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Cluster states from Heisenberg interactions
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We show that a special type of entangled states, cluster states, can be created with Heisenberg interactions
and local rotations in @ steps wheral is the dimension of the lattice. We find that, by tuning the coupling
strengths, anisotropic exchange interactions can also be employed to create cluster states. Finally, we propose
electron spins in quantum dots as a possible realization of a one-way quantum computer based on cluster states.
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[. INTRODUCTION dots as a physical realization of this proposal.
Entanglement plays a crucial role in quantum information
processing 1]. Quantum algorithmséin particular, Shor’s al- Il. CLUSTER STATES

gorithm, to find the prime factors of ambit intege) exploit

entanglement to speed up computation. In addition, quantum A cluster statd 2] is an entangled state which has special
communication protocols use entangled states as a mediufeatures suitable for implementing a quantum computer on
to send information through quantum channels. Howeveran array of qubits. According to this scheme, we can obtain a
creating entangled states is a great challenge for both theatuster state by applying an Ising Hamiltoniéi=1),

retical and experimental physicists. Recently, Briegel and )

Raussendorf{2] introduced a special kind of entangled 1 —O'(Za) 1 —(r(za)

states, the so-called cluster states, which can be created via H=g(0) X 2 2 1)

an Ising Hamiltoniari3]. These states are eigenstates of cer- @a’)

tain correlation operatosee Eqs(5) and(6) below]. Ithas  on a special kind of initial state. Herei? i e {x,y,z} are
been shown that via cluster states, one can implement g5y|i matrices at lattice site and(a,a’) denotes thaa’ is

quz_;lntu_m computer on a lattice of qubits. In this proposal,me nearest neighbor af. Furthermoreg(t) allows for a
which is known as “one way quantum computer,” informa-

S . he ol 4 and read ¢ ossible overall time dependence. To be specific, consider a
tion is written onto the cluster, processed, and read out rorﬁubit chain[see Fig. 1a)] prepared initially in a product state
the cluster by one-qubit measuremepts In other words,

L =®,|+)a, Where indexa refers to the sites of the qubits
all types of quantum circuits and quantum gates can b P =84 +)a d

. : . . . nd |+), is eigenstate ot with eigenvalue 1. The time

implemented on the lattice of qubits by single-qubit mea- /a x 2 ;

surements only. The entangled state of the cluster thereb%/vomt'on operator for the qubit chain is then given by

serves as a universal resource for any quantum computation. _ 1-0@1-g8

However, in this model, cluster states are created with an U() =exp —i 62 — =+~ (2
a

Ising interaction, which may be difficult to realize, in par- 2 2

ticular in a solid-state system. Here, we propose an alternagith ¢=g(t)dt. From now on we assume thét  [2]. Be-
tive way to create the same states with a Heisenberg interagzyse the terms in the Ising Hamiltoniét) mutually com-

tion (isotropic exchange interactipnbut in several steps, muyte, we can decompose the evolution operator) into
where the number of steps depends on the dimension of thg,,_particle operators as follows:

lattice of cubic symmetry. Furthermore, we consider some

deviations from the Heisenberg Hamiltonian due, for ex- U= U(W)zr[u@aﬂ), (3)
ample, to lattice asymmetry, and obtain the same cluster state a

by tuning the exchange coupling strengths. It turns out that if

these coupling strengths satisfy certain conditions, which car (@

be tuned experimentally, we can obtain a cluster state, up tc. PP P S P NP NP S P WP
an overall phase. Following Rdf7], we propose a lattice of

electron spins in quantum dots as a possible realization of

this scheme in solid-state systems. In this system, electror ®)

spins in nearest-neighbor quantum dots are coupled via ;./ \ ./ \. ./ \‘ ./ \. ‘/ \ o

Heisenberg exchange interaction.

This paper is organized as follows: Sec. Il is devoted to a Fig. 1. (a) A one-dimensional clustea qubit chaii. The con-
brief introduction to cluster states. In Sec. Il we introduce annecting lines represent the interaction between nearest neighbors.
alternative way to create cluster states. Section Ill C considi) An alternative way to entangle a one-dimensional cluster. The
ers the anisotropic Heisenberg interaction between qubits ogubits which are connected by straight lines are entangled in the
a lattice and how to get cluster states via this interactionfirst step and those connected by semicircles are entangled in the
Finally, in Sec. IV, we propose electron spins in quantumsubsequent step.
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U@ = 1(1 4 ol@ 4 glarD) _ o) ey (4)  quenceU2UEAHYGH... “and then in a second step, the
sequencé)>3U“@SY6.D... |In other words, first we let qu-
ThereforeU is a product of two-qubit conditional phase pits 1-2, 3-4, 5-6, .. interact with each other, and then qubits
gates[1]. More generally we can define the cluster states a9-3, 4-5, 6-7,... [Fig. 1(b)]. We obtain the same resuf),
the eigenstates of the following correlation operators: but now we have entangled the qubits in our chadirwise
a _ p in each step. This means that each qubit is entangled with
K| $a)e = (= Dl o) ®) only one of Fi)ts nearest neighbors in eaqch step. In onge dimen-
sion, there are two nearest neighbors for each qubit, thus we
K® = Uia) ® U(zb): (6) entangle our chain in two steps.
benbghia) . . .
¢ We note thatU@aD | given by Eq.(4), describes a condi-
with k € {0,1} where “nbgh” means the set of all occupied tional phase shift. On the other hand, in RET] it was
nearest neighbor sites of side A cluster state is completely shown that this evolution operator can also be realized with a
specified by the eigenvalue E¢p) and it can be showfb]  Heisenberg Hamiltonian(obtained, e.g., via a Hubbard
that all states¢y,,)c are equally suitable for computation. mode) and local one-qubit rotationsee also next sectian
For simplicity we putx=0 for all lattice sites. The detailed Therefore the problem of generating a cluster state with a
proof of the above assertions and properties of cluster stateggisenberg interaction has been solved provided that in each
especially their application in implementing a one-way quan-step each qubit interacts with only one of its nearest neigh-
tum computer, have been given in Rd#] and[5]. We note  bors.
that in one dimension a cluster is a qubit chain with nearest-
neighbor interaction. However, in more than one dimension, B. Higher dimensions
the cluster does not have a regular shape. In the latter case, . . - .
qubits can be arranged in a multidimensional square lattice In two dlmensmns, t_he minimum number.of steps In-
such that only some of the lattice sites are occupied by qu(_:reases to 4 na two-d|_mens_|onal square lattice. In general
bits. A cluster is then defined as a set of qubits where angr a d-d|m_en5|_ona| cubic lattice, the minimum numbe_r of
eps required is® (Note that cluster states are only defined

two qubits are connected by a sequence of neighboring sit : . .
that are occupied by a qubit on lattices with cubic symmetry. See also the last paragraph

in Sec. ).
However, in dimensions higher than 1, there is no regular
Ill. CLUSTER STATES FROM HEISENBERG shape for an arbitrary cluster. How then can we obtain cluster
INTERACTION states with just @ steps? There may be several optimal ways

| h h lsing i __to do this but we mention only one. For simplicity, consider
Cluster states are produced through Ising intéractions, yq_dimensional cluster and suppose that this cluster can
However, an ideal Ising interaction is difficult to obtain in be contained within a rectangle afrows andm columns.
nature especially in a S%“d'State environment. S0, how cafo\, entangle all qubits in the cluster within each of these
such states be created? The usual spin-spin interaction {§,,s independentlyrecall that each row requires two steps
(nearly isotropic in spin space and is described by they, pe entangled Then, do the same for thie columns. There
Heisenberg Hamiltoniaft] is no need to worry about the qubits which are within the
__ D) 4 i) 4 ) rectangl_e but not part of the cluster, since they are excluded

H J% i g‘ Sf/ S/ Sﬁ gz ' @) automatically if we do not entangle them with their nearest
neighbors. The idea is the same &b+ 3 cubic lattice, except
that we would need six steps to entangle the cluster.

sh=(g s =15 (=1, 8

whereS" andSJ are spin§ operators at lattice sitésand], C. Anisotropic Heisenberg Hamiltonian

andJ is the exchange coupling constant, which is assumed to We do not consider the most general form of an aniso-
be constant for all spin pairs and is positieegativeé for  tropic Heisenberg model since it is beyond the scope of this
ferromagnetic (antiferromagnetic coupling. Next we de- work. Here we introduce a special case, knowsysmetric
scribe a method to create cluster states via Heisenberg immnisotropic Heisenberg modé@AH) which does not include

stead of Ising interaction. We start with one dimension andhe cross-spin terms. It has the following form in one dimen-
then generalize to higher dimensions. sion:

— (a,at+l)
A. One-dimensional case Hsan= % Hsar™ ©)
Recall that all operatort)®2 in U [Egs. (3) and (4)

above mutually commute and they can therefore be applied HEGY = a()SPS* + BHSPS™Y + HSPSHY.

in arbitrary order, i.e., at the same or different tinigse Fig. (10)
1(a)]. Suppose we have a one-dimensiohabubit chain
where all qubits are prepared in the) state. The initial state  This situation occurs for example, when our lattice does not
of the cluster is thertas beforg ®,..|+), and the indexa  have enough symmetry to use the isotropic interaction. How-
refers to the lattice site. The idea is to apply first the seever,
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[gpa@paﬂ),ng al] =, emphasize that the basic cornerstone of this method is that in
each step, each qubit can interact wathly one of its nearest

Op.g=xy.2 (11) neighbors. Generalizing the above method to higher dimen-
' A sions is straightforwar@see previous sectignTherefore we

Therefore these three terms in the Hamiltonian mutuallyhave shown that the problem of creating cluster states with
commute and consequently when we write the unitary evomore realistic interaction models other than Ising can be
lution operator for two adjacent qubitsl 22, it can be solved exactly.

decomposed into three unitary operators. The order of appli-

cation of these three operators does not matter, IV. PHYSICAL REALIZATION OF THE MODEL

In Refs.[7,10,17, a detailed scenario has been proposed

(aa+l) _ | j(@at+l)| j(@at+l) j(aat+l)
Usan == U™ “Uyy™ Uz (12) for how quantum computation may be achieved in a coupled
(@arD) _ @D quantum dots system. In this proposal, a qubit is realized as
U™ ™ =exp=i Iy ) (13)  the spin of the excess electron on a single-electron quantum
dot. A mechanism has been proposed there for two-qubit
U;::;,aﬂ) =exg-iJ, aga+ly (14) ~ Qquantum-gate operation that operates by a purely electrical

gating of the tunneling barrier between neighboring quantum
U@aD = gxg—j J, SASED) (15) dots, rather than by spectroscopic manipulation as in other
2z z : models. Consider two quantum dots which are labeled by

Now, according to our alternative method to create clusterl @nd “2” and coupled to each other via exchange interac-

states, if the coefficients, 8, and y satisfy the followin tion (see below If the barrier potential is “high,” tunneling
conditions: A 4 bt g is forbidden between dots, and the qubit states are held stably

without evolution in time(t). If the barrier is pulsed to a

“low” voltage, the usual physics of the Hubbard mogé]
Jx= | a(t)dt=4nm, (16) says that the spins will be subject to a transient Heisenberg
coupling,
=J1SY .52
3= f Bt)dt= amr, 17) H=J(S" - $?, (20

whereJ(t) is the time-dependent exchange constant which is
produced by the turning on and off of the tunneling matrix
_ _ element7,10!.

Jzz_f ADdt=(2k+ ), (18) For instance, a quantuRDR gate is obtained by a simple
(aas) sequence of operatiofg]:

wheren,m, and k are arbitrary integers, thed and , , ,
# Uxor= € ™% ™28 ylzgms ylz - (21)

Uga’a‘“l) are justunity operators(up to a minus sighand do swo
not affect the initial stat¢8]. If we could tune these coeffi- whereU, is a swap gate, created in this model via Heisen-
cients properly in our lattice, we would get the same cluster sw ’

. . oD . . .
states, up to some loc@ingle-qubi} operations. The crucial P€rg interaction, ané™ , etc., are single-qubit operations
(@a+l) 404 j@lard g0 oo commute and only, which can be realized by applying local Zeeman inter-

oint is thatU ; ) ) .
b SAH SAH action. (It has been established thedr along with single-

thereby wecannotdecomposeJsay, the total evolution op- bi ) b bled 10 d
erator of the cluster with a SAH interaction, into two-qubit 9UPIt Operations may be assembled to do any quantum com-
utation[12].) Note that thexor of Eqg. (21) is given in the

evolution operators. This is why we need at least two steps tp~© . - .
P y P asis where it has the form of a conditional phase-shift op-

entangle the chain. - . ) . .
In general, when the Hamiltonian includes cross-spint'ation; the standarkor is obtained by a simple basis

terms [the asymmetric anisotropic Heisenberg model€Nange for qubit “2.” According to Eq21), we need five

(AAH)], the problem cannot be solved exactly because th teps to realize anor gate. However, in Refl13] it has
terms in the AAH Hamiltonian do not mutually commute. PEEN shown that for a certain choice of system parameters

There is still a hope of solving this problem if we have the(for example, opposite direction of the lodafields), we can
following interaction between spif§]: generate arxor gate in one step. The crucial observation

now is that thexor operation can be written d§] Uyog
HEa = a'(t)ga)sﬁﬂ) + ,3’(03/3) &l 4/ (1SS, :l+5%1)+5(22)—25<21)s(22), which has exactly the same form as
(19) u@a*in Eq. (4). In other words, we can generate the op-

erationU@2"D (and thus the cluster stajesith the Heisen-

Again, the terms in this Hamiltonian mutually commute andPerg interaction as described, e.g., by the sequence in Eq.
we can decompose the two-qubit evolution operator like2D). We fmally_ note that an glternanve way to achieve the
above. However, this Hamiltonian is related to the previous<©OR o operation W 'S gven by [7]  Uxor
Hamiltonian (10) via a single-qubit unitary transformation =€ ™ U_L%7 (725, U g% UL2 This form has the po-
(through /2 rotation of one of the spins about theaxis)  tential advantage that the single qubit operations involve

and therefore both have the same structure. In the end, wanly spin 1.
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The mechanisms described above for performing gate op- V. CONCLUDING REMARKS
erations with spin qubits are independent of the details of the
pulse shap®(t), whereP stands for the exchange couplidg ac

or the Zeeman interaction. It is only the value of the integralpioh, s yseful for solid-state systems. In this method the
oP(t)dt(mod 2m) which determines the quantum gate 8C-qubits in the cluster are entangled pairwise, leading do 2
tion. This is true provided that the parametd?®) are  gieps ind-dimensional cubic lattices. Furthermore, by tuning
;wnched gdlapatlcally, guaranteeing the vaI|d|ty_ of the effecype coupling strengths of the interaction, it is possible to
tive Hamiltonian Eq.(20). The unwanted admixture of a create cluster states via anisotropic Heisenberg exchange in-

state with double occupation of a dot in the final state isieraction. Experimentally, these cluster states can be gener-
found to be tiny if a suitable pulse is used and the adiabaticateq in coupled quantum dots or similar systems.

ity criterion is fulfilled [14,15.

We note that as long as &®R (or CNOT) gate is realized,
cluster stategand consequently, a one-way quantum com-
puten can be generated. This result does not depend on the We are grateful to W. A. Coish, H. Gassmann, and J.
type of interaction in the system. Therefore other proposal§chliemann, for helpful discussions. This work has been sup-
such as trapped idri6] and superconducting qubits7] can  ported by the Swiss NSF, NCCR Nanoscience, DARPA, and
be used as well to create cluster states. ARO.

In summary, an alternative way, using Heisenberg inter-
tion between qubits, was introduced to create cluster states
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