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We demonstrate how a general von Neumann—like measurement can be analyzed in terms of(pistiogies
constructed for the measured variale The Schrodinger state of a system in a Hilbert space of arbitrary
dimensionality is decomposed into a set of substates, each of which corresponds to a particular detailed history
of the system. The coherence between the substates may then be destroyed (sy tmetelegree determined
by the nature and the accuracy of the measurefgenhich may be of von Neumann, finite-time, or continu-
ous type. The cases of a particle described by Feynman paths in the coordinate space and a qubit in a
two-dimensional Hilbert space are studied in some detail.
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I. INTRODUCTION ventional meter-based analysis of von Neumann-like mea-

Path integrals and, more generally, the path summatiogurements in a H_|Ibert space of arbltra_ry dimension. Some
techniqueq 1-3] have found broad application in quantum WOFk on the relation between_ the restricted Feynman pa_th
mechanics. One advantage of such techniques is that théjtegral and von Neumann-like meters can be found in
reduce the task of calculating quantum-mechanical amplit13,14. As we aim to justify the previous use of the path
tudes to straightforward summation over certain subsets dgfummation approach, as well as to expose its limitations, our
particle histories. It is tempting to use the path integral as alevelopment will be largely formal, and for detailed illustra-
starting point for the analysis of quantum measurements. Ations of the method the reader is referred to our earlier work
analysis, based exclusively on devising a meter or a measurgt5,17,18. We also note that alternative approaches to as-
ment model is usually incomplete, as it provides only a lim-signing quantum probabilities, such as the one based on con-
ited theoretical insight into the nature of the measured quarsistent histories(CH) [23], are beyond the scope of the
tity [4,5]. Possessing the probability amplitudes for apresent analysis, although some discussion of the CH ap-
complete set of the system’s histories, allows one to Conproach was given ||f|16] The rest of the paper is organized
struct the amplitude for a particular property simply by add-as follows. In Sec. Il we introduce a functional differential
ing up amplitudes for those histories which share such aqguation to generate a decomposition of the Schrédinger

property. Yet imposing formal restrictions on quantum histo-gtate of a system corresponding the most detailed set of his-
ries, such as Feynman patf&7], has the disadvantage of yqyieg (pathg for a particular variabléd. In Sec. Il we es-

leaving open the question of how, if at all, the obtained proby, ik the Jink between the paths and the measurement am-
abilities relate to the observable quantities. It is advanta

geous, therefore, to analyze the case where the two a litudes for a meter, or meters, employed to meagurén

proaches are complementary, and the probabilities assignerclli (c:).r I\cfr;vti ds.r;]?;vtﬁgwaftlglge I[nerfgtqct)'r?g Ofrgh;d??rt]eé;:nvbee
directly to the histories are automatically those one would P ; P u : PP ' VW

measure with a suitable measuring device. One such examp?g'ow tbat only the paths taking values among the eigenval-

is measurements of von Neumann type. Historically, the pathies ofA contribute to the fine grained amplitude introduced
integral approach to measurements was pioneerd®,dj in Sec. Il, and VI extends the approach to all quantities that
and its later applications relevant to present work can beommute withA. Section VII contains our conclusions.
found in[8-18]. There are different types of quantum mea-

surement to consider: instantaneous von Neumann measure-

ments[19_], most _commonly u_sgad i'n applications such as Il. DECOMPOSITION OF THE
quantum-information theory, finite-time measuremdr2g] SCHRODINGER STATE

studied in[13-17 in connection with the tunneling time _ _ _

problem, and continuous measuremeft§—13, where a We will follow Ref. [16] in relating a general quantum

record of the particle’s evolution is produced by a “measurmeasurement to a decomposition of the current state of the
ing medium.” In addition, measurements of the same typ&ystem|¥(1)) into a set of(generally, nonorthogonakub-
may differ in accuracy, depending on the strength of interacstates®[n]), where the index refers to a particular history.
tion between the system and a meter or an environment.his can be illustrated by a simple example, equivalent to the
Some peculiar properties of inaccurate “weak” measureusual two-slit experiment. Let a wave packdty) be split
ments, proposed ifR21], are discussed if22]. (e.g., by means of a beam splifténto two parts|®[n]), n

The purpose of this paper is to establish general equive=1, 2, which thereafter travel along two different routes. At a
lence between the path summation formalism and the corater timet, the parts of the wave function are brought to-
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gether in the same spatial region, so that the state of thnctional, such that for any function&[¢], the integral

system is a sum of two overlapping componems 1, 2) /Do Flo]d ¢]=F[¢=0] (see Appendix A Summing Egs.
(4) and (5) and over all pathsp and using the identity
W) = % [ (tn)), (D) Dy sF[¢]/ 56(t)=0 [see Eq.(A5) of Appendix Al shows

that at anyt, the substate$P(t|[[¢])) add up to| ¥ (1)), as
each corresponding to a particular history. Two cases mugirescribed by Eq(3). One should note that the indéx]
then be considered separately. For an isolated system intilongs to the fixed sdip} of all continuous real functions
pure statgW(t)), the two routes are interfering alternatives, taking arbitrary values in the intervgd, T], whereas the time
no probabilities can be assigned, and one can only use Eg.in Eq. (4) may be less than, equal to, or greater tfan
(1) to see how the components interfere to produeg)). If,  Equation(4) describes, therefore, “spreading” of a system,
on the other hand, the two alternatives have been made efitially localized at the zero path(t’) =0, across the func-
clusive, e.g., by reversing the direction of the particle’s spintional space{¢}, and, when integrated to=T, yields the
when traveling along one of the routes, one finds the systerfequired setf®(T|[¢])). Keeping ¢(t’) explicitly indepen-
(after tracing out the spin variablén a mixed state and is gent of t helps simplify the use of Eq) in subsequent
able to assign probabilities for taking a particular path. Ingerivations. Equatiori4) formally resembles that for a von
either case it is Eq(1) that contains all available information Neumann metef19] (with the meter’'s momentum replaced
about the particle’s past. by the functional derivative oves) and we shall explore this
The same reasoning applies to a more general cas@ Letsimilarity further. The explicit form ofd(t|[¢])) can be ob-
be the operator representing some variablef a quantum tained by writing it as a Fourier integral,
system, which at the time=T is in a state W (T)). We ask T
next what, if anything, can be said about the vai(€) of |q)(t|[‘°])>:J DA exp(if )\(t')(,o(t')dt’>|<b(t[)\])>.
the variableA within an interval Gst’ <T. It is sufficient to 0
assume thaf may take a real value at eath i.e., that the 6)
sequence of valueg(t’) is a continuous but not necessarily
differentiable real function of time. We will refer tp(t’) as  Inserting Eq.(6) into Eq. (4) shows that the functional Fou-
a path, or history, which, in the following, will replace the rier transform|®(t|[\])) satisfies the Schrédinger equation
dist%r(teti indt?)n in qu (tl)dJUSttas in the ?bt;)Vi examptle:[ me in which a time-dependent terk(t)A has been added to the
ath taken by an isolated system cannot be known, but there. . T,
Pnust be a szbstad@(ﬂ[q;]))g (square brackets are used to original HamiltonianH,
indicate the functional dependencepresenting thévirtual) : —p A
contribution the path makes to the Schrodinger stdte)) APEDD) = {H+ MOAHDEAD), 0
so that the functional

®(t=0[[A]) = oW 8
el= (A TileD) @ =0 = oo ®

yields the conditional probability amplitude to find the sys- WNeredis the constant defined in E(A8). It can, therefore,

tem in a statdq) att=T providedA had the values(t') at  be formally written as expri [o(H+\(t")A)dt']| W) 8, so that
0<t'<T. As in Eq. (1), a coherent sum over all available from Eg.(6) we have
paths must restorgV(T)),

;
|<I>(t|[so])>~fD>\ exp(if A(t)<p(t)dt)
w(TM)=> |<I>(T|[<p])>5fD<P|<I>(T|[<p])>, 3) 0

paths T
where the symbolfD¢ incorporates integrations over all Xexp(—lfo [H +)‘(t’)A]0t(t,)dt,>|qf0>'
¢(t’)’s, including the end valueg(0) and ¢(T) (see Appen-
dix A). The substateb(t|[¢])) still need to be defined and, 9)
for reasons that will become clear later, we do so with theyhere 6,(z)=1 for z<t and 0 otherwise. It is readily seen
help of the functional differential equatid24] that by a timet<T the operator term only affects<t so
~ .S that only the paths such thai(t’)=0, t<t’<T may have
i5t|q’(t|[¢])>={H —iA%}@(ﬂ[@])), (4)  nonzero substatelb(t|[¢])) assigned to thenfiFig. 1(a)].

A This suggests the following tentative interpretation for Eq.
where H is the Hamiltonian of the isolated system and (4) and the initial conditior(5). Consider a continuous array

|®(t|[¢])) is subjected to the initial condition of meters with pointer positiong(t’), 0<t’ <T, such that
_ _ the meter with the positiop(t) “fires” at the timet. Initially,
[(t=0lle]) = Vo) e]. 5) all the pointers are set to zero. &£ T some of the meters

In Egs.(4) and(5), |[Wo)=|W(t=0)) is the initial state of the have fired, “recording” a history(t’), 0<t" <t, while those
system att=0, the subscript+” (to be omitted in the fol- Wwith ¢(t"), t<t’<T, have not yet been enacted. Once the
lowing) indicates that the variational derivative is taken atelapsed time exceeds the amplitudes for all paths are fixed
the time just preceding the current timeand § ¢] is the§  and no longer subject to change withThe analogy with a
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classical data recorder monitoring the value of some variable o
A suggests labeling4) the “quantum recorder” equation.

Note, however, that while in the classical case a unique

record is produced as the time progresses, a “quantum re-
corder” (4) employs the complete sdip} of all virtual

records and assigns a time-dependgassibly zerp sub-

state |®(t|[¢])) to each path. Equatiofd), which, to our
knowledge, has not appeared in the literature previously, pro-

vides the most detailed information about the possible past
values ofA and will be the basis of our analysis. Next we

show that the probability amplitudes for different measure- aq
ments of A can be obtained by coherent summation of the
fine grained substatd®(t|[¢])), subject to appropriate re-
strictions.

Ill. RESTRICTED PATH SUMS AND METERS

In the previous section we have produced a decomposi-

tion of the state of a quantum system into substates labeled T
by the record of a variabl@. It remains to demonstrate that
such decomposition is meaningful, i.e., that E).and simi- FIG. 1. (a) A schematic diagram of a pat(t’) which contrib-

lar expressions relate to valid physical probabilities. Such ates to|d(t|[4])) att<T (solid). Also shown by a dashed line is
justification is usually obtained by showing either that thethe tube which contains the paths, contributing¥dt|[¢])), ob-
probabilities satisfy some formal criterion for a system intained by Gaussian coarse graining with the widtt{b) An eigen-
isolation[6,7], or that they describe the outcomes of a mea-path which contributes t¢®(T|[¢])) for a two-level system(a,
surement should the system be coupled to a suitable meten ,a,=2).
[16]. We will follow the latter route and start by demonstrat-

ing that fort=<T the weighted sum of the substates,

M
. Moer [@(t=0lf) = [woll a(). (15)
Rt = f Deld(tLe])exp| iZ N f ﬁj(t’)q:(t’)dt’) =
j=1 0

(10) It is readily seen that Eq14) describes a system governed
] ) by the HamiltonianH which, in addition, interacts withvi
where g;(t), j=1,2,...,M, are some known functions of external degrees of freedom playing the role of meters with
time, satisfies a Schrodinger-like equati@ve will omit the f,, j=1,2,...,M. Each coupling of the von Neumann type
subscriptg) contains the product of the measured quanétyand the
'(9|(I>(t|):)) meter's momentum iﬁfj. The strength of the coupling is
1 determined by the known switching functiggy(t). Initially
.o - . the system and the meters are prepared in the product state
={H+ E \iBi(DA [|D(t[N)) (11) (15 and at the end of the measurement=f, the system is
=1 described by the density operator
with the initial condition

|D(t=0]\)) =|Wo). (12 p= f df|D(t|f)}(D(H]f)). (16)

Equation(11) is readily obtained if Eq(4) is multiplied by

exdiSM N [§B;¢ dt'], integrated over/De, and the term  An accurate determination of the meters’ positidpsat t
containing the variational derivativé/ d¢(t) is integrated by =T yields information about the system’s past. We shall refer
parts. Equatior{12) then follows upon inserting Eq5) into  to such procedure as a measurement of the von Neumann
Eq. (10). Taking a further Fourier transform with respect to type. Precise nature of the information obtained in a von
AAf=3M ), Neumann-like measurement can be highlighted by inter-
- changing the order of integration over andX in Egs.(10)

|®(1|f)) = (2m)™ J explinf)|@EN))dx, (13  and(13), which yields

N M
yields the equation of motion fg(t|f)), |D(t]f)) :f Dell 8F el - f)|@(t[e]) (17)
j=1

M
gDy =1 H-iX g BOA D),  (14)
e = AOA l2 with the functionalsF [ ¢] defined by
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[P(t)> A continuous measuremenwhere M — o, g;(t) ~ 4t
d> free evolution :> —t;). In this limit, a sequence of valuds, j=1,2,...,M, is
/ " replaced by a continuous functidit), f—>f(t). Continuous
A | measurements, where the meters form a “measuring me-
¥y > 1P fp)> dium,” are analyzed ifil10-12.
; This list is not exhaustive, and one can envisage various
\ ?E[(p]zﬂ éy sequences and combinations of von Neumann, finite-time,

and continuous measurements.

e )
E\Ez[‘P]=f2§ %

IV. FINITE ACCURACY AND COARSE GRAINING

d>unfolding |
A
The previous section describes an ideal, i.e., infinitely ac-
curate, measurement in which the initial state of each pointer
is an(unnormalizablg & function. The initial state of a physi-
FIG. 2. A system starts in a sta)) which, without measure-  cal meter,G(f), must be a square integralie.g., a Gauss-
ments, would evolve intoP(t)). W(t)) can be decomposed into a ian) wave packet,
fine set of substatelP[¢]), each labeled by a particular history
t"). A meter decompose¥(t)) into less informative substates, 25,2
I(g(be)led by the valud (F))f funct|o>nal F[¢], which are obtained by f |G(f)|2df <%, (20
summing [¥[¢]) subject to the restrictior[¢]=f. For the two
meters shown, the substates in the shaded area are such thghich inevitably makes the initial pointer positions uncer-
Filel=f; and Fjl¢]=f, and add up coherently to the state tain. Importantly, the effect of this additional uncertainty can
|®(f; ), whose norm determines the probability to register botha|so be described in terms of the restricted path sums. We
f1 andf,. note first that a solution of E¢7) can be multiplied by an

arbitrary functionalé[h]. Taking the Fourier transform and
using the convolution propert§A11) shows that

.
Fj[(P]EfO Bi(t)e(t")dt’. (18)
|‘I’(t|[€°])>5fD<P'G[<P-<p’]|q>(tl[¢’])>, (21)

Thus, |<I>(t|1?)> is given by a path sum, restricted to those
paths, for which the functionalg;, j=1,2,...,M have the _
valuesf;, and the set of paths} is divided into classefp};, ~ whereG[¢] is the Fourier transform aB[\], is a solution of

) ) Eqg. (4) with the initial condition
{i={e Flel=f, j=1..M}. @9

If a meter or meters are employeftp}; play the role of W(t:O'[(P])):f De'Glo— ¢’ 18¢ T1Wo) = Gle]|Wo).
alternative “routes” along which the system may evolve from

its initial state and a time-dependent probability amplitude (22)
can be assigned to each of them. Individual paths cannot be
told apart within each class, and some of the detailed inforRepeating the arguments of the previous section leading to

mation contained in the substatds(t|f)) is lost through the ~ Ed- (14) shows that the restricted path sum
residual interferencésee Fig. 2 It is a remarkable property M
of the von Neumann interactiogii4), which allows the mea- A\ s
surement process to be analyzed either in terms of the dy- [wh) = f D"DH AFilel fJ)W(ﬂ["D]» 23
namical interaction with the pointer deg(seof freedom, or,
which is conceptually simpler, in terms of restricting pathswith F;[¢] defined in Eq(18) also satisfies the meter equa-
initially defined for an isolated system. tion (14) and the initial condition
It is convenient to classify the most common of such mea-

surements according to the typeof the switching functions -

and the number of meters involved. W(t=0f))= f D@H S(File] - F)Gle][ Vo) = G(F)[ Vo).
A von Neumann measuremefar which M=1, B(t)

=8(t-ty), and which determines the instantaneous value of (24

an operatoA at somet=t; [19].
A finite-time measurementl=1, B(t)=const, which de-

termines the time average of an operatoover the timeT. Gle] =G(File],Fole] - -Fulel) (25
Measurements of this type were first discussed2® and

extensively studied in connection with the tunneling timewe can construct the wave functldﬂf(t|f)> describing a
problem [13-17. The spectral measuremenf40] with particle interacting with the mete, initially prepared in
Bi()=(2/T)sin(t, j=1, also fall into this category. any desired product state,

Thus, choosing the function& in Eqg. (22) to be
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[W(t=0[f)) = G(F) [ Wo). (26)
Recalling that the functionalB; are linear ing, Fi[¢+¢']

=Fj[¢]+F;[¢'], and using Eq(23) we can rewritd\lf(th?))
as a restricted path sum

W) = f DF'G(f, = Fil ¢ fys ~ Ful @) [0t 0]

(27)

in which the weightG for a path¢ is determined by the

PHYSICAL REVIEW A 71, 042101(2005

ing of two disjointed “windows,” the distribution of the
meter’s reading would exhibit an interference pattern similar
to that observed in a double-slit experiment. If the final po-
sition of the meter is also determined with a finite accuracy
or, more generally, the meters are observed in some basis

¢n(F), n=1,2,..., one should replace in E28) the weight
G by

G,(f) = f df g (HG(f = 1). (33)

initial state of the meters. Equations of this type have beerFinally, we recall the relation between the accuracy of a mea-

used to analyze spectral measurements of positiofLGh
and in a more general context [it5]. Finally, writing G(f;

—Fl[c,o],...):fdf’G(f—F’)Hj“ilé(fj—Fj[go]) and using Eq.

(18) yields
Wt f) = f De G(f - f)|@({f"), (28)

which can be verified by direct substitution into Efi4) and

subsequent integration by parts. The physical meaning of E
(28) is best illustrated by choosing the shape of a rectangular

window for a single meteii=1,
G(f)=1 for |f|<A/2 and O otherwise.(29)

Taking the expectation value of the projection operator

P(a.f) = [)la)al], (30)
with the system-meter wave functig@7) and (28) yields

Al2 2

Kalw(TIf)I?=

dff Do o(f - Fle]) 7l ¢]

-A/2
(3D
where 7] ¢] is the probability amplitude for the path(t’)

surement and the strength of the coupling between the mea-
sured system and the met®r{17]. Indeed, the resolution of
the meters can be improved, by replacing the initial state

G(f) by G(aF), a>1. A change of variable§— af shows
that the resulting finer set of substates satisfies(E4). with

the old initial condition|W(t=0|f)y=G(f)|W,), but with the
coupling term increased-fold, ian"ilaijj(t)A. The same
can be observed by WritianI(T|f)> as

g.
T M
[ (T|f)) = J dx G(N)exp —i f [ﬁ +A>, )\iﬁi(t)dt]
0 =1

X|[¥o), (34)

whereG(f) is the Fourier transform oG(f), which shows
that the substate is obtained by evolving the initial state of
the system with the Hamiltonians involving all possible mag-

nitudes of the coupling. Among these, only the 0 term
corresponds to the unperturbed evolution, while the rest con-
tain the effects of the meter. As the coarse graining becomes

finer, G(f)—>G(aF), the Fourier transform becomes broader,
G(\)— a 'G(aN/ @), and the number ok #0 which con-

defined in Eq(2). The left-hand side of Eq31) is the stan- tribute to the formation of the substal#(T|f)) therefore
dard expression of the joint probability for finding the systemincreases.
in a state|q) and the pointer af. Its right-hand side is the

same probability expressed in terms of the amplitude as-

signed to the class of patkg} 5, for which the value of the

functional F[ ¢] lies betweerf—A/2 andf+A/2,
_ _ / the properties of the Hermitian operatdrin Eq. (4) nor on

leha = Utelr, T-AZ<T <T+A%2, the dimension of the Hilbert space of the measured system.
whereU denotes the union of sets of paths. The probabilityTo complete our analysis, it remains to demonstrate that Eq.
amplitude for{e};, is found by adding those for its indi- (4) generates a nonzero substat|[¢])) only for such
vidual members. This assignment is justified, as the expregpaths that at any given timg the value ofe(t’) coincides
sion is readily linked to the frequencies observed if a meter isyith one of the eigenvalues of the A, which we will pres-
employed. Thus, the initial uncertainty in the meter’s posi-enﬂy assume to be nondegenerate. The set of such eigen-
tion result in broadening the set of paths, to which we shalpaths {a}, may coincide with{¢} or form a smaller subset

refer as coarse grainirf@5], and gives an uncertainty in the empedded in the latter. Consider the time-discretized version
value of the functionaF[ ¢]. Note that such an interpretation ¢ Eq. (9), whereby we slice the time interviD,T] into N
is possible because both E¢) and the von Neumann ¢ pintervalse. so that

Hamiltonian(14) contain no explicit dependence aift) or

the pointer positiorf, respectively. We note further that giv-
ing G(f) a Gaussian rather than a rectangular shape would
result in a restricted path sum with different weights for thewhere in{x} denotes the integer part &af Thus the operator
paths with different values d¥, and that for aG(f) consist-  in the right-hand sidéRHS) of Eq. (9) takes the form

V. EIGENPATHS AND EXAMPLES

So far our approach has been general and relied neither on
(32

tl = (_] - 1)6, = Z(tJ), K= |nt{m|n(t,T)/E},

042101-5
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t K
expy — if [H+\(t)AldY ¢ = lim [T exd - i)jAe]
0 N~>ooj:1

xexp-iHe], (35)

where we have made use of the Trotter product fornpg]a

(see also Appendix Bto factorize the exponentials contain-

ing H and\A. Using the eigenstates & |ay), to write
exid-iNAel = 2 expl-iNadla@l,  (36)
k

and performing integrations over, j=1,2,...,N-1 yields

|D(t[¢]) :g o - galldfal), (37)
[®[a]) = Ufal|¥y), (38)
where
-~ K ~
Ufa] = lim [ [a Xax[exp(-iHe), (39

I
N—oj<q

akj—>a(t’), and for an arbitrary functional we have intro-
duced the notation

> Z[a]= lim > Z(ay 8y, - an) -

[a] N—k, . ky

(40)

Therefore, a patlp(t’) contributes to the state of the system

|w(T)) if, and only if, at any time’ <t, ¢(t')=a,, in which

PHYSICAL REVIEW A 71, 042101(2009

(1) The Feynman path integralet the system be a one-
dimensional particle of mas®s in a potentialV(x) and the

variable of interest its positior, A=X. The coordinate his-
tories generated by the equation

io|®(t[e])) = {— F2m+V(x) - ixi} |D(t[e]))
dp(t)

(44)

are the celebrated Feynman pdthk If the position operator
X=X has a continuous spectrum extending from to +o,
the set of pathgx(t)} in Eq. (37) coincides with{¢(t)} in Eq.
(3), the sum=,; becomes/dx;, and the path sum&7) and
(3) are essentially the same. Further, the standard derivation
shows(see, for example, Ref2])
KULXIX) = lim (m2meV2 expiS[x]),  (45)
N—oo

WhereS[x]=f$[m'x2/2—V(x)]dt’ is the classical action, and
Eq. (42) becomes the familiar expression for the Feynman
propagator[1]. Measurement amplitudes obtained by re-
stricting the Feynman path integréd3) have been often
studied in literaturgsee, for instance Ref§13-17,10).

(2) Path sum for a two-level system (qubi)nother ex-
ample is a two-level system in a two-dimensional Hilbert
space. A two-dimensional version of E@) has the form

ifotled)=(2 ¥ Jloy-i—2(* 2oy (e
V e Sp(t)\0 2

case the substate itself is the eigenstate corresponding to thdere|d(t|[¢])) is a two-component vector in the represen-

eigenvaluep(t). Note that we could have used E¢37) and

tation in which the “position operator,” given by the second

(39 to define the decomposition of the system’s state andnatrix on the right, is diagonal, and, without loss of gener-
then establish its relation to von Neumann-like measureality, we have ascrlbed.“coordlnates” 1 {:md 2to th_e first and
ments, but chose instead an equivalent approach, based eacond states, respectively. Now the eigenpath’s in Eq.

Eq. (4). It is easy to check that in Eq37) each term in the

sum over the eigenpatlagt’) satisfies Eq(4) with the initial
condition(5) (see Appendix €
For t=T and 6,(t')=1, and inserting Eq(37) into Eq.

(39) can take only the values 1 or 2 at any given time, which
they can change at any [Fig. 1(b)]. Each such jump is
facilitated by the off-diagonal part of the Hamiltonian, pro-
portional toV. Rearranging in Eq43) the paths according to

(17) gives the expression of the measurement amplitude astie number of jumps and summing over all paths yields the

restricted sum over eigenpaths,

M
o(Tlfy =3 TT a(f; - F;[a])|®/[a), (41)

[a] j=1

WhereFj[a]Efgﬁj(t’)a(t’)dt’. Integrating Eq(37) overDeg
gives the path expansion of the propagator,

[w(M) = 3 Ua'] W), (42)
[a']
equivalent to the identity
> U [a']=exg—iHT). (43)

[a']

The nature of the summation ovat depends on the spec-

expansion of the evolution operator in powers\pf
. *© T ty ty
UMms=1+2, (- i)“f dtnf dtn_l---f dt,
n=1 0 0 0
xXexd - iH(T - t) ]V exd- iH (th—th-pV--V
xexp- iHt,], (47)
which is the standard decomposition of the perturbation
theory[26].
VI. COMMUTING OPERATORS AND FEYNMAN'S
FUNCTIONALS

Once a path decomposition has been obtained for an op-

trum of A and next we consider two examples which illus- eratorA with nondegenerate eigenvalugs the method can

trate the connection between Edg) and some well-known

path summation techniques.

be extended to also describe von Neumann-like measure-
ments of the quantities that commute wihSuch operators
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share withA its complete set of eigenstatis), j=1,...,n,  Particular choiceB(t)=T*=const, Eq.(51) gives the time

and can be written in the form average ofF(x),
n T
A= FA) = 3 [a)Fa)ay, (48) (Fyr=T7" fo Fx(B)dt. (53)
=1

The scalar produdix|®”™(T]f)) yields the amplitude to ob-
serve, at a locatior, a particle with a definite average value
F(x). It follows from Eqgs.(10) and (45) that the amplitudes
(X|®T™W(T|f)) can be found by solving the Schrédinger equa-
tion corresponding to the modified classical action

where the eigenvalueg(a;), j=1,2,..., may or may not be
all different. The fine grained decompositigh™*[¢]) for

the operatoﬂ-"(A) can then be written as

DTN [¢]) = f D¢’ ¢~ Fe)|OAT[e]). (49) )
S01= 0]+ | A
0

Indeed, repeating the derivation of the previous section for
F(A) in place of A yields Eq.(37) with 6@ replaced by containing an extra potentialA\#(x) and then taking the
6.7(@), which for t=T becomes Eq(49). If none of the  Fourier transform with respect to. The possibility of using
eigenvalues ofF(A), F(a;), are degenerate, the two sets of EqQ. (53)_ as a startir_wg point for formulating measurement
substates are identical, and there is a one-to-one correspdfieory in the coordinate space has been studied in Refs.
dence between the sets of eigenpaths, i.e., the same substgk8-17. The case of the mean coordinafex) =x was ana-
corresponds to the eigenpatiit’)=a(t’) for the operator lyzed in deta|_l[15]. For]—'(x_):eﬂ(x) [09(2)_:1 for_z inside(}

and 0 otherwisg Eq. (53) yields the fraction of time a Feyn-
man path spends inside a spatial reg{idnThis expression

R alfas used to define the guantum traversal time studi¢tizh
€.9., F(am)=F(ay), several patha(t) become indistinguish- and in the references therein. A similar approach was ex-

able and cgnnot be told apart even by a detailed measurgspqed to two-level systemd 8], in order to analyze the
ment of 7(A), ¢(t)=a, and ¢'(t)=a, being two obvious amount of time a qubit spends in given quantum state. Fi-
examples. In the extreme casE(a;))=F(ay))='--=F(a,  nally, a brief discussion of the continuous measurements is

=F,, i.e., F(A)=F,=const, the set of eigenpaths collapses todiven in Appendix D.
a single constant patlb=7, and the solution of Eq(14)
takes the form VIl. CONCLUSIONS AND DISCUSSION
| @7o(TI[¢])) = ol = Fol [ W(T)). (50) In summary, any measurement of the von Neumann type

can be described as destruction of coherence between classes
of histories(pathg defined for the measured varialfleSuch
paths provide a decomposition of the state of an isolated

~ , o guantum system into a set of substates, each labeled by a
For F(A), the measurement amplitude is still given by the irt 5| sequencépath of the values taken bi throughout a
expression in the RHS of Ed31), where the functionals  {ime interval in the past. The substates contain the most de-
File] are no longer required to be linear in the path variableyjled information about the values &fand can be used as

In this case, no meaningful decomposition of the
Schrodinger statéW(T)) is obtained and no information
about the system may be gained.

and are given by the building blocks for constructing probabilities for the out-
T comes of a measurement. Such probabilities, given by the
Filal= f B(t)F(a(t'))dt'. (51) norms of the coherent superpositions of the substates whose
0 paths share the required propef8), can be assigned di-

) ) ) rectly to the corresponding sets of the system’s paths. The
Thus, using a set of von Neumann-like meters one is able {§;,herties of the paths, which can be ascertained in this way,
distinguish between the classes of eigenpaths are the values of the functionals given by the integ(&al,
T and include, as particular cases, the valueAcdt a given
{o}i= a:f Bt F@t)dt' =1, j=1,2,...M time and its time average. Although this approach most
0 readily applies to Feynman paths, it is equally valid for a
(52) variety of variables describing quantum systems of an arbi-
trary dimensionality.
where, as beforeM is the number of meters employed and  Analysis in terms of the paths restores, as much as pos-
B;(t) are the known switching functions. The functionals sible, the logic implied in classical measurements; namely,
similar to (51) defined on the Feynman patlagt’) =x(t") that a measurement should reveal certain properties pertain-
were introduced in Ref.1] and extensively used thereafter. ing to the system in isolation. A classical von Neumann-like
With the help of Eqs(51) and(45) one can apply the path measurement yields the value of the corresponding func-
integral analysis to the measurement of any observabtg  tional on the unique classical path without perturbing the
which commutes with the particle’s coordinate With the  maotion of the systemi13]. Quantally, not just one but many
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instead that the system is restricted to those that have the Do Fle] = imK(N) [ deidey - -densaF (@)
measured properties. This inevitably perturbs the system'’s N w
evolution, yet this perturbation results from and is synony- (A4)
mous with the destruction of coherence between the Classesh K(N) | lizati tant. Iti dil
of paths. Thus, while one defines virtual properties for an neren IS some n_ormalza 'on constant. 11 readily seen
isolated system, an external meter is required if these pro hat if lim..Fl¢]=0, then
erties are to be observed.

It must be stressed that we have only established the J Do SF[ @]/ ¢p(t) =0. (A5)

equivalence between the von Neumann-like measurement
amplitudes and the restricted path sums and that a furth&ince the path sum will be applied to both sides of the ho-
generalization of the approach is far from trivial. For ex- mogeneous equatioi), the choice oK(N) is arbitrary and

ample, the paths can be classified according to the ti@€ e put K(N)=1. With this choice, the functional Fourier
which some value oA is reached for the first timéhe first  ansform forF[¢] is defined as

passage time[28] and the probabilities may formally be

constrgcted as discussed_aboye. Yet to ensure that the given F[A]= lim (6/27T)N+1|~:(6):) (AB)
value is reached for the first time the integrand in Exf) N—co

must contain the dependence on all times precegisg that ~ - o > L N+l

the functional is not of the type considered in this work. As afo” FO) = JF(@)exp(=ix-¢) and\-¢=Z i \j¢;.

paths are available, and an accurate quantum meter ensures f *
{e}

result, no meter equation similar to Ed.4) can be derived Thus,F[¢] can be written as a Fourier functional integral

for the first passage time and no obvious physical meaning ~ T

can be ascribed to probabilities obtained. Fle]= f DA F[A]exp(i f A(t)go(t)dt). (A7)
To conclude, we note that the path decomposition has 0

been constructed fqr a particular choice of the var!qtble A particular choice
The important question of whether such a decomposition can

be used to describe a measurement of variables which do not F[\]= 5= lim (e/2m)N*? (A8)
commute withA will be discussed in our future work. N—oe
yields the§ functional required to define the solution of Eq.
ACKNOWLEDGMENTS (4) [8(2) is the Diracé function|
R.S.M. wishes to acknowledge support by “Ministerio de N+1
Ciencia y Tecnologia” under FEDER Grant No. BFM2001- A ¢] =n|1im [T 8(¢) (A9)
—>(X3]':1

3349, and by “Consejeria de Educacion Cultura y Deportes
(Gobierno de Canarigisunder Contract No. P12002-009. with the obvious property

APPENDIX A: THE FUNCTIONAL FOURIER f Do Fle]d[¢] = F[e = 0]. (A10)
TRANSFORM

On a set{e(t)} of all continuous, but not necessarily Finally, we will also require the convolution property
smooth real functions defined on an intervakO<T with o T
arbitrary boundary valueg(0) and ¢(T), a functionalF[ ¢] f DA F[A]G[A]exp(if )\('[)(p('[)d'[)
is defined as the limif1] 0

F[@]:'L[an(é) (A1) = (el2m)N f De'Fle - ¢']1G[¢], (A11)

which can be obtained by considering the time-discretized

where o= (¢1,¢2,...,on+1), ¢ =¢(e(i-1)) ande=T/N. Eourier transform.

Nt APPENDIX B: LIE-TROTTER AND BAKER-CAMPBELL-

.
] = J e(HN(D)dt= hllim > oi\ie (A2) HAUSDORFF FORMULAS
0 —*i=1

The generalized Lie-Trotter formula reald/|
where\ is some function of time, is defined as the limit of its . A
Riemann sum. The functional derivative is defined as lim [F(/N)]N = exf{ ta,F(0)] (B1)

N—o0

OFlellop(t) = Jl@wf_la':(@m@m: m=t/e, (A3)  whereF(t) is an operator function df such that

so that forl[¢] in Eq. (A2) Sl[¢]/ Se(t)=\(t), as it should. FO)=1. (B2)

For the sum over the functions we have Choosing
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F(t) = exdtAlexdtB]

yields the Trotter product formula

lim {ex t/NAJexg t/NBJIN = exd t(A + B)].

N— o0

(B3)

PHYSICAL REVIEW A 71, 042101(2005

W(t[e]) = % ex-igt’,¢ - a)dt 10 a]|¥o),
(D2)

where the last operator is given by the discretization

The Baker-Campbell-Haussdorff identity states that for two

operatorsA andB, such that
[A[ABII=[B,[BA]l (B4)

where the square brackets denote the commutator,

exg A+ B] = exfAlexdBlexp- [A,B)/2}.  (B5)
APPENDIX C: THE EIGENPATH EXPANSION AS A
SOLUTION OF THE “RECORDER” EQUATION

In order to verify that the eigenpath expansi@T) satis-
fies Eq.(4), consider a more general form

[W(tlle]) = 2 Gle - ualld{al) (€
[a]

whereG[ ¢] is an arbitrary functionaly(t’) is a function of

t’, which also depends on the tirheand|®[a]) is defined in

Eq. (38). Then

Aw(tlel)=-2

= |, Belt )atut(t )a(t’)dt'|®fa])

+ % Gle - uald|dal). (C2
Using Eq.(39) we have
af®a]) = ~iH|D{a)), (C3)
and choosing
U= 6(t"), du=48t-t") (C4)
yields
¥ (tle)) =~ 5—“)2 Gle - gala(t)|P[a])
~iH % Gle - fa]|Pa]). (C5)
For G[ ¢]= 4§ ¢], with the help of the relation
Aldal) = a(t)| P al), (C6)

Eq. (C5) reduces to Eq(4).

APPENDIX D: CONTINUOUS MEASUREMENTS AND
MENSKY'S FORMULA

Consider a special case of the transformati®b, with

.
G[<p]=e><p<—if g(t’,go)dt’>.
0

With the help of Eq(37) we obtain

(D1)

ex-ig(t’,¢ - a)dt'JU{a]
N

= an oy, )y exel = 6y(t) He]

~>oc] 1

xexpi-iglt, ¢ - 6i(t)ay Je}- (D3)
Applying the Trotter formulaB3) to recombine the two ex-
ponentials and summing over the eigenpaths yields a com-
pact expression fofl (t|[¢])):

.
(W(tlle)) = eXD{- if [6H +g(t', ¢~ 9tA)]dt’}|‘I’o>
0
(D4)

which for 0<t<T satisfies the “recorder” equatidd) with
the initial condition Eq.(22). It follows from Eq.(D4) that

.
|‘I’(tl[¢])>=EXp<-if g(t’,cp)dt’)l‘%(t)) (D5)
t

where|W (1)) satisfies the effective Schrodinger equation

i W (1) = {H +g(t, 0 — A} W (1)), (D6)

[W,(0)) = Wo). (D7)
The problem of evaluating the restricted path sum for
|W(T|[¢])) in Eqg. (21) reduces, therefore, to solving the
time-dependent Schrodinger equati@®6) with the time de-
pendence determined ky(t). EquationgD4) and(D6) were
first suggested by MenskyL0] for the case when the func-
tional G[¢] reaches its maximum value fas(t’)=0 and
rapidly falls off as¢ deviates from zero. One such choice is

d(e) =-i¢%o® (D8)
which ensures that only the eigenpatisin a tube of width
o around ¢ contribute to|¥(t|[¢])) in Eq. (21) [see Fig.
1(a)], and the effective Schrédinger equation EQ6) con-
tains a non-Hermitian imaginary term

—i(p— AWy,
Application of Egs.(D4) and (D6) to two-level systems
can be found if29].

One notes that EqD4) for |W(T|[¢])) can, with the help
of Eq. (A1), also be written as the limit
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M
w(Tile)) = tim | TT dffexd- (¢, = elo?] f D¢’

—00 ]:1

:

xa(f,-' - f o —tj)qo'(t')dt'>|<1><T|[so']>>.
0
(D9)

Comparing Eq.(D9) with Eq. (14) shows that the second
integral in(D9) is the fine grained amplitude for an array of
M von Neumann meters, each firing gtje, 1<j<M.
Upon integration overdf;,dfs,...,dfy,, this amplitude is

coarse grained with a product of Gaussians whose widths

increase asr/ €¥? for e=T/M — 0. Thus, this is a sequence
of very inaccurate “weak(22] measurement, by a set of
meters weakly coupled to the system. Taking the limit
—0 in expressionD8) yields the solution®[¢)), which
satisfies the initial condition

PHYSICAL REVIEW A 71, 042101(2009

T
)
The condition(D10), which requires that the mean-square
deviation of ¢ from zero must vanish, is similar to E¢p),
which needse(t’) to vanish pointwise, and one can show
that either|®(t|[¢])) or |®(T|[¢])) can be used for calcu-
lating the finite-time measurement amplitutEr). The set
|®wl¢]), which corresponds to scattering by the “measuring
medium,” was first suggested {i10]. Equations(D6) and
(D9) can be applied to various coarse graining and unitary

transformations. No similar formulas exist, in general, for
less informative finite-time measurements, which yield infor-

|<I>w(t=0|[so])>%5< <p2(t’)dt’)|‘1’o>- (D10)

mation about certain global properties of the paths, e.g., the
value of fgﬁ(t’ﬁp(t’)dt’, while precise values obp(t’) re-

main indeterminate. In that cas‘,ﬁ{(tﬁ)) cannot be obtained
from |W) by evolution with a generalized Hamiltonian, con-

taining f as a parameter, and one should use(E4). instead.
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