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Discrete Wigner functions and quantum computational speedup
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Gibbonset al.[Phys. Rev. A70, 062101(2004] have recently defined a class of discrete Wigner functions
W to represent quantum states in a finite Hilbert space dimembsiboharacterize the s&, of states having
non-negativé/VV simultaneously in all definitions A in this class. Fod=<5 | showCy is the convex hull of
stabilizer states. This supports the conjecture that negativity a6 necessary for exponential speedup in
pure-state quantum computation.

DOI: 10.1103/PhysRevA.71.042302 PACS nuntber03.67.Lx, 03.67.Hk, 03.65.Ca

[. INTRODUCTION belonging to a fixed set of mutually unbiased bases. We will
) ) see that the set of states displaying negativity\bflepends
~ Continuous-variable quantum systems can be representegh a number of arbitrary choices required to pick a particular
in phase space using various quasiprobability distributionsyefinition of W from the class. | eliminate this arbitrariness

notably the Wigner functio®(q,p) [1,2]. This real-valued .y characterizing the s, of states having non-negativié
function plays some of the roles of the classical Liouville gimyltaneously in all definitons in the class, for

density, for example, allowing us to calculate some systeny_dimensional Hilbert space.
properties  through phase-space integrals weighted by pFor a single qubit, | show that the s8 consists of states
W(g.p). Despite these similaritie®¥(qo, po) cannot be inter- \yhich fail to provide quantum computational advantage in a
preted as the probability of simultaneously measuring obmodel recently proposed by Bravyi and Kitag6]. For di-
servablesp and q with eigenvaluesp, and go: such  mensions 2d<5, | show that the seE, is the convex hull
dispersion-free values for noncommuting observables are nejf 5 set ofstabilizer states, i.e., simultaneous eigenstates of
allowed in quantum mechanics. In faw¥(q, p) can even be generalized Pauli operatof&7,28. This is interesting, as
negativein some phase-space regions, something that obviquantum computation which is restricted to stabilizer states
ously could not happen weMY(q,p) a true probability dis- and gates from the Clifford group can be simulated effi-
tribution (hence the term “quasiprobability” ciently on a classical computé9]. If the result holds for

The connection between negativity ¥f(q,p) and non-  arbitrary power-of-prime dimensior®&s | conjecturg then
classicality has not been completely fleshed out, partly due tpure states irfC4 would be “classical” in the sense of having
different subjective views on what qualifies as “nonclassicalan efficient description using the stabilizer formalism. This
behavior” (see Refs[3,4]). Negativity of W(q,p) has been suggests that states with negatié&may benecessaryfor
linked to nonlocality[5], but the relation is not straightfor- exponential quantum computational speedup with pure
ward. For example, the original Einstein-Podolsky-Roserstates.
state can display nonlocality despite having positivig, p)
in all phase spacgs-§|.

Buot [9] and Hannay and Berrll0] seem to have been Il. DISCRETE WIGNER FUNCTIONS
among the first to propose analogs of the Wigner function for ) ) . _ _ )
finite-dimensional Hilbert spaces. Their finds were rediscov- [N this section we review the discrete Wigner functions
ered later by Cohen and Scu(lg1] and Feynmafi12], who mtroduced.by Wpotter§13] and Galetti and de Toledo Piza
defined a discrete Wigner functiai for the case of a single [14] for prime dimensions, and elaborated on recently by
qubit. This work was developed by Woott¢ds] and Galetti  Wootters[17] and Gibbons, Hoffman, and Wootters] for
and de Toledo Piz14], who introduced a Wigner function Prime-power dimensions. We start by defining discrete ana-
for prime-dimensional Hilbert spaces. There followed other©9S Of phase space and its partitions into parallel “lines
definitions valid for dimensiord which is odd[15], even (i-€., striations Then we review how to define a class of
[16], power-of-prime[17,18, or arbitrary [19-21]. These Q|screte Wigner _funcuonw by associating lines with pro-
have been recently used to visualize and get insights on tel¢€¢tors onto basis vectors from a set of mutually unbiased
portation[22,23, quantum algorithm§20,21], and decoher- PaseSMUB's).
ence[24]. A recent review of phase-space methods for finite-
dimensional systems is given in RER5].

In this paper | investigate the relation between negativity
of discrete Wigner functions and quantum computational The discrete analogue of phase space thdimensional
speedup. | will focus on the class of Wigner functions de-Hilbert space is adxd real array. Unlike the continuous
fined by Wootterg17] and Gibbonst al.[18] for power-of-  phase space, in this discrete setting we do not have geometri-
prime dimensions. Wigner functions in this class are definedal lines of points. Instead, a “line” is defined as a sedof
by associating lines in a discrete phase space to projectopmbints in discrete phase space.

A. Phase space and striations
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It is clear that our discrete phase space can then be parfined above then leads not to a single definition/gfbut to
tioned in multiple ways into collections of parallel lins., a class of Wigner functions instead.
disjoint sets ofd phase-space pointsFollowing Wootters
[17], we call each such partition a striation. IIl. WIGNER FUNCTION FOR A QUBIT

In Ref.[18] a procedure for buildingd +1) striations of a Let us illustrate Wootters’ definition of a discrete Wigner
dXd phase-space array was outlined, resulting in striationgunction with the simplest case, a qubit. The discrete Wigner
with the following three useful propertie§) given any two  function W is defined on a X 2 array:
points, exactly one line contains both pointg) given a

point « and a line\ not containinge, there is exactly one W= Wit Wia
line parallel toA that containse, and (iii) two nonparallel W, | Wy
lines intersect at exactly one point. The construction of these ’ ’ (5)

(d+1) special striations involves labeling the discrete phase There are three striations of this phase space with proper-
space with elements of finite fields, and defining lines usingies (i), (i), (iii) as required. Below | list them, using num-

natural properties of the fieldfor details, see Ref{18]).  persj=1,2 toarbitrarily label the two lineg, ; in each stria-
These striations play a central role in the definition of thetion S;:

discrete Wigner functioiwV, as we will see below.

T2 i1 e
B S3: i
{2 21l (6)
Wootters’ definition of discrete Wigner functions makes Now we need to define a set of three mutually unbiased
use of a special set af+ 1 bases for al-dimensional Hilbert  pases for a qubit. These can be conveniently chosen as the
space. Consider two different orthonormal baBesndB,:  eigenstates of the three Pauli operaidysa,, anda,. Let us
label these basis vectojes; ;), wherei € {1,2,3 indexes the
= . M= 5 1)

Bi={ley,)\|a ), - Jar )}y <6Y1,||6Y1,1>| 4 (@) MUB (i=1,2,3,respectively, for the operators,, &y, 0y),

and je{1,2 indexes the basis vector in each MUB

S . S
15 24

2»

B. Mutually unbiased bases

— 2 -
By={laz |z, - Jaz gt azilazpl®= 6. (2 (j=1,2 indicates eigenstates with eigenvalues respectively
These two baseB,; andB, are said to be mutually unbiased €qual to +1, -1 _ _ N )
or mutually conjugate if We can now defin&V by imposing conditior(4), i.e., we

want the sum of/, ; in each line\ to be the probabilityp;

|<ai,j|ak,l>|2:§ T 3) of projecting the state onto the basis vedmm:
. _ pij=Tr|eXai [p) = 2 W, (7)
Wootters and Fields showed that one can defihe1) aeN;

such mutually unbiased bas@4UB’s) for power-of-prime
dimensiond [30]. Note that this is exactly the number of be
striations one can find with propertié$—(iii ) above; we will

Using the three striations we defined, these conditions can
explicitly stated in terms of the probabilitigs;:

use this now to define a class of discrete Wigner functitths Wi+ W =p; 3, (8)

C. Defining a class of discrete Wigner functions Wo,1+Wa,2= P12, ©

We now have the ingredients to define a class of discrete Wy 1+ Wo =Py, (10)
Wigner functions: a set ofd+1) mutually unbiased bases ’ ’ ’

{B1,By,....Bg1}; and a set of (d+1) striations W, o+ W, =Py 5, (12)
{S1,S,,...,S:1} of ourdx d phase space intbparallel lines ' ’ '

(i.e., disjoint sets of d points each. To define a discrete W, 1+ W, = ps g, (12)
Wigner function we need to choose two one-to-one maps: ’ ' ’

each basis s, is associated with one striatidh and each W, 5+ W, 1= ps.o. (13)

basis vectofq; ;) is associated with a ling; ; (the jth line of . _ . _ _
the ith striation. With these associations, the Wigner func-  The equations above define uniquely the Wigner function

tion W is uniquely defined if we demand that Wi in terms of the probabilities; ;:
“ 1
Tr(lai jXaijlp) = > W, (4) Wy 1= 5([31,1*‘ P21+ P31~ 1), (14)

aE)\i'j

i.e., we want the sum of the Wigner function elements cor- 1
responding to each line to equal the probability of projecting Wy o= —(Pr1+PaotPsa—1), (15)
onto the basis vector associated with that line. 2
Note that there are multiple ways of making these asso- 1
ciations. In general, this will lead to different definitions of _
. i W, == + + -1 1
W using the same fixed set of MUB’s. The procedure out- 217 5(Pr2¥ P21+ Ps2= 1), (16)
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1
W, o= 5(p1,2+ P22+ P31~ D). (17)

Here we should keep in mind that not all probabilitigs are
independent, as the sum over any MUB must add up to 1 ;
(|e, [“, E]pwzl) Q‘:{‘
From the definitiong14)—(17) we can immediately read
the conditions for non-negativity of the Wigner function

PLitP21tPsi=1, (19
P11+ P22* P32= 1, (19 L
p 0.402
Pi2t P21t P32=1, (20) 1 -
P12t P22t P31=1. (21) FIG. 1. Tetrahedron inp=(py1,Pp1,P31) Space representing

states with non-negative Wigner functitv for the definition ofwW

Because of the conditions;p; =1, there are only three free given by Egs.(14—~(17). The ball represents one-qubit quantum
variables in the inequalities above. We can thus pickgne states.
for each MUBI (say, p; ;), and represent states by points in
this three-dimensional probability space. This representatio
is equivalent to the more familiar Bloch sphere, with the
advantage of generalizing easily to power-of-prime dimen-
siond. In that casgto be discussed in Sec.)\there are a
total of (d*~1) independent probabilitie; ; describing any
mixed quantum state. Note that the probabilipgscombine
linearly for convex combinationrobabilistic mixturep of
quantum states, a consequence of the linearity of the trace
Eq. (7).

The inequalitie§18)—(21) for non-negativity oW are sat-
isfied by stated=(p; 1,P»,1,P3.1) if and only if p lies inside
the tetrahedron

R/. ONE-QUBIT STATES WITH NON-NEGATIVE WIGNER
FUNCTIONS

In this section | use negativity & to define the set, of
states ind-dimensional Hilbert space having non-negatiVe
for all definitions ofW based on a fixed set of MUB'’s. | will
men argue that single-qubit statesGp behave “classically”

In a concrete computational sense.
Having fixed a set of three MUB'’s for a single qubit,
Wigner functionsW can be defined in a number of ways,
corresponding to the 8!)3=48 different associations be-
tween lines and basis vectors, and between striations and
T, = convex hull of{(0,0,1,(0,1,0,(1,0,0,(1,1,} MUB's. For each of these 48 Wigner function definitions we
(22) can do as above, and find the set of pointgispace for

which W is non-negative. A simple calculation shows that

(see Fig. 1 By contrast, there exist quantum states whdse depending on the definition, this set is either the original

is negative in some phase-space points, i.e., lying outside @étrahedrorT; or the tetrahedron whose vertices are the other
tetrahedrorily. This is illustrated in Fig. 1, where the set of four p-cube verticesT,=convex hull of{(1, 1, 0, (1, 0, 1),
points corresponding to quantum states is the ball of radiugo, 1, 1), (0, 0, 0}. Now | define the seC4 of states in

r=1/2 andwith center(,3,3). d-dimensional Hilbert space which | will argue behave “clas-
Let me draw attention to two features of the set of statesically” in a computational sense.
with non-negativeW. First, there exist pointg € T, which Definition The setC, is defined as the states in a

do not correspond to any one-qubit quantum sta&®., d-dimensional Hilbert space whose Wigner functigv is
p=(1,1,1]. We must also keep in mind that there were ar-non-negative in all phase space poiatsl for all definitions
bitrary choices involved in the particular definition\afthat ~ of W using a fixed set of mutually unbiased bases.

we picked. We have chosen arbitrary one-to-one maps be- In the remainder of this article | will characterize the set
tween MUB'’s and striations, and also between lines in aCy for some small dimensiond, and discuss the limitations
striation and basis vectors. In the next section we take thesef doing quantum computation solely with statesOj For a

two points into account, defining a set which consists solelyqubit, the seC, is given inp-space as the intersection of the
of quantum states, and for which the Wigner function is nontwo tetrahedral;, and T, presented above. This corresponds
negative forall definitions ofW. to an octahedron inscribed inside the ball of quantum states:

TR TR R
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FIG. 2. Octahedron ip=(p11, P21, P31) Space representing states
with non-negative Wigner function& for all definitions ofW using
a fixed set of mutually unbiased bases.
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preparing an auxiliary qubit in a mixed stagteln this model
of computation, it is easy to see that auxiliary qubits in states
p e C, cannot be used to perform universal quantum compu-
tation [26]. States inC, are linear convex combinations of
the six eigenstates of single Pauli operators. As such, they
can be prepared efficiently from operationgp.,, hamely,
Clifford gates to obtain any Pauli eigenstate deterministically
from the initial o, eigenstate, together with classical coin
tosses to prepare them with the appropriate weights given by
the desired convex combination. These are operations that
can be efficiently simulated on a classical probabilistic com-
puter. This justifies my “classicality” claim for states @3.
Interestingly, in Ref[26] it was shown that some “non-
classical” state$ ¢ C, can be used to attain universal quan-
tum computation in this model. The basic idea is to use aux-
iliary pure states outside @, to implement gates outside of
the Clifford group, using operations @45 only. A single
generic non-Clifford gate together with the set of Clifford
gates allows for universal quantum computation. This proce-

(see Fig. 2 We see that se€, can be characterized in a dure works also for a large class of mixed stafesC,,
simpler way as the set of states which are convex combindhrough a distillation of pure nonstabilizer pure states from

tions of the six basis vectors of the three chosen MUB's:

peCe 13:2 O jl i M ai g, E g;j=1. (29
i,j )

p®N using Clifford operations only26].

This enables us to identify nonstabilizer states as a re-
source which can be tapped to implement non-Clifford gates
and achieve universal quantum computation. This idea was
first suggested by ShdB1], and has since been elaborated

There are at least two motivations for considering the sefn by other authorg32-36.

C,, as opposed to states with non-negatiiein a single
definition (the setsT; or T,). The first one is the realization
that a priori there is no preferred definition & from the

full class of definitions, and any concept of “classical states”

based on non-negativity oW should be definition-

V. HIGHER DIMENSIONS

We can follow Gibbongt al. and define a discrete Wigner
function W whenever the Hilbert space dimensidnis a

independent. The second motivation only became apparegbwer of prime. In this section | use the definition @f to

after we calculate®,: unlike the set§; andT,, all states in

characterize this set for states in small Hilbert space dimen-

C, are physical states, i.e. obtainable from measurements afionsd.

a single qubit.

States in G and quantum computingVe have just char-
acterized the se€, of single-qubit quantum states which
have non-negativV in all definitions of W using a fixed set
of MUB's. Let us now review an argument for the “classi-
cality” of the setC,, from a computational point of view.

Recently Bravyi and Kitaey26] proposed the following

In d dimensions, the probability-space poftescribing
each state ha@?-1) components. Requiring non-negativity
of W for all definitions will correspond to a set of inequalities
for p, each delimiting a half-space whevé is non-negative
at a particular phase-space point, and for a particular defini-
tion of Wigner function. States in the s€} are those which
satisfy all these inequalities, constituting a convex polytope.

model of computation. Imagine that for some reason there Any convex polytope admits two descriptions, one in

are a few quantum computational operations which we cagyms of the half-

perform perfectly—let us denote these Oy, In addition

space inequalitiéld description and one
in terms of its verticeqV description. The setCy is, by

to those, some operations in €&,y can only be performed yefinition, anH polytope. For one qubit we have found the

imperfectly. Now let us consider a particular choice for

Oigear Preparing a qubit in stati®) (i.e., an eigenstate of the
0, operato), applying unitary operators from the Clifford
group(such as the Hadamard and CNOT gatasd measur-
ing an eigenvalue of a Pauli operat@r,, o, or ,) on any

gubit. The Gottesman-Knill theoref27] states that the op-

equivalentV description: there are six vertices corresponding
to the six basis vectors of the three MUB'’s used to defihe

Let us now see how to find the equivaléntdescription
for the H-polytopeC, defined above. The starting point is the
general expression for theedimensional Wigner function at
phase-space point (see Ref[18]):

erations inO,ye, above can only create a restricted set of

states known as stabilizer states, i.e., simultaneous eigen- 1

states of the Pauli group of operators. Moreover, such opera- We = a[ > Pij~ 1]'

tions do not allow for universal quantum computation, and Nij2

can be efficiently simulated on a classical computer. where the sum is over the probabilities associated with pro-
In addition to these perfect operations, Bravyi and Kitaevjectors corresponding to all lineg; containing phase-space

proposed a séDy,,, With a single extra imperfect operation: point «. By construction of the striations, each point belongs

(25
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to exactly one line from each striation. Thus for each paint [39,43. In other words, the basis vectors of MUB’s can al-
the sum above hag+1) termsp; ;, one from each MUB. ways be chosen to be a set of stabilizer states.

We want to find which conditions op, ; correspond to the The conjecture would then mean that for ahyhe setC,
demand of non-negativity div, for all pointsa andfor all ~ would be the convex hull of the particular subset of stabilizer
definitions of W using a fixed MUB set. For a fixed phase- states used as basis vectors of the MUB's. Pure-state quan-
space pointr, changing the definition ofV will correspond tum computation which is restricted to statesGp would
to picking a different set ofd+1) probabilitiesp;; in Eq.  then only ever reach the MUB basis vectors, all of which
(25), one from each MUB. There are onlyj(d’“l) ways of admit an efficient classical description using the stabilizer
doing so, and this is the total number of expressiondNgr ~ formalism.

which we would like to take only non-negative values. These As | have already remarked, it is well known that quan-
d@*1 inequalities of the formW,=0 constitute ouH de-  tum computation that is restricted to pure stabilizer states and

scription of the polytopeC,. gates from the Clifford group is not universal, and can be

From thisH description it is possible to find the equiva- efficiently simulated on a classical compuf2r]. If the con-
lent V description using a convex hull program based on thdecture holds, then a wide class of unitary dynamics re-
QUICKHULL algorithm[37]. While this is considered to be a stricted to pure states insid& would be easy to simulate on
computationally hard problem in general, it was possible to2 classical computer—for example, any gate from the Clif-
do the calculation ford<5. The results are similar to the ford group. This suggests that nontrivial pure-state quantum
one-qubit case. Fai=3, 4, and 5 | found that the descrip- ~ computation may require states outside@f i.e., having
tion of C4 hasd(d+ 1) vertices, each corresponding to one of negative Wigner functioW in at least some of the defini-
the MUB basis vectors used to defiké For d=5, for ex- tions of Win the class proposed by Gibbons, Hoffman, and
ample, theH-polytopeCs in 52— 1=24-dimensionap space  Wootters[18].
is delimited by $=15625 half-space inequalities corre-

sponding to non-negativity ofV in all definitions. TheV VI CONCLUSION

description of this polytope consists of exactly 5 =30 ver- In this paper | related the negativity of the discrete Wigner
tices, each corresponding to one of the basis vectors of thiginction W with quantum computational speedup. | charac-
six MUB's. terized the set of states with non-negativeusing the class

It is not hard to see that the MUB basis vectors haveof Wigner functionsW proposed by Wootters and collabora-
non-negativeW in every single definition ofVV using those tors in Refs[17,18. Wigner functions in this class are de-
basis vectors. Fod<5, the computation described above fined using projectors on a fixed set of mutually unbiased
shows that these are the only pure states for which this is trueases(MUB’s). The set of states with non-negatiVé de-
for all definitions, and moreover that the mixed states withpends on which definition oV from this class we choose.
the same property are exactly their convex combinations. In | defined the seC, of d-dimensional states having non-
the next section we will discuss the implications for quantumnegative W simultaneously inall definitions of W in the
computing. class. States irC, are classical in the sense of failing to

The set G and quantum computingGiven the results provide quantum computational advantage in a recent model
above ford=2, 3, 4, and 5, it is natural to make the follow- proposed by Bravyi and Kitaej26]. For dimensions &d

ing conjecture. <5 | showed thatCy is the convex hull of the stabilizer
Conjecture For any power-of-prime Hilbert space dimen- states used as basis vectors in the MUB set.
siond, the polytopeCy, is equivalent to th&/ polytope whose These results for small dimensiodssupport the conjec-

vertices are the basis vectors of the MUB'’s used to dafine ture that forany power-of-prime dimensioul, the setCy is
It is easy to show that the latt®rpolytope is contained in the convex hull of a set of stabilizer states. This would mean
Cq4; the converse seems to be harder to prove for generdhat pure states i€y are “classical” in the sense of admitting
power-of-primed. an efficient classical description using the stabilizer formal-
To understand the relevance of this conjecture for quanism. This suggests that states with negatiVvenay benec-
tum computation, we need to review some known facts abougssary for exponential pure-state quantum computational
mutually unbiased bases. Various authors have come up witspeedup.
constructions of MUB'Y30,38—42. Ford=2", i.e., for the
case ofN qubits, the corresponding basis vectors can always
be written as simultaneous eigenstates of tensor products of | would like to thank Angelo Carollo, David Poulin, Rob
single-qubit Pauli operatorg40]. More generally, for any Spekkens, Daniel Gottesman, and Lucien Hardy for helpful
power-of-prime dimensionl the MUB basis vectors can be discussions. This work was supported in part by Canada’s
chosen to be eigenstates of generalized Pauli operatoNSERC.
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