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Double-dot chain as a macroscopic quantum bit
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We consider an array i quantum dot pairs interacting via Coulomb interaction between adjacent dots and
hopping inside each pair. We show that at the first order in the ratio of hopping and interaction amplitudes, the
array maps in an effective two-level system with energy separation becoming exponentially small in the
macroscopidlargeN) limit. Decoherence at zero temperature is studied in the limit of weak coupling with
phonons. In this case, the macroscopic limit is robust with respect to decoherence. Some possible applications
in quantum information processing are discussed.
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[. INTRODUCTION The model is exactly equivalent to a one-dimensional anti-
ferromagnetic Ising model in a transverse field. The system
f$ characterized by two equivalent charge configurations and
1R the macroscopic limit the ordering at zero temperature
is due to Schrédingdr], who introduced the paradox of the ?rﬂplles a separation of pha§e space in two regions ar_ognd

each of the degenerate configurations. However, for a finite-

cat in quantum superposition between life and deathé. ¢ hooping ind it betw the t
strongly stressing the different behavior of the quantum 1z€ System, nopping induces osciliations between the wo

world with respect to the human experience. It is commonlyconfigurations. We associate to this behavior a macroscopic
accepted that quantum behavior vanishes as the system siggantum bit. The antiferromagnetic Ising model in a trans-
increases. Remarkable exceptions are quantum systenf§'Se field has been studied since the pioneering work of
which undergo a phase transition, such as superconductoR&the[18—20, and has received recently renewed attention
and superfluids. A quantum superposition of mesoscopi@s & model for quantum computatia1-23. We found it
states has been observed in SQUID devj@sind seems to convenient to introduce a simple approximation which
be a promising tool for the realization of a quantum com-makes transparent how the two-level behavior appears as-
puter. ymptotically.

Quantum macroscopic states are expected to be robust The study of decoherence in such a system is analogous to
with respect to decoherence and thus ideal candidates falecoherence in a quantum regisfgd]. We show that, at
guantum information storage. Moreover, it is well known least in the weak-coupling and zero-temperature limit and for
that a quantum system which undergoes a phase transitien three-dimensional environment, the system exhibits a ro-
lives in one of a particular set of states, for a time whichpustness growing with the size of the array.
becomes infinitely large in the limit of large system size. In Decoherence with respect to phonons of a single two-
particular, if the ground state is twofold degenerate, one cafeye| system has been studied with various methsds re-
associate these states to a macroscopic quantum bit. TRgaws by Leggettet al. [16] and Weiss[17]). We found,
availability of macroscopic quantum bits is relevant for hoyever, the resolvent meth@@s, 26, already introduced in

quantum information processing, as shown, for instance, ifye giscussion of electron-phonon interaction problEaTg,
.REf' (3], in the case of spin clusters. Here a new appl'cat'orl:onvenient to obtain results at zero temperature in the
in teleportation processes is also shown. ouble-dot chain

Decoherence of a single qubit has been extensively stud- e haner is organized as follows. In Sec. II, we introduce

@edh[4—10]. IQ”e c.)fhthemeSt. retljevn?nt caushes of c]icfecoherenc&e model of the double-dot chain and its interaction with a
is the coupling with a bosonic bafi1-17 whose effects are ;000 hath. The introduction of the resolvent method to

reltlevagt also at zero tempergture. . h h ¢ discuss decoherence will be the argument of Sec. Ill. In Sec.
n the present paper, we investigate the coherence of aR; e ghall apply the same method to show that the double-

array OTN o_louble quantum dots coupled through COUl_Ombdot chain, in the limitw/U <1, beingw the hopping ampli-
interaction in order to show that such system is a swtabl@ude between dots inside each pair ahthe Coulomb inter-
cand.|date as a macroscopic qubit. The first step is to Sho"é(ction between different pairs, behaves as an effective two-
that in thg long time limit thg array behavgs asa tWO'Ievellevel system with energy separation decreasing exponentially
system with energy separation which vanishes for ldge with N. In Sec. V, we study decoherence in our system in the
approximation introduced above. Finally, Sec. VI is devoted
to conclusions. In the Appendix we review, inside the present
*Electronic address: ferdinando.depasquale@romad.infn.it approximation, decoherence effects for a single-dot pair.

In recent years, a lot of attention has been devoted to th
existence of quantum superposition states in macroscop
systems. The first suggestion to understand this phenomen
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1 THE MODEL Hsg= 2 gqnie® " (ag + ay), (6)
In a previous work[28], we proposed an array of few al

coupled quantum dot pairs as a channel for teleportation. We . .
want to show here the extension of the model to a cas¢ of Wwhere a mapping between the spin statesand| | ) and the

pairs and discuss the robustness of the system with respect‘f@""rge statefl,0) and|0,1) has been performed amgl=(of
decoherence due to interaction with an external phonon batht)/2- We indicate with¢ the angle between the phonon
at zero temperature. We expect that the extensive charact@leded and the dot chain direction. This notation is useful
of the interaction will increase decoherence while the macfor describing a generid-dimensional environment coupled
roscopic nature of the first two energy states will enhance th¥ith @ one-dimensional system. The constgptrepresents
robustness of the system. It will be shown that the lattetN€ coupling of the dot charge with the mogeThe explicit

feature prevails. Neglecting spin effects, the double-dot arra?wathematical expression fgy depends on the specific con-
is characterized by the Hamiltonian iguration of the system and the type of interaction. In Ref.

[29], the explicit form ofg, in some remarkable case is

N-1 2 N given.
Hs=UX > PRI wY, (ClJr,1C|,2+ H-C-)1 1)
=1 a=1 =1

Ill. RESOLVENT METHOD FOR WEAK-COUPLING

+ DECOHERENCE

| . Creates an electron on théh) dot on thea(th)

row of the array and]l,a:Cchl,a' _ Decoherence at zero temperature is studied using the re-
~ To extend the teleportation scheme describef28], we  solvent method. At the initial time=0, the system and bath
introduce an initial superposition of two spin configurationsare decoupled:=(t=0))=|S) ® |0), where|0) is the vacuum

wherec

of zero potential energy d¥l pairs, phonon state.
The time evolution of the staté=(t))=exp—iHt)|=(t
S = a|®) + W), (2)  =0)) is studied in terms of the complex Laplace transform
defined as
where[®)=[1,7,1,T.....7) and[¥)=|1, 1,7, ],.... |).
Let us consider an initial system ®f-1 double quantum o
dots with hopping inside any pair and without Coulomb in- |E(w)) :iIimf e“"t““|E(t)>dt. (7)
teraction. The ground state of this system is represented by o-0J0

the tensor product dﬁ)+|l>)/\f'§ for each pair. By an adia-
batic switching of electrostatic repulsion between adjacenf he resolvent method allows us to write
pairs, the system is driven in its new ground state, which, for

w/U<1, is well approximated by(|®py_q)+|Wn_1)/V2. _ 1
|®n_1)(| W) is the same state d)(|W)), defined onN |E(w) = w-H
-1 sites. The statéS) is obtained considering an extra

double dot(as usual called Alicein a superposition state Using the identity

a|1)+B|]) and its interaction with the first pair dfdy_,)

+|Wy_). If the interaction is adiabatically switched on 1 1 1 1
again, then the system is driven in a state cIos¢S_)oA w-H w-Hg + ©-Ho '@-H
proper manipulation of system parameters permits us to

transfer the information, i.eq and B8, encoded previously by and performing a proiection on the vacuum phonon state. we
Alice, to the last double daiBob) [28]. P g a proj P '

The model described above is suitable to be represente fine a new system stalbs(w))=(0| E(w)) that obeys to
by a spin Hamiltonian through the mapping=(n,-n,) N evolution equation
and o{‘=(c|flc|,2+H.c.). This picture is useful to study the

|E(t=0)). (8)

9)

decoherence effects induced by the interaction with a phonon |Py(w)) = 1 |yt =0))
bath. In the spin representation, the overall Hamiltonian be- o—Hg
comes 1 1
+<0|_—HHSBfH|E(t:0)>. (10)
H=Hs+Hg+Hsgg, ) @-fs @

Here the bath ground-state energy is set to zero ldpd
U =H5+HB andH|:HSB.

Hs= ‘W; o + 52 (ofofin+ 1), (4) In the weak-coupling limit, only corrections to the imagi-
nary part of|®w)) will be taken into account. We first
perform an iteration inside E¢10) replacing(w—H)™* with

Hg=> wqa;aq, (5)  theright-hand side of Ed9), and then introduce a complete
q set of intermediate phonon states,
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1
|Pg(w)) = |[Ps(t=0)) (= |Pdw)) = ————=—=(= [Pt =0)). (18
w—Hs w-E_-G
+(0 1 H 1 S(t=0 The solution in the time domain is obtained assuming first
( |w_|_|S *Bw—Hg- HB|H( =0 the correction introduced by the matrix elementsGfas
1 1 negligible, and then calculating the latter in=E, or o
=E..
+ 0 H Hsgk
%< |w— Hs SBw- Hs—Hg sak) For instance, the integral
1 e—iwt
Xk E(t=0)). 11 ——d
(H——-|=(t=0) (1) fcw_a_GH o

In a perturbative approach, terms involving powergpf s calculated assuming firs§**=0, obtaining for the pole
are small and can be neglected, unless self-energy contrilg;:E+, and then substituting this value insi@'*, which
utes appear. In the latter case, a not negligible imaginary paflepends om. Afterwards, the principal value &** will be
can arise performing the sum O\@Iin the continuous limit. ignored, and 0n|y the imaginary part will matter. We com-

The contribution involving self-energy in the sum corre- pare, in the Appendix, the results of our approximation with
sponds to k=0, since (0/(w-H)™E(t=0)) is exactly those known for single quantum dot pairs.
|®4(w)). Then, all other linear and quadratic contributions in
Hgg Will be neglected. Hence, Eq11) becomes IV. DOUBLE-DOT ARRAY EVOLUTION

1 1 As first step, we calculate the evolution of the system
(1 - —HG(Hs)>|q’s(w)> = —H|‘1>s(t =0)), (120  when itis decoupled from the bath. We find it convenient to
@~ Hs @~ s explicitly solve the evolution from an initial state corre-
where sponding, respectively, tgb) or |¥) introduced in Eq(2).
We distinguish in the system Hamiltonian the
_ 1 hopping term H,=-wZ,0f from the potential energy
G(Hg) = <0|H55w - Hg- HBHSBIO> (13 Ho=(U/2)[Z\(ofat,,+1)]. This is the antiferromagnetic ver-
. ] sion of the well known one-dimensional Ising model in a
is the self-energy operator acting on the system subspacgansverse field31]. It is worth noting that the absence of
The right term of Eq.(12) describes the evolution of the periodic boundary conditions implies a relaxation mecha-
macroscopic state isolated from phonons. As we will show irhism of an initially ordered state where a single domain wall
Sec. IV, in the limit ofw/U<1, the macroscopic dot chain propagates between the two end points of the array. This
behaves as a two-level system oscillating betweenHbe feature makes a difference in the excitation spectrum which
asymptotic eigenstateft)=2""4|®)x[W)) with energies s relevant for an array of finite size.
E.. So, Eq.(12) becomes Applying H, on |®(t=0)), the system is driven in a new
1 configuration labeled asb,(t=0)). The action ofH, gener-
|+ X+ |Pqt=0)) ates a sum of states, each of which differentiates fdit
w-E, =0)) due to one spin flip in a different place along the array.
1 Here it is important to note that flips on the first and the last
_E =)= [@(t=0)). qubit put the system in a state with Coulomb enddgyvhile
h all intermediate transitions lead to a state withla &ectro-
(14)  static energy. In the limit ofJ large with respect tav, we
gshall neglect all configurations involving intermediate states
with energy greater thad.
In each step of a repeated applicationHf it is possible
to go towards new configurations or to come back. Then, for

(w-E, - G™)(+|®gw)) - G (- |Dg(w)) = (+ |Dgt=0)), n>0, we write
(15 H | @y(t=0)) = = W[|®,_1(t = 0)) + |Dpis(t = 0))]. (19)

1
(1 T HSG(HS)>|¢’S(£0)> =

+

Noting that the operatoG(Hg) maps the subspace spanne
by |+) into itself, it is possible to reduce E(L4) in terms of
two coupled equations,

__ _ B B After N steps the system reachik), and after A steps it
(0-E.=G7)(=|0g(w) - G+ |Pg(w) = (- [®(t=0),  comes back to the initial configuration. Definif@y)=|¥)
(16)  and|®g)=|P,y)=|P), and taking into account the time evo-

. lution, we obtain
whereG**=(%|G|+).

To the leading order in the system-bath coupling, we ob- (&= U)|®p(w)) = [P (t=0)) = W[|P_1(@)) + |[Ppi(w))]

an = U(8h0+ 8| @n(w). (20
(+| D)) = 1 (+ |0t =0)) (17) The system is solved by means of the discrete Fourier
o-E, -G S ’ transform defined as
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1 2N-1
@ = ink
B =< 3 (@™
2N-1
D) = —E |@y(w))er™ (21)

As a consequence of periodicity conditiorks; (27/2N)n,
wheren=0,1,2,...,2N-1.
From Eq.(20), it follows that

PHYSICAL REVIEW A71, 042304(2005

o |

U o))
n(w) = _E 2 m)' (a( )) 5(|—2m—n),2N K-

w — U|0m:0m|(| 2

(30)

or, using the Kroneckeé function,

Bw= L 3 S (.+n+2NK):!(._n_ZZNK)!(a(Z“’))'.

0=U| K

(31

Since the coefficients of a Newton’s binomial formula have

~ ~ U
[w-U+ ZWCOSK]‘(Dk(w)> = ‘(I)k(t = 0)> - ﬁ[@O(w)) to be real and positive, in the limé(w) <1 we obtain
\J
+ eiNk|q)N(w))]_ (22 Bo(w) = Lu(l +M), (32
-
It is now possible to extract two equations connecting
|o) to [Dy), where
[1 +Bo()]|Ag(@)) = By(w)|An()) 1% 1
Py(w)) = , (23 M=1-— — 33
[Poles) [1+Bg(w)]? - B{(w) 29 2N %) 1-2 cosq 33
_ contains powers ofv/U and has to be calculated at the de-
|(I)N(w)> - [1 + BO(w)]|AN(w)> Bg(w)|AO(w)>, (24) sired order Im, and
[1+By(w)]* -~ Bi(w)
1 (2w\N
where Bn(w) = AT (34)
_ 1 27r[(2N2—1)/2N] e‘i”"|5)k(t:0)> 25 Here we note that the last contribution cannot be ignored
[An(w)) = NN w—-U + 2w cosk’ (25 because it gives rise to the energy separation betwegn
} and|®y).
Furthermore, we obtain
1 U 2N-1 e—in(w/N)q
Br(w) = - > — (26) 1
2Nw=U ¢ 1-a(w)cogiq [Ag(w)) = U|Cbo(t =0)) (39
with k=(7/N)q, a(w)=2w/(U-w) and noting thaBy=B_y. and
The asymptotic behavior is determined by valuesawof
close to zero. Thema(w)<1 and the denominator @&,(w) 1
reads as geometric series, |An(w)) = U|‘I)r\|(t =0)). (36)

1 U 2N-1
By(w) = Na—U q}‘a g n(mN) qE a(w)coé— (27)
or
2N-1 = o)\l
Bo(w) = ﬁw U c% %n%o( )( 2 )
xexp{iﬁ(l -2m- n)q} . (298
The sum oveq gives
0 | .
a(w) 1- e2|a-r(l—2m—n)
Bn(w) = _fulzo m2—0< )( 2 )1_ei(ﬂ-/N)(I—2m—n)'
(29

The condition for a nonvanishindd,(w) is (I-2m-n)
=2N K, whereK is any integer betweenc=-and -,

As a result, after an inverse Laplace transform, we get

|Do(t)) = €MYU|Dy(t = 0))cosAL + i|Dy(t = 0))sin At]
(5]
+0| —
U
and

|Dp (1)) = @MYy (t = 0))cosAt +i|Dy(t = 0))sin At]

(37

w
+ O —1, 38
5) @
having introduced the energy gap
A = 2w(2w/U)NL, (39)

We eventually obtain the long time behavior of a two-
level system with energy separation exponentially vanishing
in the largeN limit. Actually, in Ref.[19] [see Eq.(3.329],
the eigenvalue of Eq:39) was derived. On the basis of this
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result, the phenomenon of asymptotic degeneracy was estab-
lished and shown to be directly related to the appearance of

the ordered phase in the lar§elimit.

V. DOUBLE-DOT ARRAY DECOHERENCE IN THE LONG
TIME LIMIT

According to the previous analysis, we, can limit our-
selves to considering only the first two stafs$ of the array.

The decoherence rate however, will be modified by the ex-

tensive interaction with the bath.

We have to calculate the matrix elementsGiHy) in the
subspace of+) and |-) taking into account the particular
system-bath interactiodsg defined in Eq(6). Here
(40)

. , 1
G(Hg = X €94 g [, ————n,
w-Hs—w

ql,l’ Hs q

where the sum ovdr, |’ runs over the array sites where elec-
trons are present.

We choose the basis elemehts and|-) defined, respec-
tively, as the sum and the difference |dfy and|¥).

We introduce the form factod, .. defined through

E nIeiq o8 6||CD> = Aq cos 6)|(D> (41)
|

or

E nIeiq o8 0I|\P> = eiqu cos t9|q,> (42)
|

Explicitly, Aq cosg=(1-€290SMN)/(1 g2 0050),
The matrix elements of the self-energy operator are

[ cosf . 2qcosd |
&= g A 2 cog a3 Sl
q al *hq cosd | 0 =By~ wy w—E_—wq_’
(43)
[ coLacost sinpacos? ]
G = 2 |gq|2|Aq cos&|2 : : )
q | 0-E_~wy ©-E,~wq]
(44)
G =(G")
. 0 cosé
= |2 |gq|2|Aq cos&|2COST
q
cosé 1 1
xsind - . (45)
2 w—E+—wq o)—E_—a)q

We find convenient the introduction of the following gener-
alized densities of states:

P (=(p"") (e
- iE |gq|2|Aq c050|2
q

qcosé . qcosé
XCOSTSII‘] 5

de—wy), (46)

PHYSICAL REVIEW A71, 042304(2009

cosd
pa(e) = 2 |gq|2|Aq cos ¢9|2 Coszq 2 Se- wq)1 (47)
q
. cosd
pole) = 2 |gq|2|Aq cosﬁ|2 szq 2 dle- wq)- (48)
q
from which follows
G++ = f d€|: pl(E) pZ(E) :| : (49)
w—-E,—€¢ w-E_-¢€
— o 1 B 1
G = Ifdep (E)[w—E+—e w—E_—e]’ (50)
- J df{ pae) pale) } e
w—-E_.—€ w-E,-¢€

The real part ofG gives a negligible contribution to the
pole location if compared witle_ and E,. Thus, assuming
a density of state different from zero only for positiege
as in Ref.[12], the only nonvanishing contribution is
y==-ImG,

(52)

whereA=E_-E, is the energy gap of the two-level system
and is positive(|+) being the ground state
Then the solution fof+|®g(t)) and(—|d4t)) is

(+]Dg(t) = €54+ [dg(t =),

y=-—mpy(4),

(53

(- |@g(t)) = 5= D4t =0)). (54)

As expected, the ground state is not affected by decoher-
ence, while the excited state relaxes. Damping is propor-
tional to the density of states calculated at the energy gap.
The density of states is, however, quite different from that of
a single-dot pair. Two competitive effects appear. The first
one is represented by the presence of the form fattqps,
insidep,, which, in the largeN limit, increases the dephasing
rate by a factor proportional t4°. The second, predominant,
effect to be considered is the expontential reduction \\th
of the energy separation.

For instance, in the simple case fof,[>=1/N and o,
=cq (longitudinal phonons

sirPgN
sirnfq cos 6

sir? C;S%(A - &),
(55

whered is the dimension of the bath ardis the speed of

sound. If we compare this quantity with the system oscilla-

tion frequency, we obtain
pACY)

y(A)ochcosﬁddq

o NZAdIZ_l. (56)
This result indicates that, for a phonon bath in three dimen-
sions, the macroscopic limit involves a growth of the robust-
ness with respect to decoherence.
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VI. CONCLUSIONS states ofo, with respective eigenvalues +1 and -1, the

The existence of a macroscopic degenerate ground state fgenstates OHs are
a general feature of a system exhibiting a phase transition. It 1
would be of interest to exploit such degenerate states as el- |£)= N—[12T|L> +(A ¥ ¢)|R)], (A2)
ements of a macroscopic qubit. Here we considered an array *
of N interacting dot pairs. We showed that, in the long-timewhere A=e?+4T2 and N.=/(A ¥ £)?+4T2 while the re-
limit and neglecting correction of ordew/U, the system spective eigenvalues am==;3A.
oscillates between the two configurations characterized by By inversion, we obtain
zero electrostatic energy. Such a system has a robustness
which increases with the size as shown calculating the deco- A+e A-e¢ -)

=

herence due to a phonon bath at zero temperature. Decoher- Ly =N. 4TA [+)-N- 4TA (A3)
ence calculation has been performed in the framework of an
application of the resolvent method. It is, however, important N, N
to note that a general conclusion about the robustness of |R>=£ +)+ £|—>- (A4)
macroscopic qubits should consider nonzero temperature ef-
fects and other mechanisms for dephasing in semiconductoEguation(12) now has to be solved using
(such as cotunneling and background charge fluctugtions 1
As said, coherent manipulation (8) is useful in order to _= 2
realize a support for quantum information transfer allowing a G(HY 4% 19 72 —He ¥ (AS)

solid-state teleportation. The basic information processin
steps, i.e., initialization of the system, local gates, and reaciNe need to calculater|G(Hg)|+) and(-|G(Hg)|-). Actually,
out, are, respectively, obtained by adiabatic variation of sysobtainingG*™* will be enough, due to the intrinsic robustness
tem parameters, oscillations betwedr) and|¥), and local ~ of the ground statg-) [30], which implies thaG™™ has to be
charge measurement. Moreover, it is worth noting that, bezero(this feature is easily checked in the present formalism
cause of the analogy with spin clusters behavior, most of thdo do it, first we write|+) in the|L,R) basis, then applyy,
considerations on quantum computing developed in [8f. come back in thé+) basis in order to applyo—wq—Hg)™,
should be valid also for our system, with the advantage thatewrite the new state through,R) to apply the second,
instead of measuring spin states, we need to detect locaperator, and finally reexpress the result in terms+gfand
charges. Due to the asymptotic behavior of the effective hopl—). The result is
ping amplitude, such a qubit requires gate times exponen- 1 1 2 1 Aeg)2
tially increasing with the size of the system, and the optimal g++ = 4_12 |gq|2[—A(£> + < 8) ] _

q w ~— - w —

chain length will be determined by the specific application. wg— 3 \A wq+% A
APPENDIX: DECOHERENCE RATE (A6)
IN A DOUBLE QUANTUM DOT The sum ovenq is performed as an integral through the in-
We introduce a double quantum dot in contact with atroduction of the density of states which is assumed to be
bosonic bath with a Hamiltonian, different from zero only for positive values of its argument
[12]. The second term inside the square brackets gives
H=Hs+Hg+Hsp, the contribution to the imaginary part, which ig
=—[#T?p(A)]/ A% The evolution is thus
&
Hs= 50zt Toy, (+ |DLD) = (+ |yt = 0))e B2 m A2 (p7)
Hg = > wgalag, (-] @gt)) = (- [Pt = 0))*2", (A8)
q

The density matrix in the basjg) is then
p"H(0)e " p‘+(0)e‘7te‘“)
pH0)e At 1 - ptH(0)e

discussed in Ref.12]. Here a one-dimensional bath is con- with the same dephasing rate obtainedig], in the regime
sidered for simplicity. Labeling witHL) and|R) the eigen- of zero temperature, using Markovian assumptions.

1
oo S a2, (A1) 0= (h9)
q
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