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I. INTRODUCTION

Coherence is an important building block in physics,
common to optics and quantum mechanics. In classical op-
tics, it simply implies a phase condition related to interfer-
ence. Its lack is related to the nature of the source of light
snonmonochromaticityd and/or the geometrical shape of the
objects placed on the source-detector pathwayf1,2g. In this
sense, incoherence can be regarded as a “nondynamical” ef-
fect. On the other hand, the same concept acquires a more
general meaning in quantum mechanics, where it has to be
reconciled with the statistical interpretation of the wave
function. When two or more states are coherently superposed
their properties qualitatively differ from those exhibited by
the isolated components, this being a distinctive feature of
the quantum behaviorf3g.

Due to its remarkable relevance in the modern quantum
theory of information and quantum computationf4g, a topic
of much recent interest is the understanding of how quantum
systems lose their coherence, decoherence being the most
widely accepted mechanismf5g. By decoherence we under-
stand the irreversible emergence of classical properties in a
quantum system through its “dynamical” interaction with an
environment or bathf6,7g. This idea is better understood by
splitting the Hamiltonian describing the full system in three
terms:

Ĥ = ĤA + ĤB + V̂AB, s1d

whereĤA andĤB are the Hamiltonians governing the evolu-

tion of system and environment, respectively, andV̂AB ac-
counts for the coupling between them. This last term leads to
a fast cancellation of the off-diagonal elements of the sys-
tem’s reduced density matrix, which is studied by averaging
si.e., tracingd the full-system density matrix over the environ-
ment degrees of freedom.

In general, the visibility of an experimental diffraction
pattern can be considered the result of combining incoher-
ence and decoherence. In this paper we analyze the influence
of these two mechanisms using a theoretical model applied
to the double-slit experiment with cold neutrons carried out
by Zeilingeret al. f8g. By means of a detailed optical study
of the neutron beamf1g, we conclude that incoherence and
decoherence are both needed in order to explain the loss of
coherence found in the experiment, this being the main result
of our work. Decoherence is introduced here using a simple
phenomenological theoretical model that assumes an expo-
nential damping of the interferencesf9g, and that has only
one empirical parametersthe coherence degreed. It should be
stressed out that this model is based solely on first principles
sexcept for the estimation of the coherence parameterd. Other
authors have treated the effects of incoherence in similar
diffraction experiments with He atomsf10g and He clusters
f11g from an optical point of view, and also the effects of
decoherence in fullerene diffractionf12g.

The organization of the paper is as follows. To make the
paper self-contained, we briefly review in Sec. II the experi-
ment carried out by Zeilingeret al. f8g. Section III is devoted
to the optical description of this experiment, and in Sec. IV
we present our quantum calculations, whose results are com-
pared with the experimental data. Finally, the main conclu-
sions derived from this work are summarized in Sec. V.

II. THE EXPERIMENT

The double slit used by Zeilingeret al. f8g consisted of a
highly absorbing boron wire mounted into the opening gap
of a single slit. The dimensions of this arrangementshere-
after labeled Od are a1udua2=21.9u104.1u22.5 mm sleft
slituboron wireuright slitd. The wavelength of the neutron
beam,ldB=18.45 Å swith a bandwidthDl= ±1.40 Åd, was
selected by means of an entrance single slitsCd of width w
=20 mm, located at a distancez=5 m beforeO. After cross-
ing the double slit and a pathwayv=5 m, neutrons are made
to pass through a scanning single slitsDd of width w0

=20 mm before reaching the detectorslocated behindDd.
The reported results are reproduced in Fig. 1. From them,

a value for the fringe visibility ofVexpt=0.583 is obtained.
This magnitude is definedf1,2g as
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V =
Imax− Imin

Imax+ Imin
, s2d

Imax and Imin being the intensities corresponding to the cen-
tral maximum and the first minimum next to it, respectively.
This experimental lack of visibility cannot be attributed to
simple causes, such as nonconvergence of the intensity pat-
tern atD or the size difference between slits. In the first case,
D is far enough fromO, and the intensity pattern is well
definedsit displays almost vanishing minimad. In the second
case, the difference betweena1 anda2 is too smalls.3%d,
and the incoherence effects due to this asymmetry are irrel-
evant. In the following sections the physical factors leading
to this high value for the loss of coherence in the experiment
are examined.

III. THE OPTICAL TREATMENT

Studies on neutron interferometry can be accurately car-
ried out by means of classical opticsf13g provided that en-
ergy is low and spin effects are negligible. Since classical
optics only accounts for incoherence effects, this approach is
of great help in our case in order to discern whether or not
decoherence effects are relevant. This analysis will also pro-
vide the physical conditions that the quantum model for the
possible decoherence must satisfy. Therefore, we first ana-
lyze here the optics of the neutron beam to establish the
relevance of incoherence effects in the diffraction pattern.

The coherence of light can be understood as the effect of
stationary stochastic processesf14g, i.e., random fluctuations
in the amplitude and phase of the interfering waves of light
in time. Although the source of that stochasticity is irrelevant
for the optical analysis, it turns out to be crucial in the quan-
tum theory of decoherencef5g. The correlation between two
processes taking place at different points and times is given
by the smutuald coherence functionf15–17g, Gsx1,x2;td,
which is only a function of the time difference due to sta-
tionarity. From it, the power spectrumf16,17g or cross-
spectral density functionf18g

Ssx1,x2;vd =E Gsx1,x2;tdeivt dt s3d

can be defined. This is the optical analog of the quantum
density matrix. Like it,Ssx1,x2;vd=S*sx2,x1;vd for the off-
diagonal elements, while the diagonal onesSsx,x;vd are real
and give the intensity distribution of light at a frequencyv.
Therefore, the power spectrum is the essential element in this
optical treatment.

Since Eq.s3d refers to the neutron beam,v can be substi-
tuted byl, without loss of generality. As in Ref.f8g, in the
theoretical description of the experiment we will take into
account the pass of the neutron beam throughC, O, andD. If
C is identified with a neutron source that can be assumed as
incoherentf8g, i.e., the intensity at each point along the ap-
erture does not depend on any other point, then

SCsx1,x2;ld = qsx1;lddsx1 − x2d. s4d

Here,qsx,ldù0 is the average intensity atx. When no ab-
sorption takes place at the borders ofC si.e., each point of
the aperture produces the same intensityd and l is indepen-
dent of the position along this aperture,qsx;ld is given by

qsx;ld =
1

w
ssld, uxu ø w/2, s5d

with ssld describing the spectral profile of the neutron beam.
It should be emphasized that to keep the explicit dependence
on l is important, since the source is not totally monochro-
matic. As will be seen below, the spectral profile plays a key
role on the shape of the measured intensity atD within this
optical treatment.

From C to O the neutron beam propagates freely accord-
ing to the following point-spread functionf16g:

hCOsx,jd = eiksx − jd2/2z, s6d

where x and j refer to the spatial coordinates atO and C
f19g, respectively, andk=2p /l. In this way, the power spec-
trum just beforeO becomes

SO8 sx1,x2;ld =E hCOsx1,j1dhCO
* sx2,j2dSCsj1,j2;lddj1 dj2

= q̄sDx;ldeiksx1
2−x2

2d/2z, s7d

where

q̄sDx;ld = sincfksx1 − x2dw/2zgssld, s8d

with Dx=x1−x2 and sincb=sinb /b. As can be seen, the
finite size of the source gives rise to a coherence in the neu-
tron beam, which manifests as a typical single-slit diffraction
pattern atO. The first minima of this correlation patternf20g
take place atDx= ±zldB/w. ±461 mm. Therefore, the spa-
tial width illuminated by its central maximum will be rela-
tively larger than the extension covered by the double-slit
arrangement. This means that the two diffracted beams will
display a slight divergence, a fact that must be included as a
source of incoherence in the quantum modelssee Sec. IVd.

FIG. 1. Experimental results obtained by Zeilingeret al. f8g for
the double-slit diffraction of cold neutronsssolid circlesd, and the-
oretical intensity patterns obtained by assuming two finite-size iden-
tical slits fsee Eq.s15dg ssolid lined.
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The double slit acts as a modulator of the incoming wave
with a modulation functionmsxd. Thus, the power spectrum
at O can be written as

SOsx1,x2;ld = msx1dm*sx2dSO8 sx1,x2;ld. s9d

After crossing the double slit the two diffracted beams de-
scribed bySO propagate freely until reachingD. There, the
power spectrumSDsx1,x2;ld is computed by replacing, in
Eq. s7d, hCOsx,jd and SCsj1,j2;ld by hODsx,jd and
SOsj1,j2;ld, respectively. The diagonal elements ofSD give
the intensity distribution,Isx;ld, right before the neutron
beam crossesD. For example, in the case of two identical
very narrow slitsssuch that the modulation function can be
expressed as the sum of twod functionsd separated from

each other a distanced̄=d+sa1+a2d /2, one obtains

SDsx1,x2;ld = fcosskDd̄/2vdssld

+ q̄sd̄;ldcosfksx1 + x2dd̄/2vggeiksx1
2−x2

2d/2v,

s10d

from which

Isx;ld = f1 + sincskd̄w/2zdcosskd̄x/vdgssld. s11d

The separation between two consecutive maxima that results

from Eq. s11d is vldB/ d̄.73 mm, which is in good agree-
ment with the experimental value of Fig. 1. However, the
value of the fringe visibility,V=0.881, is still far from the
experimental value. Moreover, the amplitude of the oscilla-
tions is constant, in strong disagreement with the experimen-
tal pattern.

If the finite size ofD is taken into account, the measured
intensity for a positionx of the detector results

I0sx;ld =
1

w0
E

x−w0/2

x+w0/2

Isx8;lddx8, s12d

which decreases the fringe visibility, but leaves the profile of
the interference pattern unaffected. The nonmonochromatic-
ity of the neutron beam leads to a subsequent integration
over the spectral bandwidth. Taking into account the optical
relation k=v /c, this integral can be carried out easily by
assuming v=2pc/l, and substituting the corresponding
quantities byldB and Dl=2.80 Å. Thus, in the particular
case of a uniform spectral profile over the bandwidthDv,
one obtains

I0sxd =
1

Dv
E

v−Dv/2

v+Dv/2

I0sx;v8ddv8

~ 1 + sincskd̄w/2zdsincskd̄w0/2vd

3sincfsDl/ldBdskd̄x/2vdgcosskd̄x/vd, s13d

where the approximation of constant sinc functionsswith l
=ldBd has been used, since these functions vary slowly
within the integration intervalsabout 4% with respect to their
value atl=ldBd. The results obtained with this expression
are much better than those for Eq.s11d but still far from the
experimental data. In particular a value ofV=0.772 is ob-

tained, and the averaging process introduces a certain modu-
lation with respect to the constant-amplitude intensity of Eq.
s11d. However, the decay in the intensity pattern as the ab-
solute value of the detector position increases is not satisfac-
tory. This is a general featurefi.e., independent of the spec-
tral profile determined byssldg coming from the assumption
of point slits atO.

The modulation of the intensity pattern is a border effect
caused by the finite size of the slits, while the oscillations are
the result of the interference of two spatially separated wave
fronts. This can be easily shown by considering that the slits
are coherently illuminatedsi.e., the modulation function is
described by the sum of two hat functionsd, and their size is
relatively smallf21g. In this way, one can assume that Eq.
s11d still holds, and introduces the sinc function caused by a
finite-size slit into it, thus obtaining

Isx,ld ~ fsinc2skāh−/2vd + sinc2skāh+/2vd

+ 2 sincskāh−/2vdsincskāh−/2vd

3 sincskd̄w/2zdcosskd̄x/vdgssld. s14d

Here, for the sake of simplicity, both slits are considered with

the same widthā=sa1+a2d /2, andh±=x±vd̄/2b. Using the
same arguments, an equivalent expression for Eq.s13d can
be calculated,

I0sxd ~ sinc2skāh−/2vd + sinc2skāh+/2vd

+ 2 sincskāh−/2vdsincskāh−/2vdsincskd̄w/2zd

3 sincskd̄w0/2vdsincfsDl/ldBdskd̄x/2vdgcosskd̄x/vd.

s15d

The corresponding results are shown as the solid line in Fig.
1. As can be seen, the intensity pattern fits much better the
experimental results, presenting only a small discrepancy for
the central minima. However, the fringe visibilityV=0.760
still does not fully account for the value obtained experimen-
tally, although it is improved with respect to the previous
cases. Therefore, the most important conclusion derived
from this phenomenological analysis of the experiment is
that, although different causes contribute to the incoherence
of the neutron beam, they are not sufficient to explain the
experimental results. The remaining contribution should then
be attributed to dynamical causes, i.e., decoherence, which
will be analyzed in the next section.

One final consideration is worth mentioning. The finite
size of the slits is an important factor to take into account in
the formulation of the quantum model. Indeed, a general
phenomenological form for the measured intensity account-
ing for the loss of coherence can be postulated from Eq.s15d
as

Isxd = I1sxd + I2sxd + 2AI12sxdcosskd̄x/vd, s16d

whereIisxd is the intensity function produced by the sliti
swith i =1,2d, I12sxd the intensity function modulating the
interference,A the coherence degree or damping coefficient,
and the cos function is the term purely due to the interference
between the two slits. Notice that the coherence degree and
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fringe visibility are not the same unless both partial waves
contribute equally to the intensity, as happens in Eq.s11d,
whereI1sxd=I2sxd=I12sxd=1/2.

IV. THE QUANTUM TREATMENT

Optical models are attractive because of their simplicity
sand accuracy when used in association with fitting proce-
duresd. However, they do not deal with the loss of coherence
due to dynamical processes, such as those taking place in the
regions where the neutron beam evolves freely. The effect
produced by such processes is what we call decoherence. In
general, decoherence is understood as a complex effect con-
cerning the phase of a many-body wave functionf22g. For
example, according to the model proposed by Caldeira and
Leggettf23g, decoherence arises from the interaction of the
system with a bath of harmonic oscillators linearly coupled
to the system. The collisions between particles belonging to
the system and to the environment constitute another mecha-
nism proposed to explain the loss of coherencef6,7g in
physical processes. Although these scattering events may be
individually quite inefficient, when taking place in large
numbers they may lead to an exponential damping of the
off-diagonal elements of the system reduced density matrix,
since

U ]r̃nm

]t
U

scattering
= − lr̃nmstd, s17d

wherel=Gs1−kc0uSm
† Snuc0ld, G is the collision rate, and the

scattering process between statesunl and uml is described by
the correspondingS-matrix element.

According to the physical considerations made in the pre-
vious section, in our quantum-mechanical description of the
process we only consider the evolution of the neutron beam
from O to D, assuming that both outgoing partial waves atO
are coherentsi.e., finite-size slitsd. Moreover, as mentioned
above, these partial waves differ in widthsbecause of the
different slit sizesd, and then move apart, separating along
the two opposite directionssnotice, however, that the com-
ponent of this motion is relatively smalld. These initial con-
ditions are responsible for the incoherence. Taking this into
account, the evolution of the neutron beam after passing
throughO sand without being affected by an external envi-
ronmentd can be described at any subsequent timef24g as

uCs0dlt = c1uc1lt + c2uc2lt, s18d

where ucilt is the partial wave emerging from sliti, and
uc1u2+ uc2u2=1 at any time. In the coordinate representation,
the density matrix associated with this wave function is

rt
s0dsr ,r 8d = Ct

s0dsr dfCt
s0dsr 8dg* , s19d

with Ct
s0dsr d=kr uCs0dlt. The diagonal terms of Eq.s19d give

the probability density or measured intensity

rt
s0d = rt

s0dsr ,r d

= uc1u2uc1ut
2 + uc2u2uc2ut

2 + 2uc1uuc2uuc1utuc2ut cosdt,

s20d

wheredt is the time-dependent phase difference between the
two partial waves.

When the action of an environment is considered, the
wave functions18d no longer describes the evolution of the
full system. Since our main interest focuses on the question
of how the environment affects the coherence of the system
by gradually suppressing thesnonclassicald oscillatory term
in Eq. s20d, we will assume conditions of elastic scattering
f25g. Accordingly, only the states describing the environment
change during the scattering process, while the system states
remain unchanged. In particular, in our case both partial
waves will propagate as free Gaussian wave packets since
they are Gaussians initiallyssee belowd. In this way, the ini-
tial coherent state

uCl = uCs0dl ^ uE0l s21d

becomes an entangled state with the form

uClt = c1uc1lt ^ uE1lt + c2uc2lt ^ uE2lt s22d

at any subsequent time. Here,uc1l and uc2l are coherent
wave packetssor superpositions of themd,

Gsx,zd ~ e−sx − x0d2/4sx
2+ipxxe−sz − z0d2/4sz

2+ipzz, s23d

wherex szd is the parallelsperpendiculard coordinateswith
respect to the plane of the double slitd, x0 sz0d is the center of
the wave packet along thex szd axis, px spzd is the parallel
sperpendiculard component of the momentum, andsx sszd is
the width of the wave packet alongx szd. In the case of
quasiplane waves, the corresponding wave function can be
constructed as a coherent superposition of Gaussian wave
packets distributed over the width covered by each slit. On
the other hand, notice from Eq.s22d that, due to the initial
coherence,uE1l= uE2l= uE0l. In our case, this initial state for
the environment is chosen asuE0l= uIl.

In order to calculate the diffraction intensity, the reduced
density matrix for the system is obtained by tracing the full-
system density matrix over the environment states,

r̂̃t = o
i

tkEiur̂tuEilt. s24d

In the coordinate representation this operation is equivalent
to carrying out the integral of the total density matrix over all
the 3N degrees of freedom,hr iji=1

N , of the environment,

r̃tsr ,r 8d =E kr ,r 1, . . . r nuClt tkCur 8,r 1, . . . r nldr 1 ¯ dr n.

s25d

By substituting Eq.s22d into Eq. s24d, one obtains then the
reduced density matrix

SANZ, BORONDO, AND BASTIAANS PHYSICAL REVIEW A71, 042103s2005d

042103-4



r̃tsr ,r 8d = s1 + uatu2dfuc1u2c1tsr dc1t
* sr 8d + uc2u2c2tsr dc2t

* sr 8dg

+ 2atc1c2
*c1tsr dc2t

* sr 8d + 2at
*c2c1

*c2tsr dc1t
* sr 8d,

s26d

whereat= tkE2uE1lt. From Eq.s26d we obtain the measured
intensity

r̃t = s1 + uatu2dfuc1u2uc1ut
2 + uc2u2uc2ut

2

+ 2Ltuc1uuc2uuc1utuc2ut cosdt8g, s27d

with

Lt =
2uatu

s1 + uatu2d
. s28d

For the sake of simplicity, we have assumed that the phase
difference between the environment statessincluded indt8d is
constant. Equations27d is the quantum analog of the optical
sphenomenologicald equations16d. Thus,Lt is defined as the
quantum coherence degree, which plays here the same role
asA in Eq. s16d.

Now, we make thesreasonabled assumption that the envi-
ronment states are too complex to keep mutual coherence as
time increasesf26g. In this way, even if they are initially
coherent, they become orthogonal as time passes. Thus, one
can assumeuatu.e−t/tc, tc being the coherence time, a mea-
sure of how fast the system becomes classicalssmaller tc
implies faster loss of coherenced. By substituting the value of
uatu in Eq. s28d one obtains

Lt = sechst/tcd, s29d

which establishes a relationship between the coherence de-
gree and coherence time. Although the value of the coher-
ence time can be derived analytically for interfering waves
by means of simple Markovian modelsf9g, Eq. s29d allows
us to determine it from the coherence degree. In our case, we
have usedLt=0.63 sor, equivalently, a coherence time of
tc.5.08310−2 sd, for which an excellent agreement be-
tween the experimental data and the theoretical results is
found ssee belowd. This value corresponds to a fringe visibil-
ity V=0.607 snotice thatLt.V, as said at the end of Sec.
III d, very close to the experimental values,4% above this
valued.

Taking all these ingredients into account, we present next
the results for two basic models. In the first one, after passing
through the corresponding slits,uC1u2 and uC2u2 are consid-
ered to be quasiplane waves; while in the second one, their
profiles are modeled with Gaussian functions. We also as-
sume that the slits are on theXY plane, the direction of
propagation of the beam is alongZ, and,y@,x s,x and ,y
being the dimensions of the slitsd. In this way, the model can
be considered as two dimensional, with the motion taking
place in theXZ plane. In order to minimize the effects of the
spreading of the wave function alongz with time, given by
the general expression

st = s0Î1 +S "t

ms0
2D2

, s30d

it is enough, in our case, to chooses0
z=2ā, which ensures

st.s0 during the time of propagation.

A. Case I: Quasiplane waves

In this first case, the probability density at the left slit has
been simulated by covering its width with 30 Gaussian pack-
ets, while for the rightswiderd one 31 packets have been
used. For both slitsz0=0 for all Gaussians, and the distance
between neighbor packets has been taken equal to a constant,
Di =ai / sNi −1d, with i =1,2. Thewidth parameter along theX
direction issx

sid=ai /Ni, with Ni =30 or 31 depending on the
slit considered, while for theZ directionsz=2ā, as explained
above. The time evolution of the wave function has been
numerically obtained using Heller’s methodf27g, which is
exact in our case.

In Fig. 2sad we show the results corresponding to a case
where only incoherence effects are includedfEq. s20dg. As
mentioned above, after passing through the slits each partial
wave has a certain motion component along the perpendicu-
lar direction. Thesinitiald momentum component along each
direction can be estimated using the uncertainty principle,
according to whichpx,Dpx," /Dx. SinceDx,a, the mo-
mentum along the parallel direction will bepx

sid. ±" /ai,

FIG. 2. Intensity obtained from the interference of two quasi-
plane waves in the case ofsad only incoherence effects, andsbd
incoherence plus decoherence effects. For comparison, the experi-
mental datassolid circlesd are also shown.
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with the plussminusd sign corresponding to the rightsleftd
slit. Hence, the momentum along theZ direction is pz

sid

=fs2p" /ldBd2−spx
sidd2g1/2. As can be seen in the figure, the

results indicate that the effects due to incoherence are very
small, with the minima of the oscillations almost touching
the horizontal axis; they display, however, a certain degree of
asymmetry with respect tox=0. The problem turns out to be
quite similar to the evolution of the same initial wave with
both slits of the same width and no perpendicular motion.
Finally, notice the oscillations that appear forx*400 Å.
They arise from the diffractive effects caused by the borders
of the slits, and are not observed in the equivalent solid curve
of Fig. 1 because of the double-averaging processswith re-
spect to the finite size ofD and the bandwidthd carried out
there. As will be seen in next section, these oscillations dis-
appear when a model based on Gaussians is used.

To conclude this section, we show in Fig. 2sbd the inten-
sity resulting when both incoherence and decoherenceswith
Lt=0.63d effects are includedfEq. s27dg. As can be seen,
these results have been greatly improved with respect to only
considering incoherence, showing an important decrease in
the fringe visibility. However, the agreement with the experi-
mental data is still poor. It should be stressed that the results
have been obtained by means of a reasonable theory based
on first principles, with no averaging as in Sec. III.

B. Case II: Gaussian waves

In this section we show that the results presented in the
previous section can be highly improved by simply consid-
ering that the slits are Gaussianf28g, i.e., the wave function
in Eq. s18d is a linear superposition of two Gaussian wave
packets. These Gaussian wave packets are centered atx0

s1d

=sa1−dd /2 and x0
s2d=sa2+dd /2 swith z0

sid=0d, respectively,
and their corresponding width parameters are taken assx

sid

=ai /4 andsz=2a. The value ofsx
sid implies that the inten-

sity at the border of the corresponding slit is
ucis±sx

sid /2du2/ ucisxidu2=e−2 when sx−xid=sx
sid /2, i.e., ap-

proximately 13.5% of the total intensity. Thus, only a very
small part of the wave will be out of the boundaries defined
by the borders of the slits. This assumption is in agreement
with the experimental observations, since Zeilingeret al. re-
ported, with regard to the error on the slit widths, that “neu-
trons penetrating through the boron wire along a chord
0.2 mm away from the surface are attenuated by more than a
factor 1/e,” such that these “neutrons would be refracted far
out of the diffraction pattern”f8g.

In sharp contrast to the case described in the previous
subsection, when incoherence is considered in this model
sgiven, as above, bypx

sid. ±" /ai and pz
sid=fs2p" /ldBd2

−spx
sidd2g1/2, for slits with different sizesd, the resulting inten-

sity, shown in Fig. 3sad, looks quite different compared with
the results of Fig. 2sad. In this case, it can be observed how
the Gaussian envelope due to single-slit diffractionswhich
modulates the amplitude of the intensity maximad allows the
interference pattern to fit the shape of the experimental data
fairly well. Nonetheless, the central minima do not com-
pletely agree with the experimental ones yet. This theoretical

pattern looks very much like that given by Eq.s15d ssee
results in Fig. 1d. Notice that the diffractive effects have
disappeared, and then the “tail” of the curve decreases expo-
nentially, as expected. Qualitatively, we can state that this
model reproduces the experimental pattern as well as the
optical theory, but with the advantage that here we do not
need to assume any average.

Finally, when we consider Eq.s27d with Lt=0.63, which
includes both incoherence and decoherence effects in this
Gaussian-slit approach, the agreement between theoretical
and experimental results is excellent, as can be seen in Fig.
3sbd. Therefore, this experiment cannot be interpreted in
terms of only optical models, but needs to include decoher-
ence as a mechanism leading to the loss of coherence. This is
not ana priori expected result since the neutron mass is very
small.

V. CONCLUSIONS

Optical models are currently used in slit diffraction ex-
periments with particles like electrons, neutrons, atoms, or
fullerenes in order to explain the behavior of the empirical
data. These models are usually based on reasonable physical
assumptions about the nature of the particle source, and/or
the influence of the different objects placed in the pathway of
the particle beam in the experimental setup. Here, we have
shown how the two-slit experiment with cold neutrons per-

FIG. 3. Intensity obtained from the interference of two Gaussian
slits for sad only incoherence effects, andsbd incoherence plus de-
coherence effects. For comparison, the experimental datassolid
circled are also shown.
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formed by Zeilingeret al. f8g can be explained to a certain
extent by means of a simple analytical model based on such
considerations. This analysis has allowed us to characterize
the relevance of the different sources of incoherence present
in the experiment.

However, these procedures mask the presence of another
relevant phenomenon that is likely to exist, and may have
important influence on the experiment: decoherence. This
mechanism, also leading to the suppression of coherence in
the system, cannot be described by optical models. Decoher-
ence is produced by the dynamical interaction between sys-
tem and environmentse.g., by means of scattering eventsd,
which is not included in such models.

In this paper we have shown that decoherence is likely to
exist in Zeilingeret al.’s experiment, and that it can be ex-
plained fairly well with a simple model assuming an expo-
nential damping of the interference termf9g, and using the
experimental value of the coherence degreesLt=0.63d. By
means of this model we have been able to establish the in-

fluence of each element of the experimental arrangement on
the neutron beam. Among these influences, the most impor-
tant one is the effect that the double slit causes on the neu-
tron beam: it splits the initial quasiplane wave front coming
from C into two coherent Gaussian beams.
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