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We demonstrate how a general von Neumann–like measurement can be analyzed in terms of historiesspathsd
constructed for the measured variableA. The Schrödinger state of a system in a Hilbert space of arbitrary
dimensionality is decomposed into a set of substates, each of which corresponds to a particular detailed history
of the system. The coherence between the substates may then be destroyed by meterssd to a degree determined
by the nature and the accuracy of the measurementssd which may be of von Neumann, finite-time, or continu-
ous type. The cases of a particle described by Feynman paths in the coordinate space and a qubit in a
two-dimensional Hilbert space are studied in some detail.
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I. INTRODUCTION

Path integrals and, more generally, the path summation
techniquesf1–3g have found broad application in quantum
mechanics. One advantage of such techniques is that they
reduce the task of calculating quantum-mechanical ampli-
tudes to straightforward summation over certain subsets of
particle histories. It is tempting to use the path integral as a
starting point for the analysis of quantum measurements. An
analysis, based exclusively on devising a meter or a measure-
ment model is usually incomplete, as it provides only a lim-
ited theoretical insight into the nature of the measured quan-
tity f4,5g. Possessing the probability amplitudes for a
complete set of the system’s histories, allows one to con-
struct the amplitude for a particular property simply by add-
ing up amplitudes for those histories which share such a
property. Yet imposing formal restrictions on quantum histo-
ries, such as Feynman pathsf6,7g, has the disadvantage of
leaving open the question of how, if at all, the obtained prob-
abilities relate to the observable quantities. It is advanta-
geous, therefore, to analyze the case where the two ap-
proaches are complementary, and the probabilities assigned
directly to the histories are automatically those one would
measure with a suitable measuring device. One such example
is measurements of von Neumann type. Historically, the path
integral approach to measurements was pioneered inf8,9g
and its later applications relevant to present work can be
found in f8–18g. There are different types of quantum mea-
surement to consider: instantaneous von Neumann measure-
ments f19g, most commonly used in applications such as
quantum-information theory, finite-time measurementsf20g
studied in f13–17g in connection with the tunneling time
problem, and continuous measurementsf10–12g, where a
record of the particle’s evolution is produced by a “measur-
ing medium.” In addition, measurements of the same type
may differ in accuracy, depending on the strength of interac-
tion between the system and a meter or an environment.
Some peculiar properties of inaccurate “weak” measure-
ments, proposed inf21g, are discussed inf22g.

The purpose of this paper is to establish general equiva-
lence between the path summation formalism and the con-

ventional meter-based analysis of von Neumann–like mea-
surements in a Hilbert space of arbitrary dimension. Some
work on the relation between the restricted Feynman path
integral and von Neumann–like meters can be found in
f13,14g. As we aim to justify the previous use of the path
summation approach, as well as to expose its limitations, our
development will be largely formal, and for detailed illustra-
tions of the method the reader is referred to our earlier work
f15,17,18g. We also note that alternative approaches to as-
signing quantum probabilities, such as the one based on con-
sistent historiessCHd f23g, are beyond the scope of the
present analysis, although some discussion of the CH ap-
proach was given inf16g. The rest of the paper is organized
as follows. In Sec. II we introduce a functional differential
equation to generate a decomposition of the Schrödinger
state of a system corresponding the most detailed set of his-
tories spathsd for a particular variableA. In Sec. III we es-
tablish the link between the paths and the measurement am-
plitudes for a meter, or meters, employed to measureA. In
Sec. IV we show how finite resolution of the meter can be
incorporated into the path summation approach. In Sec. V we
show that only the paths taking values among the eigenval-

ues ofÂ contribute to the fine grained amplitude introduced
in Sec. II, and VI extends the approach to all quantities that

commute withÂ. Section VII contains our conclusions.

II. DECOMPOSITION OF THE
SCHRÖDINGER STATE

We will follow Ref. f16g in relating a general quantum
measurement to a decomposition of the current state of the
systemuCstdl into a set ofsgenerally, nonorthogonald sub-
statesuFfngl, where the indexn refers to a particular history.
This can be illustrated by a simple example, equivalent to the
usual two-slit experiment. Let a wave packetuC0l be split
se.g., by means of a beam splitterd into two partsuFfngl, n
=1, 2, which thereafter travel along two different routes. At a
later time t, the parts of the wave function are brought to-
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gether in the same spatial region, so that the state of the
system is a sum of two overlapping componentssn=1,2d

uCstdl = o
n

uFstufngdl, s1d

each corresponding to a particular history. Two cases must
then be considered separately. For an isolated system in a
pure stateuCstdl, the two routes are interfering alternatives,
no probabilities can be assigned, and one can only use Eq.
s1d to see how the components interfere to produceuCstdl. If,
on the other hand, the two alternatives have been made ex-
clusive, e.g., by reversing the direction of the particle’s spin
when traveling along one of the routes, one finds the system
safter tracing out the spin variabled in a mixed state and is
able to assign probabilities for taking a particular path. In
either case it is Eq.s1d that contains all available information
about the particle’s past.

The same reasoning applies to a more general case. LetÂ
be the operator representing some variableA of a quantum
system, which at the timet=T is in a stateuCsTdl. We ask
next what, if anything, can be said about the valuewst8d of
the variableA within an interval 0ø t8øT. It is sufficient to
assume thatA may take a real value at eacht8, i.e., that the
sequence of valueswst8d is a continuous but not necessarily
differentiable real function of time. We will refer towst8d as
a path, or history, which, in the following, will replace the
discrete indexn in Eq. s1d. Just as in the above example, the
path taken by an isolated system cannot be known, but there
must be a substateuFsTu fwgdl ssquare brackets are used to
indicate the functional dependenced representing thesvirtuald
contribution the path makes to the Schrödinger stateuCsTdl
so that the functional

hfwg = kquFsTufwgdl s2d

yields the conditional probability amplitude to find the sys-
tem in a stateuql at t=T providedA had the valueswst8d at
0ø t8øT. As in Eq. s1d, a coherent sum over all available
paths must restoreuCsTdl,

uCsTdl = o
paths

uFsTufwgdl ; E DwuFsTufwgdl, s3d

where the symboleDw incorporates integrations over all
wst8d’s, including the end valuesws0d andwsTd ssee Appen-
dix Ad. The substatesuFst u fwgdl still need to be defined and,
for reasons that will become clear later, we do so with the
help of the functional differential equationf24g

i]tuFstufwgdl = HĤ − iÂ
d

dwst−dJuFstufwgdl, s4d

where Ĥ is the Hamiltonian of the isolated system and
uFst u fwgdl is subjected to the initial condition

uFst = 0ufwgdl = uC0ldfwg. s5d

In Eqs.s4d ands5d, uC0l;uCst=0dl is the initial state of the
system att=0, the subscript “2” sto be omitted in the fol-
lowingd indicates that the variational derivative is taken at
the time just preceding the current timet, anddfwg is thed

functional, such that for any functionalFfwg, the integral
eDw Ffwgdfwg=Ffw;0g ssee Appendix Ad. Summing Eqs.
s4d and s5d and over all pathsw and using the identity
eDw dFfwg /dwstd=0 fsee Eq.sA5d of Appendix Ag shows
that at anyt, the substatesuFstufwgdl add up touCstdl, as
prescribed by Eq.s3d. One should note that the indexfwg
belongs to the fixed sethwj of all continuous real functions
taking arbitrary values in the intervalf0,Tg, whereas the time
t in Eq. s4d may be less than, equal to, or greater thanT.
Equations4d describes, therefore, “spreading” of a system,
initially localized at the zero pathwst8d;0, across the func-
tional spacehwj, and, when integrated tot=T, yields the
required setuFsTu fwgdl. Keeping wst8d explicitly indepen-
dent of t helps simplify the use of Eq.s4d in subsequent
derivations. Equations4d formally resembles that for a von
Neumann meterf19g swith the meter’s momentum replaced
by the functional derivative overwd and we shall explore this
similarity further. The explicit form ofuFst u fwgdl can be ob-
tained by writing it as a Fourier integral,

uFstufwgdl =E Dl expSiE
0

T

lst8dwst8ddt8DuFstuflgdl.

s6d

Inserting Eq.s6d into Eq. s4d shows that the functional Fou-
rier transformuFst u flgdl satisfies the Schrödinger equation

in which a time-dependent termlstdÂ has been added to the

original HamiltonianĤ,

i]tuFstuflgdl = hĤ + lstdÂjuFstuflgdl, s7d

uFst = 0uflgdl = d̃uC0l s8d

whered̃ is the constant defined in Eq.sA8d. It can, therefore,

be formally written as expf−ie0
t sĤ+lst8dÂddt8guC0ld̃, so that

from Eq. s6d we have

uFstufwgdl , E Dl expSiE
0

T

lstdwstddtD
3expS− iE

0

T

fĤ + lst8dÂgutst8ddt8DuC0l,

s9d

whereutszd;1 for z, t and 0 otherwise. It is readily seen
that by a timet,T the operator term only affectst8ø t so
that only the paths such thatwst8d;0, t, t8,T may have
nonzero substatesuFst u fwgdl assigned to themfFig. 1sadg.
This suggests the following tentative interpretation for Eq.
s4d and the initial conditions5d. Consider a continuous array
of meters with pointer positionswst8d, 0, t8,T, such that
the meter with the positionwstd “fires” at the timet. Initially,
all the pointers are set to zero. Att,T some of the meters
have fired, “recording” a historywst8d, 0, t8, t, while those
with wst8d, t, t8,T, have not yet been enacted. Once the
elapsed time exceedsT, the amplitudes for all paths are fixed
and no longer subject to change witht. The analogy with a
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classical data recorder monitoring the value of some variable
A suggests labelings4d the “quantum recorder” equation.
Note, however, that while in the classical case a unique
record is produced as the time progresses, a “quantum re-
corder” s4d employs the complete sethwj of all virtual
records and assigns a time-dependentspossibly zerod sub-
state uFst u fwgdl to each path. Equations4d, which, to our
knowledge, has not appeared in the literature previously, pro-
vides the most detailed information about the possible past
values ofA and will be the basis of our analysis. Next we
show that the probability amplitudes for different measure-
ments ofA can be obtained by coherent summation of the
fine grained substatesuFst u fwgdl, subject to appropriate re-
strictions.

III. RESTRICTED PATH SUMS AND METERS

In the previous section we have produced a decomposi-
tion of the state of a quantum system into substates labeled
by the record of a variableA. It remains to demonstrate that
such decomposition is meaningful, i.e., that Eq.s2d and simi-
lar expressions relate to valid physical probabilities. Such a
justification is usually obtained by showing either that the
probabilities satisfy some formal criterion for a system in
isolation f6,7g, or that they describe the outcomes of a mea-
surement should the system be coupled to a suitable meter
f16g. We will follow the latter route and start by demonstrat-
ing that for tøT the weighted sum of the substates,

uFstulW dlbW ;E DwuFstufwgdlexpSio
j=1

M

l jE
0

T

b jst8dwst8ddt8D
s10d

where b jstd, j =1,2,… ,M, are some known functions of
time, satisfies a Schrödinger-like equationswe will omit the

subscriptbW d

i]tuFstulW dl

=HĤ + o
i=1

M

l jb jstdÂJuFstulW dl s11d

with the initial condition

uFst = 0ulW dl = uC0l. s12d

Equations11d is readily obtained if Eq.s4d is multiplied by
expfioi=1

M l je0
Tb jw dt8g, integrated overeDw, and the term

containing the variational derivatived /dwstd is integrated by
parts. Equations12d then follows upon inserting Eq.s5d into
Eq. s10d. Taking a further Fourier transform with respect to

lW slW fW;o j=1
M l j f jd,

uFstufWdl ; s2pd−ME
−`

`

expsilW fWduFstulW dldlW , s13d

yields the equation of motion foruFst u fWdl,

i]tuFstufWdl =HĤ − io
j=1

M

] f j
b jstdÂJuFstufWdl, s14d

uFst = 0ufWdl = uC0lp
j=1

M

dsf jd. s15d

It is readily seen that Eq.s14d describes a system governed

by the HamiltonianĤ which, in addition, interacts withM
external degrees of freedom playing the role of meters with
f j, j =1,2,… ,M. Each coupling of the von Neumann type

contains the product of the measured quantityÂ and the
meter’s momentum −i] f j

. The strength of the coupling is
determined by the known switching functionb jstd. Initially
the system and the meters are prepared in the product state
s15d and at the end of the measurement, att=T, the system is
described by the density operator

r̂ =E dfWuFstufWdlkFstufWdu. s16d

An accurate determination of the meters’ positionsf j at t
=T yields information about the system’s past. We shall refer
to such procedure as a measurement of the von Neumann
type. Precise nature of the information obtained in a von
Neumann–like measurement can be highlighted by inter-

changing the order of integration overDw andlW in Eqs.s10d
and s13d, which yields

uFstufWdl =E Dwp
j=1

M

dsFjfwg − f jduFstufwgdl s17d

with the functionalsFjfwg defined by

FIG. 1. sad A schematic diagram of a pathwst8d which contrib-
utes touFst u ffgdl at t,T ssolidd. Also shown by a dashed line is
the tube which contains the paths, contributing touCst u fwgdl, ob-
tained by Gaussian coarse graining with the widths. sbd An eigen-
path which contributes touFsTu fwgdl for a two-level systemsa1

=1,a2=2d.
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Fjfwg ; E
0

T

b jst8dwst8ddt8. s18d

Thus, uFst u fWdl is given by a path sum, restricted to those
paths, for which the functionalsFj, j =1,2,… ,M have the
valuesf j, and the set of pathshwj is divided into classeshwj fW,

hwj fW ; hw: Fjfwg = f j, j = 1,…,Mj. s19d

If a meter or meters are employed,hfj fW play the role of
alternative “routes” along which the system may evolve from
its initial state and a time-dependent probability amplitude
can be assigned to each of them. Individual paths cannot be
told apart within each class, and some of the detailed infor-

mation contained in the substatesuFstufWdl is lost through the
residual interferencessee Fig. 2d. It is a remarkable property
of the von Neumann interactions14d, which allows the mea-
surement process to be analyzed either in terms of the dy-
namical interaction with the pointer degreessd of freedom, or,
which is conceptually simpler, in terms of restricting paths
initially defined for an isolated system.

It is convenient to classify the most common of such mea-
surements according to the typessd of the switching functions
and the number of meters involved.

A von Neumann measurementfor which M =1, b1std
=dst− t0d, and which determines the instantaneous value of

an operatorÂ at somet= t0 f19g.
A finite-time measurement, M =1, bstd=const, which de-

termines the time average of an operatorÂ over the timeT.
Measurements of this type were first discussed inf20g and
extensively studied in connection with the tunneling time
problem f13–17g. The spectral measurementsf10g with
b jstd=s2/TdsinVt, j ù1, also fall into this category.

A continuous measurement, where M→`, b jstd,dst
− tjd. In this limit, a sequence of valuesf j, j =1,2,… ,M, is

replaced by a continuous functionfstd, fW→ fstd. Continuous
measurements, where the meters form a “measuring me-
dium,” are analyzed inf10–12g.

This list is not exhaustive, and one can envisage various
sequences and combinations of von Neumann, finite-time,
and continuous measurements.

IV. FINITE ACCURACY AND COARSE GRAINING

The previous section describes an ideal, i.e., infinitely ac-
curate, measurement in which the initial state of each pointer
is ansunnormalizabled d function. The initial state of a physi-
cal meter,Gsfd, must be a square integrablese.g., a Gauss-
iand wave packet,

E uGsfWdu2dfW , `, s20d

which inevitably makes the initial pointer positions uncer-
tain. Importantly, the effect of this additional uncertainty can
also be described in terms of the restricted path sums. We
note first that a solution of Eq.s7d can be multiplied by an

arbitrary functionalG̃flg. Taking the Fourier transform and
using the convolution propertysA11d shows that

uCstufwgdl ; E Dw8Gfw − w8guFstufw8gdl, s21d

whereGfwg is the Fourier transform ofG̃flg, is a solution of
Eq. s4d with the initial condition

uCst = 0ufwgdl =E Dw8Gfw − w8gdfw8guC0l = GfwguC0l.

s22d

Repeating the arguments of the previous section leading to
Eq. s14d shows that the restricted path sum

uCstufWdl ; E Dwp
j=1

M

dsFjfwg − f jduCstufwgdl s23d

with Fjfwg defined in Eq.s18d also satisfies the meter equa-
tion s14d and the initial condition

uCst = 0ufWdl =E Dwp
j=1

M

dsFifwg − f idGfwguC0l ; GsfWduC0l.

s24d

Thus, choosing the functionalG in Eq. s22d to be

Gfwg = GsF1fwg,F2fwg¯FMfwgd s25d

we can construct the wave functionuCst u fWdl describing a
particle interacting with the meterssd, initially prepared in
any desired product state,

FIG. 2. A system starts in a stateC0l which, without measure-
ments, would evolve intoCstdl. Cstdl can be decomposed into a
fine set of substatesuCfwgl, each labeled by a particular history
wst8d. A meter decomposesCstdl into less informative substates,
labeled by the valuef of functional Ffwg, which are obtained by
summing uCfwgl subject to the restrictionFfwg= f. For the two
meters shown, the substates in the shaded area are such that
F1fwg= f1 and F2fwg= f2, and add up coherently to the state
uFsf1· f2dl, whose norm determines the probability to register both
f1 and f2.
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uCst = 0ufWdl = GsfWduC0l. s26d

Recalling that the functionalsFj are linear inw, Fjfw+w8g
=Fjfwg+Fjfw8g, and using Eq.s23d we can rewriteuCst u fWdl
as a restricted path sum

uCstufWdl =E DfW8Gsf1 − F1fwg…, fM − FMfwgduFstufwgl

s27d

in which the weightG for a pathw is determined by the
initial state of the meters. Equations of this type have been
used to analyze spectral measurements of position inf10g
and in a more general context inf15g. Finally, writing Gsf1

−F1fwg ,…d=edfW8GsfW− fW8dp j=1
M dsf j −Fjfwgd and using Eq.

s18d yields

uCstufWdl =E Dw GsfW − fW8duFstufW8dl, s28d

which can be verified by direct substitution into Eq.s14d and
subsequent integration by parts. The physical meaning of Eq.
s28d is best illustrated by choosing the shape of a rectangular
window for a single meter,M =1,

Gsfd = 1 for uf u , D/2 and 0 otherwise.s29d

Taking the expectation value of the projection operator

P̂sq, fd ; ufluqlkqukf u, s30d

with the system-meter wave functions27d and s28d yields

zkquCsTufldz2 = UE
−D/2

D/2

dfE Dw dsf − FfwgdhfwgU2

s31d

where hfwg is the probability amplitude for the pathwst8d
defined in Eq.s2d. The left-hand side of Eq.s31d is the stan-
dard expression of the joint probability for finding the system
in a stateuql and the pointer atf. Its right-hand side is the
same probability expressed in terms of the amplitude as-
signed to the class of pathshwj f,D, for which the value of the
functionalFfwg lies betweenf −D /2 and f +D /2,

hwj f,D ; ø hwj f8, f − D/2 , f8 , f + D/2, s32d

whereø denotes the union of sets of paths. The probability
amplitude forhwj f,D is found by adding those for its indi-
vidual members. This assignment is justified, as the expres-
sion is readily linked to the frequencies observed if a meter is
employed. Thus, the initial uncertainty in the meter’s posi-
tion result in broadening the set of paths, to which we shall
refer as coarse grainingf25g, and gives an uncertainty in the
value of the functionalFfwg. Note that such an interpretation
is possible because both Eq.s4d and the von Neumann
Hamiltonians14d contain no explicit dependence onwstd or
the pointer positionf, respectively. We note further that giv-
ing Gsfd a Gaussian rather than a rectangular shape would
result in a restricted path sum with different weights for the
paths with different values ofF, and that for aGsfd consist-

ing of two disjointed “windows,” the distribution of the
meter’s reading would exhibit an interference pattern similar
to that observed in a double-slit experiment. If the final po-
sition of the meter is also determined with a finite accuracy
or, more generally, the meters are observed in some basis

fnsfWd, n=1,2,…, one should replace in Eq.s28d the weight
G by

GnsfWd ; E df8fn
*sfWdGsfW − fW8d. s33d

Finally, we recall the relation between the accuracy of a mea-
surement and the strength of the coupling between the mea-
sured system and the meterssd f17g. Indeed, the resolution of
the meters can be improved, by replacing the initial state

GsfWd by GsafWd, a.1. A change of variablesfW→afW shows
that the resulting finer set of substates satisfies Eq.s14d with

the old initial conditionuCst=0u fWdl=GsfWduC0l, but with the

coupling term increaseda-fold, iao j=1
M ] f j

b jstdÂ. The same

can be observed by writinguCsTu fWdl as

uCsTufWdl =E dlW GslW dexpH− iE
0

TFĤ + Âo
j=1

M

libistddtGJ
3uC0l, s34d

whereGslW d is the Fourier transform ofGsfWd, which shows
that the substate is obtained by evolving the initial state of
the system with the Hamiltonians involving all possible mag-

nitudes of the coupling. Among these, only thelW =0W term
corresponds to the unperturbed evolution, while the rest con-
tain the effects of the meter. As the coarse graining becomes

finer, GsfWd→GsafWd, the Fourier transform becomes broader,

GslW d→a−1GsalW /ad, and the number oflW Þ0W which con-

tribute to the formation of the substateuCsTu fWdl therefore
increases.

V. EIGENPATHS AND EXAMPLES

So far our approach has been general and relied neither on

the properties of the Hermitian operatorÂ in Eq. s4d nor on
the dimension of the Hilbert space of the measured system.
To complete our analysis, it remains to demonstrate that Eq.
s4d generates a nonzero substateuFst u fwgdl only for such
paths that at any given timet8 the value ofwst8d coincides

with one of the eigenvaluesai of the Â, which we will pres-
ently assume to be nondegenerate. The set of such eigen-
paths,haj, may coincide withhwj or form a smaller subset
embedded in the latter. Consider the time-discretized version
of Eq. s9d, whereby we slice the time intervalf0,Tg into N
subintervalse, so that

tj ; s j − 1de, zj ; zstjd, K ; inthminst,Td/ej,

where inthxj denotes the integer part ofx. Thus the operator
in the right-hand sidesRHSd of Eq. s9d takes the form
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expH− iE
0

t

fĤ + lst8dÂgdt8J = lim
N→`

p
j=1

K

expf− il jÂeg

3expf− iĤeg, s35d

where we have made use of the Trotter product formulaf2g
ssee also Appendix Bd to factorize the exponentials contain-

ing Ĥ andlÂ. Using the eigenstates ofÂ, uakl, to write

expf− il jÂeg = o
k

exps− il jakduaklkaku, s36d

and performing integrations overl j, j =1,2,… ,N−1 yields

uFstufwgdl = o
fag

dfw − utaguFtfagl, s37d

uFtfagl ; ÛtfaguC0l, s38d

where

Ûtfag ; lim
N→`

p
j=1

K

uakj
lkakj

uexps− iĤed, s39d

akj
→ast8d, and for an arbitrary functionalZ we have intro-

duced the notation

o
fag

Zfag ; lim
N→`

o
k1…kN

Zsak1
,ak2

,…,aNd. s40d

Therefore, a pathwst8d contributes to the state of the system
uCsTdl if, and only if, at any timet8ø t, wst8d=ak, in which
case the substate itself is the eigenstate corresponding to the
eigenvaluewstd. Note that we could have used Eqs.s37d and
s39d to define the decomposition of the system’s state and
then establish its relation to von Neumann–like measure-
ments, but chose instead an equivalent approach, based on
Eq. s4d. It is easy to check that in Eq.s37d each term in the
sum over the eigenpathsast8d satisfies Eq.s4d with the initial
condition s5d ssee Appendix Cd.

For t=T and utst8d;1, and inserting Eq.s37d into Eq.
s17d gives the expression of the measurement amplitude as a
restricted sum over eigenpaths,

uFsTufWl = o
fag

p
j=1

M

dsf j − FjfagduFTufagl, s41d

whereFjfag;e0
Tb jst8dast8ddt8. Integrating Eq.s37d over Dw

gives the path expansion of the propagator,

uCsTdl = o
fa8g

ÛTfa8guC0l, s42d

equivalent to the identity

o
fa8g

ÛTfa8g = exps− iĤTd. s43d

The nature of the summation overa8 depends on the spec-

trum of Â and next we consider two examples which illus-
trate the connection between Eq.s4d and some well-known
path summation techniques.

s1d The Feynman path integral. Let the system be a one-
dimensional particle of massm in a potentialVsxd and the

variable of interest its positionx, Â; x̂. The coordinate his-
tories generated by the equation

i]tuFstufwgdl = H− ]x
2/2m+ Vsxd − ix

d

dwstdJuFstufwgdl

s44d

are the celebrated Feynman pathsf1g. If the position operator
x̂=x has a continuous spectrum extending from −` to +`,
the set of pathshxstdj in Eq. s37d coincides withhwstdj in Eq.
s3d, the sumofag becomesedxj, and the path sumss37d and
s3d are essentially the same. Further, the standard derivation
showsssee, for example, Ref.f2gd

kxuÛTfxgux8l = lim
N→`

sm/2pedN/2 expsiSfxgd, s45d

whereSfxg=e0
Tfmẋ2/2−Vsxdgdt8 is the classical action, and

Eq. s42d becomes the familiar expression for the Feynman
propagatorf1g. Measurement amplitudes obtained by re-
stricting the Feynman path integrals43d have been often
studied in literaturessee, for instance Refs.f13–17,10gd.

s2d Path sum for a two-level system (qubit). Another ex-
ample is a two-level system in a two-dimensional Hilbert
space. A two-dimensional version of Eq.s4d has the form

i]tuFstufwgdl = Se1 V

V e2
DuFl − i

d

dwstd
S1 0

0 2
DuFl s46d

whereuFst u fwgdl is a two-component vector in the represen-
tation in which the “position operator,” given by the second
matrix on the right, is diagonal, and, without loss of gener-
ality, we have ascribed “coordinates” 1 and 2 to the first and
second states, respectively. Now the eigenpathsast8d in Eq.
s39d can take only the values 1 or 2 at any given time, which
they can change at anyt8 fFig. 1sbdg. Each such jump is
facilitated by the off-diagonal part of the Hamiltonian, pro-
portional toV. Rearranging in Eq.s43d the paths according to
the number of jumps and summing over all paths yields the
expansion of the evolution operator in powers ofV,

ÛsTd = 1 + o
n=1

`

s− idnE
0

T

dtnE
0

tn

dtn−1¯E
0

t2

dt1

3expf− iĤsT − tndgV expf− iĤstn − tn−1dV¯V

3expf− iĤt1g, s47d

which is the standard decomposition of the perturbation
theory f26g.

VI. COMMUTING OPERATORS AND FEYNMAN’S
FUNCTIONALS

Once a path decomposition has been obtained for an op-

eratorÂ with nondegenerate eigenvaluesak, the method can
be extended to also describe von Neumann–like measure-

ments of the quantities that commute withÂ. Such operators
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share withÂ its complete set of eigenstatesuajl, j =1,… ,n,
and can be written in the form

Â8 = FsÂd ; o
j=1

n

uajlFsajdkaju, s48d

where the eigenvaluesFsajd, j =1,2,…, may or may not be
all different. The fine grained decompositionuFFsAdfwgl for

the operatorFsÂd can then be written as

uFFsAdsT,fwgdl =E Dw8dfw − Fsw8dguFAsT,fwgdl. s49d

Indeed, repeating the derivation of the previous section for

FsÂd in place of Â yields Eq. s37d with uta replaced by
utFsad, which for t=T becomes Eq.s49d. If none of the

eigenvalues ofFsÂd, Fsajd, are degenerate, the two sets of
substates are identical, and there is a one-to-one correspon-
dence between the sets of eigenpaths, i.e., the same substate

corresponds to the eigenpathwst8d=ast8d for the operatorÂ

and the eigenpathw8st8d=F(ast8d) for the operatorFsÂd. If,
on the other hand, some of the eigenvalues are degenerate,
e.g.,Fsamd=Fsand, several pathsastd become indistinguish-
able and cannot be told apart even by a detailed measure-

ment of FsÂd, wstd;am and w8std;an being two obvious
examples. In the extreme caseFsa1d=Fsa2d=¯=Fsand
=F0, i.e.,FsÂd=F0=const, the set of eigenpaths collapses to
a single constant pathw=F0 and the solution of Eq.s14d
takes the form

uFF0sTufwgdl = dfw − F0guCsTdl. s50d

In this case, no meaningful decomposition of the
Schrödinger stateuCsTdl is obtained and no information
about the system may be gained.

For FsÂd, the measurement amplitude is still given by the
expression in the RHS of Eq.s31d, where the functionals
Fjfwg are no longer required to be linear in the path variable,
and are given by

Fjfag ; E
0

T

b jst8dF„ast8d…dt8. s51d

Thus, using a set of von Neumann–like meters one is able to
distinguish between the classes of eigenpaths

hwj fW =Ha: E
0

T

b jst8dF„ast8d…dt8 = f j, j = 1,2,…,MJ
s52d

where, as before,M is the number of meters employed and
b jstd are the known switching functions. The functionals
similar to s51d defined on the Feynman pathsast8d=xst8d
were introduced in Ref.f1g and extensively used thereafter.
With the help of Eqs.s51d and s45d one can apply the path
integral analysis to the measurement of any observableFsxd,
which commutes with the particle’s coordinatex. With the

particular choicebstd=T−1=const, Eq.s51d gives the time
average ofFsxd,

kFsxdlT ; T−1E
0

T

F(xstd)dt. s53d

The scalar productkxuFFsxdsTufdl yields the amplitude to ob-
serve, at a locationx, a particle with a definite average value
Fsxd. It follows from Eqs.s10d and s45d that the amplitudes
kxuFFsxdsTufdl can be found by solving the Schrödinger equa-
tion corresponding to the modified classical action

Slfxstdg = Sfxstdg + lE
0

T

Fsxddt

containing an extra potential −lFsxd and then taking the
Fourier transform with respect tol. The possibility of using
Eq. s53d as a starting point for formulating measurement
theory in the coordinate space has been studied in Refs.
f13–17g. The case of the mean coordinateFsxd=x was ana-
lyzed in detailf15g. ForFsxd=uVsxd fuVszd=1 for z insideV
and 0 otherwiseg, Eq. s53d yields the fraction of time a Feyn-
man path spends inside a spatial regionV. This expression
was used to define the quantum traversal time studied inf17g
and in the references therein. A similar approach was ex-
tended to two-level systemsf18g, in order to analyze the
amount of time a qubit spends in given quantum state. Fi-
nally, a brief discussion of the continuous measurements is
given in Appendix D.

VII. CONCLUSIONS AND DISCUSSION

In summary, any measurement of the von Neumann type
can be described as destruction of coherence between classes
of historiesspathsd defined for the measured variableA. Such
paths provide a decomposition of the state of an isolated
quantum system into a set of substates, each labeled by a
virtual sequencespathd of the values taken byA throughout a
time interval in the past. The substates contain the most de-
tailed information about the values ofA and can be used as
the building blocks for constructing probabilities for the out-
comes of a measurement. Such probabilities, given by the
norms of the coherent superpositions of the substates whose
paths share the required propertys2d, can be assigned di-
rectly to the corresponding sets of the system’s paths. The
properties of the paths, which can be ascertained in this way,
are the values of the functionals given by the integralss51d,
and include, as particular cases, the value ofA at a given
time and its time average. Although this approach most
readily applies to Feynman paths, it is equally valid for a
variety of variables describing quantum systems of an arbi-
trary dimensionality.

Analysis in terms of the paths restores, as much as pos-
sible, the logic implied in classical measurements; namely,
that a measurement should reveal certain properties pertain-
ing to the system in isolation. A classical von Neumann–like
measurement yields the value of the corresponding func-
tional on the unique classical path without perturbing the
motion of the systemf13g. Quantally, not just one but many
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paths are available, and an accurate quantum meter ensures
instead that the system is restricted to those that have the
measured properties. This inevitably perturbs the system’s
evolution, yet this perturbation results from and is synony-
mous with the destruction of coherence between the classes
of paths. Thus, while one defines virtual properties for an
isolated system, an external meter is required if these prop-
erties are to be observed.

It must be stressed that we have only established the
equivalence between the von Neumann–like measurement
amplitudes and the restricted path sums and that a further
generalization of the approach is far from trivial. For ex-
ample, the paths can be classified according to the timet at
which some value ofA is reached for the first timesthe first
passage timed f28g and the probabilities may formally be
constructed as discussed above. Yet to ensure that the given
value is reached for the first time the integrand in Eq.s51d
must contain the dependence on all times precedingt, so that
the functional is not of the type considered in this work. As a
result, no meter equation similar to Eq.s14d can be derived
for the first passage time and no obvious physical meaning
can be ascribed to probabilities obtained.

To conclude, we note that the path decomposition has
been constructed for a particular choice of the variableA.
The important question of whether such a decomposition can
be used to describe a measurement of variables which do not
commute withA will be discussed in our future work.
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APPENDIX A: THE FUNCTIONAL FOURIER
TRANSFORM

On a sethwstdj of all continuous, but not necessarily
smooth real functions defined on an interval 0ø tøT with
arbitrary boundary valuesws0d and wsTd, a functionalFfwg
is defined as the limitf1g

Ffwg = lim
N→`

FswW d sA1d

wherewW ;sw1,w2,… ,wN+1d, wi =w(esi −1d) ande;T/N.

Ifwg ; E
0

T

wstdlstddt = lim
N→`

o
i=1

N+1

wilie sA2d

wherel is some function of time, is defined as the limit of its
Riemann sum. The functional derivative is defined as

dFfwg/dwstd = lim
N→`

e−1 ] FswW d/]wm, m= t/e, sA3d

so that forIfwg in Eq. sA2d dIfwg /dwstd=lstd, as it should.
For the sum over the functionsw we have

E
hwj

Dw Ffwg ; lim
N→`

KsNdE
−`

`

dw1dw2¯dwN+1FswW d

sA4d

whereKsNd is some normalization constant. It is readily seen
that if limwstd→±`Ffwg=0, then

E Dw dFfwg/dwstd = 0. sA5d

Since the path sum will be applied to both sides of the ho-
mogeneous equations4d, the choice ofKsNd is arbitrary and
we put KsNd;1. With this choice, the functional Fourier
transform forFfwg is defined as

F̃flg ; lim
N→`

se/2pdN+1F̃selW d sA6d

for F̃slW d;eFswW dexps−ilW ·wW d andlW ·wW ;o j=1
N+1l jw j.

Thus,Ffwg can be written as a Fourier functional integral

Ffwg =E Dl F̃flgexpSiE
0

T

lstdwstddtD . sA7d

A particular choice

F̃flg ; d̃ = lim
N→`

se/2pdN+1 sA8d

yields thed functional required to define the solution of Eq.
s4d fdszd is the Diracd functiong

dfwg = lim
N→`

p
j=1

N+1

dsw jd sA9d

with the obvious property

E Dw Ffwgdfwg = Ffw ; 0g. sA10d

Finally, we will also require the convolution property

E Dl F̃flgG̃flgexpSiE
0

T

lstdwstddtD
= se/2pdN E Dw8Ffw − w8gGfwg, sA11d

which can be obtained by considering the time-discretized
Fourier transform.

APPENDIX B: LIE-TROTTER AND BAKER-CAMPBELL-
HAUSDORFF FORMULAS

The generalized Lie-Trotter formula readsf27g

lim
N→`

fF̂st/NdgN = expft]tF̂s0dg sB1d

whereF̂std is an operator function oft such that

F̂s0d = 1̂. sB2d

Choosing
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F̂std = expftÂgexpftB̂g

yields the Trotter product formula

lim
N→`

hexpft/NÂgexpft/NB̂gjN = expftsÂ + B̂dg. sB3d

The Baker-Campbell-Haussdorff identity states that for two

operatorsÂ and B̂, such that

†Â,fÂ,B̂g‡ = †B̂,fB̂,Âg‡ sB4d

where the square brackets denote the commutator,

expfÂ + B̂g = expfÂgexpfB̂gexph− fÂ,B̂g/2j. sB5d

APPENDIX C: THE EIGENPATH EXPANSION AS A
SOLUTION OF THE “RECORDER” EQUATION

In order to verify that the eigenpath expansions37d satis-
fies Eq.s4d, consider a more general form

uCstufwgdl = o
fag

Gfw − utaguFtfagl sC1d

whereGfwg is an arbitrary functional,utst8d is a function of
t8, which also depends on the timet, anduFtfagl is defined in
Eq. s38d. Then

]tuCstufwgdl = − o
fag
E

0

T dG

dwst8d
]tutst8dast8ddt8uFtfagl

+ o
fag

Gfw − utag]tuFtfagl. sC2d

Using Eq.s39d we have

]tuFtfagl = − iĤ uFtfagl, sC3d

and choosing

ut = utst8d, ]tut = dst − t8d sC4d

yields

]tuCstufwgdl = −
d

dwstdofag
Gfw − utagastduFtfagl

− iĤo
fag

Gfw − utaguFtfagl. sC5d

For Gfwg=dfwg, with the help of the relation

ÂuFtfagl = astduFtfagl, sC6d

Eq. sC5d reduces to Eq.s4d.

APPENDIX D: CONTINUOUS MEASUREMENTS AND
MENSKY’S FORMULA

Consider a special case of the transformations21d, with

Gfwg = expS− iE
0

T

gst8,wddt8D . sD1d

With the help of Eq.s37d we obtain

uCstufwgdl = o
fag

expf− igst8,w − utaddt8gÛtfaguC0l,

sD2d

where the last operator is given by the discretization

expf− igst8,w − utaddt8gÛtfag

= lim
N→`

p
j=1

N

uakj
lkakj

uexpf− iutstjdĤeg

3exph− igftj,w − utstjdakj
gej. sD3d

Applying the Trotter formulasB3d to recombine the two ex-
ponentials and summing over the eigenpaths yields a com-
pact expression foruCst u fwgdl:

uCstufwgdl = expH− iE
0

T

futĤ + gst8,w − utÂdgdt8JuC0l

sD4d

which for 0, t,T satisfies the “recorder” equations4d with
the initial condition Eq.s22d. It follows from Eq. sD4d that

uCstufwgdl = expS− iE
t

T

gst8,wddt8DuCwstdl sD5d

whereuCwstdl satisfies the effective Schrödinger equation

i]tuCwstdl = hĤ + gst,w − ÂdjuCwstdl, sD6d

uCws0dl = uC0l. sD7d

The problem of evaluating the restricted path sum for
uCsTu fwgdl in Eq. s21d reduces, therefore, to solving the
time-dependent Schrödinger equationsD6d with the time de-
pendence determined bywstd. EquationssD4d andsD6d were
first suggested by Menskyf10g for the case when the func-
tional Gfwg reaches its maximum value forwst8d;0 and
rapidly falls off asw deviates from zero. One such choice is

gswd = − iw2/s2 sD8d

which ensures that only the eigenpathsw8 in a tube of width
s aroundw contribute touCst u fwgdl in Eq. s21d fsee Fig.
1sadg, and the effective Schrödinger equation Eq.sD6d con-
tains a non-Hermitian imaginary term

− isw − Âd2/s2uC0l.

Application of Eqs.sD4d and sD6d to two-level systems
can be found inf29g.

One notes that Eq.sD4d for uCsTu fwgdl can, with the help
of Eq. sA1d, also be written as the limit
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uCsTufwgdl = lim
M→`

E p
j=1

M

dfj8expf− sw j − f jd2e/s2gE Dw8

3dS f j8 −E
0

T

dst8 − tjdw8st8ddt8DuFsTufw8gdl.

sD9d

Comparing Eq.sD9d with Eq. s14d shows that the second
integral insD9d is the fine grained amplitude for an array of
M von Neumann meters, each firing attj = je, 1ø j øM.
Upon integration overdf18 ,df28 ,… ,dfM8 , this amplitude is
coarse grained with a product of Gaussians whose widths
increase ass /e1/2 for e=T/M→0. Thus, this is a sequence
of very inaccurate “weak”f22g measurement, by a set of
meters weakly coupled to the system. Taking the limits
→0 in expressionsD8d yields the solutionuFWfwdl, which
satisfies the initial condition

uFWst = 0ufwgdl < dSE
0

T

w2st8ddt8DuC0l. sD10d

The conditionsD10d, which requires that the mean-square
deviation ofw from zero must vanish, is similar to Eq.s5d,
which needswst8d to vanish pointwise, and one can show
that eitheruFWst u fwgdl or uFsTu fwgdl can be used for calcu-
lating the finite-time measurement amplitudes17d. The set
uFWfwgl, which corresponds to scattering by the “measuring
medium,” was first suggested inf10g. EquationssD6d and
sD9d can be applied to various coarse graining and unitary
transformations. No similar formulas exist, in general, for
less informative finite-time measurements, which yield infor-
mation about certain global properties of the paths, e.g., the
value of e0

Tbst8dwst8ddt8, while precise values ofwst8d re-

main indeterminate. In that case,uCst u fWdl cannot be obtained
from uC0l by evolution with a generalized Hamiltonian, con-

taining fW as a parameter, and one should use Eq.s14d instead.
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