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Bounds on classical information capacities for a class of quantum memory channels
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The maximum rates for information transmission through noisy quantum channels has primarily been de-
veloped for memoryless channels, where the noise on each transmitted state is treated as independent. Many
real-world communication channels experience noise which is modeled better by errors that are correlated
between separate channel uses. In this Brief Report, upper bounds on the classical information capacities of a
class of quantum memory channels are derived. The class of channels consists of indecomposable quantum
memory channels, a generalization of classical indecomposable finite-state channels.
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I. INTRODUCTION class is the quantum analog of classical indecomposable

I . . _ ) channels for which the effect of the initial channel state dies
Communication of information requires an encoding Ofaway with time[2].

the information into a physical system. The laws of physics
therefore govern the limits on processing and communication

of information. By modeling real-world noise in terms of Il. UNITARY REPRESENTATIONS OF QUANTUM
simpler models, the maximum rate for information transfer CHANNELS
may be obtained. The seminal work of Shanfibhshowed A quantum channel is defined as a completely positive,

pendently on each symbol sent through the channel, can bgself. Any such map may be represented as a unitary opera-

parametrized by a single quantity, the capacity of the changon petween the system state and an environment with a
nel, C. Shannon defined the capacity as the maximum ratgnown initial state{10].

that information may be sent through a channel, and he also
showed that there exist codes that asymptotically achieve
this rate with a vanishing probability of error. The work of
Shannon has been extended to include channels with Memoryless quantum channels act on each input state in-
“memory,” where the noise is no longer independent of pastiependently of the previous input or output states. For a
channel useg2] or where the channel consists of an arbitrarysingle-channel use the output state is given by
transformation of the input stat¢3]. t

Encoding classical information into quantum states of Apq = Tre[Uge(pg ® [0eX0e)Ugel, (1)

physical systems gives a physical implementation of the congjith ,, the input state|0g)(0¢| the initial state of the envi-

structs of information theory. The majority of research into g ment Uoe a unitary operation between the stageand
quantum communication channels has focused on the memgnvironmentE, and Apq, the output state. For a sequence of

ryless case, although there have been a number of importaghnsmissions through a memoryless channel, the output state
results obtained for quantum channels with correlated noisg given by

operators or more general quantum chanfiss].

Recently a model for quantum channels with memory has A(”)sz Tre[Ung, - Uig (po ® |OE1-~~ O )(Og, - OEn|)
been proposed that can consistently define quantum channels + _—
with Markovian correlated noisg9]. The model is also ex- XUig, Un,En] =(Aq® - ® Adpq, (2)

tended to describe channels that act on transmitted states \}vrhere the state, now represents @possibly entangled
such a way that there is no requirement for interactions W'tqnput state acrosg the-channel uses, the unitary operations
an environment within the model. !

In this Brief Report a single upper bound on the capacityU"Ei are all identical, and the environment state is a product

of a class of quantum memory channels is derived. Such state(Og,-0g )=|0g)) @ -+~ ®|0g,).

A. Unitary representation of memoryless channels

B. Unitary model for memory channels
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1050-2947/2005/78)/03431Q4)/$23.00 034310-1 ©2005 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW A1, 034310(2009

Uqume | #g)lim|0g) = Ek: \'/p_qu'V(ki)|¢Qi>|kM>|jEi>, (5)

El EZ E3
for py;, the transition probabilities of a Markov chain, is not
M M M a fixed-point channel, but d_isplays no ISl. !n this case, how-
ever, the channel may equivalently be defined by
a o o Uge | )liml0e) = 2 VPVl kli ke ), (6)
U, 5 | U, ! U, !

where the environment stattjskEi> are orthogonal. This re-

FIG. 1. Diagram of the model for a quantum memory channel.sults in a fixed-point channel with the equivalent output as
The initial memory state interacts with each transmitted quantunobtained from Eq.(5). If the representations of a given
stateQ; and environmen€;. The correlations between the error memory channel are treated as an equivalence class under
operators on each sta@ are determined by the unitary operation the input-output action of the channel, then for every channel
Ui and the memory state at each stage of the channel evolution. of the above type, there exists a fixed-point representation of

the channel. Whether this is true for arbitrary SI channels is

The general model thus includes a channel memdrand  not known. We may also conjecture that the types of memory
the independent environments for each qihitHence, channels that displagnly ISI may be represented as perfect
memory channels.

A pg = TrvelUnme, - Uime,(po ® om @ [Og, -+ Og )

X(Og, O DUy, -+~ Ul lil. ENTROPIC UPPER BOUNDS ON THE CAPACITY
The Fano inequality, combined with the Holevo upper
=Tru[Anm - Al ® o], (3 bound on the accessible informati¢see, e.g.[11]), pro-
vides an entropic upper bound on the classical information
wherewy, is the initial memory statep, and A™p, are the capacity of any quantum channel. Utilizing classical-
input and output states of the channel, respectively, and th@Jantum states of the form
trace over the environment is over all environment states.

— i
Figure 1 illustrates the action of the unitary operators on the PrRQ= §|: pilriril ® pg, (7)
input, memory, and environment states representing the
channel. where thdr;) form an orthonormal set, it is possible to derive

If the unitaries factor into independent unitaries acting onthe Holevo bound from the von Neumann mutual informa-
the memory and the combined state and environment—thdion bound over these classical-quantum stgid$ To view
is, Unme,=Ung Uv—then the memory traces out and we the upper bound in a more physically motivated setting we
have a memoryless channel. If the unitaries reduced,ty, ~ can note that any separable stafg, can be extended, in a
we can call it gperfectmemory channel, as no information is larger Hilbert space, to a stgtgg, in the form of Eq.(7). To
lost to the environment. The mapping of the memory stateshow this note that any separable state may be written in the
under the unitary operation also corresponds to a quantuf®rm
channel on the memory state. Memory channel representa- . ,
tions where the action on the memory state is independent of PrRQ™ 2 PiPR ® Pl (8
the input state are termdiked-pointmemory channels, as !
the memory state will have a fixed point under action of thegnd eachpiR may be purified into a direct sum of Hilbert

representation spacesi; with orthogonal support, such that
— A o
Olpgloy = Tro[Apm - Arulpg ® o) =wy (4 PRRQ EJ: plefR%XFfR# ® por 9

N = i
for all po. Fixed-point channels may also be seen to be sym¥here TE[FRQX?RQH"’R' Due to the monotonicity of the

bol independen(Sl), as the previous input states do not af-von Neumann mutual informatio&RR:Q)=S(R:Q), the
fect the action of the channel on the current input state. Thigipper bound may be expressed as
is opposed to channels with intersymbol interferefi&s),
where the previous input state affects the action of the chan- C= maxSRAQ), (10

. pRQeD
nel on the current input. An extreme example of an I1SI chan-
nel is the quantum shift channel, where each input state iwhere D is the set of all separable states. The maximum
replaced by the previous input state. There exist examples @mount of mutual information that may be generated through
Sl channels that are not fixed-point channels. The “classicala quantum channel is therefore bounded by the maximum
memory channel defined in terms of unitary Kraus error op-amount of “classical” correlation that may be shared by
erators by states through the channel. The upper bound on the classical
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capacity of a finite memory channel, which includes the clas- :||pQ ® wy ® |0g)0g| - P ® oy ® |0e)(Ogl|  (16)
sically correlated channels, is given [§]
. 1 =[lom = owll (17)
C=liminf max =S(RA™[wy]Q), (12) o
n—® proeDN and Eq.(14) is satisfied for all memory channels of the form

where A™[wy]Q=A™[wy]pq is the action of the channel of . (3) by simply makingd=e.

on the input state, with initial memory staig,, andD the _ _
set of separable states. This bound is known to be attainable B. Single upper bound on the capacity

whenever the channel is described by ). with unitary Following Gallager’s derivation for classical finite-state

Kraus Operatoré\/g) and the initial error prObabi”ties are Channe|s(FSC’Q [2], two classical Capacities may be de-
equal to the steady-state probabilities for the regular Mark0\fined The lower capacitg and the upper capacit§ are

chain. defined as

IV. INDECOMPOSABLE CHANNELS

1
= lim —mi A (D)
An indecomposable channel is one where the long-term ¢ imnrghlﬂnpg;zéS(R.A [om]Q),

behavior of the channel is independent of the initial channel
state. Memory channels with regular Markov correlated o

1
noise are an example of indecomposable channels. C=lim Emax max SRA™[wy]Q). (18
n—oll wy proeD
A. Trace distance and indecomposable memory channels —
beain by defining th di t both probabil It is obvious from the definitions th& < C, and we wish to
_ We begin by defining therace distanceof both probabil- * ~ yetermine channels for which equality holds. In order to
ity distributions and density operators. For probability distri- bound the difference in entropies for the output states of

. . . . 1

butions the trace distance is defined|[®-Q||=5Zilpi=ail,  channels with different initial memory states, we utilize
for distributions P={p;} and Q={q;}, where both distribu- F5nnes inequality12]

tions share the index set 7 [11]. For density operators the

trace distance is defined pkl] loge

|S(w) - S(0))| $||w‘(7|||09d+T. (19
1
lp= ol = 5TI’|p ~ o, (12 \whered is the dimension of the Hilbert space for the states

—_— ) . o ando. From this we can see that
where |[F|=\F'F, taking the positive square root. A finite-

memory quantum channelilsdecomposablé for any input 1 1
state p and >0 there exists arN(e) such that, forn n|S(A[“’]p)_S(A[‘T]p)| =n IA[w]p = Alo]plllog d”
=N(e),
. loge (20)
lom(n.p) = ou(n.p)l < e, (13 e
where wy(n,p) and oy (n,p) are the memory states after
uses of the channel for the initial memory staéggand oy, _ loge
respectively. The long-term behavior of an indecomposable =[Alw]p = Alolpllogd + ne ’ (21)

channel is therefore independent of the initial memory state. ) .

Fixed-point channels for which the map on the memory stat@nd by showing the trace distance of the output states may be
is a strictly contractive mappinfpoy - ®aoy|<|loy-oy|,  Made arbitrarily small for any input stage the entropies of

are automatically indecomposable. The behavior of thdhe output states must converge asymptotically. Given any
memory state is of fundamental importance due to the facf= 0, then there exists aN(e) such that the trace distance
that memory channels that may be represented in the form d¥etween the memory states is less tkaihus forn>N(e)

Eq. (3) are memory continuousA channel is memory con- Wwe have

tinuous if for anye>0 there exists &>0 such that

1 1
low = ol < 80 [Alwwlpo - Alowlpgl < €. (14) H|S(A[w]P) - S(Alolp)| < HHS(A[w(N)]P) - S(A[a(N)]p)|

Note that the trace distance is monotorie—w||=|¥p 1
-V for any trace-preserving quantum operatioh. +N(6)|09d]$a [n-N(e)]
Hence, for¥ the partial trace operatiofipro—wrd| =[P
- wgl|. Furthermore, due to the unitary invariance of the trace X||[ALo(N)]p = Alo(N)]p|log d
distance, we find o
+ ie+ N(e)log d] < elogd
[ALwmlpg = Alomlpgll < [|Ugmelpg © @y ® [O0)(Og] e
- po ® oy ® |0p)0g)) UL loge N(e)logd
pq ® oy ® [0X(O0))Uguel ,loge (e)log (1-0. (22
(15 ne
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whereA[w(N)] andA[o(N)] denote the channels with initial V. CONCLUSION
memorieswy, andoy, acting on input statel(e)+1 ton, and
the maximum difference in entropy for the fifste) output A single upper bound on the capacity for the class of

states is bounded bi(e)log d. Therefore, takinn— in  indecomposable quantum memory channels has been de-
Eq. (22), the average entropies converge asymptotically fokjved. The question of whether there exist codes to eventu-
any statep. The difference between the upper bou@and ally achieve such a bound is a challenging task that will be

C must therefore also converge asymptotically. addressed in future works.
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