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We show that the two-photon temporalslongitudinald correlation of light is limited by its classical optical
spectral width. We present examples of the sources of two-photon light approaching this limit.
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The discovery of two-photon quantum correlation has
greatly contributed to fundamental physics and, more re-
cently, to the potentially applied areas of quantum informa-
tion and technology. Interest in these fields brings up a ques-
tion about the ultimate resolution that can be achieved with
two-photon correlation measurements, i.e., the question
about the fundamental properties of two-photon correlation
function. Study of the biphotontransversecorrelation func-
tion f1–4g shows that it is possible to mutually localize two
photons two times better than each photon can be localized
taken separately. For such areas as quantum metrologyse.g.,
f5,6gd and quantum lithographyf2,7g, it is important to un-
derstand if the superclassical photon correlation in thelongi-
tudinal direction, or temporal correlation, is also possible.

We discuss the connection between the quantum two-
photon temporal correlation and the classical spectrum of
light. We show that universal integral relations between these
functions impose very general limitations on how short a
two-photon correlation time could be achieved. This limita-
tion is set approximately by the inverse spectral width of
light. This implies that light with a strong two-photon corre-
lation cannot be narrow band, and therefore the use of
narrow-band photonic devices, such as those proposed inf8g,
for generation or handling of such light, is not allowed.

In the absence of bandwidth-limiting structures, optical
linewidth and hence the two-photon correlation time is lim-
ited by the transparency window of the nonlinear material
used for generation of the photon pair. We consider paramet-
ric down conversion and two-photon decay of an atom as
examples of a photon pair source, and show that in both
cases this limitation holds. We also found specific cases of
parametric down conversion that provide the shortest pos-
sible correlation time, which is a few femtoseconds. This
result suggests a relatively simple technique for achieving
femtosecond resolution in continuous-wave optical measure-
ments.

Let us consider two optical fields,E1std and E2std, ob-
served at the same spatial location. According to Glauber
f9,10g, the fields can be described with the first- and the
second-order correlation functions

Gs1dstd ; kE1
s−dstdE2

s+dst + tdl,

Gs2dstd ; kE1
s−dstdE2

s−dst + tdE1
s+dstdE2

s+dst + tdl. s1d

The first-order correlation functionGs1dstd is the autocorrela-
tion function forE1std=E2std.

Let us consider a generic two-photon state which can be
entangled or separable, and degenerate or nondegenerate, de-
pending on the weighting functionhsnd,

uCl =E
−`

`

dnhsnda
†sv0 + nda

†sv0 − ndu0l, s2d

For this state, one can substitutes2d into s1d and showf11g
that the correlation functionsGs1dstd and Gs2dstd are closely
related,

Gs1dstd =E
−`

`

dnuhsndu2e−int =E
−`

`

fst8df*st8 − tddt8, s3d

Gs2dstd = UE
−`

`

dnhsnde−intU2

= ufstdu2, s4d

where we introduced

fstd ; E
−`

`

dnhsnde−int. s5d

From Eq.s3d and the Wiener-Khintchine theorem we find
the relation between the weighting function and the power
spectrum of the field:Ssvd= uhsvdu2. SinceSsvd always has a
finite frequency width,Gs1dstd has the finite duration limited
by the inverse spectral width. This duration cannot be shorter
than the optical cycle, because otherwise the optical-field
spectrum would extend beyond the zero frequency. Such an
argument cannot be directly applied to theGs2dstd which
characterizes the two-photon correlation time. In what fol-
lows we discuss the questions about the fundamental limita-
tions on theGs2dstd and practical approaching of the funda-
mental limits.

We address the following fundamental questions:sid What
is the minimum characteristic durationts2d of Gs2dstd, andsii d
what is the minimum ratiots2d /ts1d of characteristic durations
of Gs2dstd andGs1dstd, if the spectrumSsvd is localized in the
frequency intervalfv0−V /2 , v0+V /2g, given by, e.g., the
transparency window of a nonlinear material? Questionsii d
is important for optical applications where precision ranging
or timing is required, but using broadband light due to, e.g.,
strong dispersion is precluded.

From the properties of Fourier transforms we find that
both minima ofts2d andts2d /ts1d are achieved in the strongly
nondegenerate case, where the single-photon spectrum con-
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sists of two vanishingly narrowse.g., rectangulard frequency
regions of widthdv, centered atv0−V /2 andv0+V /2. In
this case Eqs.s3d and s4d yield

Gs1dstd = −
1

2dv
sincsdvtdcosSVt

2
D , s6d

Gs2dstd = sinc2sdvtdcos2SVt

2
D . s7d

We see that both correlation functions have wide envelopes
filled with narrow fringes. Considering the fringe quarter pe-
riod as the characteristic correlation time, we see thatt̃s2d

=p /2V= t̃s1d /2 stilde is to emphasize that we compare peri-
odic functionsd.

In the following we would like to apply the general rela-
tions we have derived to a specific case of a biphoton gen-
erated in the process of spontaneous parametric down con-
version sSPDCd. In SPDC, the phase-matching conditions
result in v0=vp/2, wherevp is the frequency of the pump
radiation andv0 is the degenerate frequency of the signal
and idler photons. We will consider collinear type-I SPDC
because, as we will see below, it is this case that can yield
the shortestts2d. The spectrum of SPDC radiation is limited
from above byvp, therefore even in transparent mediat̃min

s2d

=p /2vp. This means that it is impossible to mutually local-
ize two photons of a biphoton better than it is classically
possible for the pump photon. This limit is the same as the
limit obtained for transverse correlation function of the bi-
photonf1–4g.

For collinear SPDC, we have

hsnd =
1 − eiLDksnd

iLDksnd
, s8d

Dksnd = kp − kssv0 + nd − kisv0 − nd, s9d

whereL is the SPDC crystal length,Dksnd is the wave de-
tuning between the pump and the signal and idler compo-
nents slabeled “s” and “i”, respectivelyd, and n is the fre-
quency detuning from the central frequencyv0. The spectral
density of these components is peaked where the phase-
matching conditionDksnd=0 is satisfied, which usually oc-
curs in the vicinity of a unique pair of frequenciesv1 andv2
such thatv1+v2=vp=2v0. If a nondegenerate,v1Þv2,
two-photon state is sent through an interferometer with vary-
ing arm lengths, one observes the quantum beat correspond-
ing to the frequencyv1−v2 f12g. The original interpretation
of this experiment is interference of two biphoton ampli-
tudes. Alternatively, one can say that the interferometer pre-
pares a nondegenerate two-photon state with the “symme-
trized” hsnd, which results in fringedGs1d and Gs2d, as
predicted in Eqs.s6d ands7d. Of course, the two explanations
are equivalent.

Quasiperiodic functions such ass7d are not always prac-
tical for measurement, as they give the result modulo the
period. They are an even worse option for gathering two
photons at the same spatial locationse.g., for two-photon
lithography or fluorescence microscopyd, since the joint de-
tection probability is normalized with respect to the entire

envelope which contains many fringes. Therefore it is impor-
tant to study questionssid and sii d for the degenerate case
when the spectrumSsvd has a single maximum atv0. It
is clear from relationss3d and s4d, that both Gs2dstd and
Gs1dstd have the narrowest widths when the power spectrum
uhsndu2 is the broadest one. The broadest function that can be
defined on a given transparency windowV is rectangular, in
which case

Gs1dstd = −
1

V
sincSVt

2
D, Gs2dstd = sinc2SVt

2
D . s10d

It is interesting to point out that the resultss10d can also be
derived from s6d and s7d if the two rectangular areas are
allowed to merge by settingdv=V /2. In the following we
will refer to this example as the limiting case, since it pro-
vides the smallest widths possible for both correlation func-
tions. Redefining a correlation time as half of the full width
at half maximumsFWHMd of the corresponding correlation
function, we find that the fundamental limitation on the two-
photon correlation time ists2d<2.78/V. Note that this time
is only slightly shorter than the autocorrelation timets1d

<3.78/V evaluated for the same limiting case.
An important question is, how closely can we approach

the limiting case with realistic SPDC sources. We rewrite Eq.
s9d in the following form:

Dksnd = kp −
v0 + n

c
nsv0 + nd −

v0 − n

c
nsv0 − nd, s11d

where n is the refraction index which can be expanded in
series with a parameterj;n /v0,1,

nsv0 + nd = nfv0s1 + jdg = o
j=0

`

djj
j . s12d

Substituting the seriess12d into s11d and grouping the terms
by powers ofj, we arrive at

Dksnd = − 2
v0

c
o
j=1

`

sd2j−1 + d2jdj2j ; − o
j=1

`

m jj
2j . s13d

The zeroth-order term dropped out because we definedn
=0 as the perfect phase-matching condition; the odd powers
of j dropped out because we chose the degenerate type-I
SPDC wherenssvd=nisvd; for the same reason we dropped
the indexes “s” and “i” in Eqs. s11d–s13d.

The first five coefficients of the seriess13d calculated for
collinear degenerate type-I SPDC in a BeSO4 crystal are
shown in Fig. 1 as functions of the degenerate wavelength
l0=2pc/v0. All these functions have zeros at different
wavelengths. The first termj =1 of the seriess13d turns to
zero at the “crossover” wavelengthl0=923.8 nm. At this
particular wavelength, the lowest-order term ins13d is j4,
which is a better approximation of the limiting case than the
j2. The inset of Fig. 1 represents the wave detuningDksnd
versus relative frequency detuningj, calculated directly from
Eq. s11d for the degenerate wavelengths of 825, 923.8, and
1000 nm. Collinear phase matching for these wavelengths is
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achieved when the angleua between the optical beams
and the crystal’s optical axis is 43.2°, 42.0°, and 41.6°,
respectively.

Coefficientsm j have the same qualitative behavior for a
number of nonlinear crystals. We chose BeSO4 as an ex-
ample because its crossover wavelength is conveniently near
the peak of sensitivity of commercial photon counting detec-
tors, and therefore this might be the optimal SPDC source for
the two-photon correlation measurements with enhanced
temporal resolution. To estimate this resolution we substitute
Dsn ,l0d into the spectral density for the crossoverl0

=923.8 nm and notessee Fig. 2d that the result closely ap-
proximates a rectangle. Therefore we can evaluate the corre-
lation time using the result obtained for the limiting case
considered above:ts2d<2.78/V. From Fig. 2 we find that in
our caseV<1.031015 s−1 for the 5-mm sample and 1.7
31015 s−1 for the 0.5-mm sample. This yields the correlation
time ts2d<2.8 and 1.6 fs, accordingly. For shorter crystals,
the spectrum is broader. Eventually, for a very short crystal,
the material dispersion is not going to play any significant
role and the spectral width will be determined by the mate-
rial absorption. The BeSO4 has a transparency windowf13g
between 170 and 1580 nm, which gives us the ultimate cor-

relation time ofts2d<0.3 fs. An ultimate example of a two-
photon source whose small size makes dispersion unimpor-
tant sso the two-photon correlation time is solely determined
by the spectral width of the emitted lightd is a single two-
level atom. Studies of this system have shownf14,15g that
the spectral width is determined by the energysfrequencyd of
the atomic transition and that the two-photon spectrum has
nearly a rectangular shape closely matching the limiting
case.

SPDC spectra calculated for a 5-mm BeSO4 crystal are
shown in Fig. 3 for four different degenerate wavelengths
sand the crystal axis orientations allowing collinear solution
in each cased, including the crossover wavelength. In these
calculations, we used the “exact” material dispersion rela-
tions as perf13g rather than their series expansions. We see
that with changing the sign ofm1 from positive to negative,
the noncollinear solution disappears and only the collinear
one remains. The physics of this phenomenon will be dis-
cussed elsewhere. At the crossover wavelength the SPDC
becomes a broadband source of collimated two-photon light,
whose spectrum can easily cover an octave. If one chooses to
depart from the essentially quantum regime of spontaneous
down conversion, our system can be considered as a para-
metric amplifier whose normalized gain curvesfor the col-
linear directiond is represented in Fig. 2. Its central wave-
length depends on the choice of the crystal; for example, the
commonly used BBO crystal has a crossover wavelength of
1431.4 nm, so the flat region of its gain curve covers both
optical communication bands, 1.3 and 1.5mm. As a next step
from a parametric amplifier, one can consider building
a superbroadband optical parametric oscillatorsOPOd.
Continuous-wave-pumped OPOs with noncollinear configu-
ration have been shown to operate in the mode-locked re-
gime f16g. Implementing a similar technique in our case,
one should be able to generate the self-referenced optical
combsf17g.

Returning to the quantum aspects of the discussed SPDC
source, we would like to point out that at a wavelength
slightly shorter than the crossover wavelengthssee the upper-
right quarter of Fig. 3d a peculiar “double” collinear phase

FIG. 1. The first five coefficients of the expansions13d as func-
tions of the degenerate wavelengthl0=2pc/v0 calculated for the
no in BeSO4 by differentiating the Sellmeier equation. Inset: The
wave detuningDksnd vs relative frequency detuningj for a 5-mm-
long crystal.

FIG. 2. Power spectrum of SPDC light vs frequency detuning
for a 5-mmsinner curved and 0.5-mmsouter curved BeSO4 crystal
at the crossover degenerate wavelength 923.8 nm.

FIG. 3. SPDC spectra of a 5-mm BeSO4 crystal for different
degenerate wavelengths. As expected, the “crossover” wavelength
l0=923.8 nm corresponds to the broadest spectrum of SPDC light
irradiated in the forwardscollinear with the pumpd direction.
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matching becomes possible. In this case, the entangled states
of the form u1ll0

u1ll0
+ u1ll+u1ll− will be emitted collinearly

with the pump. These states are analogous to polarization
entangled states arising in type-II SPDC and may be of in-
terest in quantum interferometry, especially in fiber-optic and
other applications where frequency encoding of information
is more robust than polarization encoding.

A rectangular power spectrum is generally unachievable.
To understand how the answer to questionsii d changes for
the degenerate SPDC case occurring in a real crystal, we
consider a hypotheticalDksjd depending on a single term of
the seriess13d, proportional to an even power ofj. For this
model, we can carry out simple numerical calculations, with
results shown in Fig. 4 forj =1, 2, 3, and 4si.e., the second,
fourth, sixth, and eighth powers ofjd. The first case de-
scribes the collinear degenerate SPDC of type-I far away
sand at the blue sided from the crossover wavelength. The
second case was already discussed above, and was shown to
be a reasonably good approximation of the limiting case.
Higher-order cases approximate it even better. We therefore
see that in all these examples the relation between theGs1d

3std and Gs2dstd widths is almost universal. Therefore we
conclude that, in a realistic case when all power terms are
present, this relation holds as well:Gs2dstd is only incremen-
tally narrower thanGs1dstd.

To conclude, we have carried out a theoretical study of the
limitations imposed on the two-photon correlation time of a
biphoton, and demonstrated that for the optimal case of
strongly nondegenerate SPDC this time is determined by the
single period of the optical pump oscillation. In all realistic
cases of degenerate SPDC this time is only slightly shorter
than the inverse spectral width of an individual signal or
idler photon. The strongest possible temporal correlation of a
photon pair, desired for a variety of two-photon applications,
is ultimately limited by the inverse of the transparency win-
dow of the nonlinear optical material generating the bipho-
tons. This ultimate case can only be achieved in the limit of
zero interaction length, that is for a single-atom system. For
crystals, the limitation is more severe and is determined by
the material dispersion rather than by the transparency win-
dow. We have found a solution eliminating the wave detun-
ing dispersion up to the fourth order of the frequency detun-
ing. As a result, very shortsof the order of a femtosecondd
two-photon correlation times can be achieved, providing ac-
cess to a femtosecond time domain with the simple technical
means of a photon-correlation technique.
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FIG. 4. Gs1dstd andGs2dstd calculated for indi-
vidual terms of the seriess13d j =1 through 4.
While the time scales for the plots are different,
we see that on each plot the ratio between the
correlation functions’ widths remains approxi-
mately the same.
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