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Thermal entanglement between alternate qubits of a four-qubit HeisenbergXX chain
in a magnetic field
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The concurrence of two alternate qubits in a four-qubit Heisenk&rghain is investigated when a uniform
magnetic fieldB is included. It is found that there is no thermal entanglement between alternate qibiss if
close to zero. A magnetic field can induce entanglement in a certain range both for the antiferromagnetic and
ferromagnetic cases. Near zero temperature, the entanglement undergoes two sudden changes with increasing
value of the magnetic fielB. This is due to the changes in the ground state. This novel property may be used
as a quantum entanglement switch. The anisotropy in the system can also induce the entanglement between two
alternate qubits.
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The existence of entanglement shows many interesting included. The pairwise entanglement between alternate qu-
properties in quantum systems. Its nonlocal quantum corredits is calculated. The four-qub¥XM Heisenberg model is
lation has become one of the most valuable resources idescribed by the Hamiltonian

guantum communicatiofl-3] and quantum computation 4 4
[4,5]. Recently, the concept of thermal entanglement in sol- _ TSN N 2
ids was introduced and studied in a one-dimensional aniso- HXXM_JE (0730741 % 0 0e) Bgl In: (4)

tropic Heisenberg mod¢b]. Thermal entanglement in two-

qubit HeisenbergXX chains was investigated with and Whereo;, are the raising and lowering operatioti,is the
without an external magnetic fie[#—9]. The entanglement €xternal magnetic field and perpendicular to the chain,&nd
between qubits of next and next-next neighbors in an opei$ the strength of interaction. The value of positive and nega-
spin chain and in a multiqubit Heisenberg model was prelive J corresponds to the antiferromagnetic and ferromag-
sented in10-13. netic cases, respectively.

In most previous investigations, the concurrence of two The eigenvalues and eigenstates of the Hamiltonian in Eq.
nearest-neighbor qubits is calculated as a measure of efd) can be calculated analytically. In a four-qubit Heisenberg
tanglement. For a pair of two qubits, the concurrence ighain with periodic boundary conditions, the eigenvalues are
given by[14,15 given by
C:ma){)\l_)\z_)\3_)\4,0}, (l) Eo—_4B, El—ZJ—ZB, E2—E4—_ZB,
where the quantitie; (i=1,2,3,4 are the square roots of E;=-2J-2B, Es=2\2J, Eg=-22J,
the eigenvalues of the operator

. E;=Eg=Eg=E;;=0, E;;=2]+2B,
0 = p1o(0} ® 0Y)p1(0] ® oY) ()

in descending order. The values of the concurrence are Bip=B14=28, B;p=-20+28, E;5=48, (9

ranged from zero to one when quantum states are changeahd the corresponding eigenstates can be explicitly expressed

for unentangled to maximally entangled states. as
The state of the system at thermal equilibrium is repre-

sented by the density operator |0 =0000,

p(T) = (1/Z)exp(~ H/KT), 3 |¢0) = 3(/000D +10010 +[0100 +|1000),
whereZ=Trexp(-H/kT)] is the partition functionk is Bolt- ) = %(|000]> +i/0010 - [0100 - i|1000),
zmann'’s constant, and is the temperature. SinggT) rep-
resents a thermal state, the entanglement in the state is called |) = 1(/0003) - 0010 + [0100 — |1000)

thermal entanglemenil6,17.
In this Brief Report, a HeisenbepgX model of four qu-

bits in a linear chain is investigated when a magnetic fild |#ha) = 3(/0003 - /0010 - 0100 +i|1000),

|4e) = 2(j001D + 0110 +[1100 + [100D) + 10107
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|¢//6>:%(|001J>+ |0110 +(1100 +|100D) — %(|010]> From Egs.(1), (2), and(7), the concurrence can be ob-

tained:
+|1010),

2 —
|¢) = 2(10012 +i]0110 - |1100 - i|1001), C= 2 max(ly| - vuv,0). (10)

Except the concurrenc€ of two qubits, the global en-

1
|¢g) = 3(/001D - {0110 +[1100 - [100), tanglementQ of many-qubit pure states also needs to be
L considered. The global entangleme@tis introduced by
|49 = (/010D - [1010), [18-20
N
|10 = 5(10012 ~i/0110 ~[1100 +[1001), 0= %2 ic?, (11)
i=1

-1
10 = 5(/1110 +[1103) + {1013 + 0113), where thei concurrence ofC; means the entanglement be-

1 . , tween the qubit and the other qubits and can be expressed
|42 = 5(|1110 +i[1103) - |1011) - i[011D), as

|19 = 3(/1110 - [110D + [101D - [011D), IC; = V2[1 - Tr(p?)]. (12)

The concurrenc& as functions of the magnetic fieH
and the temperaturé is plotted in Fig. 1. The strength of
interactionJ is chosen to be 1.0. Figure(d is a three-

g = 3(11110 —i[1102 - 101D +i[011D),

|¢ns) = |111D). (6)  dimensional plot of the concurreneas functions oB and
If the concurrence of two alternate qubits is considered, thd - From Fig. 1a), itis clear that there is a two-peak structure
reduced density matrig,3=Tr,4p(T) can be given by in C. The two peaks appear symmetrically at two sideB.of
There is no entanglement between alternate qubiB8=4.
uo0O02O0 The entanglement is also independentTof10]. It can be
110w y O understood that sincB=0, the ground state will béy),
plS(T):E 0 w 0 (7)  which is unentangled between alternate qubits. When the
y temperatureT=0, the ground-state energy as a function of
000w the magnetic field is changed fronkg to E; and then tdg,
in the basis(|00), [01), [10), [11)}, whereu,v,y are for the antiferromagnetic case, while the ground-state energy
L L — is changed fronks to E;4 and then tdg 5 for the ferromag-
u=3(1+ 2 28)8 4 7272808 4 cosh 2/2)B) + €88 + 8P, netic case. Therefore there should be a change in the concur-

_ renceC because of the change in the ground state. It can be
v=3(1+e @B 4 2884 cosh 2/2)B) + € +&7#8F, seen that the increase of magnetic fiBl¢annot induce en-
tanglement when the temperatufds very high. When the
y= %(_ 1 + coslf2J + 2B) 8+ cosi2J — 2B) 8 + cosh 35\]3) temperaturd is very low, the entanglement is increased with
increasing value of the magnetic fie|B| to a maximum

- cosh Bg. (8  value. Then it is decreased and finally disappeared. The
The partition function of the system is maximum val_ue_ of the entanglement decreases when the
temperatureT is increased.
Z=4(1+ cosh Bp) + 2[cosh B+ cosh2J + 2B) 8 The contour map of the concurren€eas functions of the
+ cosh2J - 2B) 3+ cosh ZEJ[?], 9) magnetic fieldB and the temperaturgis plotted in Fig. 1b).

Four contours 0fC=0.5,0.3,0.1,0 are shown, respectively.
with B=1/kT. In the following calculation is set to 1.0. Beyond the contou€=0, the entanglement is equal to zero.
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FIG. 2. The concurrenc€, the global entangleme®, and thei concurrencdC; are plotted as a function & whenJ=1.0. For the
concurrenceC of (a) and(b), the curve is plotted whem=0.01, 0.1, and 0.%from top to bottonm. (a) The curveC of the alternate qubits.
(b) The curveC of the nearest-neighbor qubitg) The curves of) andIC; are plotted whed=0.01. Solid line: the curve d. Dotted line:
The curve oflC;.

It means that there exists a critical temperaffyeFrom the  the ground state is the maximally entangled stétg of the
curve of C=0 in Fig. 1(b), it can be seen that the critical two alternate qubits. When the temperatliris increased to
temperaturél, depends on the magnetic figld If B<0.09, 0.1 and 0.5, the shape @fis changed from square wave to
the concurrenc€ is always zero no matter whether the tem- & single peak. The maximal value of the concurrefices
peratureT is increased or decreased. When G:<0.41  decreased whefh is increased. For finite temperatures, this
or B> 1.0, there are two critical temperaturesTof WhenT ~ definite ground-state structure is smoothed out by the parti-
is either above the lower part of the curve@£0 or below  tion of higher states and therefore the concurrecee-
the upper part o£=0, the concurrenc€ is always greater COMES smaller with higher temperatures. '_I'o compare thls
than zero. When 0.44B< 1.0, there is a single value of the with that of the two nearest-neighbor qubits in the fqur-qublt
critical temperaturd@,. When the temperaturgis above the XM model, the concurrence of the two nearest-neighbor

curve of C=0, the entanglement is vanished no matter thequbits is plotted as a function & in Fig. 2b) with the same

magnetic fieldB is increased or decreased. For the four—qubitcond't'on' For a low temperature i=0.01, the entangle-

) g .+ ment keeps a constant value 6=0.46 until it drops to a
nearest-neighbakxM modgl,_the critical temperature is in- dip. It seems that the dip is due to the crossing of energy
dependent of the magnetic fiefi[11]. . level at the point ofB=(y2-1) [11]. Then C maintains a

The thermal entanglement of alternate qubitsJer-1.0

. . : maximal value ofC=0.5 until it drops to zero aB=1.0.
is also studied. The result is almost the same as that shown When the temperaturBis increased to 0.1, the shape®fs

Fig. 1. This means that entanglement exits for both the am'(‘:hanged to two peaks with almost the same dip. Whés
ferromagnetic and ferromagnetic cases. _ increased to 0.5, the dip disappears. There is only a single
The concurrenc€, the global entanglemei, and thei  hea aB=0. From Figs. 2a) and Zb), it can be seen that the

concurrencelC; are plotted in Fig. 2 as a function of the gftects of temperature 06 are much stronger for alternate
magnetic fieldB. The concurrenc€ of different qubits is g pits than that for nearest qubits. Whiris increased to
plotted in Flgs. 2a) and 2b) when the temperatur is o5 the curve ofC in Fig. 2(b) is much higher than that in
varied withT=0.01, 0.1, and 0.5. Figure(@ is a plot ofC £ ) |t seems that the temperature affects the entangle-
for alternate qubits. From Fig.(@, it can be seen that the ment petween weakly interacting alternate qubits stronger
shape ofC is like a square wave for a low temperature of ihap that for strongly interacting nearest qubits. The global
T=0.01. The concurrence keeps zero untiB is increased  gntanglemen@ and thei concurrenceC; are plotted in Fig.

to 0.41. Then the concurrence maintains a maximal value 0}(¢) pye to the symmetry of the eigenstates in ), the
C=0.5 until it drops to zero aB=1.0. In the limit of T—0, | 51ues of thei concurrence are the same. Wher<B

one has <0.41,IC;=1C,=1C3=1C,=1.0. The value of thé concur-
limc=0, |Bl< 5113 ’ rence is the same as that QE_The two-qubit concurrence
T—0 | | (\‘ )‘ | C iIs C12:C14:C23:C34: (2\2_1)/4 and C13:CQ4:0-

These are shown in Figs(&@ and Zb). Although the en-
_ 1 — tanglement of three and four qubits cannot be discriminated,
leo C= > (V2-DP=[B[=<|J, the additional entanglement of three and four qubits can be
- described by 1£C{=0.16 [18,19. When 0.4kB=<1.0,
) IC,=1C,=1C43=1C,=+3/2. The global entangleme@ and
lanOC:O, B[ > |J]. (13 the two-qubit concurrenceC satisfy the relation ofQ
:§2ijcﬁ [18,19. There is no additional entanglement of
This_can be understood as follows. Whi@j>|J| and |B|  three and four qubits. WheB>1.0, there is no entangle-
<(y¥2-1J|J|, the ground states are the unentangled statement at all. All the values o€, Q, andIC; equal to zero. It

|y and |, respectively, while for(v2-1)|J|<|B|<|J|,  is very interesting to note that in the low-temperature limit
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the entanglement between two alternate qubits of the fouras functions oB andA in Fig. 3(b) whenT=0.2. From Fig.
gubit XXM Heisenberg model undergoes two sudden3(b), itis seen that the value & is kept zero forA =0 when
changes when the magnetic fieddis increased. This novel B=0. The peak irC appears at =-0.5. It is found that the
property may be used as a quantum entanglement switch @nisotropy in the Heisenberg model can induce the entangle-
quantum computing and quantum communications. ment between alternate qubits even B+0. If B>0, the

For a more general model of four-qubit Heisenbety  height of the peak irC is increased and the position of the
chains, the anisotropic contribution needs to be consideregheak is shifted to larger values of bdBhandA. From Fig. 3,
If the anisotropy is included, the Hamiltonian of the systemit is seen that the curve @& is asymmetric abouh.
can be written as In conclusion, in this Brief Report the entanglement be-
tween two alternate qubits of a four-qubit Heisenb&ty
model is investigated. There is no thermal entanglement be-
tween alternate qubits of a four-qubit HeisenbXpg model
whenB is very small. However, when the magnetic fi¢Rl
whereA is the anisotropy parameter ahtkyy, iS given by is increased, it can induce entanglement in ¥ model
Eq. (4). The system reduces to thé&X model whemrA=0 and  both for the antiferromagnetic and ferromagnetic cases. The
the isotropicXXX model whenA=1.0. square-wave-like shape appearing in the concurr€hogy

The concurrenc€ of alternate qubits is plotted in Fig. 3 be used as a quantum entanglement switch. It is very inter-
as functions of the temperatufle the magnetic field, and  esting to find that the temperature affects the entanglement
the anisotropic parametéx when the strength of the inter- much stronger for weakly interacting alternate qubits than
actionJ is 1.0. The concurrenc€ is plotted as functions of that for strongly interacting nearest qubits. The anisotropy in
T andA in Fig. 3@ whenB=0.5. From Fig. 8), it is seen the Heisenberg model can also induce entanglement between
that the concurrenc€ increased first, then reached a maxi- alternate qubits.
mum value, and finally decreased wheris increased from It is a pleasure to thank Yinsheng Ling, Jianxing Fang,
-0.4 to 1.0. ForA >0, the concurrenc€ is monotonically  and Xiang Hao for their many helpful discussions and calcu-
decreased when is increased. The concurren€es plotted  lations.
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