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Relationship between quantum two-photon correlation and classical spectrum of light
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We show that the two-photon tempor@ngitudina) correlation of light is limited by its classical optical
spectral width. We present examples of the sources of two-photon light approaching this limit.
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The discovery of two-photon quantum correlation has Let us consider a generic two-photon state which can be
greatly contributed to fundamental physics and, more reentangled or separable, and degenerate or nondegenerate, de-
cently, to the potentially applied areas of quantum informa{pending on the weighting function(v),
tion and technology. Interest in these fields brings up a ques-
tion about the ultimate resolution that can be achieved with - + t
two-photon correlation measurements, i.e., the question W) :f dvh()a(wo + ¥)4(wo = »)|0), (2)
about the fundamental properties of two-photon correlation -

function. Study of the biphototransversecorrelation func- g4 this state. one can substitu® into (1) and show[11]
tion [1-4] shoyvs that it is possible to mutually localize two that the correlation function6®(t) and G@\(t) are closely
photons two times better than each photon can be Iocallzel%lated

taken separately. For such areas as quantum metrééogy

[5,6]) and quantum lithography2,7], it is important to un- oo oo

derstand if the superclassical photon correlation inlomnei- GY(t) :f dv|h(v)|2e“Vt:f ftHf ' —tdt’, (3)
tudinal direction, or temporal correlation, is also possible. - =

We discuss the connection between the quantum two-
photon temporal correlation and the classical spectrum of o
light. We show that universal integral relations between these G2(t) = ‘ f dvh(v)e ™
functions impose very general limitations on how short a -
two-photon correlation time could be achieved. This limita- )
tion is set approximately by the inverse spectral width ofWhere we introduced
light. This implies that light with a strong two-photon corre- "
lation cannot be narrow band, and therefore the use of f(t)EJ dvh(»)e ™. (5)
narrow-band photonic devices, such as those propodé],in o
for generation or handling of such light, is not allowed. ) ) ) )

In the absence of bandwidth-limiting structures, optical From Eq.(3) and the Wiener-Khintchine theorem we find
linewidth and hence the two-photon correlation time is lim-the relation between the weighting function and the power
ited by the transparency window of the nonlinear materiaSPectrum of the fieldS(w) =[h(w)[*. SinceS(w) always has a
used for generation of the photon pair. We consider paramefinite frequency widthG™(t) has the finite duration limited
ric down conversion and two-photon decay of an atom a®y the inverse spectral width. This duration cannot be shorter
examples of a photon pair source, and show that in bot#han the optical cycle, because otherwise the optical-field
cases this limitation holds. We also found specific cases o$pectrum would extend beyond the zero frequency. Such an
parametric down conversion that provide the shortest posargument cannot be directly applied to t@?(t) which
sible correlation time, which is a few femtoseconds. Thischaracterizes the two-photon correlation time. In what fol-
result suggests a relatively simple technique for achievingows we discuss the questions about the fundamental limita-
femtosecond resolution in continuous-wave optical measurdions on theG®(t) and practical approaching of the funda-
ments. mental limits.

Let us consider two optical field€,(t) and E,(t), ob- We address the following fundamental questiginsWhat
served at the same spatial location. According to Glaubeis the minimum characteristic duratief?’ of G'2(t), and(ii)
[9,10], the fields can be described with the first- and thewhat is the minimum ratio®/ 7Y of characteristic durations

2

=[f()7, (4)

second-order correlation functions of G@(t) andGY(t), if the spectrunS(w) is localized in the
frequency intervalwg—Q/2, wy+Q/2], given by, e.g., the
GY(7) = (EPVMES (t + 1), transparency window of a nonlinear material? Question

is important for optical applications where precision ranging
or timing is required, but using broadband light due to, e.g.,
GA(n) =(EL’(OES (t+ DEP(EY)(t+ 7). (1) strong dispersion is precluded.
From the properties of Fourier transforms we find that
The first-order correlation functioB™(t) is the autocorrela- both minima of#2? and 72/ 7Y are achieved in the strongly
tion function for E;(t) =Ex(t). nondegenerate case, where the single-photon spectrum con-
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sists of two vanishingly narroe.g., rectangularfrequency  envelope which contains many fringes. Therefore it is impor-
regions of widthdw, centered atvg—Q/2 andwy+Q/2. In  tant to study question§) and (ii) for the degenerate case

this case Eqs.3) and(4) yield when the spectrun8(w) has a single maximum ab,. It
1 at is clear from relations(3) and (4), that bothG®@(t) and
GY(t)=- gsind&ot)co{?), (6)  GY(t) have the narrowest widths when the power spectrum
w

|n(v)|? is the broadest one. The broadest function that can be
defined on a given transparency windéWis rectangular, in

GP(t) = sincz(éwt)cosZ(%). (7)  Which case

: . . Wy L Ot @i — o Ot
We see that both correlation functions have wide envelopes GH(t) =~ asm > ) GP(t) = siné > ) (10
filled with narrow fringes. Considering the fringe quarter pe-

riod as the characteristic correlation time, we see #&t |t s interesting to point out that the results0) can also be
:77/29:7'_(1)/2 (tilde is to emphasize that we compare peri- gerived from(6) and (7) if the two rectangular areas are
odic functions. _ allowed to merge by settingw=Q/2. In the following we

~ In the following we would like to apply the general rela- i refer to this example as the limiting case, since it pro-
tions we have derived to a specific case of a biphoton gengiges the smallest widths possible for both correlation func-
erated in the process of spontaneous parametric down Coflpns. Redefining a correlation time as half of the full width
version (SPDQ. In SPDC, the phase-matching conditions gt half maximum(FWHM) of the corresponding correlation
result in wy=w,/2, wherewy, is the frequency of the pump  fynction, we find that the fundamental limitation on the two-
radiation andwy is the degenerate frequency of the signalphoton correlation time is® ~2.78/Q). Note that this time

and idler photons. We will consider collinear type-1 SPDCjs only slightly shorter than the autocorrelation timé’
because, as we will see below, it is this case that can yield 3 7g/) evaluated for the same limiting case.

the shortest'?. The spectrum of SPDC radiation is limited  An important question is, how closely can we approach
from above byw,, therefore even in transparent medfd,  the limiting case with realistic SPDC sources. We rewrite Eq.
=7/ 2wy This means that it is impossible to mutually local- (9) in the following form:
ize two photons of a biphoton better than it is classically
possible for the pump photon. This limit is the same as the
limit obtained for transverse correlation function of the bi-
photon[1-4].

For collinear SPDC, we have wheren is the refraction index which can be expanded in
series with a parameteé= v/ wy<1,

wgt v wy =V

Ay(v) = kp -

N(wy+ v) — N(wo—v), (11)

1 _eiLAk(V)
h(v) = m (8 "
N(wo+ v) = Nlwg(1+&]= > d;é. (12)
A(v) =k, — Ks(wp + v) = ki(wg — v), (9 I=0

whereL is the SPDC crystal lengthy(v) is the wave de- Substituting the serie(gZ) into (11) and grouping the terms

tuning between the pump and the signal and idler compoPY Powers ofé, we arrive at

nents(labeled %" and “i”, respectively, and v is the fre- o o

quency detuning from the central frequengy. The spectral __ %0 . V&2 — 2]

density of these components is peaked where the phase- Al =-2 c E‘l(dzrﬁdz‘)g B ng,u]g - (19

matching conditiomA,(»)=0 is satisfied, which usually oc-

curs in the vicinity of a unique pair of frequencies, andw,  The zeroth-order term dropped out because we defined

such thatw;+w,=w,=2w,. If a nondegeneratep; # w,, =0 as the perfect phase-matching condition; the odd powers

two-photon state is sent through an interferometer with varyof & dropped out because we chose the degenerate type-|

ing arm lengths, one observes the quantum beat correspon8PDC whereng(w) =n;(w); for the same reason we dropped

ing to the frequencyv; — w, [12]. The original interpretation the indexes §” and “i” in Egs. (11)—(13).

of this experiment is interference of two biphoton ampli- The first five coefficients of the seri¢$3) calculated for

tudes. Alternatively, one can say that the interferometer precollinear degenerate type-I SPDC in a BgS@ystal are

pares a nondegenerate two-photon state with the “symmeshown in Fig. 1 as functions of the degenerate wavelength

trized” h(v), which results in fringedG® and G?, as \y=2mc/w,. All these functions have zeros at different

predicted in Eqs(6) and(7). Of course, the two explanations wavelengths. The first terrj=1 of the serieg13) turns to

are equivalent. zero at the “crossover” wavelengity=923.8 nm. At this
Quasiperiodic functions such &#) are not always prac- particular wavelength, the lowest-order term (i) is &,

tical for measurement, as they give the result modulo thavhich is a better approximation of the limiting case than the

period. They are an even worse option for gathering twoé”. The inset of Fig. 1 represents the wave detunigy)

photons at the same spatial locatitg., for two-photon versus relative frequency detuniggcalculated directly from

lithography or fluorescence microscopgince the joint de- Eq. (11) for the degenerate wavelengths of 825, 923.8, and

tection probability is normalized with respect to the entire1000 nm. Collinear phase matching for these wavelengths is
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FIG. 1. The first five coefficients of the expansidr8) as func- FIG. 3. SPDC spectra of a 5-mm Beg0rystal for different

degenerate wavelengths. As expected, the “crossover” wavelength
No=923.8 nm corresponds to the broadest spectrum of SPDC light
irradiated in the forwardcollinear with the pumpdirection.

tions of the degenerate wavelength=2mc/ wy calculated for the
n, in BeSQ, by differentiating the Sellmeier equation. Inset: The
wave detuning\,(v) vs relative frequency detuningfor a 5-mm-

I tal. Co .
ong chysia relation time of7?=~0.3 fs. An ultimate example of a two-

s photon source whose small size makes dispersion unimpor-
tant(so the two-photon correlation time is solely determined
by the spectral width of the emitted lighis a single two-

- , o . level atom. Studies of this system have shdims,15 that
Coefficientsu; have the same qualitative behavior for athe speciral width is determined by the enefggquency of

number of noniinear crystals. We chose Bq an ex- e atomic transition and that the two-photon spectrum has
ample because its crossover wavelength is conveniently negﬂ pnhoton sp I
nearly a rectangular shape closely matching the limiting

the peak of sensitivity of commercial photon counting detec-?ase
tors, and therefore this might be the optimal SPDC source fo SPDC spectra calculated for a 5-mm BeS@ystal are

the two-photon correlation measurements with enhancedh wn in Fia. 3 for four different deenerate wavelenath
temporal resolution. To estimate this resolution we substitut N g. 5 for fou ere egenerate wavelengins
and the crystal axis orientations allowing collinear solution

A(v,\g) into the spectral density for the crossovip . . :

_ . in each casg including the crossover wavelength. In these

=923.8 nm and notésee Fig. 2 that the result closely ap- . b ! : : :
calculations, we used the “exact” material dispersion rela-

proximates a rectangle. Therefore we can evaluate the COIME s as pef13] rather than their series expansions. We see

lation time using the result obtained for the limiting case . . . o .
considered abovet? ~2.78/Q. From Fig. 2 we find that in that with changing the sign g, from positive to negative,
our case()~ 1 0><.1015 s.‘l for. the 5—mm. sample and 1.7 the noncollinear solution disappears and only the collinear
% 10% s for the 0.5-mm sample. This yields the correlation ©"€ remains. The physics of this phenomenon will be dis-
time #2~2.8 and 1.6 fs, accordingly. For shorter crystals cussed elsewhere. At the crossover wavelength the SPDC
the spectrum is broader. Eventually, for a very short crystal,becomes a broadband source of collimated two-photon light,
- L . L Wwhose spectrum can easily cover an octave. If one chooses to
the material dispersion is not going to play any significant f h all : f
role and the spectral width will be determined by the mate—Olepart rom the essentially quantum regime of spontaneous

rial absorption. The BeS{has a transparency windo 3] dowr_1 conversion, our system can be_con3|dered as a para
) ) . metric amplifier whose normalized gain curfer the col-

between 170 and 1580 nm, which gives us the ultimate cor: T -

linear direction is represented in Fig. 2. Its central wave-

achieved when the anglé, between the optical beam
and the crystal's optical axis is 43.2°, 42.0°, and 41.6°
respectively.

1.0 length depends on the choice of the crystal; for example, the
commonly used BBO crystal has a crossover wavelength of
> 08¢ [ \ 0.5 mm 1431.4 nm, so the flat region of its gain curve covers both
% 0.6 ‘ optical communication bands, 1.3 and uB. As a next step
= | ; S mm from a parametric amplifier, one can consider building
% 04k a superbroadband optical parametric oscillat@PO.

2 Continuous-wave-pumped OPOs with noncollinear configu-
@02} ration have been shown to operate in the mode-locked re-
0.0 i L Ao gime [16]. Implementing a similar technique in our case,
208 -0.6 -04 0.2 0.0 02 04 06 08 one should be able to generate the self-referenced optical

13 combs[17].

Returning to the quantum aspects of the discussed SPDC
FIG. 2. Power spectrum of SPDC light vs frequency detuningsource, we would like to point out that at a wavelength
for a 5-mm(inner curve and 0.5-mm(outer curveé BeSQ, crystal  slightly shorter than the crossover wavelen@tbe the upper-
at the crossover degenerate wavelength 923.8 nm. right quarter of Fig. 3 a peculiar “double” collinear phase
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Correlation

FIG. 4. GY(t) andG@(t) calculated for indi-
vidual terms of the serie§l3) j=1 through 4.
While the time scales for the plots are different,
we see that on each plot the ratio between the
correlation functions’ widths remains approxi-
mately the same.
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matching becomes possible. In this case, the entangled statesTo conclude, we have carried out a theoretical study of the
of the form |1>A0|1>A0+|1>)\+|1>A- will be emitted collinearly  limitations imposed on the two-photon correlation time of a
with the pump. These states are analogous to polarizatioBiphoton, and demonstrated that for the optimal case of
entangled states arising in type-ll SPDC and may be of inStrongly nondegenerate SPDC this time is determined by the
terest in quantum interferometry, especially in fiber-optic andSingle period of the optical pump oscillation. In all realistic

other applications where frequency encoding of informatiorf@Ses of degenerate SPDC this time is only slightly shorter

is more robust than polarization encoding. than the inverse spectral width of an individual signal or
A rectangular power spectrum is generally unachievable!d!€" Photon. The strongest possible temporal correlation of a
To understand how the answer to question changes for Pnoton pair, desired for a variety of two-photon applications,
ultimately limited by the inverse of the transparency win-

1 i
LZisﬁggfgegat%tﬁ;i; (z?)s 360(;0”“(;;;]”90? aaszﬁa:ectgrsr;al(’)fwgow of the nonlinear optical material generating the bipho-
yp K P 9 9 tons. This ultimate case can only be achieved in the limit of

the serieg13), proportional to an even power gf For this zero interaction length, that is for a single-atom system. For

model, we can carry out §|mple numenca] calculations, Wlthcrystals, the limitation is more severe and is determined by
results shown in Fig. 4 foy=1, 2, 3, and 4i.e., the second,

. ; ; the material dispersion rather than by the transparency win-
fou_réh, St';(th’ al?d elggth powe{s (g)P'DTge ff';St c?sfe de- dow. We have found a solution eliminating the wave detun-
scribes the collinear degenerate of type-l far aWaYng dispersion up to the fourth order of the frequency detun-
(and at the blue sidefrom the crossover wavelength. The ing. As a result, very shotof the order of a femtosecond
Eecond case V;"I"S aIregdy dlscqssetq abo;/(ihanlq V.\;‘."‘S show -photon correlation times can be achieved, providing ac-

€ a reasonably good approximation of the imiing Cas€pqqq 1 5 femtosecond time domain with the simple technical
Higher-order cases approximate it even better. We therefo

r . .

see that in all these examples the relation betweerGthe feans of a photon-correlation technique.

X (t) and G'?(t) widths is almost universal. Therefore we  The research described in this paper was carried out under
conclude that, in a realistic case when all power terms argponsorship of DARPA by the Jet Propulsion Laboratory,
present, this relation holds as weB{?(t) is only incremen-  California Institute of Technology, under a contract with the

tally narrower tharG®(t). National Aeronautics and Space Administration.
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