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Quantum entanglement and fixed-point bifurcations
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How does the classical phase-space structure for a composite system relate to the entanglement character-
istics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite
systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of
coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the
corresponding quantum state—the ground state—achieves its maximum amount of entanglement near the
critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a

bifurcation.
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[. INTRODUCTION In this article we consider the ground state of a system

With the advent of quantum-information theory entangle-Whose classical limit exhibits a bifurcation where a single
ment is now regarded as a physical resource that can Hliptic fixed point loses its stability while two new elliptic

utilized to perform numerous quantum computational and?CiNtS emerge—a so-called supercritical pitchfork bifurca-
communication taskgl]. This has led to the study of the tion. Elliptic fixed points can be associated with the ground

entanglement characteristics of various systems, and in tur§tate of the quantized system. Subsequently we expect to see
of how these characteristics relate to more fully understoo§ome signature of the classical bifurcation in the quantum
properties of the system. Such studies are twofolddround state, around the critical point. We argue that this
beneficial—further elucidating the nature of entanglement asignature is a peak in the entanglement with respect to the
well as providing a different approach to the study of com-bifurcation parameter.

plex, quantum many-body systems. Schneider and Milburn alluded to such a correspondence
One area where such an approach has had some succesmitheir work on the Dicke modédlL1]. It was shown that the
in the study of quantum phase transition§QPT9—  entanglement in the steady state of this system is a maximum

qualitative changes in the ground state of a multipartite sysfor the parameter value corresponding to a bifurcation of the
tem induced by the variation of some external parani@er fixed points in the corresponding classical dynamics. It was
There have been many recent studies relating entanglemeanjectured that the loss of stability of a classical fixed point
and QPTHsee[3-9)). due to such a bifurcation will generically be associated with

Generally it has been found that in infinite systems thaentanglement in the steady state of the full quantum system.
undergo a quantum phase transition at a critical parametéie show that it is specifically the pitchfork nature of this
value A=)\, the entanglement as a function fis a maxi-  bifurcation that is responsible for the peak in the ground-
mum ath.. Several examples includ@ the single-site en- state entanglement.
tanglement and the next-nearest-neighbor concurrence of the To demonstrate this, we use the example of coupled giant
transverse Ising chaif8-5] (although the nearest-neighbor spins. This system is motivated by a proposed physical
concurrence does not have its maximum valua ah., its  implementation for quantum computati¢h2]. In this pro-
first derivative with respect th does[4]), (ii) the entropy of  posal, qubits are realized by magnetic clusters—nanometer-
entanglement of half of XXZ spin chain in a magnetic field scale molecular clusters that have all the attributes of meso-
[6], and (iii) the entropy of entanglement of a single qubit scopic systems such as angular momentum and magnetic
with a bath of oscillatorgthe spin-boson mode[7]. Such  moment. Two qubit gates are constructed by the coupling of
systems demonstrate a correspondence between quanttine clusters viasuperconducting quantum interference de-
critical phenomena and entanglement. vices(SQUIDs, as shown in Fig. 1.

A QPT corresponds to a qualitative change in the ground The strength of the coupling is dependent upon the super-
state as a system parameter is varied. In the classical regimayrrent induced in the loop by one spin and the field this
minimum energy coordinates correspond to elligstable produces at the other sif@2]. This field induces a rotation
fixed points. As a parameter in the system is varied, fixedabout thez axis of one cluster with frequency proportional to
points may undergbifurcation[10]—a loss of stability, the thez component of the angular momentum of the other clus-
emergence of new fixed points—at some critical value of theer. In this way, we can imagine the system as a set of “spin-
parameter. This corresponds to a qualitative change in theing tops” coupled via a nonlinear interaction, described by
phase-space structure of the system. |:|im:jz®jz-

The article is organized as follows: In Sec. Il we introduce
the coupled-tops model. We begin with a review of the clas-
*Electronic address: hines@physics.ug.edu.au sical dynamics based on Skellett and Holrh&3], focusing
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SQUIDS states,|j,m ®|j,ny=|m,n), where §=<m,n<j. Note that
the coupling term in the Hamiltonian is scaled withto
allow the classical limit to be taken. F¢=3, the Hamil-
tonian (1) is analogous to the quantum Ising model for two

0 &'Josephson spins, studied in Ref.14].
Switch Interestingly, the square of thetal angular momentum of
the system,
:]2::]%"':]%""231'32, (5)
C"(‘:’ﬁg‘l‘ﬁ is not a constant of the motion. The reason is that an external

control is required to couple the tops. In our motivating ex-

FIG. 1. (Color onling A schematic diagram of the coupled qubit @MPle this is the circuit that inductively couples the tops.
realization of Ref.[12]. The magnetic clusterghe qubits are  This is similar to the situation for two interacting qubits. A
coupled to superconducting loops of micro-SQUIDs and arrange@eneral two qubit gate, such as a controlienF gate does
in a one-dimensional lattice. Josephson junction switches are usd#t conserve total angular momentum eittteough the gate
in the coupling circuits, as shown. can fix the singlet and triplet subspate&gain this is due to

external interactions that control the gate.

on the bifurcation analysis. This is followed by a calculation _ 1he classical analog of this system has been rigorously
of the ground-state entanglement for the quantum system, ;%ud!ed by Sk(’.‘\"?tt and qume[ﬂB]. we now d.erlve .
the bifurcation parameter is varied. Here the link between thgemiclassical limit of Hamiltoniar(2), showing its corre-
ground-state entanglement and the bifurcation is first estat?ppndence'to the model of Rell3], and review the key-
lished. Using the Husimi distributiofor Q functior) to rep-  POINts of this analysis relevant to our work.

resent the ground state in phase space, we demonstrate how
the structure of the ground state is related to the classical
fixed points. The aim of Sec. Ill is to explain the observed
behavior and argue its generality. We finish with a discussion The semiclassical limit of the coupled-tops system corre-

A. Classical description

of our results and future directions. sponds to the limit ofj—. To obtain the semiclassical
model, we express the classical coordinatet as(J.,)/j-
Il. THE COUPLED-TOPS MODEL In the limit, this allows the factorization of all moments, i.e.,

6ng1le>/ j?— Lyl (for details see the AppendixThe clas-

sical equations of motion are obtained from the Heisenberg
operator equations of motion by taking expectation values
and applying the factorization rule above. The corresponding

The simplest Hamiltonian describing the coupled tops is
generalization of thé&N=2 case of the transverse field quan-
tum Ising model, i.e.,

~ N P semiclassical Hamiltonian is
H=wl®l+ol @ J+7J,®J, (1)

J E=La+Le+ulals (6)
where the angular momentum operatdssatisfy the SW2) \\here E=(F)/j with the spherical constraint? +L5+L%,
commutation relationgl,,J,]=iJ, (and cyclic permutations =1
Settingu=x/ w, results in a one-parameter Hamiltonian The analysis of the corresponding classical sysf&s]

o o has shown that the nonlinearity of the interaction term leads
H=Jg+Jo+ g\]ﬂJ22 (2)  to chaotic motion for given parameter ranges and initial con-
J ditions. More relevant in this context is the existence of a

where we make use of the notati&g1:3a®f and jaz:i superprmcal pitchfork bifurcation, at a cr|t|c_al vall_Je of the
- ) coupling parameter. From R¢fL3] for the semiclassical sys-
®Ja @=X,y,z, such that the subscript @) refers to sub-  tem, the critical value ig..=1. Below this critical value the

system 1(2). _dynamics of the system is predominantly regular while
_ The squares of the total angular momentum of the indixpove the phase space is mixed, with extensive regions of

vidual tops, chaotic motion.

NI S The fixed points of the system are found by setting the

F=Ja+ I+ I S equations of motion to zero, to determine the coordinates
satisfy where the phase space flow is zero. From Skellett and

Holmes[13], there are four solutions which exist for all val-
[ H]=[3H]=0, (4)  ues of the coupling parametgr, given by

and so are constants of the motion. Here the tops are identi- Lg=%1, Le=%1, Ly=L,;=Lp=L,=0. (7)

2_2_:/: H
cal, such thatly=J;=j(j+1). This allows the system to be At the critical valueu=1 the two fixed points ak,;=L,,
represented in the basis of tensor products ofxheigen- =1 andL,;=L,,=-1 bifurcate, resulting in the emergence of
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< > FIG. 3. The four stable fixed points for>1. As u— oo,
\l Ke H 61,6,— 0, resulting in fixed points with angular momentum solely
in the L, directions, denoted(1), (1]), (11), and(]]).

FIG. 2. (Color onling The pitchfork bifurcation aj.=1 for L,;.
The elliptic (stable fixed points are centers, indicating that close to
the fixed point, the motion is periodic, while the hyperbdlim- Ly=Lew=1 (¢1=¢,=0) and atL=L,,=-1 (¢1=¢,=m).
stablg point is a saddle. This diagram is the same for both values of-0llowing the notation used by Skellett and Holn&8], we

Ly=L,,=+1. denote the two states bfy——) and («++«), respectively,
corresponding to the direction of the angular momentum
a furtherfour fixed points, located at vector. .
For u greater than the critical value, there are four stable
1 fixed points, whose positions are shown in Fig. 3.
Ly = Lx2=;, La=Lp=* 1—;, The points labeled\ and B correspond to Eq(8) and

pointsC andD to Eq.(9). Clearly asu— o, 6 —0 (in Fig.
3) and, in the pictoriakarrow) notation of above, we have

Lyn=Ly2=0, (8) the four fixed points at the “poles” of the spheres, in the four
combinations(11), (1), (I1), and (|]), all of which are
1 1 table.
La=Lle=-=, La=-Llp=£4/1-5 stav’e
amhem oy 8 2= = w?’ The semiclassical analysis we have presented here is just
a brief summary of those aspects most relevant for this paper.
Ly1=Ly,»=0, (9) For an in-depth analysis of the classical dynamics of this

. . N . ~ system we again refer the reader to Skellett and Ho[rh8s
which exist for allu>1. The stability of the fixed points is The bifurcating fixed point at,;=L,,=-1 (for u< u) is
determined by ana|y3is of the eigenvalues of the ”nearizeﬂqe minimum energy point and so Corresponds to the quan-
matrix about each fixed poifit.0]. tum ground state. We now consider the quantum regime, and

_In Ref. [13], it was shown that the two fixed poin3)  the entanglement between the spins as a function of the cou-
with Ly, =-L,, areunstablefor all values ofx. The points,  pling strengthy.

Ly=L,,=%1 are stable fop <1, becoming unstable at..
The emergent fixed points are all stable. This implies that the
bifurcations occurring atlL,;=L,,=%1 are supercritical
pitchfork bifurcations, as illustrated in Fig. 2. The ground state is computed by direct numerical diago-

Since the total angular momenta of the two tops are connalization of the Hamiltoniax2). The entanglement measure
served, their dynamics of each are constrained to the unie employ is the entanglement of formation, which, for pure
sphere, in angular momentum space. It is possible to refoRipartite states, is equivalent to the entropy of entanglement
mulate the dynamics in terms of spherical polar[1,19]
coordinates—the polar angle from the positivg axis, 0 _
<6<, and the azimuthal angle in thg;-L; plane(from Slpi) = = Tr(p; log pi) 1D
the positivel,; axis), 0= ¢; < 27. These coordinates give the wherep;=Tr;(p) is the reduced density operator and the log
angular momentum components via is to base 2.

The case of=1/2,i.e., a two-site transverse field Ising
model, was considered by Gunlyc&eal.[14]. It was shown
in this case that the ground-state entanglement is zero for
zero coupling(x=0) then increases as the coupling in-
creases, to asymptote to the maximal value of Lase.

L;i= cos6;. For j>1/2, the entanglement of the ground state with

For all fixed pointsL,;=L,,=0, which in spherical polar respect to the ipteraction strengtttakes on a different char-
coordinates corresponds i, $,=0 or 7. Thus, we can acteristic(see Fig. 4 o
view the fixed points as lying on the unit circle in the For u=0, the ground state is simply a tensor product of
-L,; planes, characterized by the polar angle$or x below  the minimalJ,; weight states|-j,—j),, which is separable.
the critical coupling there are two stable fixed points, both ofAs w—, the ground state approaches the superposition,
which lie at the “equator” of these unit circlég,==/2) at  (|j,=j)+|-j,j))/\2, so the entanglement still asymptotes to

B. Ground-state entanglement

L,;=sin 6, cosg,

Ly =sin g sin ¢, (10
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S(p)

= S FIG. 4. (Color onling Variation in the entropy
R SN of entanglement of the ground state with respect
iR : to the coupling strengthu and the total sub-

system angular momenturn Note that as the
system becomes more classicaljascreases the
peak in the entanglement versudecomes more
evident.
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1. However, forj>1/2 the entanglement now peaks at a To understand how the fixed-point structure manifests in
finite value of u. The height of this peak grows with the the quantum regime, we need to consider the structure of the

value of j and will approach infinity in the limiting case. guantum state in phase space.
We let uqc denote the quantum critical parameter, defined
as the coupling value at which the ground state entanglement C. Ground state in phase space

is maximum. Figure 5 shows the limiting behaviour . Fundamental to any comparison of classical and quantum
For largerj, the maximum entanglement occurs near the bi- y P q

. : : - " dynamics is some notion of the quantum analog of a classical
Lugﬁl?tfgpfooégasgfhg (;[g 2;:?6:? bifur,cg;ieor?up%?rgijm critical jO'In.t phase-spgce probability dlstrlbu_tlon. We choose the Hu-
’ simi or Q function[16] as the appropriate quantum analog of
the classical phase-space density, following REfg-23.
Hae = Me- (12) For systems described in spherical phase space, Appleby
[23] demonstrated that thepsitive operator valued measure-

In the semiclassical limit, the quantum critical point corre- menyPOVM) for optimal simultaneous measurements of an-

sponding to maximum ground-state entanglement is the clas- S ~
sical bifurcation point gular momentum components is given Bz) =|2)(z|, where

|2) are the SR), coherent statel24],

) ' ' ' 2=+~ )) (13)
45 b N
ol | with |j,—j) the lowest-weight eigenstate df andz, the ste-
reographic projection of the sphere onto the plane,
35r b
. %
o o . 2(6,¢) =€ tan—. (14)
g 2
3. 25¢ _
Al ] The probability distribution for measurements defined by this
POVM is the angular momentum representati@iiunction,
15¢ : which for pure state=|y)y] is
L e e ~
. _ Q2 = TpE@)] = @)l (15
. . . . For our bipartite system we define the two-ba@yfunc-
0 5 10,1 15 20 tion in terms of the coherent states
2=z © [2). (16)

FIG. 5. (Color online The variation in the quantum critical
parametefuq, the value ofu for maximum ground-state entangle- Since theQ function for the coupled tops is in four phase-
ment, with total angular momentujn In the classical limitj — o, space dimensions, we may only display cross sections
qc approaches the classical critical parameter, where the bifurcagraphically. We have calculated tifg = ¢, =7 cross section
tion occurs. of the ground-stat€) function for various values of the cou-
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FIG. 6. (Color online The ¢,=¢,=m cross
sections of the ground-stagfunction for a cou-
pling strengthu equal to(a) 0, (b) 0.7, (c) 1, (d)
1.184,(e) 1.25, and(f) 1.55, forj=14. Thex and
y axes correspond t6; and 6,, respectively. The
entanglement of formation is 0 fdge), approxi-
mately 1 for(f), and maximum foxd), when the
distribution is the most delocalized. We see that
as the fixed point bifurcates, so does the ground-
stateQ distribution, from the single-peaked to the
twin-peaked structure.

pling strengthu. This cross section was chosen since this isnonintegrable systems, the Gutzwiller trace formula allows
the plane in which the bifurcating fixed points are located. for semiclassical approximations of energy spectra, but not
As evidenced in Fig. 6, the structure of the ground state irihe structure of the corresponding eigenstafss.
phase space is intimately related to the fixed-point structure For systems exhibiting mixed phase space, while no gen-
and bifurcation. For smalk, theQ distribution of the ground ~ eral quantization procedure exists, there is an understanding
state is localized around the fixed pointéat 6,= /2 which  that eigenstates can be separated into regular and irregular or
is elliptic for u< . For w much larger, beyond the bifur- chaotic[30] (and in-between or hierarchicg8]) groups.
cation, theQ distribution is twin peaked, localized around Regular states are supported by classical tori obeying EBK
the two emergent elliptic fixed points. Put simply, in theseguantization, whereas chaotic states are associated with cha-
two extremes, the distribution is localized around the ellipticOtic phase-space regions. In the Husimi representation, regu-
fixed points. In between, the distribution is spread betweef@l states are seen as localized on regular trajectories,
the three fixed points and it is this region in which the degreavhereas chaotic states are somewhat evenly distributed over
of entanglement is greatest. In fact, we will argue that thehe chaotic region of phase spg@].
entanglement is maximum when the distribution is at its Classically, the minimum energy trajectories correspond
most delocalized?25]. to elliptic (stablg fixed points. Thus, it would seem reason-
Under this assumption, the maximum ground-state enable to infer that the quantum ground state would be local-
tanglement will occur whep is above but close to the criti- 1zed around such points.
cal point. This is when th@ distribution is at its most delo- ~ The aim of this section is to demonstrate that for Hamil-
calized, smeared between the three fixed points. jAs tonians whose classical analog exhilitsinimal energy el-
becomes very large, and the Heisenberg uncertainty limit aliptic fixed points, theQ function of the ground state is
lows for a higher degree of localization of the distributions, P€aked on the phase-space coordinates corresponding to such
this quantum critical point approaches the classical bifurcafixed points. This statement has nontrivial consequences
tion point. In this semiclassical regime, the greatest delocawhen the classical Hamiltonian displays befurcation of
ization occurs closer and closer to the bifurcationjas».  fixed points, which, in the quantum regime, will correspond
For this simple coupled-tops model we have demonstratetP @ qualitative change in the structure of the ground-state
that the entanglement characteristics of the ground state cdase-space distribution. Subsequently, we relate the struc-
be associated with the supercritical pitchfork bifurcation. Toture of theQ function to entanglement properties.
validate and generalize this result, we need to consider why
the ground-stat&) distribution is related to the fixed-point

structure, and how this structure corresponds to the degree of In reformulating quantum mechanics in phase space, the
entanglement. coherent states provide a natural phase-space structure for a

given quantum system, as well as useful distributions based
in the coherent-state representati@2], two of which we

A. Ground-state Q function and fixed points

IIl. THE GROUND-STATE Q FUNCTION AND briefly discuss now.
ENTANGLEMENT An operatorO can be expressed in the diagonal form
There has been considerable effort in relating quantum -
eigenstates to classical phase-space structfmegxample, 0= | Op(2|2){Zdu(2) (17)

see[26-29). The Einstein-Brillouin-Keller (EBK) approxi-

mation[29] provides for a semiclassical quantization of clas-called theP representation, whete) (in complex variable)
sically integrable systems, whereby eigenstates are identifieate the coherent states adgd(z) is the corresponding mea-
with closed loops around invariant tori in phase space. Fosure. The density operator is given by
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. PH 1 PH
p =J P(2)[2{Zdu(2). (18)  H(@zD=H(z0Z) +|z-2> —| +Z(z-2)? —
2272 P iz |,
The Q representation of an operator is defined as 1 , PH
. R +=(z-"29° —;| + (higher-order terms
O — Oq(2) =(Z0|2) (19) 247" (ZI
and the density operator in the representation is denoted hyhich can be written as
Q(2). The statistical average of an operator in the two repre- _
. S . — e lz=z
sentations Is given by H(Z,_Zj ~ H(ZOiZO) + [Z— ZpZ— ZO]]D o Z;:| ,
(0)=Tr(p0O) = f Q(20p(2)du(2) = f P(2)0q(2)du(2). where
To determine the ground state of a given Hamiltonin PH PH
in this phase-space formulation we seek the distribution that 2 (92_(;,2
minimizes the average energy, i.e., determine the distribution D= 5 % , % , (26)
Q(2) that minimizes ‘9_71‘ TR H
A 9292 4, (J2)? %
(H)= J Q(29Hp(2)du(2) (20) -
such that déi)) <0. In other words, to second order around
for a givenHp(2). the elliptic fixed point;H(z,2) is parabolic, with minimum at

Upper and lower bounds on the ground-state en&gy %

are determined by minimizing tf@ andP representations of ~ Now consider the minimization problem of E(R2). If
the Hamiltonian32], the system under investigation has only a solitary global

minimum, sinceQ(z) takes only positive values, the distri-
bution that minimizes Eq22) will be as sharply peaked as
possible on the coordinates of the minima. The ground-state
In the semiclassical limifi.e., #—0 for Heisenberg- Q function will be peaked on the coordinates of the fixed
Weyl, J— = for SU (2) coherent statgf the appropriately point.
scaled Hamiltonian, both th® and P representations con- What if there are more than on@egenerate global
verge to the classical Hamiltoniah(z). So the problem of minima? In this case, consider expansions around each of the
finding the ground state in the phase-space representation figed points z, following (26). We are interested in the
we approach the semiclassical limit reduces to finding theyround state in a semiclassical regime whereQHenctions

minHg(2) = Eg = minHp(2). (21
z z

distribution Q(z), minimizing the functional can be highly localized. We thus approximéteas a piece-
wise sum of the expansions around each of the degenerate
FQ@2)]= f du(2Q(2)H(2) (22)  fixed points. The functional22) is thus written as the sum-
mation
whereH(z) is the semiclassical Hamiltonian. This distribu-
tion must satisfy FAQ2]=> | du2Qu2)Hy(2) (27)
Jd“(Z)Q(Z) =1, 0=Q@=1, (23 WwhereH,(2) is the expansion around the fixed poitand

) o ) Qu(2) is the distribution defined in the phase-space region
as well as the uncertainty principle, which excludes the posg, = Minimizing each term in this summation gives in turn a

sibility of & functions. piecewise-defined distribution, sharply peaked around the
Let us consider a suitably scaled Hamiltonian with semi-cgordinates of each of the fixed points.
classical limitH(z), which exhibits a global minimum at The above statements are by no means rigorous. We are
=2y. This requires that considering the problem in a semiclassical regime, which
oH oH allows us to take simple approximations for the Hamiltonian,
—| = —| =0 (24 and simplifies the structure of the corresponding ground-state
72 1, 92 14 Q functions. However, as we take the semiclassical limit

(h—0,j— ), the Q function will mergesmoothlyfrom a

and o .
X ) 5 true quantum ground-state distribution to the more semiclas-
FH IR IH -0 (25) sical structure described above.
023z, 9z % (62)? % : As we move in the other direction, from the semiclassical

to the quantum, we expect to observe remnants of the semi-
This corresponds to an elliptic fixed point in the phase-spacelassical structure. Th® function, while perhaps not sharply
portrait of the classical dynamics. Taylor-expandik{iz) peaked, will be concentrated around the fixed-point coordi-
about the fixed point gives nates.
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These observations lead us to make the following conjec- The majority of Ref[25] is devoted to constructing ex-
ture. plicit formulas for the Rényi-Wehrl entropy in terms of the

Conjecture 1 (fixed-point correspondencépt H be a ~moments. The calculation of the moments is simplified via a
Hamiltonian whose classical analog is defined?ag,y’)  9roup-theoretical construction. When applied to a system of
:<X||:||X>y where {|x)} is the set of coherent states corre- two qubits, it is shown that the concurrent@3] may be

’ N expressed in terms of the second moment of@hinction.
sponding to the topology of the phase spaceftifv.x ). \jore strikingly, when applied to a system of three qubits, the

Then the Husimi distribution of the ground statetbfvill be  expression for the moment contains all three bipartite con-
concentrated around the phase-space coordinates correspogdrrence terms, as well as the three tangle. In this way this
ing to the fixed poirs) of H. measure captures all classes of entanglement, not only bipar-
While we have not provided a rigorous proof of this state-tite or otherwise.
ment, we have argued above that such a notion is indeed Applying the results of Sugita to explain the entanglement
plausible. behavior we observe is now straight forward. Well below the
This conjecture by no means provides detailed informacritical parameter, the ground-sta@efunction will be local-
tion about the ground state, but instead provides a guidelinged around the solitary fixed point, and hence have low
for the phase-space structure of the ground state. As in Refiegree of entanglement. At the other limit, well above the
[32], where the use of th® representation of the Hamil- critical parameter, the ground state consists of a superposi-
tonian as a guide to studying ground-state phase transitionin of two well-separatedand hence almost orthogohal
was advocated, this guideline become most useful when thetates. For a bipartite system, this implies that the entangle-
fixed points vary according to some critical parameter, i.e.ment of formation will be 1. In between these two limits the
bifurcation This can provide for a variational approach to distribution is spread between the three fixed points, with a
approximating the ground state via coherent stédes Ref.  greater degree of entanglement. jAsecomes very large, and
[32)). the distributions may be more localized, the point at which
For our purposes, this link between fixed points and thehe ground-state distribution is most delocalized will move
phase-space structure can provide a qualitative understangtoser toward the bifurcation point.
ing of the effect of the bifurcation on the ground-state en- In this way, it is the pitchfork structure of the bifurcation
tanglement. The connection to entanglement is made via th@at is vital. The loss of stability of the original fixed point,
work of Sugita[25], which we now discuss. coupled with the emergence of two degenerate stable points,
as opposed to a single emergent point, which is the case for
other classes of bifurcation, results in the characteristic peak
B. Entanglement and theQ function in the ground-state entanglement.

When dealing withQ functions for composite systems, We argue that this result should hold for a general bipar-
there are several ways to generalize the idea of coherefite system, and put forth the following conjecture.
states to many-body systems. In the next section, we follow Conjecture 2 (ground-state entanglemen@onsider a
Sugita [25] by constructing coherent states based on theuantum HamiltoniarH(g) which depends smoothly on a
single-particle transformation group. This means the coherparameterg and which acts on a bipartite Hilbert space
ent states are independent-particle states and hence sepg¢P)® V,(P). The parameteP allows one to take a well-
rable, allowing the entanglement to be related to the structurgefined classical limit. Suppose tHatg) is the well-defined

of the Q function. classical limit ofI:|(g) and that there is a supercritical pitch-

Sugita [25] constructs the many—body coherent Sta.te%ork bifurcation of the fixed points at the critical parameter
based on the single-particle transformation group, followin ~g.. Let the von Neumann entrop§ be the measure of
=0,

Fhe gropp—theoretlcal COHS'II’UCIIOH of Perelon[@g]. As an entanglement. Theis(g), the entanglement of the ground
illustrative example, consider a system mfqubits (basis

states7), [1)). The local unitary(or single-particlgtransfor- ~ State ofH(g), is a maximum with respect tg at gq(P)
mation group is S(R)®". Coherent states are generated bywheregq(P)—g. in the classical limit.
applying this group to the lowest-weight state®". In this
way, we generate alpure separable states. From this defi-
nition, coherent states are thus equivalent to separable states.We have illustrated how the entanglement in the ground
We note that our arguments in the above section easily applstate of a simple coupled-tops model can be associated with
to the multiparty case when the coherent states are general-bifurcation of the classical fixed points. Following this ob-
ized in this way. servation, we have argued why this result should be general-
From this definition, Sugita argues that a separable state igable to any quantum system with an appropriate classical
represented by a localized wave packet in phase space. Sinlimit which exhibits a pitchfork bifurcation.
coherent states are the most localized states in the Husimi We have already found other instances where our conjec-
representation, it is argued that delocalization of the Husimture holds. In particular, for the Dicke model studied in Ref.
distribution implies correlation—hence entanglement—[34]. This system exhibits a QPT, which corresponds to the
between the particles. This delocalization can be measurdulfurcation. This system is the subject of a future artj@8].
by the Rényi-Wehrl entropy, which represents the effective The classical bifurcation having a signature—namely, the
volume occupied by the Husimi distribution. entanglement spike—in the quantum regime is not that sur-

IV. SUMMARY
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prising. Most classical characteristics arise in the quantum <>“( \A(>=(9(\s"j(jT1)) (A2)
regime, although the signature here, entanglement, is ' '

uniquely quantum. Here we have a correspondence betweér., the covariance is of order not exceedijngConversely,
the classical and quantum in stationary states of the systergoth (XY) and(X)(Y) are O(j(j+1)). Reexpressing EGA1)
Predominantly, quantum-classical correspondence has begny dividing through byi(j+1) yields

considered with respect to the dynamics, especially in the

case of chaotic systentfor example[36-40). The dynami- <)‘(§(> <)‘(> <\“(>
cal generation of entanglement is argued to be related to the i1 = 7= — ( = ) (A3)
underlying chaos in many-body systems—classical chaos JG+D NjG+DNjG+1) Vi +1)

implies a greater degree of entanglement. The simplegking the limit of j — o, meaning\j(j+1)— |, gives
coupled-tops system offers an excellent test bed for further
investigation into the relation between chaos and entangle- XYy OO

ment due to its richclassical dynamical structure. 2 i (A4)
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which are simply real numbers, allows the expectation values

APPENDIX: SEMICLASSICAL LIMIT of products of operators to be factorized in the semiclassical

To take the appropriate semiclassical limit we first Con_Iim!t. The semiclassical dyngmics are th_en obtained fr'om the

) . ) ~ A Heisenberg operator equations of motion by replacing the

sider the correlation function between two operar¥, operators in the above differential equation with these expec-
A A A~ ~on tation values. Similarly, the semiclassical Hamiltoniaris

XY) =(XY) = (XXY), (A1) obtained by taking the expectation value of the Hamiltonian,

also known as theovariance In our case, all operators are scaling by 11,

elements of the S(2) group of total angular momentum op- <|:|>

erators. The scaling of the covariance with respect to the E= o o Lt ulol AG
total angular momentum eigenvalyg(j +1) is j at et fhate: (A6)
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