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Gibbonset al. fPhys. Rev. A70, 062101s2004dg have recently defined a class of discrete Wigner functions
W to represent quantum states in a finite Hilbert space dimensiond. I characterize the setCd of states having
non-negativeW simultaneously in all definitions ofW in this class. Fordø5 I showCd is the convex hull of
stabilizer states. This supports the conjecture that negativity ofW is necessary for exponential speedup in
pure-state quantum computation.
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I. INTRODUCTION

Continuous-variable quantum systems can be represented
in phase space using various quasiprobability distributions,
notably the Wigner functionWsq,pd f1,2g. This real-valued
function plays some of the roles of the classical Liouville
density, for example, allowing us to calculate some system
properties through phase-space integrals weighted by
Wsq,pd. Despite these similarities,Wsq0,p0d cannot be inter-
preted as the probability of simultaneously measuring ob-
servables p̂ and q̂ with eigenvaluesp0 and q0: such
dispersion-free values for noncommuting observables are not
allowed in quantum mechanics. In fact,Wsq,pd can even be
negativein some phase-space regions, something that obvi-
ously could not happen wereWsq,pd a true probability dis-
tribution shence the term “quasiprobability”d.

The connection between negativity ofWsq,pd and non-
classicality has not been completely fleshed out, partly due to
different subjective views on what qualifies as “nonclassical
behavior” ssee Refs.f3,4gd. Negativity of Wsq,pd has been
linked to nonlocalityf5g, but the relation is not straightfor-
ward. For example, the original Einstein-Podolsky-Rosen
state can display nonlocality despite having positiveWsq,pd
in all phase spacef6–8g.

Buot f9g and Hannay and Berryf10g seem to have been
among the first to propose analogs of the Wigner function for
finite-dimensional Hilbert spaces. Their finds were rediscov-
ered later by Cohen and Scullyf11g and Feynmanf12g, who
defined a discrete Wigner functionW for the case of a single
qubit. This work was developed by Woottersf13g and Galetti
and de Toledo Pizaf14g, who introduced a Wigner function
for prime-dimensional Hilbert spaces. There followed other
definitions valid for dimensiond which is odd f15g, even
f16g, power-of-prime f17,18g, or arbitrary f19–21g. These
have been recently used to visualize and get insights on tele-
portationf22,23g, quantum algorithmsf20,21g, and decoher-
encef24g. A recent review of phase-space methods for finite-
dimensional systems is given in Ref.f25g.

In this paper I investigate the relation between negativity
of discrete Wigner functions and quantum computational
speedup. I will focus on the class of Wigner functions de-
fined by Woottersf17g and Gibbonset al. f18g for power-of-
prime dimensions. Wigner functions in this class are defined
by associating lines in a discrete phase space to projectors

belonging to a fixed set of mutually unbiased bases. We will
see that the set of states displaying negativity ofW depends
on a number of arbitrary choices required to pick a particular
definition of W from the class. I eliminate this arbitrariness
by characterizing the setCd of states having non-negativeW
simultaneously in all definitions in the class, for
d-dimensional Hilbert space.

For a single qubit, I show that the setC2 consists of states
which fail to provide quantum computational advantage in a
model recently proposed by Bravyi and Kitaevf26g. For di-
mensions 2ødø5, I show that the setCd is the convex hull
of a set ofstabilizerstates, i.e., simultaneous eigenstates of
generalized Pauli operatorsf27,28g. This is interesting, as
quantum computation which is restricted to stabilizer states
and gates from the Clifford group can be simulated effi-
ciently on a classical computerf29g. If the result holds for
arbitrary power-of-prime dimensionssas I conjectured, then
pure states inCd would be “classical” in the sense of having
an efficient description using the stabilizer formalism. This
suggests that states with negativeW may benecessaryfor
exponential quantum computational speedup with pure
states.

II. DISCRETE WIGNER FUNCTIONS

In this section we review the discrete Wigner functions
introduced by Woottersf13g and Galetti and de Toledo Piza
f14g for prime dimensions, and elaborated on recently by
Woottersf17g and Gibbons, Hoffman, and Woottersf18g for
prime-power dimensions. We start by defining discrete ana-
logs of phase space and its partitions into parallel “lines”
si.e., striationsd. Then we review how to define a class of
discrete Wigner functionsW by associating lines with pro-
jectors onto basis vectors from a set of mutually unbiased
basessMUB’sd.

A. Phase space and striations

The discrete analogue of phase space in ad-dimensional
Hilbert space is ad3d real array. Unlike the continuous
phase space, in this discrete setting we do not have geometri-
cal lines of points. Instead, a “line” is defined as a set ofd
points in discrete phase space.
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It is clear that our discrete phase space can then be parti-
tioned in multiple ways into collections of parallel linessi.e.,
disjoint sets ofd phase-space pointsd. Following Wootters
f17g, we call each such partition a striation.

In Ref. f18g a procedure for buildingsd+1d striations of a
d3d phase-space array was outlined, resulting in striations
with the following three useful properties:sid given any two
points, exactly one line contains both points,sii d given a
point a and a linel not containinga, there is exactly one
line parallel tol that containsa, and siii d two nonparallel
lines intersect at exactly one point. The construction of these
sd+1d special striations involves labeling the discrete phase
space with elements of finite fields, and defining lines using
natural properties of the fieldsfor details, see Ref.f18gd.
These striations play a central role in the definition of the
discrete Wigner functionW, as we will see below.

B. Mutually unbiased bases

Wootters’ definition of discrete Wigner functions makes
use of a special set ofd+1 bases for ad-dimensional Hilbert
space. Consider two different orthonormal basesB1 andB2:

B1 = hua1,1l,ua1,2l, . . . ,ua1,dlj,uka1,iua1,jlu2 = di,j , s1d

B2 = hua2,1l,ua2,2l, . . . ,ua2,dlj,uka2,iua2,jlu2 = di,j . s2d

These two basesB1 andB2 are said to be mutually unbiased
or mutually conjugate if

ukai,juak,llu2 =
1

d
if i Þ k. s3d

Wootters and Fields showed that one can definesd+1d
such mutually unbiased basessMUB’sd for power-of-prime
dimensiond f30g. Note that this is exactly the number of
striations one can find with propertiessid–siii d above; we will
use this now to define a class of discrete Wigner functionsW.

C. Defining a class of discrete Wigner functions

We now have the ingredients to define a class of discrete
Wigner functions: a set ofsd+1d mutually unbiased bases
hB1,B2, . . . ,Bd+1j; and a set of sd+1d striations
hS1,S2, . . . ,Sd+1j of ourd3d phase space intod parallel lines
si.e., disjoint setsd of d points each. To define a discrete
Wigner function we need to choose two one-to-one maps:
each basis setBi is associated with one striationSi and each
basis vectoruai,jl is associated with a lineli,j sthe j th line of
the ith striationd. With these associations, the Wigner func-
tion W is uniquely defined if we demand that

Trsuai,jlkai,jur̂d = o
aPli,j

Wa, s4d

i.e., we want the sum of the Wigner function elements cor-
responding to each line to equal the probability of projecting
onto the basis vector associated with that line.

Note that there are multiple ways of making these asso-
ciations. In general, this will lead to different definitions of
W using the same fixed set of MUB’s. The procedure out-

lined above then leads not to a single definition ofW, but to
a class of Wigner functions instead.

III. WIGNER FUNCTION FOR A QUBIT

Let us illustrate Wootters’ definition of a discrete Wigner
function with the simplest case, a qubit. The discrete Wigner
function W is defined on a 232 array:

s5d

There are three striations of this phase space with proper-
ties sid, sii d, siii d as required. Below I list them, using num-
bersj =1,2 toarbitrarily label the two linesli,j in each stria-
tion Si:

s6d

Now we need to define a set of three mutually unbiased
bases for a qubit. These can be conveniently chosen as the
eigenstates of the three Pauli operatorsŝx, ŝy, andŝz. Let us
label these basis vectorsuai,jl, wherei P h1,2,3j indexes the
MUB si =1,2,3,respectively, for the operatorsŝx, ŝy, ŝzd,
and j P h1,2j indexes the basis vector in each MUB
sj =1,2 indicates eigenstates with eigenvalues respectively
equal to +1, −1d.

We can now defineW by imposing conditions4d, i.e., we
want the sum ofWi,j in each linel to be the probabilitypi,j
of projecting the state onto the basis vectoruai,jl:

pi,j ; Trsuai,jlkai,jur̂d = o
aPli,j

Wa. s7d

Using the three striations we defined, these conditions can
be explicitly stated in terms of the probabilitiespi,j:

W1,1+ W1,2= p1,1, s8d

W2,1+ W2,2= p1,2, s9d

W1,1+ W2,1= p2,1, s10d

W1,2+ W2,2= p2,2, s11d

W1,1+ W2,2= p3,1, s12d

W1,2+ W2,1= p3,2. s13d

The equations above define uniquely the Wigner function
W in terms of the probabilitiespi,j:

W1,1=
1

2
sp1,1+ p2,1+ p3,1− 1d, s14d

W1,2=
1

2
sp1,1+ p2,2+ p3,2− 1d, s15d

W2,1=
1

2
sp1,2+ p2,1+ p3,2− 1d, s16d
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W2,2=
1

2
sp1,2+ p2,2+ p3,1− 1d. s17d

Here we should keep in mind that not all probabilitiespi,j are
independent, as the sum over any MUB must add up to 1
si.e., ∀i , o jpi,j =1d.

From the definitionss14d–s17d we can immediately read
the conditions for non-negativity of the Wigner function

p1,1+ p2,1+ p3,1 ù 1, s18d

p1,1+ p2,2+ p3,2 ù 1, s19d

p1,2+ p2,1+ p3,2 ù 1, s20d

p1,2+ p2,2+ p3,1 ù 1. s21d

Because of the conditionso jpi,j =1, there are only three free
variables in the inequalities above. We can thus pick onepi,j
for each MUBi ssay,pi,1d, and represent states by points in
this three-dimensional probability space. This representation
is equivalent to the more familiar Bloch sphere, with the
advantage of generalizing easily to power-of-prime dimen-
sion d. In that casesto be discussed in Sec. Vd, there are a
total of sd2−1d independent probabilitiespi,j describing any
mixed quantum state. Note that the probabilitiespi,j combine
linearly for convex combinationssprobabilistic mixturesd of
quantum states, a consequence of the linearity of the trace in
Eq. s7d.

The inequalitiess18d–s21d for non-negativity ofW are sat-
isfied by statepW =sp1,1,p2,1,p3,1d if and only if pW lies inside
the tetrahedron

T1 = convex hull ofhs0,0,1d,s0,1,0d,s1,0,0d,s1,1,1dj
s22d

ssee Fig. 1d. By contrast, there exist quantum states whoseW
is negative in some phase-space points, i.e., lying outside of
tetrahedronT1. This is illustrated in Fig. 1, where the set of
points corresponding to quantum states is the ball of radius
r =1/2 andwith centers 1

2 , 1
2 , 1

2
d.

Let me draw attention to two features of the set of states
with non-negativeW. First, there exist pointspW PT1 which
do not correspond to any one-qubit quantum statefe.g.,
pW =s1,1,1dg. We must also keep in mind that there were ar-
bitrary choices involved in the particular definition ofW that
we picked. We have chosen arbitrary one-to-one maps be-
tween MUB’s and striations, and also between lines in a
striation and basis vectors. In the next section we take these
two points into account, defining a set which consists solely
of quantum states, and for which the Wigner function is non-
negative forall definitions ofW.

IV. ONE-QUBIT STATES WITH NON-NEGATIVE WIGNER
FUNCTIONS

In this section I use negativity ofW to define the setCd of
states ind-dimensional Hilbert space having non-negativeW
for all definitions ofW based on a fixed set of MUB’s. I will
then argue that single-qubit states inC2 behave “classically”
in a concrete computational sense.

Having fixed a set of three MUB’s for a single qubit,
Wigner functionsW can be defined in a number of ways,
corresponding to the 3!s2!d3=48 different associations be-
tween lines and basis vectors, and between striations and
MUB’s. For each of these 48 Wigner function definitions we
can do as above, and find the set of points inpW space for
which W is non-negative. A simple calculation shows that
depending on the definition, this set is either the original
tetrahedronT1 or the tetrahedron whose vertices are the other
four pW-cube vertices:T2=convex hull ofhs1, 1, 0d, s1, 0, 1d,
s0, 1, 1d, s0, 0, 0dj. Now I define the setCd of states in
d-dimensional Hilbert space which I will argue behave “clas-
sically” in a computational sense.

Definition. The set Cd is defined as the states in a
d-dimensional Hilbert space whose Wigner functionW is
non-negative in all phase space pointsand for all definitions
of W using a fixed set of mutually unbiased bases.

In the remainder of this article I will characterize the set
Cd for some small dimensionsd, and discuss the limitations
of doing quantum computation solely with states inCd. For a
qubit, the setC2 is given inpW-space as the intersection of the
two tetrahedraT1 andT2 presented above. This corresponds
to an octahedron inscribed inside the ball of quantum states:

C2 = convex hull ofHS1,
1

2
,
1

2
D,S0,

1

2
,
1

2
D,S1

2
,1,

1

2
D,S1

2
,0,

1

2
D,S1

2
,
1

2
,1D,S1

2
,
1

2
,0DJ s23d

FIG. 1. Tetrahedron inpW =sp11,p21,p31d space representing
states with non-negative Wigner functionW, for the definition ofW
given by Eqs.s14d–s17d. The ball represents one-qubit quantum
states.
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ssee Fig. 2d. We see that setC2 can be characterized in a
simpler way as the set of states which are convex combina-
tions of the six basis vectors of the three chosen MUB’s:

r̂ P C2 ⇔ r̂ = o
i,j

qi,juai,jlkai,ju, o
i,j

qi,j = 1. s24d

There are at least two motivations for considering the set
C2, as opposed to states with non-negativeW in a single
definition sthe setsT1 or T2d. The first one is the realization
that a priori there is no preferred definition ofW from the
full class of definitions, and any concept of “classical states”
based on non-negativity ofW should be definition-
independent. The second motivation only became apparent
after we calculatedC2: unlike the setsT1 andT2, all states in
C2 are physical states, i.e. obtainable from measurements on
a single qubit.

States in C2 and quantum computing. We have just char-
acterized the setC2 of single-qubit quantum states which
have non-negativeW in all definitions ofW using a fixed set
of MUB’s. Let us now review an argument for the “classi-
cality” of the setC2, from a computational point of view.

Recently Bravyi and Kitaevf26g proposed the following
model of computation. Imagine that for some reason there
are a few quantum computational operations which we can
perform perfectly—let us denote these byOideal. In addition
to those, some operations in setOfaulty can only be performed
imperfectly. Now let us consider a particular choice for
Oideal: preparing a qubit in stateu0l si.e., an eigenstate of the
ŝz operatord, applying unitary operators from the Clifford
groupssuch as the Hadamard and CNOT gatesd, and measur-
ing an eigenvalue of a Pauli operatorsŝx, ŝy or ŝzd on any
qubit. The Gottesman-Knill theoremf27g states that the op-
erations inOideal above can only create a restricted set of
states known as stabilizer states, i.e., simultaneous eigen-
states of the Pauli group of operators. Moreover, such opera-
tions do not allow for universal quantum computation, and
can be efficiently simulated on a classical computer.

In addition to these perfect operations, Bravyi and Kitaev
proposed a setOfaulty with a single extra imperfect operation:

preparing an auxiliary qubit in a mixed stater̂. In this model
of computation, it is easy to see that auxiliary qubits in states
r̂PC2 cannot be used to perform universal quantum compu-
tation f26g. States inC2 are linear convex combinations of
the six eigenstates of single Pauli operators. As such, they
can be prepared efficiently from operations inOideal, namely,
Clifford gates to obtain any Pauli eigenstate deterministically
from the initial ŝz eigenstate, together with classical coin
tosses to prepare them with the appropriate weights given by
the desired convex combination. These are operations that
can be efficiently simulated on a classical probabilistic com-
puter. This justifies my “classicality” claim for states inC2.

Interestingly, in Ref.f26g it was shown that some “non-
classical” statesr̂¹C2 can be used to attain universal quan-
tum computation in this model. The basic idea is to use aux-
iliary pure states outside ofC2 to implement gates outside of
the Clifford group, using operations inOideal only. A single
generic non-Clifford gate together with the set of Clifford
gates allows for universal quantum computation. This proce-
dure works also for a large class of mixed statesr̂¹C2,
through a distillation of pure nonstabilizer pure states from
r̂^N using Clifford operations onlyf26g.

This enables us to identify nonstabilizer states as a re-
source which can be tapped to implement non-Clifford gates
and achieve universal quantum computation. This idea was
first suggested by Shorf31g, and has since been elaborated
on by other authorsf32–36g.

V. HIGHER DIMENSIONS

We can follow Gibbonset al.and define a discrete Wigner
function W whenever the Hilbert space dimensiond is a
power of prime. In this section I use the definition ofCd to
characterize this set for states in small Hilbert space dimen-
sionsd.

In d dimensions, the probability-space pointpW describing
each state hassd2−1d components. Requiring non-negativity
of W for all definitions will correspond to a set of inequalities
for pW , each delimiting a half-space whereW is non-negative
at a particular phase-space point, and for a particular defini-
tion of Wigner function. States in the setCd are those which
satisfy all these inequalities, constituting a convex polytope.

Any convex polytope admits two descriptions, one in
terms of the half-space inequalitiessH descriptiond and one
in terms of its verticessV descriptiond. The setCd is, by
definition, anH polytope. For one qubit we have found the
equivalentV description: there are six vertices corresponding
to the six basis vectors of the three MUB’s used to defineW.

Let us now see how to find the equivalentV description
for theH-polytopeCd defined above. The starting point is the
general expression for thed-dimensional Wigner function at
phase-space pointa ssee Ref.f18gd:

Wa =
1

dF o
li,j{a

pi,j − 1G , s25d

where the sum is over the probabilities associated with pro-
jectors corresponding to all linesli,j containing phase-space
point a. By construction of the striations, each point belongs

FIG. 2. Octahedron inpW =sp11,p21,p31d space representing states
with non-negative Wigner functionsW for all definitions ofW using
a fixed set of mutually unbiased bases.
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to exactly one line from each striation. Thus for each pointa,
the sum above hassd+1d termspi,j, one from each MUB.

We want to find which conditions onpi,j correspond to the
demand of non-negativity ofWa for all pointsa and for all
definitions ofW using a fixed MUB set. For a fixed phase-
space pointa, changing the definition ofW will correspond
to picking a different set ofsd+1d probabilitiespi,j in Eq.
s25d, one from each MUBi. There are onlydsd+1d ways of
doing so, and this is the total number of expressions forWa

which we would like to take only non-negative values. These
dsd+1d inequalities of the formWaù0 constitute ourH de-
scription of the polytopeCd.

From thisH description it is possible to find the equiva-
lent V description using a convex hull program based on the
QUICKHULL algorithm f37g. While this is considered to be a
computationally hard problem in general, it was possible to
do the calculation fordø5. The results are similar to the
one-qubit case. Ford=3, 4, and 5 I found that theV descrip-
tion of Cd hasdsd+1d vertices, each corresponding to one of
the MUB basis vectors used to defineW. For d=5, for ex-
ample, theH-polytopeC5 in 52−1=24-dimensionalpW space
is delimited by 56=15 625 half-space inequalities corre-
sponding to non-negativity ofW in all definitions. TheV
description of this polytope consists of exactly 536=30 ver-
tices, each corresponding to one of the basis vectors of the
six MUB’s.

It is not hard to see that the MUB basis vectors have
non-negativeW in every single definition ofW using those
basis vectors. Fordø5, the computation described above
shows that these are the only pure states for which this is true
for all definitions, and moreover that the mixed states with
the same property are exactly their convex combinations. In
the next section we will discuss the implications for quantum
computing.

The set Cd and quantum computing. Given the results
above ford=2, 3, 4, and 5, it is natural to make the follow-
ing conjecture.

Conjecture. For any power-of-prime Hilbert space dimen-
siond, the polytopeCd is equivalent to theV polytope whose
vertices are the basis vectors of the MUB’s used to defineW.

It is easy to show that the latterV polytope is contained in
Cd; the converse seems to be harder to prove for general
power-of-primed.

To understand the relevance of this conjecture for quan-
tum computation, we need to review some known facts about
mutually unbiased bases. Various authors have come up with
constructions of MUB’sf30,38–42g. For d=2N, i.e., for the
case ofN qubits, the corresponding basis vectors can always
be written as simultaneous eigenstates of tensor products of
single-qubit Pauli operatorsf40g. More generally, for any
power-of-prime dimensiond the MUB basis vectors can be
chosen to be eigenstates of generalized Pauli operators

f39,43g. In other words, the basis vectors of MUB’s can al-
ways be chosen to be a set of stabilizer states.

The conjecture would then mean that for anyd, the setCd
would be the convex hull of the particular subset of stabilizer
states used as basis vectors of the MUB’s. Pure-state quan-
tum computation which is restricted to states inCd would
then only ever reach the MUB basis vectors, all of which
admit an efficient classical description using the stabilizer
formalism.

As I have already remarked, it is well known that quan-
tum computation that is restricted to pure stabilizer states and
gates from the Clifford group is not universal, and can be
efficiently simulated on a classical computerf27g. If the con-
jecture holds, then a wide class of unitary dynamics re-
stricted to pure states insideCd would be easy to simulate on
a classical computer—for example, any gate from the Clif-
ford group. This suggests that nontrivial pure-state quantum
computation may require states outside ofCd, i.e., having
negative Wigner functionW in at least some of the defini-
tions of W in the class proposed by Gibbons, Hoffman, and
Woottersf18g.

VI. CONCLUSION

In this paper I related the negativity of the discrete Wigner
function W with quantum computational speedup. I charac-
terized the set of states with non-negativeW using the class
of Wigner functionsW proposed by Wootters and collabora-
tors in Refs.f17,18g. Wigner functions in this class are de-
fined using projectors on a fixed set of mutually unbiased
basessMUB’sd. The set of states with non-negativeW de-
pends on which definition ofW from this class we choose.

I defined the setCd of d-dimensional states having non-
negativeW simultaneously inall definitions of W in the
class. States inC2 are classical in the sense of failing to
provide quantum computational advantage in a recent model
proposed by Bravyi and Kitaevf26g. For dimensions 2ød
ø5 I showed thatCd is the convex hull of the stabilizer
states used as basis vectors in the MUB set.

These results for small dimensionsd support the conjec-
ture that forany power-of-prime dimensiond, the setCd is
the convex hull of a set of stabilizer states. This would mean
that pure states inCd are “classical” in the sense of admitting
an efficient classical description using the stabilizer formal-
ism. This suggests that states with negativeW may benec-
essary for exponential pure-state quantum computational
speedup.
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