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We show that a special type of entangled states, cluster states, can be created with Heisenberg interactions
and local rotations in 2d steps whered is the dimension of the lattice. We find that, by tuning the coupling
strengths, anisotropic exchange interactions can also be employed to create cluster states. Finally, we propose
electron spins in quantum dots as a possible realization of a one-way quantum computer based on cluster states.
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I. INTRODUCTION

Entanglement plays a crucial role in quantum information
processingf1g. Quantum algorithmssin particular, Shor’s al-
gorithm, to find the prime factors of ann-bit integerd exploit
entanglement to speed up computation. In addition, quantum
communication protocols use entangled states as a medium
to send information through quantum channels. However,
creating entangled states is a great challenge for both theo-
retical and experimental physicists. Recently, Briegel and
Raussendorff2g introduced a special kind of entangled
states, the so-called cluster states, which can be created via
an Ising Hamiltonianf3g. These states are eigenstates of cer-
tain correlation operatorsfsee Eqs.s5d ands6d belowg. It has
been shown that via cluster states, one can implement a
quantum computer on a lattice of qubits. In this proposal,
which is known as “one way quantum computer,” informa-
tion is written onto the cluster, processed, and read out from
the cluster by one-qubit measurementsf4g. In other words,
all types of quantum circuits and quantum gates can be
implemented on the lattice of qubits by single-qubit mea-
surements only. The entangled state of the cluster thereby
serves as a universal resource for any quantum computation.
However, in this model, cluster states are created with an
Ising interaction, which may be difficult to realize, in par-
ticular in a solid-state system. Here, we propose an alterna-
tive way to create the same states with a Heisenberg interac-
tion sisotropic exchange interactiond, but in several steps,
where the number of steps depends on the dimension of the
lattice of cubic symmetry. Furthermore, we consider some
deviations from the Heisenberg Hamiltonian due, for ex-
ample, to lattice asymmetry, and obtain the same cluster state
by tuning the exchange coupling strengths. It turns out that if
these coupling strengths satisfy certain conditions, which can
be tuned experimentally, we can obtain a cluster state, up to
an overall phase. Following Ref.f7g, we propose a lattice of
electron spins in quantum dots as a possible realization of
this scheme in solid-state systems. In this system, electron
spins in nearest-neighbor quantum dots are coupled via a
Heisenberg exchange interaction.

This paper is organized as follows: Sec. II is devoted to a
brief introduction to cluster states. In Sec. III we introduce an
alternative way to create cluster states. Section III C consid-
ers the anisotropic Heisenberg interaction between qubits on
a lattice and how to get cluster states via this interaction.
Finally, in Sec. IV, we propose electron spins in quantum

dots as a physical realization of this proposal.

II. CLUSTER STATES

A cluster statef2g is an entangled state which has special
features suitable for implementing a quantum computer on
an array of qubits. According to this scheme, we can obtain a
cluster state by applying an Ising Hamiltonians"=1d,

H = gstd o
ka,a8l

1 − sz
sad

2

1 − sz
sa8d

2
, s1d

on a special kind of initial state. Here,si
sad , i P hx,y,zj are

Pauli matrices at lattice sitea and ka,a8l denotes thata8 is
the nearest neighbor ofa. Furthermore,gstd allows for a
possible overall time dependence. To be specific, consider a
qubit chainfsee Fig. 1sadg prepared initially in a product state
uf0l=‹au+la, where indexa refers to the sites of the qubits
and u+la is eigenstate ofsx

sad with eigenvalue 1. The time
evolution operator for the qubit chain is then given by

Usud = expS− i uo
a

1 − sz
sad

2

1 − sz
sa+1d

2 D , s2d

with u=egstddt. From now on we assume thatu=p f2g. Be-
cause the terms in the Ising Hamiltonians1d mutually com-
mute, we can decompose the evolution operatorUspd into
two-particle operators as follows:

U ; Uspd = p
a

Usa,a+1d, s3d

FIG. 1. sad A one-dimensional clustersa qubit chaind. The con-
necting lines represent the interaction between nearest neighbors.
sbd An alternative way to entangle a one-dimensional cluster. The
qubits which are connected by straight lines are entangled in the
first step and those connected by semicircles are entangled in the
subsequent step.
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Usa,a+1d = 1
2s1 + sz

sad + sz
sa+1d − sz

sadsz
sa+1dd. s4d

ThereforeU is a product of two-qubit conditional phase
gatesf1g. More generally we can define the cluster states as
the eigenstates of the following correlation operators:

KsadufhkjlC = s− 1dkaufhkjlC, s5d

Ksad ; sx
sad ‹

bPnbghsad
sz

sbd, s6d

with kP h0,1j where “nbgh” means the set of all occupied
nearest neighbor sites of sitea. A cluster state is completely
specified by the eigenvalue Eq.s5d and it can be shownf5g
that all statesufhkjlC are equally suitable for computation.
For simplicity we putk=0 for all lattice sites. The detailed
proof of the above assertions and properties of cluster states,
especially their application in implementing a one-way quan-
tum computer, have been given in Refs.f4g andf5g. We note
that in one dimension a cluster is a qubit chain with nearest-
neighbor interaction. However, in more than one dimension,
the cluster does not have a regular shape. In the latter case,
qubits can be arranged in a multidimensional square lattice
such that only some of the lattice sites are occupied by qu-
bits. A cluster is then defined as a set of qubits where any
two qubits are connected by a sequence of neighboring sites
that are occupied by a qubit.

III. CLUSTER STATES FROM HEISENBERG
INTERACTION

Cluster states are produced through Ising interactions.
However, an ideal Ising interaction is difficult to obtain in
nature especially in a solid-state environment. So, how can
such states be created? The usual spin-spin interaction is
snearlyd isotropic in spin space and is described by the
Heisenberg Hamiltonianf6g

H = − Jo
ki j l

Sx
sidSx

s jd + Sy
sidSy

s jd + Sz
sidSz

s jd, s7d

SW sid = sSx
sid,Sy

sid,Sz
sidd = 1

2sW sid s" = 1d, s8d

whereSW sid andSW s jd are spin-12 operators at lattice sitesi and j ,
andJ is the exchange coupling constant, which is assumed to
be constant for all spin pairs and is positivesnegatived for
ferromagnetic santiferromagneticd coupling. Next we de-
scribe a method to create cluster states via Heisenberg in-
stead of Ising interaction. We start with one dimension and
then generalize to higher dimensions.

A. One-dimensional case

Recall that all operatorsUsa,a+1d in U fEqs. s3d and s4d
aboveg mutually commute and they can therefore be applied
in arbitrary order, i.e., at the same or different timesfsee Fig.
1sadg. Suppose we have a one-dimensionalN-qubit chain
where all qubits are prepared in theu+l state. The initial state
of the cluster is thensas befored ‹aPCu+la, and the indexa
refers to the lattice site. The idea is to apply first the se-

quenceUs1,2dUs3,4dUs5,6d
¯ , and then in a second step, the

sequenceUs2,3dUs4,5dUs6,7d
¯. In other words, first we let qu-

bits 1-2, 3-4, 5-6,… interact with each other, and then qubits
2-3, 4-5, 6-7,… fFig. 1sbdg. We obtain the same results3d,
but now we have entangled the qubits in our chainpairwise
in each step. This means that each qubit is entangled with
only one of its nearest neighbors in each step. In one dimen-
sion, there are two nearest neighbors for each qubit, thus we
entangle our chain in two steps.

We note thatUsa,a+1d, given by Eq.s4d, describes a condi-
tional phase shift. On the other hand, in Ref.f7g it was
shown that this evolution operator can also be realized with a
Heisenberg Hamiltoniansobtained, e.g., via a Hubbard
modeld and local one-qubit rotationsssee also next sectiond.
Therefore the problem of generating a cluster state with a
Heisenberg interaction has been solved provided that in each
step each qubit interacts with only one of its nearest neigh-
bors.

B. Higher dimensions

In two dimensions, the minimum number of steps in-
creases to 4 in a two-dimensional square lattice. In general
for a d-dimensional cubic lattice, the minimum number of
steps required is 2d. sNote that cluster states are only defined
on lattices with cubic symmetry. See also the last paragraph
in Sec. IId.

However, in dimensions higher than 1, there is no regular
shape for an arbitrary cluster. How then can we obtain cluster
states with just 2d steps? There may be several optimal ways
to do this but we mention only one. For simplicity, consider
a two-dimensional cluster and suppose that this cluster can
be contained within a rectangle ofn rows andm columns.
Now, entangle all qubits in the cluster within each of thesen
rows independentlysrecall that each row requires two steps
to be entangledd. Then, do the same for them columns. There
is no need to worry about the qubits which are within the
rectangle but not part of the cluster, since they are excluded
automatically if we do not entangle them with their nearest
neighbors. The idea is the same ford=3 cubic lattice, except
that we would need six steps to entangle the cluster.

C. Anisotropic Heisenberg Hamiltonian

We do not consider the most general form of an aniso-
tropic Heisenberg model since it is beyond the scope of this
work. Here we introduce a special case, known assymmetric
anisotropic Heisenberg modelsSAHd which does not include
the cross-spin terms. It has the following form in one dimen-
sion:

HSAH = o
a

HSAH
sa,a+1d, s9d

HSAH
sa,a+1d = astdSx

sadSx
sa+1d + bstdSy

sadSy
sa+1d + gstdSz

sadSz
sa+1d.

s10d

This situation occurs for example, when our lattice does not
have enough symmetry to use the isotropic interaction. How-
ever,
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fSp
sadSp

sa+1d,Sq
sadSq

sa+1dg = 0,

∀p,q = x,y,z. s11d

Therefore these three terms in the Hamiltonian mutually
commute and consequently when we write the unitary evo-
lution operator for two adjacent qubits,USAH

sa,a+1d, it can be
decomposed into three unitary operators. The order of appli-
cation of these three operators does not matter,

USAH
sa,a+1d = Uxx

sa,a+1dUyy
sa,a+1dUzz

sa,a+1d, s12d

Uxx
sa,a+1d = exps− i JxxSx

sadSx
sa+1dd, s13d

Uyy
sa,a+1d = exps− i JyySy

sadSy
sa+1dd, s14d

Uzz
sa,a+1d = exps− i JzzSz

sadSz
sa+1dd. s15d

Now, according to our alternative method to create cluster
states, if the coefficientsa ,b, and g satisfy the following
conditions:

Jxx =E astddt = 4np, s16d

Jyy =E bstddt = 4mp, s17d

Jzz=E gstddt = s2k + 1dp, s18d

where n,m, and k are arbitrary integers, thenUxx
sa,a+1d and

Uyy
sa,a+1d are justunity operatorssup to a minus signd and do

not affect the initial statef8g. If we could tune these coeffi-
cients properly in our lattice, we would get the same cluster
states, up to some localssingle-qubitd operations. The crucial
point is that USAH

sa,a+1d and USAH
sa+1,a+2d do not commute and

thereby wecannotdecomposeUSAH, the total evolution op-
erator of the cluster with a SAH interaction, into two-qubit
evolution operators. This is why we need at least two steps to
entangle the chain.

In general, when the Hamiltonian includes cross-spin
terms fthe asymmetric anisotropic Heisenberg model
sAAH dg, the problem cannot be solved exactly because the
terms in the AAH Hamiltonian do not mutually commute.
There is still a hope of solving this problem if we have the
following interaction between spinsf9g:

HAAH
sa,a+1d = a8stdSx

sadSy
sa+1d + b8stdSy

sadSx
sa+1d + g8stdSz

sadSz
sa+1d.

s19d

Again, the terms in this Hamiltonian mutually commute and
we can decompose the two-qubit evolution operator like
above. However, this Hamiltonian is related to the previous
Hamiltonian s10d via a single-qubit unitary transformation
sthroughp /2 rotation of one of the spins about thez axisd
and therefore both have the same structure. In the end, we

emphasize that the basic cornerstone of this method is that in
each step, each qubit can interact withonly one of its nearest
neighbors. Generalizing the above method to higher dimen-
sions is straightforwardssee previous sectiond. Therefore we
have shown that the problem of creating cluster states with
more realistic interaction models other than Ising can be
solved exactly.

IV. PHYSICAL REALIZATION OF THE MODEL

In Refs.f7,10,11g, a detailed scenario has been proposed
for how quantum computation may be achieved in a coupled
quantum dots system. In this proposal, a qubit is realized as
the spin of the excess electron on a single-electron quantum
dot. A mechanism has been proposed there for two-qubit
quantum-gate operation that operates by a purely electrical
gating of the tunneling barrier between neighboring quantum
dots, rather than by spectroscopic manipulation as in other
models. Consider two quantum dots which are labeled by
“1” and “2” and coupled to each other via exchange interac-
tion ssee belowd. If the barrier potential is “high,” tunneling
is forbidden between dots, and the qubit states are held stably
without evolution in timestd. If the barrier is pulsed to a
“low” voltage, the usual physics of the Hubbard modelf6g
says that the spins will be subject to a transient Heisenberg
coupling,

H = JstdSW s1d ·SW s2d, s20d

whereJstd is the time-dependent exchange constant which is
produced by the turning on and off of the tunneling matrix
elementf7,10g.

For instance, a quantumXOR gate is obtained by a simple
sequence of operationsf7g:

UXOR= eisp/2dSz
s1d

e−isp/2dSz
s2d

Usw
1/2eipSz

s1d
Usw

1/2, s21d

whereUsw is a swap gate, created in this model via Heisen-

berg interaction, andeipSz
s1d

, etc., are single-qubit operations
only, which can be realized by applying local Zeeman inter-
action. sIt has been established thatXOR along with single-
qubit operations may be assembled to do any quantum com-
putationf12g.d Note that theXOR of Eq. s21d is given in the
basis where it has the form of a conditional phase-shift op-
eration; the standardXOR is obtained by a simple basis
change for qubit “2.” According to Eq.s21d, we need five
steps to realize anXOR gate. However, in Ref.f13g it has
been shown that for a certain choice of system parameters
sfor example, opposite direction of the localB fieldsd, we can
generate anXOR gate in one step. The crucial observation
now is that theXOR operation can be written asf7g UXOR

= 1
2 +Sz

s1d+Sz
s2d−2Sz

s1dSz
s2d, which has exactly the same form as

Usa,a+1d in Eq. s4d. In other words, we can generate the op-
erationUsa,a+1d sand thus the cluster statesd with the Heisen-
berg interaction as described, e.g., by the sequence in Eq.
s21d. We finally note that an alternative way to achieve the
XOR operation is given by f7g UXOR

=eipSz
s1d

Usw
−1/2e−isp/2dSz

s1d
Usweisp/2dSz

s1d
Usw

1/2. This form has the po-
tential advantage that the single qubit operations involve
only spin 1.
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The mechanisms described above for performing gate op-
erations with spin qubits are independent of the details of the
pulse shapePstd, whereP stands for the exchange couplingJ
or the Zeeman interaction. It is only the value of the integral
e0

tPstddtsmod 2pd which determines the quantum gate ac-
tion. This is true provided that the parametersPstd are
switched adiabatically, guaranteeing the validity of the effec-
tive Hamiltonian Eq.s20d. The unwanted admixture of a
state with double occupation of a dot in the final state is
found to be tiny if a suitable pulse is used and the adiabatic-
ity criterion is fulfilled f14,15g.

We note that as long as anXOR sor CNOTd gate is realized,
cluster statessand consequently, a one-way quantum com-
puterd can be generated. This result does not depend on the
type of interaction in the system. Therefore other proposals
such as trapped ionf16g and superconducting qubitsf17g can
be used as well to create cluster states.

V. CONCLUDING REMARKS

In summary, an alternative way, using Heisenberg inter-
action between qubits, was introduced to create cluster states
which is useful for solid-state systems. In this method the
qubits in the cluster are entangled pairwise, leading to 2d
steps ind-dimensional cubic lattices. Furthermore, by tuning
the coupling strengths of the interaction, it is possible to
create cluster states via anisotropic Heisenberg exchange in-
teraction. Experimentally, these cluster states can be gener-
ated in coupled quantum dots or similar systems.
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