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As a model, the Pais-Uhlenbeck fourth order oscillator with equation of motion:sd4q/dt4d+sv1
2+v2

2d
3sd2q/dt2d+v1

2v2
2q=0 is a quantum-mechanical prototype of a field theory containing both second and fourth

order derivative terms. With its dynamical degrees of freedom obeying constraints due to the presence of
higher order time derivatives, the model cannot be quantized canonically. We thus quantize it using the method
of Dirac constraints to construct the correct quantum-mechanical Hamiltonian for the system, and find that the
Hamiltonian diagonalizes in the positive and negative norm states that are characteristic of higher derivative
field theories. However, we also find that the oscillator commutation relations become singular in thev1

→v2 limit, a limit which corresponds to a prototype of a pure fourth order theory. Thus the particle content of
the v1=v2 theory cannot be inferred from that of thev1Þv2 theory; and in fact in thev1→v2 limit we find
that all of thev1Þv2 negative norm states move off shell, with the spectrum of asymptotic in and out states
of the equal frequency theory being found to be completely devoid of states with either negative energy or
negative norm. As a byproduct of our work we find a Pais-Uhlenbeck analog of the zero energy theorem of
Boulware, Horowitz, and Strominger, and show how in the equal frequency Pais-Uhlenbeck theory the theorem
can be transformed into a positive energy theorem instead.
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I. INTRODUCTION

While attention in physics has by and large concentrated
on second order equations of motion, nonetheless, from time
to time there has also been some interest in higher derivative
theories, with a typical such higher order equation of motion
being the scalar field equation of motion

s]0
2 − ¹2ds]0

2 − ¹2 + M2dfsx̄,td = 0, s1d

a wave equation which is based on both second and fourth
order derivatives of the field. With the propagator associated
with Eq. s1d being given by

Dsk2,M2d =
1

k2sk2 + M2d
=

1

M2F 1

k2 −
1

k2 + M2G s2d

in momentum space, the expectation of canonical reasoning
ssee e.g., Ref.f1g for a canonical study of theories of such
second plus fourth order typed is that a quantization of the
theory associated with Eq.s1d would, for M2Þ0, lead to a
1/k2−1/sk2+M2d dipole spectrum consisting of two species
of particles, one possessing a positive signature and the other
a negative or ghost signature. Indeed, part of the appeal of
such propagators is that precisely because of this ghost sig-
nature, the propagator has much better behavior in the ultra-
violet than a standard second order 1/k2 propagator, to thus
enable this higher order theory to naturally address renormal-
ization issues such as those associated with elementary par-
ticle self energies or with quantum gravitational fluctuations.

While a similar conclusion regarding the presence of
ghosts might be anticipated to apply to pure fourth order
theories as wellfviz. the M2=0 limit of Eq. s1dg f2g, as we
see from the form of Eq.s2d, the 1/M2 prefactor multiplying
the 1/k2−1/sk2+M2d dipole term is singular, and thus is not
reliable to infer the structure of theM2=0 spectrum from that
associated with that ofM2Þ0. In fact, it is not actually reli-
able to try to infer the spectrum associated with Eq.s1d via
canonical reasoning at all, since even whenM2Þ0, the
theory is constrained due to the presence of higher order time
derivatives. Thus before drawing any conclusions at all, one
must first quantize the theory in a way which fully takes
these constraints into account, and only then identify the par-
ticle spectrum. To address this issue we shall thus effect a
full Dirac constraint quantizationf3g of a quantum-
mechanical prototype of Eq.s1d, something which has not
previously been carried out in the literature. Specifically, we
shall study a restricted version of Eq.s1d in which we spe-

cialize to field configurations of the formfsx̄,td=qstdeik̄·x̄,
configurations in which Eq.s1d then reduces to

d4q

dt4
+ sv1

2 + v2
2d

d2q

dt2
+ v1

2v2
2q = 0, s3d

where

v1
2 + v2

2 = 2k̄2 + M2, v1
2v2

2 = k̄4 + k̄2M2, s4d

with Eq. s4d reducing to the equal frequencyv1=v2 when
M =0. As such, for generalv1Þv2 Eq. s3d thus serves as a
quantum-mechanical prototype of a field theory based on
second order plus fourth order derivatives of the field, while
becoming a prototype of a pure fourth order theory in the
equal frequency limit. In addition to being a model which we
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can actually solve analytically, the quantum-mechanical pro-
totype encapsulates many of the general issues associated
with the quantization of the full field theory, since it is the
time derivatives of the fields rather then their spatial deriva-
tives which are of relevance for constructing conjugates of
the fields. With the equation of motion given in Eq.s3d being
derivable from the Pais-Uhlenbeck Lagrangianf4g

L =
g

2
fq̈2 − sv1

2 + v2
2dq̇2 + v1

2v2
2q2g s5d

sg is a constantd, we shall thus quantize the theory starting
from this Lagrangianf5g. This will allow us to establish that
the properly constructedv1Þv2 Hamiltonian does indeed
possess eigenstates of normal and ghost signaturesstates
which themselves are then explicitly constructedd, while also
allowing us to monitor thev1→v2 limit, a limit, which like
the aboveM2→0 limit, will be found to be highly singular
f6g.

II. CLASSICAL DIRAC HAMILTONIAN

For a quantization of the theory associated with the La-
grangian of Eq.s5d we would like to treatq and q̇ as inde-
pendent coordinates, but cannot immediately do so since ifq̇
is to be an independent coordinate, we could not use]L /]q̇
as the canonical conjugate ofq. To obtain a form which
would be appropriate for quantization we therefore introduce
a new variablexstd to replaceq̇, and compensate for doing so
by additionally introducing a Lagrange multiplierlstd and a
substitute Lagrangian

L =
g

2
fẋ2 − sv1

2 + v2
2dx2 + v1

2v2
2q2g + lsq̇ − xd, s6d

with the Dirac constraint method assuring us that the Hamil-
tonian, which is to ultimately emerge, will then be indepen-
dent of the Lagrange multiplier. With the Lagrangian of Eq.
s6d possessing three coordinate variables,q, x, and l, we
must introduce the three canonical momenta,px, pq, andpl,
conjugates which for the Lagrangian of Eq.s6d evaluate to

px =
]L

]ẋ
= gẋ, pq =

]L

]q̇
= l, pl =

]L

]l̇
= 0. s7d

To implement the Dirac method, as well as use these rela-
tions to construct the Legendre transform of the Lagrangian
of Eq. s6d

HL = pxẋ + pqq̇ + pll̇ − L, s8d

we also introduce two primary constraint functions for the
canonical momenta which involve either the Lagrange mul-
tiplier or its conjugate

f1 = pq − l, f2 = pl. s9d

Then, rather than useHL, the Dirac prescription is to instead
use

H1 = HL + u1f1 + u2f2 s10d

as the Hamiltonian, whereH1 is thus given by

H1 =
px

2

2g
+

g

2
sv1

2 + v2
2dx2 −

g

2
v1

2v2
2q2

+ lx + u1spq − ld + u2pl. s11d

For this theory we define generalized Poisson brackets of the
form

hA,Bj =
]A

]x

]B

]px
−

]A

]px

]B

]x
+

]A

]q

]B

]pq

−
]A

]pq

]B

]q
+

]A

]l

]B

]pl

−
]A

]pl

]B

]l
, s12d

to obtain the canonical

hx,pxj = hq,pqj = hl,plj = 1. s13d

Similarly, given the definition of Eq.s12d, we find that the
Poisson brackets of the constraint functions with the Hamil-
tonianH1 are given by

hf1,H1j = gv1
2v2

2q − u2 + f1hf1,u1j + f2hf1,u2j,

hf2,H1j = − x + u1 + f1hf2,u1j + f2hf2,u2j. s14d

Consequently, both of thehf1,H1j and hf2,H1j Poisson
brackets will vanish weaklysin the sense of Diracd if we set

u1 = x, u2 = gv1
2v2

2q. s15d

On thus imposing these two conditions,H1 is then replaced
by a Hamiltonian

H2 =
px

2

2g
+

g

2
sv1

2 + v2
2dx2 −

g

2
v1

2v2
2q2 + pqx + gv1

2v2
2qpl.

s16d

With respect to this Hamiltonian the constraint functions
obey Poisson bracket relations of the form

hf1,H2j = gv1
2v2

2pl, hf2,H2j = hpl,H2j = 0. s17d

Hence, finally, if we now setpl=0 sto enforcehf1,H2j=0d,
the resulting algebra associated with the four-dimensional
q,pq,x,px sector of the theory will thensas befits a fourth
order theoryd be closed under commutation using Poisson
brackets defined via

hA,Bj =
]A

]x

]B

]px
−

]A

]px

]B

]x
+

]A

]q

]B

]pq
−

]A

]pq

]B

]q
, s18d

with the requisite classical Hamiltonian which we seek then
being given by

H =
px

2

2g
+ pqx +

g

2
sv1

2 + v2
2dx2 −

g

2
v1

2v2
2q2, s19d

and with the requisite Poisson bracket relations which define
the classical theory being given by

hx,pxj = 1, hq,pqj = 1,

hx,Hj =
px

g
, hq,Hj = x,
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hpx,Hj = − pq − gsv1
2 + v2

2dx, hpq,Hj = gv1
2v2

2q. s20d

With such Poisson bracket relations the canonical equations
of motion thus take the form

ẋ =
px

g
, q̇ = x, ṗx = − pq − gsv1

2 + v2
2dx, ṗq = gv1

2v2
2q,

s21d

to then enable us to both recover Eq.s3d and make the iden-
tification x= q̇ in the solution. Additionally, in solutions that
obey these equations of motion the Legendre transformL
=pxẋ+pqq̇−H is found to reduce to Eq.s5d just as it should.
The HamiltonianH of Eq. s19d is thus the correct one for the
fourth order theory, and it thus is the one which is to be
quantized.

III. CONNECTION WITH THE OSTROGRADSKI
HAMILTONIAN

In considering the theory associated with Eq.s19d, it is
important to distinguish between the general HamiltonianH
as defined by Eq.s19d and the particular valueHSTAT that it
takes in the stationary path in which the equations of motion
of Eq. s21d are imposed, with the great virtue of the Dirac
procedure being that it allows us to define a classical Hamil-
tonianH which takes a meaningfas the canonical generator
used in Eq.s20dg even for nonstationary field configurations
fi.e., even for configurations for whichpxẋ+pqq̇−H does not
reduce to the Lagrangian of Eq.s5dg. Thus, for instance,
it is the Hamiltonian of Eq. s19d, which defines the
appropriate phase space for the problem, so that the path
integral for the theory is then uniquely given by
efdqgfdpqgfdxgfdpxgexpfi edtspxẋ+pqq̇−Hdg as integrated
over a complete set of classical paths associated with these
four independent coordinates and momenta.

With regard to the stationary value that the classical
HSTAT takes when the equations of motion are imposed,

HSTAT =
g

2
q̈2 −

g

2
sv1

2 + v2
2dq̇2 −

g

2
v1

2v2
2q2 − gq̇

d3q

dt3
,

s22d

we note that not only is this particularHSTAT time indepen-
dent fsee, e.g., Eqs.s25d and s26d belowg, it is also recog-
nized as being the Ostrogradskif7g generalized higher de-
rivative Hamiltonian associated with the Lagrangian of Eq.
s5d, viz. the Hamiltonian

HOST= q̇
]L

]q̇
+ q̈

]L

]q̈
− q̇

d

dt
S ]L

]q̈
D − L, s23d

which Ostrogradski showed to be time independent in solu-
tions that obey the generalized Euler-Lagrange equation

]L

]q
−

d

dt
S ]L

]q̇
D +

d2

dt2
S ]L

]q̈
D = 0, s24d

while also being its associated time translation generatorf8g.
Moreover, not only is the classicalHSTAT time independent
in the unequal frequency solutionqstd=a1e

−iv1t+a2e
−iv2t

+c.c., where it evaluates to

HSTATsv1 Þ v2d = 2gsv1
2 − v2

2dsa1
*a1v1

2 − a2
*a2v2

2d,

s25d

it is even time independent in the equal frequencyv1=v2
=v temporal runaway solutionqstd=c1e

−ivt+c2te
−ivt+c.c.,

where it evaluates to

HSTATsv1 = v2d = 4gv2s2c2
*c2 + ivc1

*c2 − ivc2
*c1d, s26d

with a runaway in time not leading to a runaway in energy
si.e., there is an appropriately defined energy which is time
independent in the temporal runaway solutiond.

The value we have obtained forHSTATsv1=v2d in Eq.
s26d reminds us of the zero energy theorem derived by Boul-
ware et al. f9g for fourth order conformal gravity, another
typical fourth order theory. Specifically, Boulwareet al. con-
structed a classical energy for the fourth order gravity theory,
and found that it would vanish identically if the gravitational
field solutions were required to be asymptotically flat. The
analog condition for the equal frequency Pais-Uhlenbeck
theorysa prototype of a pure fourth order field theoryd would
be to demand the absence of runaway solutions in time, and
thus to setc2=0, a condition which would then yield for
HSTATsv1=v2d none other than the value zero. As we thus
see, it is the restriction to an analog of asymptotic flatness
which leads to a zero value for the energy in the equal fre-
quency Pais-Uhlenbeck case, with there being noc1

*c1 type
term present inHSTATsv1=v2d even thoughHSTATsv1Þv2d
contains botha1

*a1 and a2
*a2 type terms. Since thec1 mode

can only make a contribution toHSTATsv1=v2d when c2 is
nonzero, we can anticipate that in the quantization of the
theory to be presented below thec1 mode will not give rise to
a propagating on-shell state, with the eigenspectrum of the
equal frequency quantum Hamiltonian possessing not the
number of energy eigenstates states associated with a two-
dimensional harmonic oscillatorfviz. the dipole structure ex-
hibited in Eq.s2dg, but rather possessing only the number of
energy eigenstates associated with a one-dimensional one. A
further interesting feature of the form we have obtained for
HSTATsv1=v2d in Eq. s26d is that there is a choice of sign for
the parameterg for which the purec2 contribution to the
energy, viz. 8gv2c2

*c2, is then positive definite. On its own
then, the runaway mode does not give rise to any disease
such as a negative energy, with it yielding a positive one
instead. Therefore, there is no need to require the absence of
runaway solutions in the equal frequency Pais-Uhlenbeck
theorysby demanding an analog of asymptotic flatnessf10gd
since in and of themselves they give rise to perfectly accept-
able energies, and do not need to be avoided. Since the run-
away solution classical energies are well behaved, we can
thus anticipate that the quantum energy eigenspectrum asso-
ciated with thec2 mode sector will not possess any energy
eigenstates with either negative energy or negative norm,
even while the structure found for the unequal frequency
HSTATsv1Þv2d in Eq. s25d indicates that there will be en-
ergy eigenstates of either negative energy or negative norm
in the quantization of the unequal frequency case.
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IV. CONSTRUCTING THE UNEQUAL FREQUENCY
FOCK SPACE

With the Hamiltonian of Eq.s19d being defined for both
stationary and nonstationary classical paths, a canonical
quantization of the theory can be readily obtained by replac-
ing si timesd the Poisson brackets of Eq.s20d by canonical
equal time commutators. However, without reference to the
explicit structure of the Hamiltonian itself, we note first that
the identificationsas suggested but not required by the equa-
tions of motionf11gd

qstd = a1e
−iv1t + a2e

−iv2t + H.c.,

pqstd = igv1v2
2a1e

−iv1t + igv1
2v2a2e

−iv2t + H.c.,

xstd = − iv1a1e
−iv1t − iv2a2e

−iv2t + H.c.,

pxstd = − gv1
2a1e

−iv1t − gv2
2a2e

−iv2t + H.c. s27d

then furnishes us with a Fock space representation of the
quantum-mechanical commutation relations

fx,pxg = fq,pqg = i, fx,qg = fx,pqg = fq,pxg = fpx,pqg = 0

s28d

at all times provided that

fa1,a1
†g =

1

2gv1sv1
2 − v2

2d
,

fa2,a2
†g =

1

2gv2fsv2
2 − v1

2dg
, fa1,a2

†g = 0, fa1,a2g = 0. s29d

sHere and throughout bothv1 and v2 are taken to be posi-
tive.d Then in this convenient Fock representation the
quantum-mechanical Hamiltonian is found to take the form

H = 2gsv1
2 − v2

2dsv1
2a1

†a1 − v2
2a2

†a2d + 1
2sv1 + v2d s30d

with its associated commutators as inferred from Eq.s20d
then automatically being satisfied. With the quantitygsv1

2

−v2
2d being taken to be positive for definitiveness, we see

that thefa2,a2
†g commutator is negative definite, and withH

being diagonal in thea1,a2 occupation number basis, we see
that the state defined by

a1uVl = 0, a2uVl = 0 s31d

is its ground statef12g, that the states

u + 1l = f2gv1sv1
2 − v2

2dg1/2a1
†uVl,

u− 1l = f2gv2sv1
2 − v2

2dg1/2a2
†uVl s32d

are both positive energy eigenstates with respective energies
v1 and v2 above the ground state, that the stateu+1l has a
norm equal to plus one, but that the stateu−1l has norm
minus one, a ghost state. Thus, as anticipated, the correct
Hamiltonian for the unequal frequency theory can be diago-
nalized in a basis of positive and negative norm states, with
the relevant negative norm state wave functions being ex-
plicitly constructed via Eq.s32d and its multiparticle gener-

alizations. With the eigenstates ofH labeling the asymptotic
states associated with scattering in the presence of any inter-
action LagrangianLI, which might be added on to the origi-
nal LagrangianL of the theory, the effect ofLI would be
expected to induce transitions between asymptotic in and out
states of opposite norm, with the unequal frequency theory
then being nonunitaryf13g. However, even though the
Hamiltonian of the unequal frequency theory does have
ghost eigenstates, since the commutation relations given in
Eq. s29d become singular in the equal frequency limit while
both the Hamiltonian of Eq.s30d and the normalizedu+1l
and u−1l states develop zeros, we will have to exercise some
caution in trying to discover exactly what happens to the
ghost states when this limit is taken.

V. CONSTRUCTING THE EQUAL FREQUENCY
FOCK SPACE

To explore the equal frequency limit it is convenient to
introduce new Fock space variables according to

a1 =
1

2
Sa − b +

2bv

e
D, a2 =

1

2
Sa − b −

2bv

e
D ,

a = a1S1 +
e

2v
D + a2S1 −

e

2v
D, b =

e

2v
sa1 − a2d,

s33d

where

v =
sv1 + v2d

2
, e =

sv1 − v2d
2

. s34d

These variables are found to obey commutation relations of
the form

fa,a†g = l, fa,b†g = m, fb,a†g = m, fb,b†g = n,

fa,bg = 0, s35d

where

l = n = −
e2

16gsv2 − e2dv3, m =
s2v2 − e2d

16gsv2 − e2dv3 . s36d

As such, the introduction of the operatorsa, a†, b, b† is
initially nothing more than a rewriting of the originala1, a1

†,
a2, a2

† operators. Their utility derives from the fact that when
expressed in terms of them the coordinateqstd of Eq. s27d is
rewritten as

qstd = e−ivtFsa − bdcoset −
2ibv

e
sinetG + H.c., s37d

and thus has a well definede→0 limit, viz.

qst,e = 0d = e−ivtsa − b − 2ibvtd + H.c. s38d

Similarly, the Hamiltonian of Eq.s30d which takes the form

H = 8gv2e2sa†a − b†bd + 8gv4s2b†b + a†b + b†ad + v

s39d

in the new variables, then limits to
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Hse = 0d = 8gv4s2b†b + a†b + b†ad + v, s40d

while the following commutators of interest have limiting
form:

fHse = 0d,a†g = vsa† + 2b†d, fHse = 0d,ag = − vsa + 2bd,

fHse = 0d,b†g = vb†, fHse = 0d,bg = − vb,

fa + b,a† + b†g = 2m̂, fa − b,a† − b†g = − 2m̂,

fa + b,a† − b†g = 0, s41d

where nowmse=0d=m̂=1/s8gv3d. Thus even while the re-
lation between thesa,bd and sa1,a2d sets of operators is
explicitly singular in the limit, the limiting prescription ob-
tained by using thea andb operators of Eq.s33d nonetheless
leads to thee=0 operator algebra given in Eqs.s40d ands41d
in which there are no singular terms at all. However, this is
not the only way to take thee→0 limit, as we could instead
take the limit not of the operators of the unequal frequency
theory but rather of the states. There are thus two possible
ways to construct the equal frequency theory—we can either
start with thee=0 operator algebra and construct a new Fock
space for it from scratch or we can construct the equal fre-
quency states as thee→0 limit of the unequal frequency
Fock space states. With these two prescriptions not being
equivalent, we shall explore both of them, and discuss first
the limit of the operator algebra.

A. Taking the limit of the operator algebra

For the operator algebra limit, we use thee→0 limit of
thea, a†, b, b† operators as the dynamical variables, with use
of these operators then enabling us to construct ane=0
theory which is well defined. For this theory thee=0 Fock
space is then built on the Fock vacuumuVl defined by
auVl=buVl=0, fwe use this basis since, according to Eq.
s29d, states built on the unequal frequency Fock vacuum in
which a1uVl=0, a2uVl=0 become undefined in thee=0
limit g, with the stateuVl being an eigenstate ofH with en-
ergy v. Moreover, in thise→0 limit we see that thefa,a†g
and fb,b†g commutators both vanish, with, as we shall see
below, there actually being two ways rather than one in
which the Fock space states can implement this vanishing,
depending on how thee→0 limit is actually taken. However,
before constructing either of these two ways, we note that
because the effect of the Hamiltonian is to shifta† by 2b† in
Eq. s41d, and becausesunlike the unequal frequency cased
neither of the operatorssa†±b†d which diagonalize the Fock
space basis acts as a ladder operator for the Hamiltonian
f14g, we can anticipate that the eigenspectrum ofHse=0d
will be quite different from the unequal frequency eigenspec-
trum.

Becauseb† does act as a ladder operator forHse=0d, it is
possible to construct a one particle energy eigenstate, viz. the
stateb†uVl with energy 2v, but if we try to normalize itsour
first way to realize thee=0 Fock spaced the vanishing of the
fb,b†g commutator would entail that this state would have to
have zero norm. On its own a zero norm statesunlike a

negative norm stated does not lead to loss of probability, but
its very existence entails the existence of negative norm
states elsewhere in the theoryf15g. Thus, with the statea†uVl
also having zero norm, we immediately construct the states

u ± l =
sa† ± b†d
s2m̂d1/2 uVl, s42d

states which obey

k+ u + l = 1, k− u− l = − 1, k+ u− l = 0. s43d

However, unlike the orthogonal positive and negative norm
statesu±1l of Eq. s32d which are eigenstates of the unequal
frequency Hamiltonian, this time we find that neither of the
u± l states is an eigenstate of thee=0 Hamiltonian since

Hse = 0du ± l = 2vu ± l + 4vb†uVl. s44d

Thus even while thee=0 Fock space possesses negative
norm ghost states, this time they can only exist off shell
swhere they can still regulate Feynman diagramsd but cannot
materialize as on shell asymptotic in and out states. With a
similar situation being found in the two particle sectorf16g
where only the statesb†d2uVl with energy 3v is an energy
eigenstate, we see that the only states which are eigenstates
of Hse=0d are those of the formsb†dnuVl, with all such states
having zero norm and positive energyf17g.

Now at first it is quite perplexing that thee=0 theory
possesses far fewer energy eigenstates than theeÞ0 theory,
possessing only the number of eigenstates associated with a
one-dimensional harmonic oscillator rather than a two-
dimensional one. The reason for such an outcome derives
from the fact that while the normal situation for square ma-
trices is that the number of independent eigenvectors of a
square matrix is the same as the dimensionality of the matrix,
there are certain matrices, known as defective matrices, for
which this is not in fact the case. A typical example of such
a defective matrix is the non-Hermitian, Jordan block form,
two-dimensional matrix

M = S1 1

0 1
D . s45d

Specifically, while this matrix has two eigenvalues both of
which are realsdespite the lack of hermiticityd and equal to 1
sthe trace ofM is equal to 2 and its determinant is equal to
1d, solving the equation

S1 1

0 1
DSp

q
D = Sp + q

q
D = Sp

q
D s46d

leads only toq=0, with there thus only being one eigenvec-
tor despite the twofold degeneracy of the eigenvalue, with
the space on which the matrixM acts not being complete
f18g.

For the case of interest to us here, the action of the un-
equal frequency Hamiltonian of Eq.s39d on the one-particle
statesa†uVl, b†uVl yields

Ha†uVl =
1

2v
fs4v2 + e2da†uVl + s4v2 − e2db†uVlg,
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Hb†uVl =
1

2v
fe2a†uVl + s4v2 − e2db†uVlg. s47d

For this sector we can define a matrix

Msed =
1

2v
S4v2 + e2 4v2 − e2

e2 4v2 − e2D s48d

whose eigenvalues are given as 2v+e and 2v−e fthe trace
of Msed is 4v and its determinant is 4v2−e2g. For such ei-
genvalues, energy eigenvectors which obey

Hu2v ± el = s2v ± edu2v ± el s49d

are then readily constructed as

u2v ± el = f±ea† + s2v 7 edb†guVl. s50d

As we see, as long aseÞ0, the two one-particle sector
eigenvectors of the HamiltonianH are distinct. However
when we lete go to zero, the two eigenvectors in Eq.s50d
collapse onto a single eigenvector, viz. the vectorb†uVl, the
two eigenvalues collapse onto a common eigenvalue, viz.
2v, and the matrixMse=0d of Eq. s48d becomess2v timesd
the defective one given in Eq.s45d. Consequently, while the
dimensionality of thea, a†, b, b† based Fock space does not
change in thee→0 limit si.e., the dimensionality of the Fock
space remains that of a two-dimensional harmonic oscilla-
tord, nonetheless, in the limit the Hamiltonian becomes de-
fective, withHse=0d thus possessing far fewer eigenvectors
than HseÞ0d, and with the dimensionality of the space of
energy eigenvectors ofHse=0d actually being the same as
that of a one-dimensional rather than a two-dimensional har-
monic oscillatorf19g. As we thus see, thee→0 limit is in-
deed highly singular. Finally, with Eq.s47d reducing to

Hse = 0da†uVl = 2vfa†uVl + b†uVlg,

Hse = 0db†uVl = 2vb†uVl s51d

when e=0, we confirm again thatHse=0d only has one ei-
genvector, the zero normb†uVl with eigenvalue 2v.

In addition to these zero norm states, thee=0 Fock space
also possesses harmonic oscillator coherent states as well. To
construct these particular states it is convenient to introduce
new operators

a = a + b, b = a − b s52d

which obey

fa,a†g = 2m̂, fb,b†g = − 2m̂, fa,b†g = 0, fb,a†g = 0,

fa,bg = 0. s53d

In terms of these operators the Hamiltonian of Eq.s40d may
be rewritten as

Hse = 0d =
v

2m̂
f2a†a − a†b − b†ag + v, s54d

with a† andb† then being found to obey the relations

fHse = 0d,a†g = vs2a† − b†d, fHse = 0d,b†g = va†,

fHse = 0d,a† − b†g = vsa† − b†d,

fHse = 0d,a − bg = − vsa − bd. s55d

In terms of these operators we construct the coherent state

ugl = ea†b†
uVl, s56d

where the vacuum is again the one whicha andb, and thus
a and b, annihilate. Using the well-known relationeA+B

=eAeBe−fA,Bg/2=eBeAe−fB,Ag/2 which holds whenfA,fA,Bgg
=fB,fA,Bgg=0, it can readily be shown thatugl has positive

norm, viz.kgugl=kVuea†b†
eabesb†b−a†a−1duVl=1/e. Similarly,

using the well-known relation eABe−A=B+fA,Bg
+fA,fA,Bgg /2+fA,fA,fA,Bggg /6+ . . . , it canalso be shown
that application of the Hamiltonian to this state yields

Hse = 0dugl = vsa†2 − b†2 + 2a†b†dugl, s57d

with the coherent state thus not being an energy eigenstate.
This same analysis generalizes to any other state of the form
of an exponential of a string of creation operators acting on
the vacuum, since the commutator ofHse=0d with the string
yields another string also consisting purely of creation opera-
tors, a string which thus commutes with the original string of
creation operators. Thus whether we use states with a definite
number of particlesssuch asa†mb†nuVld or states with an
indefinite number of particlesssuch asugld, we find that only
the b†nuVl states are energy eigenstates, with all theeÞ0
negative norm states having moved off shell in the limit.
Consequently, in thee=0 theory there are no energy eigen-
states with negative norm or negative energy.

Another interesting aspect of thee=0 theory is that even
while it is a fourth order theory, thee=0 theory only pos-
sesses the number of observable states that would be found
in an ordinary second order theory. Consequently, in a field-
theoretic generalization of the equal frequency Pais-
Uhlenbeck fourth order oscillator, we would anticipate that
there would only be one observable particle in the theory
rather than the two that would be associated with the field-
theoretic analog of the unequal frequency case as exhibited
schematically in Eq.s2d. Replacing a pure second order field
theory by a pure fourth order one would thus not be expected
to bring about any change in the number of observable states.

Since the above equal frequency theory possesses zero
norm states, as a quantum-mechanical theory it is thus some-
what unconventional. Even though the physical viability of
the theory is not in question since the theory has been shown
to possess no energy eigenstates with negative norm, none-
theless, it is still of interest to try to recast the theory in an
alternate form in which the theory has a more conventional
look to it. Thus we seek to reinterpret the zero norm states as
positive norm ones by using an unconventional scalar prod-
uct with which to define the norm. To this end, we note that
in constructing the eigenstates of a Hamiltonian, all that is
needed is the introduction of a Hilbert space on which the
Hamiltonian is to act to the right on a set of ket vectorsucl,
with there being no need to introduce the dual vector bra
states of those ket vectors for this purpose, with the structure
of the energy eigenspectrum thus being in no way sensitive
to the structure of the dual space vectorsf20g. The choice of
definition of a scalar product is thus independent of the struc-
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ture of the energy eigenspectrum, and while one ordinarily
defines the dual bra vectorkcu simply as the conjugate ofucl,
other choices are possible, and all of them provide legitimate
formulations of quantum mechanicsf21g.

Thus for our purposes here, we note that with both the
equal frequency theorya†uVl and b†uVl states being zero
norm states, if their respective conjugates are canonically
defined askVua, kVub, in terms of the operatorsa and b
which diagonalize the Fock algebra, we instead define the
dual of the stateb†uVl not to be the standardkVub but to be
minus one times itsviz. −kVubd instead, while at the same
time we continue to keep the dual ofa†uVl to be the standard
kVua. With such a dual state definition, the dual ofb†uVl
=s1/2dsa†−b†duVl is given by s1/2dkVusa+bd, viz. by
kVua, with the overlap ofb†uVl with its own dual then being
given by s1/4dkVusa+bdsa†−b†duVl=m̂=1/8gv3, a norm
which, for positiveg, is then positive rather than zero. Simi-
larly, the dual of a†uVl=s1/2dsa†+b†duVl is given by
s1/2dkVusa−bd, viz. by kVub, with the overlap ofa†uVl with
its own dual then being given bys1/4dkVusa−bdsa†

+b†duVl=m̂=1/8gv3, a norm which is then also positive for
the same choice of sign ofg. Moreover, the overlap of the
dual of b†uVl with a†uVl is given by s1/4dkVusa+bdsa†

+b†duVl, an overlap which is zero, while the overlap of the
dual of a†uVl with b†uVl is given by s1/4dkVusa−bdsa†

−b†duVl, an overlap which is also zero. With respect to this
definition of scalar product then, the statesa†uVl andb†uVl
form an orthonormal basis in which all states have a positive
norm. Thus because we do not need to specify the dual vec-
tors in order to construct energy eigenkets, we have flexibil-
ity in defining what we mean by a norm and a scalar product,
and can thus make the equal frequency theory zero norm
states become orthonormal positive norm states instead, and
can do so without in any way altering the fact thatb†uVl is
an energy eigenket whilea†uVl is not.

In addition to the above formal construction of dual vec-
tors, there is also an explicit operational way to implement it.
Specifically, we note that before we seek to define a new
scalar product, the standard scalar products are given by
kVuaa†uVl=0, kVuab†uVl=m̂, kVuba†uVl=m̂, and kVubb†uVl
=0. We now introduce an operatorC whose action ona†uVl
and b†uVl is of the formCa†uVl=a†uVl, Cb†uVl=−b†uVl.
In consequence, its action ona†uVl andb†uVl is of the form
Ca†uVl=b†uVl, Cb†uVl=a†uVl, an action which thus inter-
changesa†uVl andb†uVl with each other. With respect to this
operatorC we thus define scalar products which evaluate to
kVuaCa†uVl=m̂, kVuaCb†uVl=0, kVubCa†uVl=0, and
kVubCb†uVl=m̂. Thus withkVuaC being defined as the dual
of a†uVl, and withkVubC being defined as the dual ofb†uVl,
we thus generate an orthonormal basis. Now we saw above
that the dual ofa†uVl is given askVub while the dual of
b†uVl is given askVua. In this construction then we thus
identify the dual ofa†uVl as kVuaC=kVub, and the dual of
b†uVl as kVubC=kVua. Since the role ofC is to interchange
a†uVl and b†uVl, we can thus conveniently describe the
a†uVl, b†uVl 2 space in the language of Pauli spinors. Thus
on defininga†uVl= u↑ l, b†uVl= u↓ l, we see that the action of
C on a†uVl and b†uVl can be written asCu↑ l= u↓ l, Cu↓ l

= u↑ l. Similarly, its action ona†uVl=su↑ l+ u↓ ld and b†uVl
=su↑ l− u↓ ld can be written asCsu↑ l+ u↓ ld=su↑ l+ u↓ ld,
Csu↑ l− u↓ ld=−su↑ l− u↓ ld. In the a†uVl, b†uVl 2 space then
the operatorC can be represented by none other than the
Pauli matrix s1, to thus establish that the neededC does
indeed exist. Then given this definition of conjugate states, if
we define wave functions viacasxd=kxua†uVl, cbsxd
=kxub†uVl with respective conjugatesca

*sxd=kVuaCuxl,
cb

*sxd=kVubCuxl, we are able to obtain the conventional
orthonormality relations for wave functions,
viz. edxca

*sxdcasxd=edxkVuaCuxlkxua†uVl=kVuaCa†uVl=m̂,
edxca

*sxdcbsxd=0, edxcb
*sxdcasxd=0, edxcb

*sxdcbsxd=m̂.
With regard to the Hamiltonian of the theory, we note that

with respect to our definition of conjugate states, its matrix
elements evaluate tokVuaCHa†uVl=1/4gv2, kVuaCHb†uVl
=0, kVubCHa†uVl=1/4gv2, andkVubCHb†uVl=1/4gv2. As
we see, with respect to this definition of conjugates, the
Hamiltonian remains defective, with its diagonal elements
still being real. With there thus still only being one energy
eigenstate, viz. the originalb†uVl, with which to characterize
asymptotic in and outS-matrix states, the theory remains
unitary not becauseH has became Hermitian with respect to
the new definition of conjugate states, but because it has
remained defective. While we have thus shown that one
could equivalently either work with an equal frequency
theory with zero norm states or recast the theory as one with
positive norm states instead, to conclude this paper we now
present an entirely different approach to the equal frequency
theory, one that will lead to positive norm states without any
need to introduce noncanonical dual vector states at all.

B. Taking the limit of the Hilbert space

While we have seen that it is possible to define an uncon-
ventional scalar product with respect to which all of the
e=0 theory zero norm Fock states then have positive norm
instead, it is also of interest to determine whether we could
construct an alternatee→0 limiting theory in which all en-
ergy eigenstates would have a positive norm even when the
conventional definition of conjugate states is used. To this
end we note that since we obtained zero norm states in the
above by first going to thee=0 limit of the operator algebra
before constructing the states, to avoid such zero norm states
an alternate procedure would be to first construct a set of
states with nonzero norm, and then take thee→0 limit while
holding the norms of these states fixed. With the algebra of
thea andb operators already being defined in Eq.s35d even
prior to taking thee→0 limit, we can thus construct a basis
for the eÞ0 Fock space via states built on a vacuum which
obeysauVl=buVl=0 rather than on one which obeysa1uVl
=0, a2uVl=0, and then explore thee→0 limit of those par-
ticular states. We thus build normalizedeÞ0 states such as
sthe choiceg,0 assures the positivity ofl and nd the one
particle

u1,0l =
a†

l1/2uVl, u0,1l =
b†

n1/2uVl, s58d

the two particle
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u2,0l =
sa†d2

21/2l
uVl, u1,1l =

a†b†

sm2 + lnd1/2uVl,

u0,2l =
sb†d2

21/2n
uVl, s59d

and so on.
Even while this particular basis is not a basis of eigen-

states of theeÞ0 Hamiltonian, for theeÞ0 theory this par-
ticular basis is just as complete a basis as the one built out of
the eÞ0 eigenstates. However, unlike theeÞ0 energy
eigenstate basis, remarkably, and crucially for our purposes
here as it will turn out, every single state constructed via the
eÞ0 a† andb† operators is found to have a positive norm. It
is not however an orthogonal basis since overlaps such as
k1,0u0,1l=m / slnd1/2 are nonzero, overlaps which actually
become singular in thee→0 limit. Since this basis is com-
plete we can use it to define a particular limiting procedure in
which the normalization of each of the particle states in Eqs.
s58d and s59d and their multiparticle generalization is held
fixed while e is allowed to go to zero. Then in such a limit
we find from Eq.s58d thata†uVl andb†uVl both become null
vectors. However, despite this, we cannot conclude that the
creation operators annihilate the vacuum identically in this
limit since matrix elements such askVufa,b†guVl=m do not
vanish in the limitfmse=0d=m̂Þ0g, with product operator
actions such asa acting onb†uVl being singular. Instead, the
creation operators must be thought of as annihilating the
vacuum weaklysi.e., in some but not all matrix elementsd,
but not strongly as an operator identity. Now since neither of
the statesa†uVl or b†uVl survives in the limit,Hse=0d now
has no one particle eigenstates at all. With the two particle
statessa†d2uVl and sb†d2uVl also becoming null in the limit,
the only two particle state which is found to survive in this
limit is the positive norm statea†b†uVl / m̂ ssince thefa,b†g
commutator does not vanishd, and, quite remarkably, in this

limit the state is also found to actually become an energy
eigenstate, viz.

Hse = 0d
a†b†

m̂
uVl =

3v

m̂
a†b†uVl +

2v

m̂
sb†d2uVl ;

3v

m̂
a†b†uVl,

s60d

with the energy of this two-particle state being equal to 3v,
which is nicely positive. With this analysis immediately gen-
eralizing to the higher multiparticle states as well, we see
that the only states which then survive in the limit are states
of the form sa†b†dnuVl, positive norm states which also be-
come positive energy eigenstates in the limit, with the ob-
servable sector of the theory thus being completely accept-
able. We thus recognize two limiting procedures, first taking
the limit of the algebra and then constructing the Fock space,
or first constructing the Fock space and then taking the limit
of its states, with this latter limiting procedure being an ex-
tremely delicate one in which the only states that survive as
observable ones are compositef22g. Thus, to conclude, we
see that in the equal frequency limit the quantum theory
based on the fourth order Lagrangian of Eq.s5d is, in fact,
completely acceptablesin fact, technically, what we have
shown is that the presence of energy eigenstates with nega-
tive norm in the unequal frequency theory is simply not a
reliable indicator as to their possible presence in the equal
frequency cased, and it would thus be of interest to see the
degree to which our results here might carry over to full
fourth order field theoriesf23g.
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