. This concept of
localizable entanglementsLEd leads naturally to notions like entanglement length and entanglement fluctua-
tions. For both spin-1/2 and spin-1 systems, we prove that the LE of a pure quantum state can be lower
bounded by connected correlation functions. We further propose a scheme, based on matrix-product states and
the Monte Carlo method, to efficiently calculate the LE for quantum states of a large number of spins. The
virtues of LE are illustrated for various spin models. In particular, characteristic features of a quantum phase
transition such as a diverging entanglement length can be observed. We also give examples for pure quantum
states exhibiting a diverging entanglement length but finite correlation length. We have numerical evidence that
the ground state of the antiferromagnetic spin-1 Heisenberg chain can serve as a perfect quantum channel.
Furthermore, we apply the numerical method to mixed states and study the entanglement as a function of
temperature.
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I. INTRODUCTION

The creation and distribution of entangled states plays a
central role in quantum information, because it is the key
ingredient for performing certain quantum information tasks,
such as teleportationf1g or quantum computation. In this
respect, multiparticle quantum states can be considered as
entanglement resources, naturally appearing in many physi-
cal systems. On the other hand, it is believed that the study
of multipartite entanglement might prove fruitful in other
fields of physics, such as condensed matter, e.g., for under-
standing the complex physics of strongly correlated states
f2,3g. In particular, it has been shownf4–9g that the ground-
state entanglement of various spin systems may exhibit char-
acteristic features at a quantum phase transition. Hence it is
desirable to find ways of characterizing and quantifying en-
tanglement in multipartite systems.

In f10g an entanglement measure, calledlocalizable en-
tanglementsLEd, has been defined. It quantifies the bipartite
entanglement contained in a multipartite system. The concept
of LE allows one to define the notion of entanglement length,
which characterizes the typical distance up to which bipartite
entanglement can be localized in the system. Moreover, it
has been shown for general pure qubit states that the LE can
always be lower bounded by connected correlation functions
f10g. Hence quantum phase transitions, characterized by a
diverging correlation length, are equivalently detected by a
diverging entanglement length. In fact, the concept of LE has
already proven useful in several studies of entanglement
properties of spin systemsf10–14g. Indeed, for ground states
of many spin-1/2 models, one finds that correlations and
entanglementsas given by LEd typically exhibit the same
qualitative behavior. In gapped spin-1 systems, which exhibit
finite correlation lengthsf15g, however, a ground state has
been found for which the entanglement length is infinitef11g.
This example also shows that the concept of LE can serve to
detect hidden order in certain states.

The LE is the maximum entanglement that can be local-
ized, on average, between two parties of a multipartite sys-
tem, by performing local measurements on the other parties.
Hence, LE is defined in an operational way and has a clear
physical meaning. For instance, it can be used as a figure of
merit to characterize the performance of quantum repeaters
f16g. Note that, in the context of LE, particles are not traced
out but measured. This is in contrast to earlier approaches,
where the concurrence of the reduced density operator of two
separated spins in a spin chain has been calculatedssee, e.g.,
f4,5gd. Although the concurrence exhibited characteristic fea-
tures at a quantum phase transition, it does not detect long-
range quantum correlations.

The fundamental difference between tracing and measur-
ing can be illustrated with two simple examples: For both the
GHZ statef17g and the cluster statef18g, it can readily be
checked that the reduced density operator of any two qubits
contains no entanglement at all. On the other hand, one can
find a local measurement basis, such that the LE is maximal.
We further note that in the case of the GHZ state, the en-
tanglement properties could also have been revealed by
studying the connected version of the two-point correlation
function. Indeed, the GHZ state is one of many examples
f10g for which correlations can be identified with quantum
correlations, i.e., entanglement. However, this intimate con-
nection does not hold true for all pure quantum statessas
shown inf11gd. For instance, in the case of the cluster state,
the LE is maximal, whereas the connected correlations are all
zero.

The intention of this paper is to provide a framework for
using LE as a measure for localizable bipartite entanglement
of multipartite quantum systems. Starting from the original
definition f10g, we introduce several variants of LE, and es-
tablish basic relations between them. Apart from the notion
of entanglement length, we also give meaning to the notion
of entanglement fluctuationsin terms of LE. Moreover, we
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generalize the earlier result that the LE is lower bounded by
connected two-particle correlation functions to pure qutrit
states, e.g., ground states of spin-1 systems. Apart from these
analytical findings, we present a method for the numerical
computation of the LE for arbitrary one-dimensional spin
systems. It allows us to efficiently simulate chains with even
more than 100 sites and also works for finite temperatures.
We apply this method for the study of LE present in ground
states of various spins models. We find that the entanglement
fluctuations as well as the LE exhibit characteristic features
at a quantum phase transition. For instance, we observe a
discontinuity in the first derivative of the LE at a Kosterlitz-
Thouless transitionf19g. These findings can be understood as
a direct consequence of the numerical observation that for
spin-1/2 systems, the LE and the maximal connected corre-
lation function are typically equal to each other. In the case
of the spin-1 Heisenberg antiferromagnet, however, we
rather observe the opposite behavior, namely an infinite en-
tanglement length but finite correlation length. In this con-
text, we also comment on a possible connection between the
presence of hidden order in the state and the existence of
long-range entanglement. In particular, we present examples
showing that, in general, such a connection does not exist. As
a further application of our numerical method, we study the
effect of finite temperature on the LE. For the AKLT model
f20g, we find that the entanglement length increases expo-
nentially with the inverse temperature.

The paper is organized as follows. We start by giving a
formal definition of LE and derive quantities such as en-
tanglement length and entanglement fluctuations. We further
connect the concept of LE with the idea of quantum repeat-
ers. In Sec. III, we recapitulate the earlier result for the lower
bound of LE in terms of connected correlation functions and
generalize it to pure qutrit systems. Next, we present in Sec.
IV a numerical method to compute the LE for spin chains.
The numerical scheme is based on the matrix-product state
sMPSd f21,22g representation of ground states and the Monte
Carlo sMCd f23g method. In Sec. V, this method is applied to
calculate the LE and the entanglement fluctuations for
ground states of various standard spin-1/2 chains. In Sec.
VI, we study the LE of gapped spin-1 models. In particular,
we present numerical calculations for the ground state of the
Heisenberg antiferromagnet, showing that the entanglement
length diverges. Furthermore, we comment on a possible
connection between a diverging entanglement length and
hidden order in the system. In Sec. VII, we demonstrate that
our numerical method can also be used to calculate the LE of
mixed states. As an example, we compute the entanglement
length as a function of the temperature for the AKLT model.
In Appendix A, we present an extended version of the proof
in f10g, leading to the lower bound of LE. We connect in
Appendix B the entanglement of pure two-qubit and two-
qutrit states to the maximum connected correlation function
of those states. Finally, in Appendix C, we show how to
calculate the LEsand the string order parameterd analytically
for pure states, represented by MPS with qubit bonds.

II. DEFINITION AND BASIC PROPERTIES
OF LOCALIZABLE ENTANGLEMENT

We consider a multipartite system composed ofN par-
ticles. With each particle we associate a finite-dimensional

Hilbert space. For simplicity, in the following we refer to the
particles as spins.

A. Definition

The localizable entanglementsLEd of a multispin stater
is defined as the maximal amount of entanglement that can
be createdsi.e., localizedd, on average, between two spins at
positionsi and j by performing local measurements on the
other spins. More specifically, every measurementM speci-
fies a state ensembleEMª hps,rs

ijj. Here ps denotes the
probability to obtain thesnormalizedd two-spin staters

ij for
the outcomehsj of the measurements on theN−2 remaining
spins. The average entanglement for a specificM is then
given by

L̄i,j
M,Esrd ª o

s

psEsrs
ijd, s1d

where Esrs
ijd is the entanglement ofrs

ij . Suitable entangle-
ment measures will be discussed later in this section. The
localizable entanglement is defined as the largest possible
average entanglement,

Li,j
C,Esrd ª sup

MPCos

psEsrs
ijd, s2d

with C denoting the class of allowed measurements. We call
the measurementM which maximizes the average entangle-
ment theoptimal basis. It is important to note that the only
restriction onM is that the measurements are performed
locally, i.e., on individual spins. Apart from that, the measur-
ment basis is arbitrary and can also vary from site to site. We
distinguish three classesC of measurements: projective von
Neumann measurementssPMd, those corresponding to posi-
tive operator-valued measuressPOVMd, and general local
measurements that allow also for classical communication of
measurement resultssLOCCd. In terms of LE, the following
relationship between these classes holdsf24g:

Li,j
PM,Esrd ø Li,j

POVM,Esrd ø Li,j
LOCC,Esrd. s3d

In this paper, we will be mainly concerned with projective
measurements. To simplify the notation, we omit in this case
the superscript PM.

The definitions2d still leaves open the choice of the en-
tanglement measureE for the stateshrs

ijj. Suitable measures
depend on aspects such as the dimensionality of the spins
and the purity of the state. In the following, we specify for
the cases of both pure and mixed spin-1/2 and spin-1 sys-
tems appropriate entanglement measures used in this article.

For pure multipartite statesr, the stateshrs
ijj after the

measurements are also pure, and then there exists, in prin-
ciple, a special entanglement measuref25g, i.e., the entropy
of entanglement. For a pure bipartite state,ri j = uclkcu, the
entropy of entanglementEE is defined as the von Neumann
entropy of the reduced density operatorri =trjsri jd,

EEsri jd = − trsri log2 rid. s4d

In the case of a pure two-qubit state,ucl, it can be shown that
the EE is a convex, monotonously increasing function,EE
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= fsCd, of the concurrencef26g. The concurrenceCscd for
pure states and the convex functionf are defined as

Cscd ª zkc* usy ^ syuclz, s5d

fsCd ª HS1 +Î1 − C2

2
D , s6d

Hsxd ª − x log2 x − s1 − xdlog2s1 − xd. s7d

Here, uc*l denotes the complex conjugate ofucl in the stan-
dard basis andHsxd is the Shannon entropy. In this article,
we will typically use the concurrence to measure the en-
tanglement of two qubits, because it can be simply related to
connected correlation functionsssee Appendix Bd. However,
due to the convexity of the functionfsCd, the LE as mea-
sured by the concurrence,Lij

C, yields lower and upper bounds
for the LE as measured by the entropy of entanglement,Lij

EE,

fsLij
Cd ø Lij

EE ø Lij
C. s8d

Therefore, the qualitative behavior of these two variants of
LE will be very similar.

In the case ofmixedstates, the entanglement can be cal-
culated using, e.g., the entanglement of formationEF f27g or
the negativityf28g. For two qubits, an explicit formula for
theEF in terms of the concurrenceC exists, which reduces to
Eq. s5d in the case of pure states. The negativityN can in
principle be calculated for any spin dimension.

B. Entanglement length and fluctuations

In the field of strongly correlated systems and more spe-
cifically in the study of quantum phase transitions, the cor-
relation length,jC, is of great importance. The concept of LE
readily lends itself to define the relatedentanglement length,
jE, as the typical length scale at which it is possible to create
Bell states by doing local measurements on the other spins,

jE
−1
ª lim

n→`
S− ln Li,i+n

E

n
D . s9d

The entanglement length is finite if the LELi,i+n
E

→exps−n/jEd for n→`, and the entanglement lengthjE is
defined as the constant in the exponent in the limit of an
infinite systemssee also Aharonovf29gd.

Let us now have a closer look at the statistical nature of
LE, as it is defined as an average over all possible measure-
ment outcomesfsee Eq.s2dg. For practical purposes, one can
only control the measurement basis but not a specific out-
come. Therefore, it would be useful to have an estimate of
how much the entanglement of a particular measurement
outcome deviates from the mean value as given by the LE.
This information is contained in the variance of the entangle-
ment remaining after measurements. We can thus define the
notion of entanglement fluctuations,

sdLi,j
M,Ed2

ª So
s

psEsrs
ijd2D − Li,j

M,E2
. s10d

The entanglement fluctuations can be defined for any mea-
surementM. Typically, we choose forM the optimal basis,

which maximizes the average entanglement. In this case, we
drop the indexM in Eq. s10d.

The study of both the entanglement length and the en-
tanglement fluctuations could provide further inside into the
complex physics of quantum phase transitions by revealing
characteristic features at the quantum critical point. Ex-
amples for this are presented in Sec. V.

C. Connection to quantum repeaters

So far we have given a purely mathematical definition of
LE s2d. However, it is evident that the LE is defined in an
operational way that can directly be implemented on certain
physical systems. In addition, the concept of LE may also
play an essential role in some interesting applications of
quantum information theory. To be more precise, LE can
serve as a figure of merit for the “performance” of certain
kinds of quantum repeaterssQRd.

Many tasks in quantum information processing require
long-distance quantum communication. This means quantum
states have to be transmitted with high communication fidel-
ity via a quantum channel between two distant parties, Alice
and Bob. Since quantum transport is also possible via tele-
portation f1g, this problem is equivalent to establishing
nearly perfect entanglement between two distant nodes. All
realistic schemes for quantum communication are presently
based on the use of photonic channels. However, the degree
of entanglement generated between distant sites typically de-
creases exponentially with the length of the connecting
physical channel, due to light absorption and other channel
noise. To overcome this obstacle, the concept of quantum
repeaters has been introducedf16g. The central idea is to
divide the channel into segments and to include additional
nodes. Entanglement between adjacent nodes can be ex-
tended to larger distances using entanglement swapping fol-
lowed by purification. After several rounds, one obtains a
pair of almost maximally entangled nodes, shared by Alice
and Bob, that can be used for perfect quantum transport via
teleportation. A possible physical realization of the QR using
trapped atoms is sketched in Fig. 1f30g.

Let us now discuss how a QR setup can be characterized
by the LE. First of all, let us identify the particles sitting at
different nodes by spins. It is important to note that, by com-
bining several spins to a larger Hilbert space of dimensiond,
the operations required for purification and entanglement
swapping on this set of spins can be interpreted as local

FIG. 1. Illustration of the quantum repeater scheme for trapped
atoms connected by optical fibers. Qubits are represented by the
internal states of the atoms. Applying laser beams, the internal
states of atoms in adjacent cavities become entangled via the trans-
mission of photonic states. Collective measurements on the nodes
sindicated by arrowsd followed by purification lead to the genera-
tion of a nearly perfectly entangled pair of qubits between A and B.
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operations on a single spin of dimensiond. Thus the QR can
be treated as a system of interacting spins being in a stater.
In order to assess and quantify the usefulness of such a setup
as a QR, one has to compute the following figure of merit:
What is the maximum amount of entanglement that can be
generated between the two end spins by performing local
operations on the intermediate spins? But this number is
merely the LE. The question of which variant of LEs3d
should be used depends on the class of available local opera-
tions sPM, POVM, or LOCCd. Typically, classical communi-
cation is allowed so thatLij

LOCC has to be taken as the figure
of merit. However, not every measurement might be physi-
cally realizable. Therefore, the LE will in general give an
upper bound for the performance of a given QR setup.

III. BOUNDS ON LE

Due to its variational definition, the LE is very difficult to
calculate in general. Moreover, typically one does not have
an explicit parametrization of the state under interest, but just
information about the classical one- and two-particle corre-
lation functionsswhich allows one to parametrize completely
the two-spin reduced density operatorri jd. It would therefore
be interesting to derive tight upper and lower bounds to the
LE solely based on this information.

A. Upper bound

The upper bound can readily be obtained using the con-
cept of entanglement of assistancesEOAd f31g. The EOA
depends only on the reduced density operatorri j for spinsi
and j and can be defined for any spin dimension. In the case
of a pair of qubits, an explicit formula for EOA can be de-
rived f32g. Given ri j and a square rootX, ri j =XX†, then the
EOA as measured by the concurrence reads

EA
i,jsri jd ª truXTssy

i
^ sy

j dXu, s11d

with uAu=ÎA†A. HenceEA
i,jsri jd=ok=1

4 sk, where sk are the
singular values of the matrixXTssy

i
^ sy

j dX. Note that for
pure four-qubit states, a variant of EOA with local measure-
ments was considered inf32g.

B. Lower bound

First, from the definition of LEs2d it follows that any
specific measurement, e.g., in the computational basis, trivi-
ally provides a lower bound on the LE. More interestingly, it
has been proven inf10g that for generalpurequbit states, the
LE can be lower bounded by connected correlation func-
tions. In the following, we recapitulate the central results
leading to this bound for spin-1/2 systems and present some
extensions. Next we show to what extent these findings can
be generalized to higher-dimensional spin systems.

1. Spin-1/2 systems

The basic idea is to establish a connection between the LE
and connected correlation functions of the form

QAB
ij = trfrsSA

i
^ SB

j dg − trfrsSA
i

^ 1dgtrfrs1 ^ SB
j dg. s12d

For qubits, the operatorsSA, SB can be parametrized by di-

rectionsaW, bW, representing unit vectors in a 3D real space:

SA=aW ·sW , SB=bW ·sW with sW =ssx,sy,szd.
We start out by quoting the central result off10g.
s1.id Given aspure or mixedd state ofN qubits with con-

nected correlation functionQAB
ij between the spinsi and j and

directionsaW, bW, there always exists a basis in which one can
locally measure the other spins such that this correlation does
not decrease, on average.

An extended version of the proof is presented in Appen-
dix A. There we also show that this result can be generalized
to a setup, where the spinsi and j can be of any dimension,
but the remaining spinsson which the measurements are per-
formedd are still qubits. In a spin-1/2 system, such a situa-
tion can arise, for example, when considering correlations
between two blocks of spins.

Next, we relate correlations with entanglement. We note
that after the measurement process and for an initially pure
state, we end up with a pure state of two qubits. For such a
state, we have proven the following resultf10g ssee also
Appendix Bd:

s1.iid The entanglement of a pure two-qubit stateuci jl as
measured by the concurrence is equal to the maximal corre-
lation function

Csci jd = max
aW,bW

uQAB
ij sci jdu. s13d

Combinings1.id ands1.iid, we know that for a given pure

multiqubit stateucl and directionsaW, bW there always exists a
measurementM such that

QAB
ij scd ø o

s

psQAB
ij scsd ø o

s

psCscsd. s14d

The term on the very right is equal to the average entangle-
ment as measured by the concurrenceLij

M,C, which trivially
is a lower bound to the LE as defined byLij

C. Since the

directionsaW, bW can be chosen arbitrarily, relations14d holds
in particular for directions maximizingQAB

ij scd. Hence we
can establish the desired lower bound on LEf10g.

s1.iiid Given a pure stateucl of N qubits, then the LE as
measured by the concurrence is larger than or equal to the
maximal correlation,

Li,j
C scd ù max

aW,bW
uQAB

ij scdu. s15d

Making use of the basic properties of LE, presented in the
previous section, we can immediately derive analogous
bounds for some other variants of LE; for example,

Li,j
EEscd ù f„max

aW,bW
uQAB

ij scdu…, s16d
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Li,j
POVM,EEscd ù f„max

aW,bW
uQAB

ij scdu…, s17d

with f being the convex function defined in Eq.s6d. We will
see below that relations17d can be generalized to spin-1
systems.

2. Higher-dimensional spin systems

We now try to extend the previous findings beyond spin-
1/2 systems. First, we look for a generalized version of
statements1.id. Unfortunately, the techniques used in the
proof for qubits seem to fail already for qutrits. Nevertheless,
a generalization is still possible by changing the perspective
a little bit. For this we embed a spin-S in a higher-
dimensional Hilbert space, being composed ofnù log2s2S
+1d virtual qubits. Let us denote thes2S+1d32n matrix
governing this transformation byP.

In the case 2S+1=2n, the embedding is trivial and the
situation becomes equivalent to the qubit case. Thus the re-
sult s1.id can immediately be generalized, because local mea-
surements on the virtual qubit systems can be chosen such
that s1.id holds.

In the case 2S+1,2n, a similiar argument applies if we
allow for POVM measurements on the spin-S system. To be
more precise, let us consider a mixed stater of three spin-S
particles. The spin on which the measurement is performed
slet us denote it with the index 3d is embedded in a
2n-dimensional system. The embedded state is then given by
the transformationr8=s112^ P3

†drs112^ P3d. In the Hilbert
space of then virtual qubits, one always finds local projec-
tive measurements hMa1¯an

j=hua1lka1u ^ ¯ ^ uanlkanuj
such thatsthe generalized version ofd s1.id holds for the state
r8. In terms of the original stater, this measurement in the
2n-dimensional space corresponds to a POVM measurement
hPMa1¯an

P†j on a spin-S system, because
oa1¯an

PMa1¯an
P†=P12n32nP†=1s2S+1d3s2S+1d.

Thus one can generalize the results1.id to arbitrary spin
dimensions in the following way.

s2.id Given an arbitrary multispin state with connected
correlation functionQAB

ij between spinsi and j for arbitrary
operatorsSA, SB, then there always exists a local POVM
measurement on the other spins such that this correlation
does not decrease, on average.

We note that the lower bound ins2.id can already be
reached by applyinglocal measurements on the virtual qubit
system. Performing joint measurementsse.g., Bell measure-
ments on pairs of qubits as shown inf11gd can lead to a
considerable enhancement of the average correlations. If in
addition 2n−s2S+1d joint measurements can be chosen such
that they are orthogonal to the projectorP, the resulting mea-
surement on the spin-S system corresponds to a projective
von Neumann measurement.

The most difficult part is to establish a connection be-
tween correlations and entanglement for pure two-spin states
in analogy ofs1.iid. In the case of qubits, we made explicit
use of the fact that the group SUs2d is the covering group of
SOs3d. Moreover, the concurrence served as an entanglement
measure, which was easy to handle. For higher spin dimen-
sions, we refer to the entropy of entanglementEE s4d as a

suitable entanglement measure for pure bipartite states. In
the special case of qutrits, we were able to show the follow-
ing relationsAppendix Bd.

s2.iid The entanglement of a pure two-qutrit stateuci jl as
measured by the entropy of entanglement can be lower
bounded by

EEsci jd ù f„max
A,B

uQAB
ij sci jdu…, s18d

wheref is the convex functions6d andSA, SB in QAB
ij s12d are

operators, whose eigenvalues lie in the intervalf−1;1g.
Combining agains2.id and s2.iid, we can formulate a bound
on LE for spin-1 systems.

s2.iiid Given a pure stateucl of N qutrits, then the LE as
measured by the entropy of entanglement and which allows
for POVM’s is lower bounded by the maximum connected
correlation function in the following way:

Lij
POVM,EEscd ù f„max

A,B
uQAB

ij scdud. s19d

In summary, we have shown for pure qubit and qutrit
states that connected correlation functions provide a lower
bound on LE. This bound allows for two intriguing limiting
cases.sid Entanglement and correlations may exhibit similiar
behavior.sii d Spins may be maximally entangled although
they are uncorrelated in the classical sense. In the forthcom-
ing sections, we will present examples for both scenarios.

IV. COMPUTATION OF LE BASED ON MATRIX
PRODUCT STATES AND THE MONTE CARLO METHOD

In this section, we propose different techniques to calcu-
late the LE numerically for ground states of 1D spin systems.
Let us consider a chain ofN spins of dimensiond=2S+1.
The ground state of the system can be determined exactly by
diagonalization of the Hamiltonian. However, the state is
characterized by an exponential amount of parameters as a
function of N, thus limiting the exact treatment of the prob-
lem to relatively small system sizes.

As an alternative approach, we can start out with an ap-
proximation of the exact ground state in terms of the so-
called matrix product statessMPSd f21,22g,

ucMPl = o
s1,. . .,sN=1

d

TrsA1
s1
¯ AN

sNdus1, . . . ,sNl. s20d

Here the state is described byN matricesAi
si of dimensionD.

We note that the MPSs20d is written in the computational
basis and accounts for periodic boundary conditionssPBCd.
It has been shownf22,33g that MPS appear naturally in the
context of the density-matrix renormalization group
sDMRGd methodf34g. Assuming we are able to calculate the
ground state in MPS forms20d, let us now present a scheme
to compute the LE from that. For translationally invariant
systems, it is sufficient to consider the LE between the spins
1 and j =1+n. The spured normalized state of these two
spins, after local measurements on the remaining ones have
been performed, is conditioned on the measurement out-
comes denoted by thesN−2d-tuple hsjª hs2¯sj−1sj+1¯sNj
and proportional to
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ufhsjl = khsjucMPl = o
s1,sj=1

d

TrsA1
s1
¯ AN

sNdus1lusjl. s21d

Without loss of generality, we can assume that the computa-
tional basis is the optimal one. Otherwise we can make a
change of basis in Eq.s21d. Hence the LE is given by

Lij
EscMPd = o

hsj
phsjEsf̃hsjd, s22d

wherephsj=kfhsj ufhsjl / kcMPucMPl is the probability for ob-

taining the normalized stateuf̃hsjl= ufhsjl / kfhsj ufhsjl1/2.
Though the MPS representation allows us to efficiently cal-
culate the states after the measurements, we still face the
problem that the sums22d involves an exponential number of
termssdN−2d. To find a good approximation of this sum, we
propose a scheme based on the Monte CarlosMCd method,
which will now be explained in more detail.

A. Monte Carlo method

The Monte Carlo method provides an efficient way of
selectingM statesufml sequentially from thesgivend prob-
ability distribution hphsjj. The LE can thus be approximated
by

LsMCd,i j
E scMPd <

1

M
o
m=1

M

Esf̃md ±
1

ÎM
dLij

EscMPd. s23d

Note that the accuracy of the MC method depends on the
entanglement fluctuationsdLij

E, which can be computed
within the MC scheme as well.

For selecting the statesufml, we follow theMETROPOLIS

algorithm f23g and use single-spin-flip dynamics. We start
with an initial stateufml corresponding to a specific measure-
ment outcomehsj. From this we create a trial stateufnl by
randomly picking a sitei and changing the state of this spin
with equal probability according tosi →modssi ±1,dd for si

=0,1, . . . ,d−1. For a spin-1/2 this simply amounts to a spin
flip. The probability pn for obtaining the trial state after a
measurement can conveniently be computed using the MPS
representationss21d. The trial state is accepted with probabil-
ity

Psm → nd = 5 pn

pm

if pn , pm,

1 otherwise.
6 s24d

If the trial state is accepted, it serves as a starting point for
creating a new trial state. AfterN−2 steps, defining one MC
sweep, the entanglement of the current state is calculated
f36g. After M sweeps, the algorithm stops and the average
s23d is performed.

B. Finding the optimal measurement basis

The definition of the LEs2d requires an optimization over
all possible measurement strategies. A good guess for the
optimal basis can typically by found using exact diagonaliza-
tion for small system sizes, followed by numerical maximi-

zation of the average entanglement. Alternatively, the opti-
mal basis can also be extracted directly from the MPS
matricesAi in s21d. Using a generalization of the concur-
rence for pure bipartiteD3D states, it has been shown in
f11g sfor an open chain withD-dimensional spins at the endsd
that the optimal basis is the same basis that maximizes the
expressionosi

udetsAi
sidu2/D. Hence we can consider the matri-

cesAi assunnormalizedd pureD3D3d states, for which we
want to calculate the LE with respect to theD3D system.
Since we measure only on a single site, this problem is
equivalent to calculating the EOA of the reducedsD23D2d
density matrix, which can be done numericallyssee also Ap-
pendix Cd. For the models we studied, our numerical analysis
indicates that these findings hold independent of the choice
of both the entanglement measure and the boundary condi-
tions. As a further numerical result, we find that the optimal
basis appears to be independent of the system size. Hence
exact diagonalization and numerical optimization for small
systems usually provides the most efficient way to find the
optimal measurement strategy.

C. Determination of the MPS

In the following, we are interested in finding a good ap-
proximation of the true ground state in terms of MPSs20d for
systems with PBC. We choose PBC in order to minimize
boundary effects and to better mimic the behavior in the
thermodynamic limit already for small system sizes. Let us
now introduce a method to determine translationally invari-
ant MPS. It is based on the following idea: We use the
DMRG algorithm for an infinite chain to extract a site-
independent set of matricesAs, defining a translationally in-
variant MPSs20d for infinite N. We then use the same setAs

to construct a MPS with PBC for arbitraryN. It is obvious
that this method is very efficient, particularly for largeN,
because we have to run the DMRG only once to obtain the
MPS representation for any system size. One might expect
that this increase in efficiency happens at the cost of preci-
sion. However, an optimum in accuracy on the part of the
MPS is not crucial for the numerical calculation of the LE,
since the limiting factor for the accuracy is typically the MC
method.

We start by briefly reviewing the variant of DMRG, rep-
resented byB•B f33g, for an infinite 1D chain. At some
particular step, the chain is split into two blocks and one spin
in between. The left blocksLd contains spins 1, . . . ,M −1,
and the right onesRd spins M +1, . . . ,N. Then a set ofD

3D matricesÃsM is determined such that the state

uCl = o
s=1

d

o
a,b=1

D

Ãa,b
sM ualL ^ uslM ^ ublR s25d

minimizes the energy. The statesualL,R are orthonormal, and
have been obtained in previous steps. They can be con-
structed using the recurrence relations

ualL = o
a8=1

D

o
s=1

d

Ua,a8
fM−1g,suslM−1 ^ ua8lL8, s26d

where the blockL8 contains the spins 1, . . . ,M −2.
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Numerically we find that the matricesUfkg,s can be chosen
in such a way that they converge tossite-independentd ma-
tricesUs at the fixed point of the DMRG algorithm. Apply-
ing an appropriate transformationR, these matricesUs can be
used to construct a translationally invariant MPSs20d with

As=RUsR−1=RÃsRT f37g. Note that starting from these
states, it is possible to calculate expectation values of prod-
ucts of local observablesf21,22,33g, since

kCuO1 ¯ ONuCl = TrsEO1

f1g
¯ EON

fNgd, s27d

where

EO
fkg = o

s,s8=1

d

ksuOkus8lAk
s

^ sAk
s8d* . s28d

We applied this method to compute ground-state expectation
values using expressions27d for various 1D spin systems
with PBC f38g. Our numerical analysis of systems with finite
N shows that both the energy and the correlations can be
computed rather accurately. The achieved accuracy is several
orders of magnitude higher than finite-size effects, but also
several orders of magnitude lower compared to the varia-
tional method f35g, which has been introduced recently.
These findings even hold for system sizes as low asN<10,
and are rather surprising, because the MPS is constructed
from the infinite chain. We further checked that also the
long-range behavior of correlations and entanglement is re-
produced correctly by our translationally invariant MPS.

To sum up, our numerical results indicate that translation-
ally invariant states can be sufficiently well approximated by
a single set of MPS matricesAs for almost arbitrary system
size N. This observation, together with the findings inf11g,
might shed some light on our previous numerical finding that
the optimal measurement basis for LE is typically both site-
and size-independent.

V. EXAMPLES OF LE IN SPIN-1/2 MODELS

In this section, we apply the concept of LE to quantify the
localizable ground-state entanglement of various spin-1/2
models. After some general considerations, we compute the
LE as measured by the concurrenceLi,j

C numerically for two
specific examples.

A. General considerations

We consider spin-1/2 Hamiltonians of the form

H = − o
i,j

o
a=x,y,z

ga
i jsa

i sa
j − o

i

gisz, s29d

with parity symmetry,fH ,Pzg=0, andPzª^ i=1
N sz

i . Exten-
sive numerical calculations on systems of up to 20 qubits
showed that our lower bound is always close to the LE as
measured by concurrenceLi,j

C , and typically is exactly equal
to it: this is surprising and highlights the tightness of the
given lower bound. Note also that whenever parity symmetry
is present, the upper and lower bound are given as follows
f10g:

maxsuQxx
ij u,uQyy

ij u,uQzz
ij ud ø Li,j

C ø
Îs+

i j + Îs−
i j

2
, s30d

s±
i j = s1 ± ksz

i sz
jld2 − sksz

i l ± ksz
jld2.

The fact that the lower bound is usually tight can also be
derived from the numerical observation that for Hamilto-
nians of the forms29d, measurements in thesstandardd sz
basis sM=Zd yield in most cases the optimal result. Ex-
panding the ground state in that basis,ucl0=oci1¯iN

ui1¯ iNl,
it is straightforward to show that, e.g., in the case of constant
ssite-independentd coupling gx and gy, the ground-state en-
ergy is minimized if all expansion coefficientsci1¯iN

have
the same sign. This guarantees, together with the parity sym-
metry, that the average entanglementLi,j

Z,C for measurements
in the standard basis is equal to either thex-x or y-y corre-
lation. To be more precise, we distinguish the following
cases:

sgx
ij − gy

ijdsgx
ij + gy

ijd ù 0: Li,j
Z,C = uksx

i sx
j lu, s31ad

sgx
ij − gy

ijdsgx
ij + gy

ijd ø 0: Li,j
Z,C = uksy

i sy
j lu, s31bd

where the conditions refer to all sitesi and j of the chain.
Most of the prominent spin Hamiltonians studied in the lit-
erature, like the Heisenberg,XY, or XXZmodel, etc., trivially
fulfill one of the conditionss31d, because their coupling co-
efficients are site-independent. Hence, measurements in the
standard basis would yield localizable quantum correlations
that are completely determined by classical correlations.

B. Ising model

As an illustration, let us now discuss the LE of the Ising
model in a transverse magnetic fieldfga

i j =lda,xd j ,i+1; gi =1 in
Eq. s29dg, which has been solved exactlyf39g and exhibits a
quantum phase transition atl=1. In this case, the maximal
connected correlation function is always given byQxx, which
thus yields the best lower bound on LE. Numerical optimi-
zation for a finite chain indicates that the standard basis is
indeed the optimal one and thus the lower bound is equal to
Li,j

C f10g. We checked analytically, using perturbation theory,
that for an infinite chain this numerical result is indeed true.
However, for a spin distancen= ui − j u one has to go to
nth-order perturbation theory, limiting this analytical treat-
ment to rather smalln.

Consequently, we can use exact results for the connected
correlation functionQxx f39g to completely characterize the
behavior of the LE in the Ising chain. The Ising system is
therefore also an ideal candidate for testing the performance
of our numerical method outlined in Sec. IV. In Fig. 2, we
plot Li,i+n

C andQxx
i,i+n as a function of the spin distancen for a

chain withN=80 sites.
For l,1, the LE decreases exponentially withn, and the

entanglement length is finite. At the quantum critical point
l=1, the behavior of the LE changes drastically, because it
suddenly decreases as a power law,Li,i+n

C ,n−1/4, thus leading
to a diverging entanglement lengthjE. In Fig. 2, we observe
that the MC method becomes less accurate at the critical
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point. As we will see later, one reason is that the statistical
error due to entanglement fluctuations becomes rather large
at the critical pointssee Fig. 3d. Another ssystematicd error
might be induced by the single-spin-flip dynamics used to
create the trial state. Better results for the critical region
could possibly be achieved by applying the Wolff algorithm
f41g. Here, a cluster of spins depending on their spin orien-
tation is flipped, which accounts for the formation of do-
mains.

In f10g it was shown that for the casel.1, we also get
jE=`, since the LE saturates to a finite value given byMx

2

= 1
4s1−l−2d1/4. Indeed, the ground state is then close to the

GHZ state. In a more realistic setup, however, the parity
symmetry of the Ising Hamiltonian will be broken by a per-
turbation and the ground state for large coupling will also be
separable, as it is given by a superposition of two GHZ states
with different parityf40g.

Let us now study the behavior of entanglement fluctua-
tionsdLi,j

C inherent to the statistical definition of LEfsee Eq.
s10dg as a function of the couplingl. In Fig. 3, we plotdLi,j

C

for different parametersn andN.
The maximum of the fluctuations is always located in the

vicinity of the critical pointl=1 and gets shifted to largerl
values with increasingN. Thus the increasing entanglement
fluctuations reflect very well the increasing complexity of the
wave function close to the critical region. The location of the
maximumlm in the thermodynamic limitsN→`d apparently

depends on the distancen of the two spins. For nearest
neighborssn=1d, we observe that the maximum ofdLi,i+1

C is
somewhat shifted to the right of the critical pointslm

<1.025d. For all distancesn.1, however, our numerical
calculations show that the maximum is positioned atl,1
but becomes asymptotically close to the critical point with
increasingn sfor n=4, see Fig. 3d. Furthermore, in Fig. 3 we
see that the absolute value of the maximum increases withn
and becomes comparable withLij

C itself f42g. The strong fluc-
tuations inherent to the Ising model lead to large statistical
errors in the numerical calculation of LE using the Monte
Carlo methodfsee Eq.s23dg. The errors become even more
pronounced for the calculation of the fluctuations. This is the
main reason why we have restricted ourselves here to exact
calculations for a small system with PBC. However, we con-
firmed that the data forN=16 represent the behavior in the
large-N limit reasonably well and no qualitative changes oc-
cur.

C. XXZ model

Let us now turn to the discussion of another exactly solv-
able 1D spin system, the so-calledXXZ model f43g. This
model not only appears in condensed-matter physics in the
context of ferro- or antiferromagnetic materials, but recently
it has been shown that it can also effectively describe the
physics of ultracold atoms in a deep optical latticef48g. The
Hamiltonian can be written as

FIG. 2. Calculation of theLi,i+n
C sdiamondsd for the ground state of the Ising chain in a transverse fieldfga

i j =lda,xd j ,i+1; gi =1 in Eq.s29dg
as a function of the spin distancen. For comparison, we plot the exact resultf39g for the correlation functionQxx

i,i+n. Left: l=0.8, exponential
decrease; right: critical pointl=1, power-law decreases,n−1/4d; numerical parametersssee Sec. IVd: N=80, D=16, MC sweepsM
=20 000.

FIG. 3. Exact calculation of entanglement fluctuationsdLi,i+n
C s10d as a function of the coupling parameterl for a finite Ising chain in a

transverse magnetic field with PBC. Left: distancen=1, N=6 sdashedd, N=12 sdottedd, N=16 ssolidd; right: distancen=4, N=9 sdashedd,
N=12 sdottedd, N=16 ssolidd.
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HXXZ= − o
i
Fsx

i sx
i+1 + sy

i sy
i+1 + Dsz

i sz
i+1 +

h

J
sz

iG , s32d

where we have introduced two dimensionless parameters,
which can be varied independently: the anisotropyD and the
magnetic fieldh/J in units of the exchange coupling. The
phase diagram of theXXZ model as a function of these two
parametersf43g is depicted in Fig. 4.

The XXZ model can be solved exactly using the Bethe
ansatzf44g. Unfortunately, analytical expressions for the cor-
relation functions, which would yield lower bounds for LE,
have only been worked out in special cases. For example, for
the antiferromagneticXXXmodel in a magnetic fieldsline of
constantD=−1 in Fig. 4d, analytical solutions for the corre-
lations are summarized inf12g. Numerics on a finite chain of
up to 14 spins show that again measurements in thesz basis
appear to be optimal. Using the results31ad, this implies that
Li,i+n

C =ksx
i sx

i+nl. Hence the bounds given inf12g are tight. In
particular, this means that the entanglement length is zero for
h/J.4 and infinite forh/Jø4.

After these introductory remarks, let us study the ground-
state entanglement properties of theXXZ model in more de-
tail. In particular, we are interested in finding characteristic
features in the LE at the quantum phase transitions indicated
by the linesa and b in the phase diagram Fig. 4. For this
purpose, we calculate in the following the LEsfor fixed nd
numerically, using exact diagonalization, as a function of the
two parametersD andh/J.

1. LE as a function of the magnetic field h/J

In Fig. 5, we plotLi,i+1
C and the lower boundsQxx

ij andQzz
ij

as a function of the fieldh/J for fixed D=0.5. We find that
Li,i+n

C =ksx
i sx

i+nl. This result can be understood as a conse-
quence of the numerical observation that the standard basis
appears to be optimal in the entire half-spaceDù−1.

At the critical point the LE becomes zero, because the
ground state is given by a product state. Note that this phase
transition sindicated by linea in Fig. 4d is sharp even for
finite systems, since it is due to level crossingf43g.

We now investigate the regionD,−1, which contains a
second quantum phase transitionsindicated by lineb in Fig.
4d. The dependence of the LE and its bounds on the magnetic
field for fixed D=−2 is depicted in Fig. 5. We again observe
a sharp phase transition ath/J<6, when the system enters
the unentangled phase AsFig. 4d. At h/J<1.6, the LE expe-
riences a sudden drop-off. However, it remains to be checked
whether this step is due to finite-size effects or a character-
istic feature of a quantum phase transition. Note that for
h/J&1.6 we obtain thatLi,j

C =Qzz
ij . This feature can be under-

stood by considering the limiting case of zero field andD
→−`. There, the HamiltonianHXXZ commutes with the par-
ity operator in thex direction,Px= ^ i=1

N sx
i , and thesdoubly

degenerated ground state for evenN is given by ucl
=1/Î2su0101̄ 01l± u1010̄ 10ld. After suitable projective
measurements in thex direction, these states reduce to maxi-

FIG. 4. Schematic drawing of the phase diagram of theXXZ
modelfEq. s32dg as a function of the anisotropyD and the magnetic
field h/J f43g. In regions A and C, the ground state has an energy
gap, whereas in region B the system becomes gaplessscriticald.
Point E is the ferromagneticXXX point and point D corresponds to
the antiferromagneticXXX point.

FIG. 5. Calculation of the localizable entanglementLi,i+n
C sdia-

mondsd, the upper bound given by the EOAs11d sdashedd and the
lower boundsQxx

ii+n ssolidd and Qzz
ii+n sdottedd as a function of the

field h/J for the ground state of theXXZmodels32d. The numerical
calculation is performed using exact diagonalization of a chain with
N=16 sites and PBC. The distance of the two spins isn=4 sites; up:
D=0.5; down:D=−2.
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mally entangled Bell statesuC±l=1/Î2su01l± u10ld. Hence in
this limit Li,j

C =Qzz
ij →1 and thesx basis turns out to be the

optimal one. This line of reasoning strictly holds only in the
limit D→−`, but can qualitatively be extended to the whole
region CsFig. 4d.

For h/J*1.6, we observe in Fig. 5 one of the rare ex-
amples for which the LE is not exactly equal to the maxi-
mum correlation function. Note also that in this region, the
maximum correlation function changes fromQzz

ij to Qxx
ij .

When approaching the critical pointh/J<6, the standard
basis becomes close to optimal again andLi,j

C <Qxx
ij .

In the following, we take a closer look at the phase tran-
sition between the regions B and C in Fig. 4.

2. LE as a function of the anisotropyD

We consider the case of zero magnetic field and study the
LE as a function ofD in the vicinity of the antiferromagnetic
XXX point. At the critical pointD=−1, the ground state un-
dergoes a Kosterlitz-Thoulessf19g quantum phase transition.
In Fig. 6, we have calculated numerically the localizable en-
tanglementLi,i+1

C for nearest neighbors and the corresponding
lower boundsQxx

i,i+1 andQzz
i,i+1.

One sees thatLi,i+1
C is equal to the maximum correlation

function. However, at the critical point the maximum corre-
lation function changes, due to the crossing ofQxx

i,i+1 and
Qzz

i,i+1, thus leading to a cusp in the LE. Hence the quantum
phase transition is characterized by a discontinuity in the first
derivative ofLi,i+1

C . This result is remarkable, because for this
Kosterlitz-Thouless transtion the ground-state energysi.e,
nearest-neighbor correlation functionsd and all of its deriva-
tives are continousf45g. As shown inf46,47g, the concur-
rencesor the derivatived of the reduced density matrixri,i+1
also does not exhibit a discontinuity at the critical point. This
result is expected, because the concurrence is a function of
one-particle and two-particle correlation functions. We fur-

ther note that, according to our numerical analysis, the rea-
son for the cusp inLi,i+1

C is that the optimal measurement
basis changes at the critical point abruptly from thesz to the
sx basis.

So far this is a purely numerical finding for a finite-
dimensional system. However, given that the average en-
tanglement can be maximized by applying the same unitary
transformation on all spins, one can rigorously show that
indeed a cusp in the LE must occur exactly at the critical
point and independently of the sizeN. The argument goes at
follows: At the antiferromagneticXXX point, the Hamil-
tonian s32d possessesSUs2d symmetry. This means that any
measurement basis yields the same LE. In particular, we
know from Eq.s31ad that for measurements in the standard
basis, the LE is equal to the correlation functionQxx

i,i+1. At the
critical point, we thus haveLi,i+1

C =Qzz
i,i+1=Qxx

i,i+1. Since con-
nected correlation functions yield a lower bound toLi,i+1

C ssee
Sec. IIId, the localizable entanglementLi,i+1

C must exhibit a
cusp at the critical point, whereQzz

i,i+1 andQxx
i,i+1 cross.

In summary, our discussion of the LE in various spin-1/2
models has shown in which parameter regimes these systems
can be used for, e.g., localizing long-range entanglement as
indicated by the entanglement length. We have further seen
that the study of LE as well as the entanglement fluctuation
provides a valuable tool for detecting and characterizing
quantum phase transitions. In addition, our numerical results
indicate that the ground-state entanglement of spin-1/2
Hamiltonians with two-spin nearest-neighbor interactions is
typically very well described by the maximum correlation
function. We will now see that this observation is not neces-
sarily true for spin-1 systems.

VI. LE IN THE SPIN-1 ANTIFERROMAGNETIC
HEISENBERG CHAIN

We study the ground-state entanglement of thesgeneral-
izedd antiferromagnetic Heisenberg chain,

HAF = o
i=1

N−1

fSW i ·SW i+1 − bsSW i ·SW i+1d2g, s33d

which includes a biquadratic term. In a recent workf50g it
has been demonstrated that quantum Hamiltonians of this
kind can be implemented with ultracold atoms trapped in an
optical lattice potential.

A. General considerations

For the Heisenberg antiferromagnetsAFd sb=0d, it has
been shown by Haldanef51g that in the case of half-integer
spins the spectrum is gapless in the thermodynamic limit,
and thus the correlation length of the ground state is infinite.
For integer spins, however, an energy gap emerges, resulting
in a finite correlation length. Let us now investigate whether
a similiar connection holds for the LE and the corresponding
entanglement length.

From the lower bounds15d it follows that the predicted
infinite correlation length in spin-1/2 systemsfwith integer
log2s2S+1dg automatically implies a diverging entanglement

FIG. 6. Calculation ofLi,i+1
C sdiamondsd and the lower bounds

Qxx
ii+1 ssolidd andQzz

ii+1 sdottedd as a function of the anisotropyD for
the XXZ model s32d with zero field h/J. At the critical point D
=−1, the LE exhibits a cusp, in contrast to the monotonic behavior
of the correlation functions. The calculation is performed using ex-
act diagonalization and numerical optimization for a chain of length
N=10 with periodic boundary conditions.
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length. However, in the case of integer spins the correlation
length is finite. Hence the lower bounds16d for spin-1 sys-
tems includes the intriguing possibility that correlations and
entanglement may exhibit a completely different behavior.
Indeed, for gapped spin-1 systems, an example for this has
already been foundf11g. At the AKLT f20g point sb
=−1/3d, the entanglement length of the ground state di-
verges, although the correlations decrease exponentially.
Since the AKLT model is closely related to the Heisenberg
AF, one might expect that both systems show qualitatively
the same behavior.

B. Numerical study

Let us now take a closer look at the spin-1 Heisenberg AF.
Since in this case we cannot resort to an analytical solution
as for the AKLT, we have to rely on numerical methods.

We start our analysis by performing exact diagonaliza-
tions for an open chain of up to 10 sites. At the end points we
couple toS=1/2 spins, thus making sure that the system is in
the singlet ground state. We are interested in the LE between
the end points of the chain.

Since the end spins are represented by qubits, we can still
refer to the LE as measured by the concurrence:L1,N

C . Our
numerical analysis shows that the optimal measurement basis
is given by the same local unitary transformation,

U =
1
Î23 1 0 1

0 Î2 0

− 1 0 1
4 , s34d

as for the AKLT. This strategy produces a maximally en-
tangled state between the end spinssL1,N

C =1d. This surprising
result can be understood from the analytical study of the
AKLT model in f11g. In a singlet valence bond picture, mea-
surements in the basiss34d can be interpreted as Bell mea-
surements on asvirtuald spin-1/2 system, which lead to en-
tanglement swapping.

Let us now investigate whether this effect depends on the
choice of the boundary condition or the number of sites. For
this purpose we apply our numerical method outlined in Sec.
IV. The LE in its variantLij

EE fsee Eq.s4dg is computed for a
chain with PBC and a large number of sitessN=80d.

In Fig. 7, we see that the LE saturates at a finite value
Li,i+n

EE →0.960±0.003 for largen, whereas the correlations de-
crease exponentially. This demonstrates that the ground state
of the antiferromagnetic spin-1 Heisenberg chain could be
used to distribute EPR-like entanglement over arbitrary dis-
tances by performing local operations on the intermediate
spins. As mentioned in Sec. II D, this result might be particu-
larly interesting in the context of quantum repeaters.

Let us now come back to Haldane’s result for the Heisen-
berg AF stated in the beginning of this section. Our numeri-
cal study of the spin-1 case might give a first indication that,
unlike the correlation length, the entanglement length is in-
finite for both half-integer and integer spins.

C. Hidden order and string order parameter

Our numerical results show that the ground state of the
spin-1 Heisenberg AF exhibits long-range order in terms of

the localizable entanglement. We have also seen that this
long-range order is not reflected in the behavior of the two-
particle correlation functions. However, one can define a
multiparticle correlation function, the so-calledstring order
correlation functionf52g, which detects thishidden orderin
the ground state. The string order correlation function has
been argued to be of a topological nature and is defined as

Qso
i,i+n = kSz

i f^k=i+1
i+n−1Rkg ^ Sz

i+nl, s35d

with Rk=expsipSz
kd. A nonvanishingstring order parameter,

jsoª limn→` Qso
i,i+n, indicates the presence of long-rangeshid-

dend order. As an obvious generalization of the string order
correlation function to arbitrary models, let us define a con-
nected version in a variational way. Consider the set of all

observableshÔj with bounded spectrum −1øÔø1. We de-
fine the connected string order correlation function Qcso

i,i+n

sand the related parameterjcsod for a given translational in-
variant state as

Qcso
i,i+n = max

−1øÔ1,Ô2ø1

kÔ1
i f^k=i+1

i+n−1Ô2
kgÔ1

i+nlc. s36d

HerekA1A2¯Anlc denotes the connectedn-point correlation
function, which can be defined in a recursive way,

kA1l = kA1lc, s37d

kA1A2l = kA1lckA2lc + kA1A2lc, s38d

kA1A2A3l = kA1lckA2lckA3lc + kA1lckA2A3lc + kA2lckA1A3lc

+ kA3lckA1A2lc + kA1A2A3lc, s39d

] .

Note that the connected part assures thatQcso
i,i+n measures a

nonlocal correlation, and that the string order parameter of
the AKLT ground state is indeed recovered by this definition.

FIG. 7. Calculation ofLi,i+n
EE sdiamondsd for the ground state of

the antiferromagnetic spin-1 Heisenberg chain withN=80 sites as a
function of the spin distancen. For comparison, we plot the corre-
lation functionQxx

i,i+n computed directly from the MPSssquaresd and
using the Monte Carlo methodscirclesd. Numerical parametersssee
Sec. IVd: D=16, MC sweepsM =20 000.
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It has been verified numerically thatjso is finite for the
ground state of the spin-1 Heisenberg AF. This fact can rig-
orously be proven for the related AKLT ground statef20g.
For this state, it was further shown that the LE saturates as
well with the spin distancen f11g. Hence one might expect a
connection between the existence of long-range order in the
entanglement and long-range order indicated by the string
order parameter. However, one can find examples for which
this connection does not hold.

For instance, inf11g it has been shown that already an
infinitesimal deformation of the AKLT model leads to an
exponentially decreasing LE, whereasjcso stays finite. On
the other hand, ground states exist that exhibit a diverging
entanglement length but vanishingjcso. A simple example
can be found in the class of MPSs20d defined on qubitssd
=2d and with qubit bondssD=2d. Note that all these MPS
are guaranteed to be ground states of some local Hamilto-
nians. Furthermore, for MPS with qubit bonds the string or-
der parameter and the LE can easily be computed analyti-
cally sseef11g and Appendix Cd. In particular, let us study
the state defined by

A1 = sz + sy, A2 = sz − i1. s40d

The entanglement length can easily be proven to be infinite.
A necessary condition forjcso to be nonzero is that there

exist a unitary operatorÔ2 for which the largest eigenvalue
of EÔ2

has the same magnitude as the maximal eigenvalue of
E1 sAppendix Cd. For the example given, this is impossible,
hence providing an example of a ground state with a diverg-
ing entanglement length but no long-range hidden order.

VII. MIXED STATES

In this section, we apply the concept of LE to characterize
the entanglement of multipartite mixed states. Note that the
definition of LEs2d already includes the possibility of having
a mixed stater. This implies that the statesrhsj=khsjuruhsjl
after the measurements are also mixed. Hence we refer in the
following to the LE as measured by the negativity:Lij

N. In
order to provide a tool for the computation ofLij

N let us now
generalize the numerical method, outlined in Sec. IV, to
mixed states.

A. Numerical method

The key point is to find a representation of a mixed state
in terms of low-dimensional matricesAk, analogous to the
MPS s20d. This problem has been considered recently in
f49g. There the concept of MPS is generalized to matrix
product density operatorssMPDOd, which are defined as

r = o
s1,s18,. . .,sN,sN8=1

d

TrsM1
s1,s18

¯ MN
sN,sN8 dus1, . . . ,sNlks18, . . . ,sN8 u,

s41d

where Mk
sk,sk8 are Dk

23Dk+1
2 matrices. They can be decom-

posed as

Mk
s,s8 = o

a=1

dk

Ak
s,a

^ sAk
s8,ad* . s42d

The stater can be purified into a MPS by including ancilla
stateshuaklj of dimensiondk,

uCl = o
s1,. . .,sN

o
a1,. . .,aN

TrSp
k=1

N

Ak
sk,akDus1a1, . . . ,sNaNl. s43d

In f49g, a method has been introduced that allows one to
determine the matricesAk iteratively for a given Hamiltonian
and temperature.

Starting from the mixed state in MPDO representation
s41d, the LE can be computed along the same lines, using the
MC method, as for pure states. However, we note that the
matricesMk in Eq. s41d have dimensionD23D2, compared
to theD3D matricesAk for pure states. Thus in the case of
PBC the computation time for the MC part scales at least
with d D5 for mixed states, but only withD3 for pure states.

Let us also comment briefly on the optimal measurement
basis. In contrast to pure states, the optimal basis for mixed
states can no longer be deduced directly from the matrices
Mk. Alternatively, a good guess for the best measurement
strategy can be found by exact diagonalization of the Hamil-
tonian for smallN, followed by numerical optimization of
LE.

B. Example: AKLT model

Next we apply this numerical method to a specific ex-
ample. Interesting candidates can be found in gapped spin-1
systems, such as the AKLT model or the Heisenberg AFfsee
Eq. s33dg. We have seen that the ground state of these two
models exhibits an infinite entanglement lengthf11g. Thus
the natural question arises as to what extent this feature holds
for small but finite temperatures and how the entanglement
length scales with temperature.

For our numerical study, we choose the AKLT model. The
reason is simply that, here, mixed states can be approximated
rather well by matrices with dimensions as small asD<10,
even for very small temperatures. This makes the computa-
tion of LE much more efficient compared to the Heisenberg
AF. Efficiency is also the reason for choosing OBC.

Let us now discuss the optimal measurement strategy.
First of all, we point out that with OBC the ground state of
the AKLT is fourfold degeneratef53g. Thus for T→0, the
density matrix is an equal mixture of these four states, which
strongly reduces the LE compared to, e.g., the singlet ground
state studied inf11g. On the other hand, it is known that the
degeneracy results only from the end spins of the chain.
Thus, one can strongly reduce this boundary effect by choos-
ing the two spins,i andi +n, to be far away from the bound-
aries. For this situation, we found that the optimal measure-
ment scheme for LE is given by measurements in theU basis
s34d on the spins between sitesi andi +n, and in the standard
basis everywhere else. This result is not very surprising in
terms of the valence bond picture inf11g. Entanglement
swapping is only needed between the two spins of interest,
whereas the effect of the degeneracy can be minimized by
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measuring the outer spins in the standard basis. Using this
strategy, we plot in Fig. 8 the LE, as given byLi,i+n

N , depend-
ing on the spin distancen for various temperaturesT. The
temperatures are chosen to be of the order of the enery gap
f54g.

The data indicate an exponential increase of the entangle-
ment lengthjE,ea/T with a<0.8, thus leading smoothly to
an infinite entanglement length at zero temperature. This be-
havior is not unexpected for a 1D system from the perspec-
tive of the Mermin-Wagner theoremf55g. However, it is not
clear whether this theorem is really applicable to phase tran-
sitions in terms of LE. It is more inspiring to treat this prob-
lem on the basis ofprojected entangled-pair statesf56g. In
this picture, a finite-temperature phase transition for LE
could possibly occur for two or more dimensions. We note
that recently such a transition has been shown to exist for 3D
cluster statesf14g.

Finally, we would like to point out that, although the en-
tanglement length of the AKLT model is finite forT.0, it
can still be considerably large for sufficiently low tempera-
turesT&0.2. Thus for practical purposes this system might
still be useful, e.g., for quantum repeater setups.

VIII. CONCLUSION

In this article, we have presented a detailed discussion of
the idea and basic properties of LE, as defined inf10g. Apart
from that, we also found the following results: The central
finding of f10g, namely the lower bound of LE in terms of
connected correlation functions, has been generalized to pure
qutrit states. Moreover, we have proposed a numerical
method, applicable to both pure and mixed states, that allows
us to calculate the LE efficiently even for large 1D spin
systems. In future work, we are planning to generalize this
numerical scheme to two- and higher-dimensional spin sys-
tems based on the methodf56g. We have applied our numeri-

cal scheme to study the LE of various spin models. The
results can be summarized as follows.

The LE, as well as the entanglement fluctuations, exhibit
characteristic features at a quantum phase transition. This
result is a direct consequence of the numerical observation
that, for ground states of spin-1/2 systems with two-spin
interactions, the lower bound is typically tight, i.e., the LE is
completely characterized by the maximal connected correla-
tion function. However, connected correlation functions give
only a coarse-grained picture for the LE. As an example, we
have shown for the spin-1 Heisenberg AF that the entangle-
ment length diverges, whereas the correlation length is finite.
This numerical result might suggest that, in terms of LE and
opposed to connected correlation functions, no distinction
has to be made between the scaling behavior of integer and
half-integer spin Heisenberg AF’s. To confirm this idea, fur-
ther studies of the integer spin case are desired.

We further note that preliminary results indicate that the
entanglement features of the Heisenberg AF might hold
qualitatively for the whole class of gapped spin-1 models
defined by Eq.s33d. This finding would allow one to distin-
guish the Haldane phase from the dimerized phase based on
the scaling of LE. Let us also mention in this context that
gapped spin-1 systems also appear to be ideal candidates to
look for quantum phase transitions, being detected solely by
the entanglement length and not the correlation lengthsas for
the generalized AKLT model inf11gd.

In order to illustrate that our numerical method works also
for mixed states, we computed the LE of the AKLT model
for finite temperatures. We found that the entanglement in-
creases exponentially with the inverse temperature. This
smooth behavior indicates the absence of a phase transition
in terms of LE for the 1D case. However, we have reason to
believe that such a phase transition might occur for the 2D
system.
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APPENDIX A: CONNECTED CORRELATION FUNCTIONS
AND LOCAL MEASUREMENTS ON PURE

QUBIT STATES

Here we present an extended version of the proof inf10g
for the following statement:

Given a spure or mixedd stater of N qubits with con-
nected correlation functionQAB

ij between the spinsi and j and

directionsaW, bW, there always exists a basis in which one can

FIG. 8. Calculation of the LE as given byLi,i+n
N for the AKLT

model as a function of the spin distancen and for various tempera-
turesT. We have chosen a chain with OBC andN=50 sites. We
note that almost identical data can be obtained forN=20, indicating
that our results are already close to the thermodynamic limit. Nu-
merical parametersssee also Sec. IVd: matrix dimensionD=10, MC
sweepsM =5000.
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locally measure the other spins such that this correlation does
not decrease, on average.

Proof. Formally, we have to show that there exists a mea-
surementM such that

uQAB
ij sri jdu ø o

s

psuQAB
ij srs

ijdu. sA1d

To this end, let us first consider mixed states of three qubits.
A mixed three-qubit density operator can be parametrized by
four 434 blocks,

r = Fr1 s

s† r2
G . sA2d

Since local unitary operations can be absorbed inr, it is
sufficient to consider theQzz

12 correlations. Thus the original
correlations are completely determined by the diagonal ele-
ments of the reduced density operatorr1+r2. A von Neu-
mann measurement in the basis

u + l ª cossu/2du0l + sinsu/2deifu1l, sA3d

u− l ª − sinsu/2de−ifu0l + cossu/2du1l, sA4d

on the third qubit results in the Hermitian unnormalized two-
qubit operators

X± ª k± uru ± l =
r1 + r2

2
± cossud

r1 − r2

2
± sinsud

3Scossfd
s + s†

2
+ sinsfd

iss − s†d
2

D , sA5d

with probabilities p±=TrsX±d conditioned on the outcome
h1j or h2j. From these equations, we see that the SUs2d
transformation on the third qubit can be accounted for by a
SOs3d rotation of thez axis, defined by the unit vector,

xW ª fcossud;sinsudcossfd;sinsudsinsfdg. sA6d

As noted above, we have to consider only the diagonal parts
of the measurement outcomesX±, which can be represented
in terms of the column vectors,

XW ± ª
1

2
RS 1

±xW
D , sA7d

whereR is the real 434 matrix whose columns consist of
the diagonal elements of the matricessr1+r2d, sr1−r2d, ss
+s†d, and iss−s†d.

Provided with these definitions, the inequalitysA1d can be
written in the form

p+uQzzsX+/p+du + p−uQzzsX−/p−du ù uQzzsX+ + X−du.

Inserting1=trsXW ± /p±d, this inequality can be transformed in a
bilinear form inxW,

1

p+
Us1xWTdSS1

xW
DU +

1

p−
Us1 − xWTdSS 1

− xW
DU ù u4au. sA8d

Herea is the first element of the matrix,

Sª RTssy ^ sydR=Fa bW T

bW Q
G , sA9d

andbW ,Q are defined as 331 and 333 blocks, respectively.
Without loss of generality, we can assume thata is positive
and thus remove the absolute value sign in Eq.sA8d. Some
straightforward algebra yields then the sufficient inequality

xWTsA + Bdx ù 0, sA10d

with

Aª aScW −
bW

a
DScW −

bW

a
DT

, Bª Q −
bW bW T

a
, sA11d

wherecW is such thatp±=s1±cWTxWd /2. We now have to show
that the matrixA+B has at least one positive eigenvalue.
From the form ofA, one immediately sees that it is positive
semidefinitesa.0d. The matrixB requires more work. First
we note that the matrixsy ^ sy in Eq. sA9d has two negative
and two positive eigenvalues. Assuming nonsingularR, it
follows from Sylvester’s law of inertiaf57g that S also has
two positive and two negative eigenvaluesf58g, and so has
the inverseS−1. Now B is the inverse of the Schur comple-
ment ofa, and hence corresponds to a principal 333 block
of the matrixS−1,

S−1 = S* *

* B−1D , sA12d

where the entriesp are of no interest here. Let us denote the
eigenvalues ofS−1 in algebraic increasing order byl1¯l4
and those ofB−1 by m1¯m3. From the interlacing properties
of eigenvalues of principal blocksf57g, we obtain the follow-
ing relation:

l1 ø m1 ø l2 ø m2 ø l3 ø m3 ø l4. sA13d

Knowing that l3.0, we deduce thatB−1 posesses at least
one positive eigenvalue, and so doesB. The existence of one
positive eigenvalue inA+B ensures that one can always find
a measurement directionxW such that the inequalitysA10d is
fulfilled. We have proven the theorem for a mixed three-
qubit state. However, this result can immediately be ex-
tended to arbitraryN. To see this, let us consider, e.g., the
correlation uQzzsX+/p+du for one of the measurement out-
comes on the third qubit. The two-qubit stateX+ can be ex-
panded in a basis corresponding to a measurement of the
fourth qubit sX+=Y++Y−d. The theorem can now be applied
with respect to the statesY± and so forth, completing the
proof. h

Note that the proof is constructive and allows us to deter-
mine a measurement strategy that would at least achieve the
bound reported.

Let us now show that the above result can also be gener-
alized to a setup where the spinsi and j can have any dimen-
sion, but the measurements are still performed on qubits. To
be more specific, we consider the operatorSA

i
^ SB

j acting on
a bipartite stateri j of arbitrary dimension. Since local unitary
transformations can always be absorbed in the definition of
ri j , we can chooseSA

i andSB
j to be diagonal. The correlation
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function can then be written in the bilinear form

QAB
ij = trfri jsSA

i
^ SB

j dg − trfri jsSA
i

^ 1dgtrfri js1 ^ SB
j dg

=
1

2
xWTsaW1WT − 1WaWTd ^ sbW1WT − 1WbWTdxW , sA14d

where the column vectorsxW, aW, and bW are representing the

diagonal elements of the matricesri j , SA
i , andSB

j , and 1W is a

column vector with all ones. Thus the matrixZªsaW1WT

−1WaWTd ^ sbW1WT−1WbWTd replaces the matrixsy ^ sy in the defini-
tion sA9d. Z is the tensor product of two antisymmetric ma-
trices of rank 2 and therefore has two positive and two nega-
tive eigenvalues. This property is sufficient to fulfill the
inequality sA10d.

APPENDIX B: MAXIMUM CORRELATION FUNCTIONS
AND ENTANGLEMENT OF PURE

BIPARTITE STATES

1. Two-qubit states

For an arbitrary two-qubit stater, we want to maximize
the correlation function,

QAB
ij = trfrsSA

i
^ SB

j dg − trfrsSA
i

^ 1dgtrfrs1 ^ SB
j dg.

sB1d

For qubits, we can parametrizeSA and SB by the three-

dimensional unit vectorsaW ,bW,

SA = sW ·aW , sB2d

SB = sW ·bW , sB3d

where sW =ssxsyszd. The correlation can then be written in
the form

QAB = o
ab

aaQabbb = :aWTQbW sa,b = x,y,zd. sB4d

The matrix elementsQab of the 333 matrix Q are defined
by Eq. sB1d with SA=sa, SB=sb. Clearly the maximum
value for QAB is given by the largest singular value of the
matrix Q.

For a pure stater= uclkcu, the matrixQ can be computed
using the Schmidt decompositionucl=oiliuiAl ^ uiBl with li
ù0. Note that local unitary transformations can always be
absorbed in the definition ofSA andSB. In this representation,
the matrixQ is diagonal and one can show that the maximum
value is given byQxx=2l1l2. It can easily be checked that
this expression is equal to the concurrenceC as defined in
Eq. s5d. Thus we have shown that the entanglement of a pure
two-qubit stateucl as measured by the concurrenceC is
equal to the maximum correlation function,

max
aW,bW

fQABsucldg = Qxxsucld = Csucld = 2l1l2. sB5d

This relation is central for establishing the strong connection
between classical and quantum correlations in pure multipar-
tite qubit statesssee Sec. IIId.

2. Two-qutrit states

As in the qubit case, we consider correlations of the form
sB1d. In generalization to the usual spin-1 operators, we want
to maximize with respect to the bounded operators −1
øSA,SBø1. In the forthcoming discussion, we will only
consider pure states. In Schmidt decomposition we have
ucl=oi=1

3 liuil ^ uil with li ù0 andl1
2+l2

2+l3
2=1. Let us be-

gin with rewriting the correlation function

QAB = trAfSAsr1 − bDdg sB6d

=trBfSBsr2 − aDdg. sB7d

Here we have defined the 333 matrices

r1 ª trBs1 ^ SBrd = D1/2SB
TD1/2, sB8d

r2 ª trAsSA ^ 1rd = D1/2SAD1/2, sB9d

D ª diagsl1
2,l2

2,l3
2d, sB10d

and the scalarsa=trsr2d, b=trsr1d. We further introduce the
eigenvalue decompositionr1−bD=UEU†. Note that the di-
agonal matrixE has zero trace and thus has at least one
negative entry. Now one immediately sees from Eq.sB6d that
QAB is maximized if SA has the same eigenvectors asr1
−bD and if its eigenvalues are given by the sign of the
matrix E. Hence we can formulate the following relations
that hold for the maximum correlation function:

sid SA = U sgnsEdU† with trsEd = 0, sB11d

sii d fSA,r1 − bDg = 0, sB12d

siii d fSB,r2 − aDg = 0. sB13d

These conditions lead to the simple commutator relation
fD ,Mg=0, where MªUsuEu−aEdU†. Since M commutes
with the diagonal matrixD, it has to be diagonal. Trivially
this is fulfilled for diagonalU implying also a diagonal op-
erator SA. A nondiagonalU is only possible if the matrix
suEu−aEd is degenerate. Hence we arrived at the surprising
result that the operatorSA that maximizes the correlationQAB
is either diagonalSA=diags1,−1,−1d or can be parametrized
in the form

SA = 11 0 0

0 cossud sinsude−if

0 sinsudeif − cossud
2 . sB14d

As QAB is symmetric in A and B, an equivalent expression
with rotation anglesu8 and f8 holds for the operatorSB.
From this we can deduce the relationsa=l1

2+cossu8dsl2
2

−l3
2d andb=l1

2+cossudsl2
2−l3

2d.
The required degeneracy of the matrixsuEu−aEd puts a

constraint ona sor the optimal rotation angleu8d as a func-
tion of b: a=Fsbd sfor simplicity we do not specify the
function F hered. Due to symmetry, it also holds thatb
=Fsad. Clearly a fixpoint of the maximization procedure is
given by the symmetric solutiona=b sor u=u8d. However,
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there also exists an asymmetric solution. In order to obtain
nice analytical expressions for these solutions, it is more
convenient to parametrize the functionQAB using the form
sB14d and then maximize with respect to the rotation angles
u andu8,

QAB = l1
2 + cosu cosu8sl2

2 + l3
2d + 2 sinu sinu8l2l3

− fl1
2 + sl2

2 − l3
2dcosugfl1

2 + sl2
2 − l3

2dcosu8g.

sB15d

Here we made the choicef=−f8, which maximizesQAB.
We further note that in this expression the role of the
Schmidt coefficientl1 is special, which results from the or-
deringl1øl2øl3. For the symmetric casesu=u8d, we ob-
tain the optimal rotation angle

cossuoptd =
l1

2sl2
2 − l3

2d
sl2 − l3d2 − sl2

2 − l3
2d2 , sB16d

which yields the maximum correlation function

QAB
sym=

4l2
2l3

2

2l2l3 − l1
2 . sB17d

Notice that for l1=0, this reduces to the qubit solution
QAB

max=2l2l3. As for the symmetric caseQAB Eq. sB15d is
quadratic in cossud, the maximum can also be reached at the
boundaries cossud= ±1. This leads to diagonal operatorsSA

=SB and the maximum correlation is given by

QAB
diag = 1 − fl3

2 − sl2
2 + l1

2dg2. sB18d

The asymmetric solution can also be worked out, but is dif-
ficult to cast in a nice analytical form. For our purpose, it is
enough to establish the following relation for the optimal
rotation angles:

afcossud + cossu8dg = − bf1 + cossudcossu8dg, sB19d

aª l2
2 + l3

2 − sl3
2 − l2

2d2, sB20d

bª l1
2sl3

2 − l2
2d. sB21d

It can easily be verified thata,b.0 andaùb. Inserting Eq.
sB19d in QAB fEq. sB15dg, it follows that the asymmetric
solution can be upper bounded by

QAB
asymø l1

2 − l1
4 −

b2

a
+ 2l2l3. sB22d

Straightforward analysis shows that the two-qubit limitsl1

=0d yields anupper bound for the maximum correlation in
the two-qutrit case,

QAB
max

ª maxsQAB
sym,QAB

diag,QAB
asymd ø u2l2l3ul1=0. sB23d

The maximum correlation function decreases if the number
of nonzero Schmidt coefficients increases. ThusQAB

max cannot
be used for measuring entanglement as in the qubit case. The
entropy of entanglementEsucld f25g, on the contrary, in-
creases with the number of nonzero Schmidt coefficients, a
fact that follows directly from the concavity property of

Esucld. Hence thel1=0 caseEsucld= fsu2l2l3ul1=0d, with f
being the convex functions6d, yields alower bound on the
entropy of entanglement. From this it follows that the en-
tanglement of a pure two-qutrit state is lower bounded by the
maximum correlation function,

Esucld ù fsQAB
maxd. sB24d

APPENDIX C: ANALYTICAL CALCULATION OF THE
STRING ORDER PARAMETER AND THE LE

FOR MATRIX PRODUCT STATES

We consider a MPSs20d with qubit bondssD=2d. In the
case of OBC and qubits at the end pointssi =0,N+1d, this
sunnormalizedd MPS state can be written in the form

ucl = o
a,i1¯iN,b

aWaAi1
¯ AiNbWbualui1 ¯ iNlubl, sC1d

whereaW andbW are two-dimensional row and column vectors,
respectively, anda ,bP h0,1j. We are interested in the string
order parameters35d between the end spins. Using expres-
sion s27d for calculating expection values of MPS, we can
write

QSO
0,N+1 =

EW sz

a sERdNEW sz

b

EW 1
asE1dNEW 1

b
. sC2d

In the limit of largeN and diagonalizableERsE1d, only the
maximum eigenvaluelRsl1d will survive,

jSOª lim
N→`

QSO
0,N+1 =

sEW sz

a rWRdslWREW sz

b d

sEW 1
arW1dslW1EW 1

bd
SlR

l1
DN

, sC3d

wherelWO andrWO denote the left and right eigenvectors ofEO.
In the case of the AKLT model and for the basiss34d, we

haveA1= isy, A2=sz, andA3=sx. Hence one finds

E1 = sx ^ sx − sy ^ sy + sz ^ sz, sC4d

ER = − sx ^ sx + sy ^ sy + sz ^ sz, sC5d

andlR=l1=3. Realizing thataWa andbWb are representing unit
vectors in the standard basis, we obtain the resultjSO=1.

Let us now show how to calculate the LE between the end
points of the chain for states of the formsC1d. Since the end
spins are represented by qubits, we can use the concurrence
s5d as an entanglement measure, which simplifies the calcu-
lation considerably. For the basisM=huilki uj, the average
entanglement can be written asf11g
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L0,N+1
M,C =

oi1¯iN
2udetsAi1

¯ AiNdu

EW 1
asE1dNEW 1

b
. sC6d

Since the determinant factorizes, we obtain

L0,N+1
M,C → 2

sEW 1
arW1dslW1EW 1

bd
Soi

udetsAidu

l1

DN

, sC7d

in the limit of largeN. The basis which maximizesLM,C is
clearly the same basis, which maximizes the expression
oiudetsAidu. This problem is equivalent to calculating the
EOA of theD23D2 stateA†A,

EAsAd ª sup
M o

i

udetsAidu = truATssy ^ sydAu. sC8d

The elements of thes2S+1d3D2 matrix A are given by
Ai,sabd=Aa,b

i . Hence we found a necessary and sufficient con-
dition for long-range order in the entanglementsi.e., nonva-
nishing L0,N+1

C for N→`d: The expressionEAsAd has to be
equal to the largest eigenvalue,l1, of the matrixE1. For the
AKLT model, one can easily check that this condition is
indeed fulfilled, and thatL0,N+1

C =1.
The ground state of the AKLT thus exhibits long-range

order both in terms of the LE and the string order parameter.
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