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The maximum rates for information transmission through noisy quantum channels has primarily been de-
veloped for memoryless channels, where the noise on each transmitted state is treated as independent. Many
real-world communication channels experience noise which is modeled better by errors that are correlated
between separate channel uses. In this Brief Report, upper bounds on the classical information capacities of a
class of quantum memory channels are derived. The class of channels consists of indecomposable quantum
memory channels, a generalization of classical indecomposable finite-state channels.
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I. INTRODUCTION

Communication of information requires an encoding of
the information into a physical system. The laws of physics
therefore govern the limits on processing and communication
of information. By modeling real-world noise in terms of
simpler models, the maximum rate for information transfer
may be obtained. The seminal work of Shannonf1g showed
that a memoryless noisy channel, where the noise acts inde-
pendently on each symbol sent through the channel, can be
parametrized by a single quantity, the capacity of the chan-
nel, C. Shannon defined the capacity as the maximum rate
that information may be sent through a channel, and he also
showed that there exist codes that asymptotically achieve
this rate with a vanishing probability of error. The work of
Shannon has been extended to include channels with
“memory,” where the noise is no longer independent of past
channel usesf2g or where the channel consists of an arbitrary
transformation of the input statesf3g.

Encoding classical information into quantum states of
physical systems gives a physical implementation of the con-
structs of information theory. The majority of research into
quantum communication channels has focused on the memo-
ryless case, although there have been a number of important
results obtained for quantum channels with correlated noise
operators or more general quantum channelsf4–8g.

Recently a model for quantum channels with memory has
been proposed that can consistently define quantum channels
with Markovian correlated noisef9g. The model is also ex-
tended to describe channels that act on transmitted states in
such a way that there is no requirement for interactions with
an environment within the model.

In this Brief Report a single upper bound on the capacity
of a class of quantum memory channels is derived. Such a

class is the quantum analog of classical indecomposable
channels for which the effect of the initial channel state dies
away with timef2g.

II. UNITARY REPRESENTATIONS OF QUANTUM
CHANNELS

A quantum channel is defined as a completely positive,
trace-preserving map from the set of density operators to
itself. Any such map may be represented as a unitary opera-
tion between the system state and an environment with a
known initial statef10g.

A. Unitary representation of memoryless channels

Memoryless quantum channels act on each input state in-
dependently of the previous input or output states. For a
single-channel use the output state is given by

LrQ = TrEfUQEsrQ ^ u0Elk0EudUQE
† g, s1d

with rQ the input state,u0Elk0Eu the initial state of the envi-
ronment,UQE a unitary operation between the stateQ and
environmentE, andLrQ the output state. For a sequence of
transmissions through a memoryless channel, the output state
is given by

LsndrQ = TrEfUn,En
¯ U1,E1

srQ ^ u0E1
¯ 0En

lk0E1
¯ 0En

ud

3 U1,E1

†
¯ Un,En

† g = sLn ^ ¯ ^ L1drQ, s2d

where the staterQ now represents aspossibly entangledd
input state across then-channel uses, the unitary operations
Ui,Ei

are all identical, and the environment state is a product
stateu0E1

¯0En
l= u0E1

l ^ ¯ ^ u0En
l.

B. Unitary model for memory channels

One model of a quantum memory channel is where each
state going through the channel acts with a unitary interac-
tion on the same channel memory state, as well as an inde-
pendent environment. The back action of the channel state on
the message state therefore gives a memory to the channel.
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The general model thus includes a channel memoryM and
the independent environments for each qubitEi. Hence,

LsndrQ = TrMEfUn,MEn
¯ U1,ME1

srQ ^ vM ^ u0E1
¯ 0En

l

3k0E1
¯ 0En

udU1,ME1

†
¯ Un,MEn

† g

= TrMfLn,M ¯ L1,MsrQ ^ vMdg, s3d

wherevM is the initial memory state,rQ andLsndrQ are the
input and output states of the channel, respectively, and the
trace over the environment is over all environment states.
Figure 1 illustrates the action of the unitary operators on the
input, memory, and environment states representing the
channel.

If the unitaries factor into independent unitaries acting on
the memory and the combined state and environment—that
is, Un,MEn

=Un,En
UM—then the memory traces out and we

have a memoryless channel. If the unitaries reduce toUn,M,
we can call it aperfectmemory channel, as no information is
lost to the environment. The mapping of the memory state
under the unitary operation also corresponds to a quantum
channel on the memory state. Memory channel representa-
tions where the action on the memory state is independent of
the input state are termedfixed-pointmemory channels, as
the memory state will have a fixed point under action of the
representation

FfrQgvM ; TrQfLn,M ¯ L1,MsrQ ^ vMdg = vM s4d

for all rQ. Fixed-point channels may also be seen to be sym-
bol independentsSId, as the previous input states do not af-
fect the action of the channel on the current input state. This
is opposed to channels with intersymbol interferencesISId,
where the previous input state affects the action of the chan-
nel on the current input. An extreme example of an ISI chan-
nel is the quantum shift channel, where each input state is
replaced by the previous input state. There exist examples of
SI channels that are not fixed-point channels. The “classical”
memory channel defined in terms of unitary Kraus error op-
erators by

UQiMEi
ufQi

lu jMlu0Ei
l = o

k

Îpku jVk
sidufQi

lukMlu jEi
l, s5d

for pku j, the transition probabilities of a Markov chain, is not
a fixed-point channel, but displays no ISI. In this case, how-
ever, the channel may equivalently be defined by

ŨQiMEi
ufQi

lu jMlu0Ei
l = o

k

Îpku jVk
sidufQi

lukMlu j ,kEi
l, s6d

where the environment statesu j ,kEi
l are orthogonal. This re-

sults in a fixed-point channel with the equivalent output as
obtained from Eq.s5d. If the representations of a given
memory channel are treated as an equivalence class under
the input-output action of the channel, then for every channel
of the above type, there exists a fixed-point representation of
the channel. Whether this is true for arbitrary SI channels is
not known. We may also conjecture that the types of memory
channels that displayonly ISI may be represented as perfect
memory channels.

III. ENTROPIC UPPER BOUNDS ON THE CAPACITY

The Fano inequality, combined with the Holevo upper
bound on the accessible informationssee, e.g.,f11gd, pro-
vides an entropic upper bound on the classical information
capacity of any quantum channel. Utilizing classical-
quantum states of the form

rRQ= o
i

piur ilkr iu ^ rQ
i , s7d

where theur il form an orthonormal set, it is possible to derive
the Holevo bound from the von Neumann mutual informa-
tion bound over these classical-quantum statesf11g. To view
the upper bound in a more physically motivated setting we
can note that any separable staterRQ can be extended, in a
larger Hilbert space, to a staterRR̄Q in the form of Eq.s7d. To
show this note that any separable state may be written in the
form

rRQ= o
j

pjrR
j

^ rQ
j s8d

and eachrR
j may be purified into a direct sum of Hilbert

spacesH
R̄

j
with orthogonal support, such that

rRR̄Q = o
j

pjur̄RR̄j

j lkr̄
RR̄j

j u ^ rQ
j , s9d

where TrR̄fur̄
RR̄j

j lkr̄
RR̄j

j ug=rR
j . Due to the monotonicity of the

von Neumann mutual informationSsRR̄:QdùSsR:Qd, the
upper bound may be expressed as

C ø max
rRQPD

SsR:LQd, s10d

where D is the set of all separable states. The maximum
amount of mutual information that may be generated through
a quantum channelL is therefore bounded by the maximum
amount of “classical” correlation that may be shared by
states through the channel. The upper bound on the classical

FIG. 1. Diagram of the model for a quantum memory channel.
The initial memory state interacts with each transmitted quantum
stateQi and environmentEi. The correlations between the error
operators on each stateQi are determined by the unitary operation
Ui and the memory state at each stage of the channel evolution.
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capacity of a finite memory channel, which includes the clas-
sically correlated channels, is given byf9g

C = lim inf
n→`

max
rRQPD

1

n
SsR:LsndfvMgQd, s11d

whereLsndfvMgQ=LsndfvMgrQ is the action of the channel
on the input state, with initial memory statevM, andD the
set of separable states. This bound is known to be attainable
whenever the channel is described by Eq.s6d with unitary
Kraus operatorsVk

sid and the initial error probabilities are
equal to the steady-state probabilities for the regular Markov
chain.

IV. INDECOMPOSABLE CHANNELS

An indecomposable channel is one where the long-term
behavior of the channel is independent of the initial channel
state. Memory channels with regular Markov correlated
noise are an example of indecomposable channels.

A. Trace distance and indecomposable memory channels

We begin by defining thetrace distanceof both probabil-
ity distributions and density operators. For probability distri-
butions the trace distance is defined asiP−Qi= 1

2oiupi −qiu,
for distributions P=hpij and Q=hqij, where both distribu-
tions share the index seti PI f11g. For density operators the
trace distance is defined asf11g

ir − vi =
1

2
Trur − vu, s12d

where uFu=ÎF†F, taking the positive square root. A finite-
memory quantum channel isindecomposableif for any input
state r and e.0 there exists anNsed such that, forn
ùNsed,

ivMsn,rd − sMsn,rdi ø e, s13d

wherevMsn,rd and sMsn,rd are the memory states aftern
uses of the channel for the initial memory statesvM andsM,
respectively. The long-term behavior of an indecomposable
channel is therefore independent of the initial memory state.
Fixed-point channels for which the map on the memory state
is a strictly contractive mappingiFvM −FsMi, ivM −sMi,
are automatically indecomposable. The behavior of the
memory state is of fundamental importance due to the fact
that memory channels that may be represented in the form of
Eq. s3d are memory continuous. A channel is memory con-
tinuous if for anye.0 there exists ad.0 such that

ivM − sMi ø d ⇒ iLfvMgrQ − LfsMgrQi ø e. s14d

Note that the trace distance is monotonicir−viù iCr
−Cvi for any trace-preserving quantum operationC.
Hence, forC the partial trace operationirRQ−vRQiù irQ
−vQi. Furthermore, due to the unitary invariance of the trace
distance, we find

iLfvMgrQ − LfsMgrQi ø iUQMEsrQ ^ vM ^ u0Elk0Eu

− rQ ^ sM ^ u0Elk0EudUQME
† i

s15d

=irQ ^ vM ^ u0Elk0Eu − rQ ^ sM ^ u0Elk0Eui s16d

=ivM − sMi s17d

and Eq.s14d is satisfied for all memory channels of the form
of Eq. s3d by simply makingd=e.

B. Single upper bound on the capacity

Following Gallager’s derivation for classical finite-state
channelssFSC’sd f2g, two classical capacities may be de-

fined. The lower capacityC and the upper capacityC̄ are
defined as

C = lim
n→`

1

n
min
vM

max
rRQPD

SsR:LsndfvMgQd,

C̄ = lim
n→`

1

n
max
vM

max
rRQPD

SsR:LsndfvMgQd. s18d

It is obvious from the definitions thatCø C̄, and we wish to
determine channels for which equality holds. In order to
bound the difference in entropies for the output states of
channels with different initial memory states, we utilize
Fannes inequalityf12g

uSsvd − Sssdu ø iv − silog d +
log e

e
, s19d

whered is the dimension of the Hilbert space for the statesv
ands. From this we can see that

1

n
uSsLfvgrd − SsLfsgrdu ø

1

n
FiLfvgr − Lfsgrilog dn

+
log e

e
G s20d

=iLfvgr − Lfsgrilog d +
log e

ne
, s21d

and by showing the trace distance of the output states may be
made arbitrarily small for any input stater, the entropies of
the output states must converge asymptotically. Given any
e.0, then there exists anNsed such that the trace distance
between the memory states is less thane. Thus forn@Nsed
we have

1

n
uSsLfvgrd − SsLfsgrdu ø

1

n
fuS„LfvsNdgr… − S„LfssNdgr…u

+ Nsedlog dg ø
1

n
Ffn − Nsedg

3iLfvsNdgr − LfssNdgrilog d

+
log e

e
+ Nsedlog dG ø e log d

+
log e

ne
+

Nsedlog d

n
s1 − ed, s22d
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whereLfvsNdg andLfssNdg denote the channels with initial
memoriesvM andsM acting on input statesNsed+1 ton, and
the maximum difference in entropy for the firstNsed output
states is bounded byNsedlog d. Therefore, takingn→` in
Eq. s22d, the average entropies converge asymptotically for

any stater. The difference between the upper boundsC̄ and
C must therefore also converge asymptotically.

V. CONCLUSION

A single upper bound on the capacity for the class of
indecomposable quantum memory channels has been de-
rived. The question of whether there exist codes to eventu-
ally achieve such a bound is a challenging task that will be
addressed in future works.
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