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We consider an array ofN quantum dot pairs interacting via Coulomb interaction between adjacent dots and
hopping inside each pair. We show that at the first order in the ratio of hopping and interaction amplitudes, the
array maps in an effective two-level system with energy separation becoming exponentially small in the
macroscopicslarge-Nd limit. Decoherence at zero temperature is studied in the limit of weak coupling with
phonons. In this case, the macroscopic limit is robust with respect to decoherence. Some possible applications
in quantum information processing are discussed.
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I. INTRODUCTION

In recent years, a lot of attention has been devoted to the
existence of quantum superposition states in macroscopic
systems. The first suggestion to understand this phenomenon
is due to Schrödingerf1g, who introduced the paradox of the
cat in quantum superposition between life and death,
strongly stressing the different behavior of the quantum
world with respect to the human experience. It is commonly
accepted that quantum behavior vanishes as the system size
increases. Remarkable exceptions are quantum systems
which undergo a phase transition, such as superconductors
and superfluids. A quantum superposition of mesoscopic
states has been observed in SQUID devicesf2g and seems to
be a promising tool for the realization of a quantum com-
puter.

Quantum macroscopic states are expected to be robust
with respect to decoherence and thus ideal candidates for
quantum information storage. Moreover, it is well known
that a quantum system which undergoes a phase transition
lives in one of a particular set of states, for a time which
becomes infinitely large in the limit of large system size. In
particular, if the ground state is twofold degenerate, one can
associate these states to a macroscopic quantum bit. The
availability of macroscopic quantum bits is relevant for
quantum information processing, as shown, for instance, in
Ref. f3g, in the case of spin clusters. Here a new application
in teleportation processes is also shown.

Decoherence of a single qubit has been extensively stud-
ied f4–10g. One of the most relevant causes of decoherence
is the coupling with a bosonic bathf11–17g whose effects are
relevant also at zero temperature.

In the present paper, we investigate the coherence of an
array of N double quantum dots coupled through Coulomb
interaction in order to show that such system is a suitable
candidate as a macroscopic qubit. The first step is to show
that in the long time limit the array behaves as a two-level
system with energy separation which vanishes for largeN.

The model is exactly equivalent to a one-dimensional anti-
ferromagnetic Ising model in a transverse field. The system
is characterized by two equivalent charge configurations and
in the macroscopic limit the ordering at zero temperature
implies a separation of phase space in two regions around
each of the degenerate configurations. However, for a finite-
size system, hopping induces oscillations between the two
configurations. We associate to this behavior a macroscopic
quantum bit. The antiferromagnetic Ising model in a trans-
verse field has been studied since the pioneering work of
Bethef18–20g, and has received recently renewed attention
as a model for quantum computationf21–23g. We found it
convenient to introduce a simple approximation which
makes transparent how the two-level behavior appears as-
ymptotically.

The study of decoherence in such a system is analogous to
decoherence in a quantum registerf24g. We show that, at
least in the weak-coupling and zero-temperature limit and for
a three-dimensional environment, the system exhibits a ro-
bustness growing with the size of the array.

Decoherence with respect to phonons of a single two-
level system has been studied with various methodsssee re-
views by Leggettet al. f16g and Weissf17gd. We found,
however, the resolvent methodf25,26g, already introduced in
the discussion of electron-phonon interaction problemsf27g,
convenient to obtain results at zero temperature in the
double-dot chain.

The paper is organized as follows. In Sec. II, we introduce
the model of the double-dot chain and its interaction with a
phonon bath. The introduction of the resolvent method to
discuss decoherence will be the argument of Sec. III. In Sec.
IV, we shall apply the same method to show that the double-
dot chain, in the limitw/U!1, beingw the hopping ampli-
tude between dots inside each pair andU the Coulomb inter-
action between different pairs, behaves as an effective two-
level system with energy separation decreasing exponentially
with N. In Sec. V, we study decoherence in our system in the
approximation introduced above. Finally, Sec. VI is devoted
to conclusions. In the Appendix we review, inside the present
approximation, decoherence effects for a single-dot pair.*Electronic address: ferdinando.depasquale@roma1.infn.it
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II. THE MODEL

In a previous workf28g, we proposed an array of few
coupled quantum dot pairs as a channel for teleportation. We
want to show here the extension of the model to a case ofN
pairs and discuss the robustness of the system with respect to
decoherence due to interaction with an external phonon bath
at zero temperature. We expect that the extensive character
of the interaction will increase decoherence while the mac-
roscopic nature of the first two energy states will enhance the
robustness of the system. It will be shown that the latter
feature prevails. Neglecting spin effects, the double-dot array
is characterized by the Hamiltonian

HS= Uo
l=1

N−1

o
a=1

2

nl,anl+1,a − wo
l=1

N

scl,1
† cl,2 + H.c.d , s1d

wherecl,a
† creates an electron on thelsthd dot on theasthd

row of the array andnl,a=cl,a
† cl,a.

To extend the teleportation scheme described inf28g, we
introduce an initial superposition of two spin configurations
of zero potential energy ofN pairs,

uSl = auFl + buCl, s2d

where uFl= u↓ , ↑ , ↓ , ↑ ,… , ↑ l and uCl= u↑ , ↓ , ↑ , ↓ ,… , ↓ l.
Let us consider an initial system ofN−1 double quantum
dots with hopping inside any pair and without Coulomb in-
teraction. The ground state of this system is represented by
the tensor product ofsu↑ l+ u↓ ld /Î2 for each pair. By an adia-
batic switching of electrostatic repulsion between adjacent
pairs, the system is driven in its new ground state, which, for
w/U!1, is well approximated bysuFN−1l+ uCN−1ld /Î2.
uFN−1lsuCN−1ld is the same state asuFlsuCld, defined onN
−1 sites. The stateuSl is obtained considering an extra
double dotsas usual called Aliced in a superposition state
au↑ l+bu↓ l and its interaction with the first pair ofsuFN−1l
+ uCN−1ld. If the interaction is adiabatically switched on
again, then the system is driven in a state close touSl. A
proper manipulation of system parameters permits us to
transfer the information, i.e.,a andb, encoded previously by
Alice, to the last double dotsBobd f28g.

The model described above is suitable to be represented
by a spin Hamiltonian through the mappingsi

z=snl,1−nl,2d
and sl

x=scl,1
† cl,2+H.c.d. This picture is useful to study the

decoherence effects induced by the interaction with a phonon
bath. In the spin representation, the overall Hamiltonian be-
comes

H = HS+ HB + HSB, s3d

HS= − wo
l

sl
x +

U

2 o
l

ssl
zsl+1

z + 1d , s4d

HB = o
q

vqaq
†aq, s5d

HSB= o
q,l

gqnle
iq cosulsaq

† + a−qd , s6d

where a mapping between the spin statesu↑ l andu↓ l and the
charge statesu1,0l and u0,1l has been performed andnl =ssl

z

+1d /2. We indicate withu the angle between the phonon
modeq and the dot chain direction. This notation is useful
for describing a genericd-dimensional environment coupled
with a one-dimensional system. The constantgq represents
the coupling of the dot charge with the modeq. The explicit
mathematical expression forgq depends on the specific con-
figuration of the system and the type of interaction. In Ref.
f29g, the explicit form of gq in some remarkable case is
given.

III. RESOLVENT METHOD FOR WEAK-COUPLING
DECOHERENCE

Decoherence at zero temperature is studied using the re-
solvent method. At the initial timet=0, the system and bath
are decoupled:uJst=0dl= uSl ^ u0l, whereu0l is the vacuum
phonon state.

The time evolution of the stateuJstdl=exps−iHtduJst
=0dl is studied in terms of the complex Laplace transform
defined as

uJsvdl = i lim
d→0
E

0

`

eivt−dtuJstdldt. s7d

The resolvent method allows us to write

uJsvdl =
1

v − H
uJst = 0dl. s8d

Using the identity

1

v − H
=

1

v − H0
+

1

v − H0
HI

1

v − H
s9d

and performing a projection on the vacuum phonon state, we
define a new system stateuFSsvdl=k0uJsvdl that obeys to
the evolution equation

uFSsvdl =
1

v − HS
uFSst = 0dl

+ k0u
1

v − HS
HSB

1

v − H
uJst = 0dl. s10d

Here the bath ground-state energy is set to zero andH0
=HS+HB andHI =HSB.

In the weak-coupling limit, only corrections to the imagi-
nary part of uFSsvdl will be taken into account. We first
perform an iteration inside Eq.s10d replacingsv−Hd−1 with
the right-hand side of Eq.s9d, and then introduce a complete
set of intermediate phonon states,
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uFSsvdl =
1

v − HS
uFSst = 0dl

+ k0u
1

v − HS
HSB

1

v − HS− HB
uJst = 0dl

+ o
k

k0u
1

v − HS
HSB

1

v − HS− HB
HSBukl

3kku
1

v − H
uJst = 0dl. s11d

In a perturbative approach, terms involving powers ofgq
are small and can be neglected, unless self-energy contrib-
utes appear. In the latter case, a not negligible imaginary part
can arise performing the sum overq in the continuous limit.

The contribution involving self-energy in the sum corre-
sponds to k=0, since k0usv−Hd−1uJst=0dl is exactly
uFSsvdl. Then, all other linear and quadratic contributions in
HSB will be neglected. Hence, Eq.s11d becomes

S1 −
1

v − HS
GsHSdDuFSsvdl =

1

v − HS
uFSst = 0dl, s12d

where

GsHSd = k0uHSB
1

v − HS− HB
HSBu0l s13d

is the self-energy operator acting on the system subspace.
The right term of Eq.s12d describes the evolution of the
macroscopic state isolated from phonons. As we will show in
Sec. IV, in the limit ofw/U!1, the macroscopic dot chain
behaves as a two-level system oscillating between theHS
asymptotic eigenstatesu± l=2−1/2suFl± uCld with energies
E±. So, Eq.s12d becomes

S1 −
1

v − HS
GsHSdDuFSsvdl =

1

v − E+
u + lk+ uFSst = 0dl

+
1

v − E−
u− lk− uFSst = 0dl.

s14d

Noting that the operatorGsHSd maps the subspace spanned
by u± l into itself, it is possible to reduce Eq.s14d in terms of
two coupled equations,

sv − E+ − G++dk+ uFSsvdl − G+−k− uFSsvdl = k+ uFSst = 0dl,

s15d

sv − E− − G−−dk− uFSsvdl − G−+k+ uFSsvdl = k− uFSst = 0dl,

s16d

whereG±± =k±uGu± l.
To the leading order in the system-bath coupling, we ob-

tain

k+ uFSsvdl =
1

v − E+ − G++k+ uFSst = 0dl, s17d

k− uFSsvdl =
1

v − E− − G−−k− uFSst = 0dl. s18d

The solution in the time domain is obtained assuming first
the correction introduced by the matrix elements ofG as
negligible, and then calculating the latter inv=E+ or v
=E−.

For instance, the integral

E
C

e−ivt

v − E+ − G++dv

is calculated assuming firstG++=0, obtaining for the pole
v=E+, and then substituting this value insideG++, which
depends onv. Afterwards, the principal value ofG++ will be
ignored, and only the imaginary part will matter. We com-
pare, in the Appendix, the results of our approximation with
those known for single quantum dot pairs.

IV. DOUBLE-DOT ARRAY EVOLUTION

As first step, we calculate the evolution of the system
when it is decoupled from the bath. We find it convenient to
explicitly solve the evolution from an initial state corre-
sponding, respectively, touFl or uCl introduced in Eq.s2d.

We distinguish in the system Hamiltonian the
hopping term HI =−wolsl

x from the potential energy
H0=sU /2dfolssl

zsl+1
z +1dg. This is the antiferromagnetic ver-

sion of the well known one-dimensional Ising model in a
transverse fieldf31g. It is worth noting that the absence of
periodic boundary conditions implies a relaxation mecha-
nism of an initially ordered state where a single domain wall
propagates between the two end points of the array. This
feature makes a difference in the excitation spectrum which
is relevant for an array of finite size.

Applying HI on uFst=0dl, the system is driven in a new
configuration labeled asuF1st=0dl. The action ofHI gener-
ates a sum of states, each of which differentiates fromuFst
=0dl due to one spin flip in a different place along the array.
Here it is important to note that flips on the first and the last
qubit put the system in a state with Coulomb energyU, while
all intermediate transitions lead to a state with a 2U electro-
static energy. In the limit ofU large with respect tow, we
shall neglect all configurations involving intermediate states
with energy greater thanU.

In each step of a repeated application ofHI, it is possible
to go towards new configurations or to come back. Then, for
n.0, we write

HIuFnst = 0dl = − wfuFn−1st = 0dl + uFn+1st = 0dlg. s19d

After N steps the system reachesuCl, and after 2N steps it
comes back to the initial configuration. DefininguFNl= uCl
and uF0l= uF2Nl= uFl, and taking into account the time evo-
lution, we obtain

sv − UduFnsvdl = uFnst = 0dl − wfuFn−1svdl + uFn+1svdlg

− Usdn,0 + dn,NduFnsvdl. s20d

The system is solved by means of the discrete Fourier
transform defined as
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uF̃ksvdl =
1

Î2N
o
n=0

2N−1

uFnsvdleink,

uFnsvdl =
1

Î2N
o
k=0

2N−1

uF̃ksvdle−ink. s21d

As a consequence of periodicity conditions,k=s2p /2Ndn,
wheren=0,1,2,… ,2N−1.

From Eq.s20d, it follows that

fv − U + 2w coskguF̃ksvdl = uF̃kst = 0dl −
U

Î2N
fuF0svdl

+ eiNkuFNsvdlg . s22d

It is now possible to extract two equations connecting
uF0l to uFNl,

uF0svdl =
f1 + B0svdguA0svdl − BNsvduANsvdl

f1 + B0svdg2 − BN
2svd

, s23d

uFNsvdl =
f1 + B0svdguANsvdl − BNsvduA0svdl

f1 + B0svdg2 − BN
2svd

, s24d

where

uAnsvdl =
1

Î2N
o
k=0

2pfs2N−1d/2Ng
e−inkuF̃kst = 0dl

v − U + 2w cosk
, s25d

Bnsvd =
1

2N

U

v − U o
q=0

2N−1
e−insp/Ndq

1 − asvdcosp
Nq

, s26d

with k=sp /Ndq, asvd=2w/ sU−vd and noting thatBN=B−N.
The asymptotic behavior is determined by values ofv

close to zero. Thenasvd!1 and the denominator ofBnsvd
reads as geometric series,

Bnsvd =
1

2N

U

v − U o
q=0

2N−1

e−insp/Ndqo
l=0

`

alsvdcosl
p

N
q s27d

or

Bnsvd =
1

2N

U

v − U o
q=0

2N−1

o
l=0

`

o
m=0

l S l

m
DSasvd

2
Dl

3expFi
p

N
sl − 2m− ndqG . s28d

The sum overq gives

Bnsvd =
1

2N

U

v − Uo
l=0

`

o
m=0

l S l

m
DSasvd

2
Dl 1 − e2ipsl−2m−nd

1 − eisp/Ndsl−2m−nd .

s29d

The condition for a nonvanishingBnsvd is sl −2m−nd
=2N K, whereK is any integer between −̀and +̀ ,

Bnsvd =
U

v − U
o
l=0

`

o
m=0

l
l!

m ! sl − md! Sasvd
2

Dl

dsl−2m−nd,2N K.

s30d

or, using the Kroneckerd function,

Bnsvd =
U

v − U
o
l=0

`

o
K=−`

`
l!

s l+n+2N K
2 d ! s l−n−2N K

2 d!
Sasvd

2
Dl

.

s31d

Since the coefficients of a Newton’s binomial formula have
to be real and positive, in the limitasvd!1 we obtain

B0svd .
U

v − U
s1 + Md, s32d

where

M = 1 −
1

2N
o
q=0

2N−1
1

1 − 2w
U cosq

s33d

contains powers ofw/U and has to be calculated at the de-
sired order inq, and

BNsvd . −
1

2NS2w

U
DN

. s34d

Here we note that the last contribution cannot be ignored
because it gives rise to the energy separation betweenuF0l
and uFNl.

Furthermore, we obtain

uA0svdl .
1

U
uF0st = 0dl s35d

and

uANsvdl .
1

U
uFNst = 0dl. s36d

As a result, after an inverse Laplace transform, we get

uF0stdl = eiMUtfuF0st = 0dlcosDt + i uFNst = 0dlsinDtg

+ OSw

U
D s37d

and

uFNstdl = eiMUtfuFNst = 0dlcosDt + i uF0st = 0dlsinDtg

+ OSw

U
D , s38d

having introduced the energy gap

D = 2ws2w/UdN−1. s39d

We eventually obtain the long time behavior of a two-
level system with energy separation exponentially vanishing
in the large-N limit. Actually, in Ref. f19g fsee Eq.s3.32cdg,
the eigenvalue of Eq.s39d was derived. On the basis of this
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result, the phenomenon of asymptotic degeneracy was estab-
lished and shown to be directly related to the appearance of
the ordered phase in the large-N limit.

V. DOUBLE-DOT ARRAY DECOHERENCE IN THE LONG
TIME LIMIT

According to the previous analysis, we, can limit our-
selves to considering only the first two statesu± l of the array.
The decoherence rate however, will be modified by the ex-
tensive interaction with the bath.

We have to calculate the matrix elements ofGsHSd in the
subspace ofu+l and u−l taking into account the particular
system-bath interactionHSB defined in Eq.s6d. Here

GsHSd = o
q,l,l8

eiq cosusl−l8dugqu2nl8
1

v − HS− vq
nl , s40d

where the sum overl , l8 runs over the array sites where elec-
trons are present.

We choose the basis elementsu+l andu−l defined, respec-
tively, as the sum and the difference ofuFl and uCl.

We introduce the form factorLq cosu defined through

o
l

nle
iq cosuluFl = Lq cosuuFl s41d

or

o
l

nle
iq cosuluCl = eiqLq cosuuCl. s42d

Explicitly, Lq cosu=s1−ei2q cosuNd / s1−ei2q cosud.
The matrix elements of the self-energy operator are

G++ = o
q

ugqu2uLq cosuu2F cos2q cosu
2

v − E+ − vq
+

sin2q cosu
2

v − E− − vq
G ,

s43d

G−− = o
q

ugqu2uLq cosuu2F cos2q cosu
2

v − E− − vq
+

sin2q cosu
2

v − E+ − vq
G ,

s44d

G−+ = sG+−d*

= io
q

ugqu2uLq cosuu2cos
q cosu

2

3sin
q cosu

2
F 1

v − E+ − vq
−

1

v − E− − vq
G . s45d

We find convenient the introduction of the following gener-
alized densities of states:

r+−sed = sr−+d*sed

= − io
q

ugqu2uLq cosuu2

3cos
q cosu

2
sin

q cosu

2
dse − vqd, s46d

r1sed = o
q

ugqu2uLq cosuu2 cos2
q cosu

2
dse − vqd, s47d

r2sed = o
q

ugqu2uLq cosuu2 sin2q cosu

2
dse − vqd, s48d

from which follows

G++ =E deF r1sed
v − E+ − e

+
r2sed

v − E− − e
G , s49d

G+− = − i E der+−sedF 1

v − E+ − e
−

1

v − E− − e
G , s50d

G−− =E deF r1sed
v − E− − e

+
r2sed

v − E+ − e
G . s51d

The real part ofG gives a negligible contribution to the
pole location if compared withE− and E+. Thus, assuming
a density of state different from zero only for positivee,
as in Ref. f12g, the only nonvanishing contribution is
g=−Im G−−,

g = − pr2sDd, s52d

whereD=E−−E+ is the energy gap of the two-level system
and is positivesu+l being the ground stated.

Then the solution fork+uFSstdl and k−uFSstdl is

k+ uFSstdl = eiE+tk+ uFSst = 0dl, s53d

k− uFSstdl = eiE−t−gtk− uFSst = 0dl. s54d

As expected, the ground state is not affected by decoher-
ence, while the excited state relaxes. Damping is propor-
tional to the density of states calculated at the energy gap.
The density of states is, however, quite different from that of
a single-dot pair. Two competitive effects appear. The first
one is represented by the presence of the form factorLq cosu

insider2, which, in the large-N limit, increases the dephasing
rate by a factor proportional toN2. The second, predominant,
effect to be considered is the expontential reduction withN
of the energy separation.

For instance, in the simple case ofugqu2=1/N and vq
=cq slongitudinal phononsd,

gsDd ~E d cosuddq
sin2qN

sin2q cosu
sin2q cosu

2
dsD − c2q2d ,

s55d

whered is the dimension of the bath andc is the speed of
sound. If we compare this quantity with the system oscilla-
tion frequency, we obtain

gsDd
D

~ N2Dd/2−1. s56d

This result indicates that, for a phonon bath in three dimen-
sions, the macroscopic limit involves a growth of the robust-
ness with respect to decoherence.
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VI. CONCLUSIONS

The existence of a macroscopic degenerate ground state is
a general feature of a system exhibiting a phase transition. It
would be of interest to exploit such degenerate states as el-
ements of a macroscopic qubit. Here we considered an array
of N interacting dot pairs. We showed that, in the long-time
limit and neglecting correction of orderw/U, the system
oscillates between the two configurations characterized by
zero electrostatic energy. Such a system has a robustness
which increases with the size as shown calculating the deco-
herence due to a phonon bath at zero temperature. Decoher-
ence calculation has been performed in the framework of an
application of the resolvent method. It is, however, important
to note that a general conclusion about the robustness of
macroscopic qubits should consider nonzero temperature ef-
fects and other mechanisms for dephasing in semiconductors
ssuch as cotunneling and background charge fluctuationsd.

As said, coherent manipulation ofuSl is useful in order to
realize a support for quantum information transfer allowing a
solid-state teleportation. The basic information processing
steps, i.e., initialization of the system, local gates, and read-
out, are, respectively, obtained by adiabatic variation of sys-
tem parameters, oscillations betweenuFl and uCl, and local
charge measurement. Moreover, it is worth noting that, be-
cause of the analogy with spin clusters behavior, most of the
considerations on quantum computing developed in Ref.f3g
should be valid also for our system, with the advantage that
instead of measuring spin states, we need to detect local
charges. Due to the asymptotic behavior of the effective hop-
ping amplitude, such a qubit requires gate times exponen-
tially increasing with the size of the system, and the optimal
chain length will be determined by the specific application.

APPENDIX: DECOHERENCE RATE
IN A DOUBLE QUANTUM DOT

We introduce a double quantum dot in contact with a
bosonic bath with a Hamiltonian,

H = HS+ HB + HSB,

HS=
«

2
sz + Tsx,

HB = o
q

vqaq
†aq,

HSB=
1

2
szo

q

gqsaq
† + aqd , sA1d

discussed in Ref.f12g. Here a one-dimensional bath is con-
sidered for simplicity. Labeling withuLl and uRl the eigen-

states ofsz with respective eigenvalues +1 and −1, the
eigenstates ofHS are

u ± l =
1

N±
f±2TuLl + sD 7 «duRlg, sA2d

where D=Î«2+4T2 and N±=ÎsD7«d2+4T2 while the re-
spective eigenvalues are«±= ± 1

2D.
By inversion, we obtain

uLl = N+
D + «

4TD
u + l − N−

D − «

4TD
u− l, sA3d

uRl =
N+

2D
u + l +

N−

2D
u− l. sA4d

Equations12d now has to be solved using

GsHSd =
1

4o
q

ugqu2sz
1

v − vq − HS
sz. sA5d

We need to calculatek+uGsHSdu+l andk−uGsHSdu−l. Actually,
obtainingG++ will be enough, due to the intrinsic robustness
of the ground stateu−l f30g, which implies thatG−− has to be
zerosthis feature is easily checked in the present formalismd.
To do it, first we writeu+l in the uL ,Rl basis, then applysz,
come back in theu± l basis in order to applysv−vq−HSd−1,
rewrite the new state throughuL ,Rl to apply the secondsz
operator, and finally reexpress the result in terms ofu+l and
u−l. The result is

G++ =
1

4o
q

ugqu2F 1

v − vq − D
2

S «

D
D2

+
1

v − vq + D
2

SD − «

D
D2G .

sA6d

The sum overq is performed as an integral through the in-
troduction of the density of statesr, which is assumed to be
different from zero only for positive values of its argument
f12g. The second term inside the square brackets gives
the contribution to the imaginary part, which isg
=−fpT2rsDdg /D2. The evolution is thus

k+ uFSstdl = k+ uFSst = 0dle−isD/2dte−psT2/D2drsDdt, sA7d

k− uFSstdl = k− uFSst = 0dleisD/2dt. sA8d

The density matrix in the basisu± l is then

rstd = S r++s0de−2gt r−+s0de−gteiDt

r−+s0de−gteiDt 1 − r++s0de−2gt D sA9d

with the same dephasing rate obtained inf12g, in the regime
of zero temperature, using Markovian assumptions.
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