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Dirac quantization of the Pais-Uhlenbeck fourth order oscillator
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As a model, the Pais-Uhlenbeck fourth order oscillator with equation of mo(mﬁq/dt“)+(a€+w§)

><(d2q/dt2)+w§w§q:0 is a quantum-mechanical prototype of a field theory containing both second and fourth
order derivative terms. With its dynamical degrees of freedom obeying constraints due to the presence of
higher order time derivatives, the model cannot be quantized canonically. We thus quantize it using the method
of Dirac constraints to construct the correct quantum-mechanical Hamiltonian for the system, and find that the
Hamiltonian diagonalizes in the positive and negative norm states that are characteristic of higher derivative
field theories. However, we also find that the oscillator commutation relations become singulardn the

— w5 limit, a limit which corresponds to a prototype of a pure fourth order theory. Thus the particle content of
the w;=w, theory cannot be inferred from that of thg # w, theory; and in fact in thes; — w, limit we find

that all of thew; # w, negative norm states move off shell, with the spectrum of asymptotic in and out states
of the equal frequency theory being found to be completely devoid of states with either negative energy or
negative norm. As a byproduct of our work we find a Pais-Uhlenbeck analog of the zero energy theorem of
Boulware, Horowitz, and Strominger, and show how in the equal frequency Pais-Uhlenbeck theory the theorem
can be transformed into a positive energy theorem instead.
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I. INTRODUCTION While a similar conclusion regarding the presence of

. L . hosts might be anticipated to apply to pure fourth order
While attention in physics has by and large concentrate heories ag wellviz. thepM2=O Iimitpgnyq. (pl)] [2], as we

on second order equations of motion, nonetheless, from timgee from the form of Eq2), the 1M? prefactor multiplying
to time there has also been some interest in higher derivativg‘]e 142—1/(K2+M?) dipolé term is singular, and thus is not

the_orles, with a ty_plcal SUCh. higher order equation of mOtlonreliable to infer the structure of tHd?=0 spectrum from that
being the scalar field equation of motion

associated with that d1?+ 0. In fact, it is not actually reli-
(&g _ VZ)(aS— V2+M2)h(x,t) =0, (1) able to try to infer_ the spectrum associated with Eg.via
canonical reasoning at all, since even whieit+0, the
a wave equation which is based on both second and fourttheory is constrained due to the presence of higher order time
order derivatives of the field. With the propagator associatedlerivatives. Thus before drawing any conclusions at all, one

with Eq. (1) being given by must first quantize the theory in a way which fully takes
these constraints into account, and only then identify the par-
D(KEM?) = 1 _ i[i 1 } 2 ticle spectrum. To address this issue we shall thus effect a
’ K(K2+M?) M?| K K+M? full Dirac constraint quantization[3] of a quantum-

mechanical prototype of Eq1), something which has not
in momentum space, the expectation of canonical reasoningreviously been carried out in the literature. Specifically, we
(see edglyl Refﬂl] Ir?r adcarlogiFaihSt;de of tk}gor:_es Offstl;Ch shall study a restricted version of E) in which we spe-
second plus fourth order typés that a quantization of the _._.. ' , : _ KX
theory associated with Eq1) would, for M?>+#0, lead to a g?rlllfzi eutrgtif:)?nlg iﬁo\m‘?cur: aEt:)(rI)s tggrtlhre’adfﬂirggg)—q(t)e' '
1/k?-1/(k?+M?) dipole spectrum consisting of two species 9 '
of particles, one possessing a positive signature and the other d*q PO d’q
a negative or ghost signature. Indeed, part of the appeal of a¢ +(wp+ wz)ﬁ +
such propagators is that precisely because of this ghost sig-
nature, the propagator has much better behavior in the ultravhere
violet than a standard second ordek propagator, to thus 2. 2 .3 5 T
enable this higher order theory to naturally address renormal- 0+ ;= 2+ M?, wiw; =K+ KPM?, (4)
ization issues such as those associated with elementary paf;, Eq. (4) reducing to the equal frequenay,= w, when
ticle self energies or with quantum gravitational fluctuations.\y - ag such, for generab, # w, Eq. (3) thus serves as a
quantum-mechanical prototype of a field theory based on
second order plus fourth order derivatives of the field, while

*Email address: mannheim@uconnvm.uconn.edu becoming a prototype of a pure fourth order theory in the
"Email address: davidson@bgumail.bgu.ac.il equal frequency limit. In addition to being a model which we

w%wgq =0, (3
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can actually solve analytically, the quantum-mechanical pro- p)2(

Y Y
totype encapsulates many of the general issues associated Hy= 2y + E(wi + w%)xz 5 wiwng
with the quantization of the full field theory, since it is the Y
time derivatives of the fields rather then their spatial deriva- +NX+ Uy(Pg = N) + Uppy, . (11

tives which are of relevance for constructing conjugates o

the fields. With the equation of motion given in £@) being Y:or this theory we define generalized Poisson brackets of the

derivable from the Pais-Uhlenbeck Lagrangjdh form
, (Ap A _AB AR
L= 67~ (07 + 0D + 0j03] (5) X AP IpedX 90 g
. . . JAdB JA B JA B
(v is a constant we shall thus quantize the theory starting —— (12

from this Lagrangiar5]. This will allow us to establish that IPq I INIPy - 9Py IN

the properly constructed, # w, Hamiltonian does indeed tg gptain the canonical

possess eigenstates of normal and ghost signdgiages

which themselves are then explicitly construdteshile also {x.pd ={a,pgt ={\.p\} = 1. (13
allowing us to monitor thes; — w, limit, a limit, which like

Similarly, gi the definiti f Eq(12), find that th
the aboveM?— 0 limit, will be found to be highly singular imilarly, given the definition of Eq(12), we find that the

Poisson brackets of the constraint functions with the Hamil-
[6]. tonianH, are given by

IIl. CLASSICAL DIRAC HAMILTONIAN {p1,H1} = yolwsq — Uy + iy, U} + dolehr, U},

For a quantization of the theory associated with the La- _
grangian of Eq(5) we would like to treatj andq as inde- {g2.Hi} ==X+ U+ dr{ o U} + dof o}, (14)
pendent coordinates, but cannot immediately do so singe if Consequently, both of thés,,H;} and {¢,,H;} Poisson
is to be an independent coordinate, we could notdls&q  brackets will vanish weaklyin the sense of Dirgdf we set
as the canonical conjugate of To obtain a form which > 2
would be appropriate for quantization we therefore introduce Up=X, U= ywiwyq. (15
a new variablex(t) to replaceg, and compensate for doing so o thus imposing these two conditiorts, is then replaced
by additionally introducing a Lagrange multiplia(t) and @ py 5 Hamiltonian
substitute Lagrangian

2 2.2

2
Py . ¥ Y
Ho= o7+ (0] + 03X = J0i0f0’ + pox + yoloZap,.

L= o+ )+ el A0, (© 2y

(16)
with the Dirac constraint method assuring us that the Hamil- . . A . .
tonian, which is to ultimately emerge, will then be indepen_Wlth respect to this Hamiltonian the constraint functions

dent of the Lagrange multiplier. With the Lagrangian of Eq.Obey Poisson bracket relations of the form
(6) possessing three coordmatg variablgsx, and A, we {p1,Ho}t = yotwapy, {daHat={p,Hxt=0. (17
must introduce the three canonical momema,p,, andp,,

conjugates which for the Lagrangian of E6) evaluate to  Hence, finally, if we now sep, =0 (to enforce{¢;,H,}=0),
the resulting algebra associated with the four-dimensional

=Z =\ p= aL -0 ) d,Pq.X, Py sector of the theory will thertas befits a fourth

aq P order theory be closed under commutation using Poisson
brackets defined via

To implement the Dirac method, as well as use these rela-

_dL . _dL
px‘&")’)(’ Pg= "

tions to construct the Legendre transform of the Lagrangian {A,B} = JAB oA B + IAB _ %@ (18)
of Eq. (6) IXIPy I IX I Py IPgIq
—_ s . ' with the requisite classical Hamiltonian which we seek then
HL = P&+ P+ pak - L e

L=PX+Pgd+ PN -L, (8) being given by
we also introduce two primary constraint functions for the 2
canonical momenta which involve either the Lagrange mul- H= B, PX + Z(wi + w)x2 - Zwiwng, (19)
tiplier or its conjugate 2 2

$1=Pg— N, b2=py. 9 and with the requisite Poisson bracket relations which define

) o ] the classical theory being given by

Then, rather than udd,, the Dirac prescription is to instead
use xpd=1, {apgt=1,

Hi=HL +Ui¢1 + Uz, (10) Py

IH :_1 !H = ’
as the Hamiltonian, wherd; is thus given by bHy b% fa.Hy=x
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{PoH} == pg= ol + wh)x, {pgH}=ywiwj. (20) Hsrar(; # @) = 2w - 03) (ay2107 - 858,05),
With such Poisson bracket relations the canonical equations (25
of motion thus take the form

D it is even time independent in the equal frequengy w,

X="%, q=X, P=—Pq- w2 + 03X, Pq = ywlwsq, =w temporal runaway solutiom(t)=c,e™“'+c,te”“'+c.c.,
Y where it evaluates to
(21

to then enable us to both recover E8) and make the iden- Hgrat(@1 = 0p) = 4yw?(2C,C, + iwCiCy — iwCyCy), (26)

tification x=q in the solution. Additionally, in solutions that
obey these equations of motion the Legendre transform
=pX+pya—H is found to reduce to Ed5) just as it should.
The HamiltoniarH of Eq. (19) is thus the correct one for the
fourth order theory, and it thus is the one which is to be
quantized.

with a runaway in time not leading to a runaway in energy
(i.e., there is an appropriately defined energy which is time
independent in the temporal runaway solugion

The value we have obtained fotsrar(wi=wy) in EQ.
(26) reminds us of the zero energy theorem derived by Boul-
IIl. CONNECTION WITH THE OSTROGRADSKI ware et al. [9] for fourth order conformal gravity, another

HAMILTONIAN typical fourth order theory. Specifically, Boulwage al. con-

structed a classical energy for the fourth order gravity theory,

. C 2 I and found that it would vanish identically if the gravitational
important to distinguish between the general HamiltorHan  fielq solutions were required to be asymptotically flat. The

as defined by Eq19) and the particular valuBlsrar that it gnajog condition for the equal frequency Pais-Uhlenbeck
takes in the stationary path in which the equations of mOt'orlheory(a prototype of a pure fourth order field thepeyould

of Eq. (21) are imposed, with the great virtue of the Dirac pe 1o demand the absence of runaway solutions in time, and
procedure being that it allows us to define a classical Hamily, s 1o setc,=0, a condition which would then yield for

tonianH which takes a meaninbig the cqnonical generator Hsrar(1=w,) none other than the value zero. As we thus
used in Eq/(20)] even for nonstationary field configurations gee it is the restriction to an analog of asymptotic flatness
[i.e., even for configurations for whighx+p,q—H does not \ich |eads to a zero value for the energy in the equal fre-
reduce to the Lagrangian of E¢S)]. Thus, for instance, g ency pais-Uhlenbeck case, with there beingim type
it is the Hamiltonian of Eq.(19), which defines the term present ifHSTAT(wlf w,) even thoughHsrar(w, # ws)

appropriate phase space for the problem, so that the pa&ntains botrala, and a,a, type terms. Since the, mode

integral for the theory is then uniquely given by ..~ 2 _ X
. . . . y make a contribution tHgrat(w;=w,) whenc, is
[Ldalldpq]ldx]Ldp.Jexli Jdi(px+peq-H)] as integrated nonzero, we can anticipate that in the quantization of the

over a complete set of classical paths associated with the?ﬁeory to be presented below themode will not give rise to

fou\;v!?:ependdentt C?ﬁrdmftfs and molmenttha.t the classical propagating on-shell state, with the eigenspectrum of the
ith regard 1o he stationary value that the Cass'caequal frequency quantum Hamiltonian possessing not the
Hstat takes when the equations of motion are imposed,

number of energy eigenstates states associated with a two-
Y 2 00 d3q dimensional harmonic oscillatdviz. the dipole structure ex-
Ewlwzq - Wﬁy hibited in Eq.(2)], but rather possessing only the number of
energy eigenstates associated with a one-dimensional one. A
(22) further interesting feature of the form we have obtained for

we note that not only is this particuldtsrar time indepen- Hstat(@1= @) in Eq.(26) is that there is a choice of sign for
dent[see, e.g., Eqs25) and (26) below], it is also recog- the parametery for which the purec, contribution to the

nized as being the OstrogradgH] generalized higher de- ©€Nergy, viz. §w’c,c,, is then positive definite. On its own
rivative Hamiltonian associated with the Lagrangian of Eg.then, the runaway mode does not give rise to any disease

In considering the theory associated with Ef9), it is

Y. Y .
Hstar= qu - E(wi + W) -

(5), viz. the Hamiltonian such as a negative energy, with it yielding a positive one
instead. Therefore, there is no need to require the absence of
NP i (23  runaway solutions in the equal frequency Pais-Uhlenbeck
osT q(9q qa‘q th a4 ' theory (by demanding an analog of asymptotic flatni3])

. . ) ) . since in and of themselves they give rise to perfectly accept-
which Ostrogradski showed to be time independent in soluzpje energies, and do not need to be avoided. Since the run-

tions that obey the generalized Euler-Lagrange equation 5y solution classical energies are well behaved, we can

JL d/dL d? /L thus anticipate that the quantum energy eigenspectrum asso-
——\ =tz = /|=0, (24)  ciated with thec, mode sector will not possess any energy
dq dt\gq/ dt°\ag : : : . 4
eigenstates with either negative energy or negative norm,
while also being its associated time translation genef&jpr even while the structure found for the unequal frequency
Moreover, not only is the classicélgrar time independent Hsrar(wy # wy) in Eq. (25) indicates that there will be en-
in the unequal frequency solutiog(t)=a;e'“!'+a,e '@t  ergy eigenstates of either negative energy or negative norm
+c.c., where it evaluates to in the quantization of the unequal frequency case.
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IV. CONSTRUCTING THE UNEQUAL FREQUENCY alizations. With the eigenstates dflabeling the asymptotic
FOCK SPACE states associated with scattering in the presence of any inter-

With the Hamiltonian of Eq(19) being defined for both action Lagrangiar.,, which might be added on to the origi-

satoray”and nonstaoray chssical paths, a canoniclf LSOO of e heon, e fec oL be,
quantization of the theory can be readily obtained by replac- P ymp

ing (i time9 the Poisson brackets of ERO) by canonical states Of. opposite norm, with the unequal frequency theory
equal time commutators. However, without reference to th hen_lbel_ng n?m;]nltary{w]. IHfowever, ev;}an tho(;Jgh tﬂe

explicit structure of the Hamiltonian itself, we note first that ﬁmltto.nlan tott € _uneqtl;]a requer:c%( t eolr){f oes have
the identification(as suggested but not required by the equa—% oszgelﬁens ates, smfe . ehcommula; lon rela |c|).ns. glvr?ln n
tions of motion[11]) g. (29) become singular in the equal frequency limit while

both the Hamiltonian of Eq(30) and the normalizedi+ 1)

q(t) =ae’“1' + a,e 2 + H.c., and|-1) states develop zeros, we will have to exercise some
caution in trying to discover exactly what happens to the
Py(t) =1 Yo1058,87 1 + i yoiwae 2 + H.C., ghost states when this limit is taken.
) ot ot V. CONSTRUCTING THE EQUAL FREQUENCY
X(t) =~ lwa.€ togt — lwoase togt 4 H.C., FOCK SPACE
p(t) = — ywiae 1 - ywiae 2 + H.c. (27) To explore the equal frequency limit it is convenient to

introduce new Fock space variables according to
then furnishes us with a Fock space representation of the

- i i i 1 2b 1 2b
guantum-mechanical commutation relations a, = §<a— b+ _w) a,= E(a_ b— _w)
[xpd=[apgl =i, [xd]=[xPpg =[a,pd=[PsPal =0 ‘ c
B i
at all times provided that a=a|l+ 20) T 1- 2w/ b= Z(al_ %),
1 (33
[a,a]]=-— 5,
2ywi(w] — w5) where
1 _(otey) (01~ w))
[20,a}] = [a1,851=0, [ay,8,]=0. (29) OETo T T 349

2yw, (w%— a)i)]’
(Here and throughout both, and , are taken to be posi- These variables are found to obey commutation relations of
! 2 the form

tive.) Then in this convenient Fock representation the

quantum-mechanical Hamiltonian is found to take the form [aall=\, [abll=pg, [bal=x [bb=y,
H = 2y(wf - w})(wfaja; -~ w3ajay) + 3(01+ @) (30) [a,b]=0, (35)
with its associated commutators as inferred from Bf)  where
then automatically being satisfied. With the quantit(yui 5
R h» . & (202 - &)
w3) being taken to be positive for definitiveness, we see N=v=-——————, w5 (36)
that the[a,,a}] commutator is negative definite, and with 16y(w? - €)w 16y(w? - ) w
being diagonal in the,,a, occupation number basis, we see pg such, the introduction of the operataas a', b, b’ is
that the state defined by initially nothing more than a rewriting of the original, al,
a,/Q)=0, a,)0)=0 (31) @ aj operators. Their utility derives from the fact that when
o expressed in terms of them the coordingte of Eq. (27) is
is its ground stat¢12], that the states rewritten as
|+ 1) =[2yw(wf - ) ]*%a]|Q), | 2ibw
q(t) =e"!| (a-b)coset - sinet| +H.c., (37)
€
|- D =[2y0y(w] - 0)]"%dl0) (32
. . . . .and thus has a well definad— 0 limit, viz.
are both positive energy eigenstates with respective energies _
o, and w, above the ground state, that the statd) has a q(t,e=0)=€"“(a-b- 2ibwt) + H.c. (38)

norm equal to plus one, but that the St?@ has norm Similarly, the Hamiltonian of Eq(30) which takes the form
minus one, a ghost state. Thus, as anticipated, the correct

Hamiltonian for the unequal frequency theory can be diago- H =8yw?eX(a’a-b'b) + 8yw*(2b’b+a'b+b'a) +
nalized in a basis of positive and negative norm states, with (39)
the relevant negative norm state wave functions being ex-

plicitly constructed via Eq(32) and its multiparticle gener- in the new variables, then limits to
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H(e=0) = 8yw*(2b’b+a'b+b'a) + w, (40) negative norm stajedoes not lead to loss of probability, but
. . . ... its very existence entails the existence of negative norm
while the following commutators of interest have limiting gi5te5 elsewhere in the thedf]. Thus, with the stata’|Q)

form: also having zero norm, we immediately construct the states
[H(e=0),a"1=w(@"+2b"), [H(e=0),a]=-w(a+20b), (a' + b
|£) =37 1), (42)
(2p)

[H(e=0),b"]=wb', [H(e=0),b]=-wb,
states which obey

[a+rbal+b]=24 [a-ba'-bl=-2k, @l4)=1, ¢])=-1, @)=0. @3

[a+b,a’-b']=0, (41) However, unlike the orthogonal positive and negative norm
where nowu(e=0)=/=1/(8yw?. Thus even while the re- states|+1) of Eq. (32) which are eigenstates of the unequal
lation between thga,b) and (a;,a,) sets of operators is frequency Hamiltonian, this time we find that neither of the
explicitly singular in the limit, the limiting prescription ob- |+) states is an eigenstate of teg0 Hamiltonian since
tained by using tha andb operators of Eq(33) nonetheless _ _ +
leads to thes=0 operator algebra given in Eq4.0) and(41) H(e=0)|£) = 20[£) + 4b’|(2). (44)
in which there are no singular terms at all. However, this isThus even while thee=0 Fock space possesses negative
not the only way to take the— 0 limit, as we could instead norm ghost states, this time they can only exist off shell
take the limit not of the operators of the unequal frequencywhere they can still regulate Feynman diagramst cannot
theory but rather of the states. There are thus two possiblgaterialize as on shell asymptotic in and out states. With a
ways to construct the equal frequency theory—we can eithegimilar situation being found in the two particle seci@6]
start with thee=0 operator algebra and construct a new Fockwhere only the statéb’)?Q) with energy 3 is an energy
space for it from scratch or we can construct the equal freejgenstate, we see that the only states which are eigenstates

quency states as the—0 limit of the unequal frequency of H(e=0) are those of the forrtb")"|Q2), with all such states
Fock space states. With these two prescriptions not beingaving zero norm and positive energy7].

equivalent, we shall explore both of them, and discuss first Now at first it is quite perplexing that the=0 theory

the limit of the operator algebra. possesses far fewer energy eigenstates thaa e theory,
possessing only the number of eigenstates associated with a
one-dimensional harmonic oscillator rather than a two-
dimensional one. The reason for such an outcome derives
For the operator algebra limit, we use the-0 limit of  from the fact that while the normal situation for square ma-
thea, a', b, b operators as the dynamical variables, with useyces is that the number of independent eigenvectors of a
of these operators then enabling us to constructea®  square matrix is the same as the dimensionality of the matrix,
theory which is well defined. For this theory tke0 Fock  there are certain matrices, known as defective matrices, for
space is then built on the Fock vacuulf?) defined by which this is not in fact the case. A typical example of such

al()=b|()=0, [we use this basis since, according to Eq.a defective matrix is the non-Hermitian, Jordan block form,
(29), states built on the unequal frequency Fock vacuum ifwo-dimensional matrix

which a;/Q)=0, a,|Q)=0 become undefined in the=0

limit], with the statd()) being an eigenstate ¢1 with en- (11
ergy w. Moreover, in thise— 0 limit we see that théa,a'] M= 0 1/
and[b,b'] commutators both vanish, with, as we shall see N ) ) ) .
below, there actually being two ways rather than one inSpgcmcally, while t_hls matrix has two. _e|_genvalues both of
which the Fock space states can implement this vanishinghich are realdespite the lack of hermiticijyand equal to 1
depending on how the— 0 limit is actually taken. However, (the trace ofM is equal to 2 and its determinant is equal to
before constructing either of these two ways, we note thal): Solving the equation

because the effect of the Hamiltonian is to shiftby 2b' in 1 1\(p p+q 0
Eqg. (41), and becauséunlike the unequal frequency case ( )( ) :( ):( )
neither of the operator@’+b") which diagonalize the Fock 0 1/\q a q

space basis acts as a ladder operator for the Hamiltoniggags only tog=0, with there thus only being one eigenvec-
[14], we can anticipate that the eigenspectrumHtE=0)  tor despite the twofold degeneracy of the eigenvalue, with
will be quite different from the unequal frequency eigenspecthe space on which the matriM acts not being complete
trum. [18].

Becausé' does act as a ladder operator Fofe=0), it is For the case of interest to us here, the action of the un-

possible to construct a one particle energy eigenstate, viz. thequal frequency Hamiltonian of E¢39) on the one-particle
stateb’|Q) with energy 2», but if we try to normalize i{our statesa’|()), b'|Q) yields

first way to realize the&=0 Fock spacethe vanishing of the
[b,b'] commutator would entail that this state would have to HatlQ :i 462+ ATl + (4w? - b0
have zero norm. On its own a zero norm statalike a ) Zw[( @ al[0) + (4o o],

A. Taking the limit of the operator algebra

(45)

(46)
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1
Hb'Q) = 2—[62a‘f|9> + (4w’ - E)bT)]. (47
w
For this sector we can define a matrix
M()_i<4w2+62 4w2—62> (48)
“= 2w e 4o? - €

whose eigenvalues are given as2¢ and 2v—e€ [the trace
of M(e) is 4w and its determinant is&—€%]. For such ei-
genvalues, energy eigenvectors which obey

H2w* €)= 2w+ €)|2w + €) (49)
are then readily constructed as
2w+ e)=[*ea’ + (2w F €)b']|Q). (50)

As we see, as long as#0, the two one-particle sector
eigenvectors of the Hamiltoniakl are distinct. However
when we lete go to zero, the two eigenvectors in E§O)
collapse onto a single eigenvector, viz. the veditf)), the

PHYSICAL REVIEW A 71, 042110(2009

[H(e=0),a-Bl=~w(a-p).

In terms of these operators we construct the coherent state

(55)

o) =e"#'|Q), (56)

where the vacuum is again the one whiclandb, and thus
a and B, annihilate. Using the well-known relatiog’*8
=eheBe[ABI2=gBehe[BAIZ \yhich holds when[A,[A,B]]
=[B,[A,B]]=0, it can readily be shown th&) has positive
norm, viz.(g| g):(Q|e“TBTe“Be(3Tﬁ‘“T“‘1>|Q)= 1/e. Similarly,
using the well-known relation €‘Be”=B+[A,B]
+[A,[A,B]]/2+[A,[A,[A,B]]]/6+..., it canalso be shown
that application of the Hamiltonian to this state yields

(57)

with the coherent state thus not being an energy eigenstate.
This same analysis generalizes to any other state of the form
of an exponential of a string of creation operators acting on

H(e=0)|g) = w(a'?- B2+ 2a'8")|g),

two eigenvalues collapse onto a common eigenvalue, viZN€ vacuum, since the commutatortéfe=0) with the string

2w, and the matrixM(e=0) of Eq. (48) becomeq2w times
the defective one given in E¢45). Consequently, while the

yields another string also consisting purely of creation opera-
tors, a string which thus commutes with the original string of

dimensionality of theg, a', b, b" based Fock space does not creation operators. Thus whether we use states With a definite
change in the— 0 limit (i.e., the dimensionality of the Fock Number of particlegsuch asa"™b™|(1)) or states with an
space remains that of a two-dimensional harmonic oscilIa'-”de‘c',r”'te number of particlesuch agg)), we find that only

tor), nonetheless, in the limit the Hamiltonian becomes defhe b™"Q2) states are energy eigenstates, with all &e0
fective, with H(e=0) thus possessing far fewer eigenvectors”egat've norm_states having moved off shell in the_I|m|t.
than H(e+0), and with the dimensionality of the space of Consequently, in the=0 theory there are no energy eigen-

energy eigenvectors dfi(e=0) actually being the same as
that of a one-dimensional rather than a two-dimensional har-

monic oscillator[19]. As we thus see, the— 0 limit is in-
deed highly singular. Finally, with Ed47) reducing to

H(e=0)a'|Q) = 20[a’|Q) + bT|Q)],

H(e=0)b"|Q) = 2wb'|Q2) (51)

when e=0, we confirm again thatl(e=0) only has one ei-
genvector, the zero nori'|Q2) with eigenvalue 2.
In addition to these zero norm states, #¥0 Fock space

also possesses harmonic oscillator coherent states as well.

states with negative norm or negative energy.

Another interesting aspect of the=0 theory is that even
while it is a fourth order theory, the=0 theory only pos-
sesses the number of observable states that would be found
in an ordinary second order theory. Consequently, in a field-
theoretic generalization of the equal frequency Pais-
Uhlenbeck fourth order oscillator, we would anticipate that
there would only be one observable particle in the theory
rather than the two that would be associated with the field-
theoretic analog of the unequal frequency case as exhibited
schematically in Eq(2). Replacing a pure second order field
ﬁheory by a pure fourth order one would thus not be expected
&bring about any change in the number of observable states.

construct these particular states it is convenient to introduce Since the above equal frequency theory possesses zero

new operators

a=a+b, B=a-b (52
which obey
[a,a"1=24, [BBT=-24, [ap]=0, [Ba']=0,
[@,B]=0. (53

In terms of these operators the Hamiltonian of Ef) may
be rewritten as
H(e=0) = %[ZaTa -a'B-plal+ w, (54)
o

with o' and 8" then being found to obey the relations
[H(e=0),a']=w(2a"- BY), [H(e=0),8"=wa,

[H(e=0),a'- = w(a"- g,

norm states, as a quantum-mechanical theory it is thus some-
what unconventional. Even though the physical viability of
the theory is not in question since the theory has been shown
to possess no energy eigenstates with negative norm, none-
theless, it is still of interest to try to recast the theory in an
alternate form in which the theory has a more conventional
look to it. Thus we seek to reinterpret the zero norm states as
positive norm ones by using an unconventional scalar prod-
uct with which to define the norm. To this end, we note that
in constructing the eigenstates of a Hamiltonian, all that is
needed is the introduction of a Hilbert space on which the
Hamiltonian is to act to the right on a set of ket vectibs

with there being no need to introduce the dual vector bra
states of those ket vectors for this purpose, with the structure
of the energy eigenspectrum thus being in no way sensitive
to the structure of the dual space vect®6]. The choice of
definition of a scalar product is thus independent of the struc-
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ture of the energy eigenspectrum, and while one ordinarily=|1). Similarly, its action ona'|Q)=(|7)+|])) and BYQ)

defines the dual bra vectéy] simply as the conjugate of),

=(|1)-|1)) can be written asC(|T)+|[)=(T)+|])),

other choices are possible, and all of them provide legitimatg(|1)~| | ))=—(|1)~||)). In the aT|Q), bT|Q2) 2 space then

formulations of quantum mechanif21].

Thus for our purposes here, we note that with both th
equal frequency theorg'|Q) and b'|Q) states being zero
norm states, if their respective conjugates are canonicall
defined as(Q|a, (Q|b, in terms of the operatora and 8
which diagonalize the Fock algebra, we instead define th
dual of the stateg’|Q2) not to be the standard|3 but to be
minus one times ifviz. —<(Q}|B) instead, while at the same
time we continue to keep the dual @f|2) to be the standard
(Qa. With such a dual state definition, the dual i)
=(1/2)(a"-gN|Q) is given by (1/2/(Q|(a+pB), viz. by
(Q|a, with the overlap ob'|Q) with its own dual then being
given by (1/4)/{Q|(a+B)(a’-B8"|Q)=a=1/8y»° a norm
which, for positivey, is then positive rather than zero. Simi-
larly, the dual of a'|Q)=(1/2)(a'+8"|Q) is given by
(1/2¢Q|(a-B), viz. by (Q|b, with the overlap o&'|Q) with
its own dual then being given by1/4{(Q|(a-pB)(a’
+B8N|Q)==1/8yw?, a norm which is then also positive for
the same choice of sign of. Moreover, the overlap of the
dual of b'|Q) with a'|QQ) is given by (1/4)(Q|(a+B)(a’
+3"|Q), an overlap which is zero, while the overlap of the
dual of a'|Q) with b'|Q) is given by (1/4){Q|(a-p)(a’
-BN|Q), an overlap which is also zero. With respect to this
definition of scalar product then, the sta@#)) andb’|Q)

the operatorC can be represented by none other than the

Sauli matrix o1, to thus establish that the need€ddoes

indeed exist. Then given this definition of conjugate states, if
We define wave functions viag,(x) =(x/a’|Q), (X
e*(x|bT|Q> with respective conjugatesy,(x) =(Q|aClx),
() =(Q|bC|x), we are able to obtain the conventional
orthonormality relations for wave functions,
viz. [dxi(X)a(¥) = fdx(Q]aClx)(xa’|Qy=(Q]aCal|Q) =7,
JAx, () 95(x) =0, JAx(X) () =0, [ (%) (X) = .

With regard to the Hamiltonian of the theory, we note that
with respect to our definition of conjugate states, its matrix
elements evaluate #)|aCHa'|Q)=1/4yw? (QaCHbL'|Q)
=0,{Q|bCHa'|Q)=1/4yw?, and(Q|bCHL'|Q)=1/4yw?. As
we see, with respect to this definition of conjugates, the
Hamiltonian remains defective, with its diagonal elements
still being real. With there thus still only being one energy
eigenstate, viz. the originalf|Q), with which to characterize
asymptotic in and ouS-matrix states, the theory remains
unitary not becauskl has became Hermitian with respect to
the new definition of conjugate states, but because it has
remained defective. While we have thus shown that one
could equivalently either work with an equal frequency
theory with zero norm states or recast the theory as one with
positive norm states instead, to conclude this paper we now

form an orthonormal basis in which all states .have a pOSitiV%resent an entire|y different approach to the equa| frequency
norm. Thus because we do not need to specify the dual vegheory, one that will lead to positive norm states without any

tors in order to construct energy eigenkets, we have flexibilneed to introduce noncanonical dual vector states at all.
ity in defining what we mean by a norm and a scalar product,

and can thus make the equal frequency theory zero norm

states become orthonormal positive norm states instead, and

can do so without in any way altering the fact thdfQ)) is
an energy eigenket whila'|Q) is not.
In addition to the above formal construction of dual vec-

B. Taking the limit of the Hilbert space

While we have seen that it is possible to define an uncon-
ventional scalar product with respect to which all of the
€=0 theory zero norm Fock states then have positive norm

tors, there is also an explicit operational way to implement itinstead, it is also of interest to determine whether we could
Specifically, we note that before we seek to define a newonstruct an alternate— 0 limiting theory in which all en-
scalar product, the standard scalar products are given kargy eigenstates would have a positive norm even when the

(Qaa’Qy=0, (Qlab'|Q)=i, (Q|bal|Q)=4i, and(Q|bb'|Q)
=0. We now introduce an operatGrwhose action or'|Q))
and B8'|Q) is of the formCa'|Q)=a'|Q), CAT|Q)=-BTQ).
In consequence, its action @i|Q) andb’|Q) is of the form
Ca'|Q)y=b'|Q), Cb|Q2)=a"|Q), an action which thus inter-
changesa'|Q) andb'|Q) with each other. With respect to this

conventional definition of conjugate states is used. To this
end we note that since we obtained zero norm states in the
above by first going to the=0 limit of the operator algebra
before constructing the states, to avoid such zero norm states
an alternate procedure would be to first construct a set of
states with nonzero norm, and then take ¢éheO limit while

operatorC we thus define scalar products which evaluate tcholding the norms of these states fixed. With the algebra of

(Qlaca|Q)=4, (QaCb’|Q)=0, (QlbCal|Q)y=0, and
(Q|bChYQ)= /. Thus with(Q|aC being defined as the dual
of a'|Q2), and with(Q|bC being defined as the dual bf|(2),

the a andb operators already being defined in Eg5) even
prior to taking thee— O limit, we can thus construct a basis
for the e# 0 Fock space via states built on a vacuum which

we thus generate an orthonormal basis. Now we saw abov@eysal)=b|Q)=0 rather than on one which obegg/(2)

that the dual ofa’|Q) is given as(Q|b while the dual of
b'|Q) is given as(Qla. In this construction then we thus
identify the dual ofa’|Q) as(Q]aC=(Q|b, and the dual of
b'Q) as{Q|bC=(Q|a. Since the role o is to interchange
a'|Q) and b'|Q2), we can thus conveniently describe the

a'|Q), b’|Q) 2 space in the language of Pauli spinors. Thus

on defininga’|Q)=|1), b'|Q)=||), we see that the action of
C on af|Q2) and b'|Q)) can be written a<C|1)=||), C||)

=0, a,|Q)=0, and then explore the— 0 limit of those par-
ticular states. We thus build normalized: 0 states such as
(the choicey< 0 assures the positivity of and v) the one
particle
t +
a b
Y, 10,1)= VT’2|Q>’

|1’O> = }\l/

(58)

the two particle
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(a"? a'b’ limit the state is also found to actually become an energy
2,0= 21/2)\|Q>’ 1L,D= (W2 + )\V)1/2|Q>' eigenstate, viz.
)2 a'b' 3w 2w 3w
0.2=2 0, (59  H(e=0-(0)=""albl)+ Z2(b0) = ="alb'|),
2112, e e e M
(60)

and so on.
Even while this particular basis is not a basis of eigen-with the energy of this two-particle state being equal &g 3
states of thee# 0 Hamiltonian, for thee # 0 theory this par-  which is nicely positive. With this analysis immediately gen-
ticular basis is just as complete a basis as the one built out @ralizing to the higher multiparticle states as well, we see
the e#0 eigenstates. However, unlike the#0 energy that the only states which then survive in the limit are states
eigenstate basis, remarkably, and crucially for our purposesf the form (aTbT)”|Q>, positive norm states which also be-
here as it will turn ouft, every Single state constructed via th%ome positive energy eigenstates in the ||m|t, with the ob-
e+0a'" andb' operators is found to have a positive norm. It servable sector of the theory thus being completely accept-
is not however an orthogonal basis since overlaps such agle. We thus recognize two limiting procedures, first taking
(1,000,1)=u/(\»)*'? are nonzero, overlaps which actually the limit of the algebra and then constructing the Fock space,
become singular in the— 0 limit. Since this basis is com- or first constructing the Fock space and then taking the limit
plete we can use it to define a particular limiting procedure inof its states, with this latter limiting procedure being an ex-
which the normalization of each of the particle states in Eqstremely delicate one in which the only states that survive as
(58) and (59) and their multiparticle generalization is held observable ones are composi?]. Thus, to conclude, we
fixed while € is allowed to go to zero. Then in such a limit see that in the equal frequency limit the quantum theory
we find from Eq.(58) thata'|(2) andb'|Q) both become null  based on the fourth order Lagrangian of E8). is, in fact,
vectors. However, despite this, we cannot conclude that theompletely acceptablén fact, technically, what we have
creation operators annihilate the vacuum identically in thisshown is that the presence of energy eigenstates with nega-
limit since matrix elements such 48|[a,b']|Q)=x do not  tive norm in the unequal frequency theory is simply not a
vanish in the limit[ u(e=0)=u # 0], with product operator reliable indicator as to their possible presence in the equal
actions such aa acting onb'|Q) being singular. Instead, the frequency case and it would thus be of interest to see the
creation operators must be thought of as annihilating thelegree to which our results here might carry over to full
vacuum weakly(i.e., in some but not all matrix elemehts fourth order field theorief23].
but not strongly as an operator identity. Now since neither of
the statesa|QQ) or b'|Q) survives in the limitH(e=0) now
has no one particle eigenstates at all. With the two particle
states(a")?Q2) and (b)) also becoming null in the limit, One of the authorgP.D.M) wishes to thank Dr. E. E.
the only two particle state which is found to survive in this Flanagan and Dr. J. Javanainen for useful discussions. The
limit is the positive norm stata'o’|Q)/ & (since thefa,b’]  work of P.D.M. has been supported in part by the Depart-
commutator does not vanishand, quite remarkably, in this ment of Energy under Grant No. DE-FG02-92ER4071400.
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est is the fourth order conformal gravity theory, a theory which
has been found capalle. D. Mannheim, Astrophys. 561, 1
(2001)] of readily resolving the dark matter and dark energy
problems which currently challenge the standard second order
Newton-Einstein gravitational theory. The conformal theory is
based on the imposition of the local Weyl conformal invari-
anceg#,,(x)ﬂez"‘(”gﬂ,,(x), and thus has a unique gravitational
action of the form ly=-agfd*x(-9)*¥*C,,,, C*"* where
CMwx s the conformal Weyl tensor ang, is a dimensionless
coupling constant. With the general conformal gravity rank
two gravitational tensor (~g)~25l\/ 59,,,= 2agW*” reducing

to WH'=TT#T1"K ./ 2 -TI#'TIPPK |,/ 6 in ag,,, = 1,,,+ D, lin-
earization around flat spacetim@ere K#’=h*"-»**h® /4

and IT#"=5**9%9,—o*3"), we find in the conformal gauge
3,9""-9"7g,,0,9"°/4=0[viz. a gauge condition which is left
invariant undergw(x)ﬁez“(”gw(x)] that the source-free re-
gion gravitational fluctuation wave equation then reduces to
aq(d5—V?)?K#r=0. With this equation of motion being decou-
pled in its tensor indices, we see that each tensor component
precisely obeys none other than tM#=0 limit of Eq. (1).
Since the conformal gravity theory is power counting renor-
malizable(due to the dimensionlessnessay), it would thus

be of interest to see if the structure we have found for the equal
frequency Pais-Uhlenbeck theory might carry over to the con-
formal gravity theory, since it might then be possible to con-
struct a fully renormalizable, fully unitary gravitational theory

in four spacetime dimensions, one which despite its fourth
order equation of motion, would nonetheless only possess one
on-shell graviton and not two.



