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Entanglement and bifurcation in the integrable dimer
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In this Brief Report the properties of both dynamical and static entanglement in the integrable quantum
dimer are studied in terms of the reduced-density linear entropy and von Neumann entropy with various
coupling parameters, total boson numbers, and initial states. The mean entanglement, which is defined to be
averaged over time, is used to describe the influence of the classical separatrix on the behavior of entangle-
ment. It is shown that the mean entanglement exhibits a maximum near the position of the corresponding
classical separatrix energy and that the static entanglement of the state with the largest eigenvalue of the
guantum spectrum displays a maximum near the bifurcation point. For weak coupling and larger total boson
number the maximum entanglement state is exactly at the position of the classical separatrix and bifurcation.
In strong coupling all initial states have nearly the same mean entanglement.
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Quantum entanglement has rightly been the subject ofropy[13]. For the latter case, exciton entanglement is quan-
much study in recent years as a potential resource for contified in terms of the reduced von Neumann entrdfy],
munication and information processifigj]. Lots of effects where it is observed that the nonlinear interaction between
have been devoted to characterize the impact of quantumxcitons increases the maximum values of the entropy of
phase transitions on entanglemg2t8]. It is shown that the entanglement more that that of the linear coupling model.
entanglement measured by the von Neumann entropy or thdowever, the entanglement near or at the classical separatrix
pairwise concurrence is largest near quantum critical pointand bifurcation has not yet been considered in Réf3,14].
in some model$2-5|. But in other models the entanglement Here we will explore the behavior of the entanglement near
measured by the concurrence or the linear entropy displays@ at the classical bifurcation and separatrix from various
jump at the transition point6—8]. These mean that the en- coupling parameters, total boson numbers, and initial states
tanglement behavior near and at the quantum phase transit the integrable quantum dimer.
tion depends on the measure of entanglement and the studied We study the integrable quantum dimer model with the
models. For the Dicke model the quantum phase transition isame Hamiltonian as in Refl1] (A=1 hereafter:
just at the classical bifurcation point in the corresponding 1
analog[8,9]. Thus systematic analysis of the classical bifur- H =ala, +ala, + =[(ala;)?+ (a}a,)?] + C(ala, + alay),
cation behavior in the corresponding classical model helps 2
one to understand the entanglement properties near the tran- (1)
sition point or bifurcation poin{8,9]. Recently, such an in- . o .
vestigation has also been applied to Jahn-Teller mddéls ~ wWherea; and & (i=1,2) are the annihilation and creation
It is demonstrated that the static entanglement described bgperators on sité and C is the linear coupling parameter
von Neumann entropy in the ground state of Jahn-Tellebetween site 1 and site 2. The quantum Hamiltonian,(Ey.
models has an extinct change near the classical bifurcatioponserves the total boson numiésn; +n,, wheren;=a/a
[10]. In this Brief Report, we study the integrable quantumis the boson number on site so that together with the en-
dimer[11], whose classical version exhibits exactly one bi-ergy there are two integrals of the motion and the quantum
furcation and separatrix manifold. Therefore, the influence oystem is integrable. Diagonalization of the quantum Hamil-
the bifurcation and separatrix on both dynamical and statitonian, Eq.(1), in a basis of number statés;,n,) gives the
entanglement is investigated. It should be mentioned that thguantum spectrum with the corresponding eigenvectors. The
correspondence between classical and quantum properties @ftension of Eq(1) becomes a useful model for the descrip-
the dimer system was studied in Ref$1,12. It is shown tion of the highly excited vibrational spectra of polyatomic
that a drastic change in the splittings of quantum energynoleculeq15].
levels occurs at the position of the classical separairit. The classical counterpart of the quantum Hamiltonian,

The integrable quantum dimer is of physical important inEq. (1), is obtained using the well-known correspondence
many subjects such as in a two-species Bose-Einstein coletween creation-annihilation operators and action-angle
densate, two modes of electromagnetic fields interacting ivariables,

Kerr media, and excitons in two coupled semiconductor mi- al - 24 o 3Pt ()
crocrystallites. For the former two cases, the entanglement

dynamics has been studied in detail in terms of both theso the classical Hamiltonian in terms of canonical variables
reduced von Neumann entropy and the reduced linear ernd;,J,, ¢, d,) has the form
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FIG. 1. von Neumann entropy
s,(t) for the initial state|0,N) or
IN,0) with two total boson num-
bers N=20 (a) and N=35 (b).
Here three different coupling pa-
rameters are usedc=2 (dotted
line), C=10 (solid line), and C
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Ho=J1+3,+ (3 +3) + 2C\iJ,cod s~ 6). (3)

The generating functioﬁ:(q&l—¢2)J1+%(¢1+¢2)J2 de-
fines a canonical changes of variablds;,l,,®1,d,)
—(J1,J5, Y1, ). The Hamiltonian, Eq(3), in terms of new
variables becomes

1 1 1
He=1o+ 5<2If+ EI%) + 2C\/ZI§— 1Zcodyy).  (4)

The new anglej,=3 (¢, + $,) is ignorable so that the conju-
gate variablel,=J;+J, is a constant of the motion, which
corresponds to the total boson numbé&rthat is,[,=N.

The fixed points in théi,1,) plane can be obtained ana-
lytically by finding the root of the set of equations

e _

_ MHe _
a,

iy

We find such four fixed points, labeled By, P,, P3, andP,,
where the fixed poinP, is just the reflection through the
[,=0 line of P3. The positions of those fixed points in the
(41,1,) are

1= 0. (5

1

Pi:¢gy=0, 1,=0,
P2:¢127T, |1—0,
. — 2_1 2 2
P3, Py =0, |1—Z|2—C . (6)
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E, = +}|2 Cl
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Egs= |2+%|§+02. (7)
For 1,<2C, we haveE; =E, (P; maximum,P, minimum).
Forl,=2C it follows thatE; ,=E; =E, (P3 andP, maxima,
P, saddle,P, minimum).

Now, we turn to study the dynamics of entanglement in
the quantum model. Several measures of quantum entangle-
ment have been introduced, which include entanglement of
formation[16], entanglement of distillatiofiL 7], relative en-
tropy of entanglemenitl8], linear entropy of entanglement
[19], concurrencg20], negativity[21], and so on. In our case
the entanglement is described by the linear entrgfiy and
the von Neumann entrops(t), defined by[19]

s()=1-Trpy ()% s() == Trilps(HIn ps (D], (8)

where Tr denotes a trace over the first subsystem gytt)
is the reduced-density matricgsy(t)=Tr,|4(t)){y(t)|, where
indices 1 and 2 stand for the degree of freedom on sites 1 and
2, respectively, andy(t)) is the quantum state of the full
system, which evolves in time under the action of Hamil-
tonian, Eq.(1).

The static entanglement of a pure state can be measured
by the linear entrop¥, and the von Neumann entrofgy, of
reduced density of matricg49],

E=1-Trph E,=-Tr(pnp), ie{l,2, (9)

wherep; is the reduced density of subsystenThe entropies

Computation of the eigenvalues of the fixed-point stabilitydefined by Eq(9) do not depend on time because they are

matrices shows that the fixed poiRj is stable for allC and
given energyE and the fixed poinP, remains stable fof,
=< 2C and becomes unstable fby=2C. The fixed pointsP;
and P, exist and are stable fd,=2C and occur through a
bifurcation from P;. The bifurcation is at the position of
couplingC,=1,/2 for givenl,. The corresponding separatrix
manifold is uniquely defined by the energy Bf at a given
values ofl,=2C. It is straightforward to show that the fixed

for a pure state.

For studying the dynamical properties of quantum en-
tanglement, we take staf@,N) or |N, 0) to be the initial state
since its quantum eigenenergyNIsL%NZ, which is the maxi-
mum energy without the coupling between two sites in both
the classical and quantum cases. With such an initial state,
Fig. 1 shows the entanglement dynamics described by von
Neumann entropy for the coupling=2, 10, and 18 with the

points, Eq.(6), correspond to maxima, minima, or saddle total boson numbeK =20 in Fig. 1a) and withN=35 in Fig.
point of the energy in the allowed energy interval for a given1(b). Similar behaviors are also found for the calculations of
value ofl,. The energies of those fixed points are given by the linear entropy. A number of observations on Fig. 1 are in
order. First, the increasing rate of the entropy is more rapidly
E,=l,+ 1|§ +Cl,, as the couplindC increases in the early-time evolution. Sec-
4 ond, for a weak coupling€=2, the entropy is quasiperiodic
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with its period decreasing ds increases. However, for the E; andE, calculated by Eq(9) for the state with the largest
larger couplingC=10 and 18, the maxima of the entropy eigenvalues of the quantum spectrum are also plotted in Figs.
increase withN. Third, for a fixedN, the maximum entropy 2(c) and Zd) for comparison.

increases up to a saturation value as the coupling increases. Some important properties are observed in Fig. 2. First,
The larger the coupling, the larger the oscillatory frequencythe mean dynamical entropi€andsS, and the static entro-

of the entropy is. A similar behavior is also observed in anpiesE; andE, in the strong coupling regime increase as the
integrable Jaynes-Cummings modi22]. We noted that the total boson numbeN increases. The slope of curves in the
small-amplitude oscillations of entropy may be regarded asmall coupling regime decreases as the total boson nulber
fingerprints of the underlying classical chaos in smoothincreases. Second, the entropi@sand S, fluctuate with
Hamiltonian system§23]. Thus such behavior appearing in Small amplitude near their maximum value fd~10. This
integrable models should be a border effect. Finally, the inamplitude decreases &sincreases further, while the mean
fluence of the bifurcation at,=10 for N=20 andC,=17.5 linear entropy above the critical point fluctuates in small am-
for N=35 on the entanglement cannot be recognized in termglitude in nonintegrable Dicke mode[8]. Third, both dy-

of the dynamical property of both entropies. Therefore, wehamical and static entropies increase as the coupling param-
turn to our attention to study the mean entanglement definegterC increases up to a value and then decrease by a little as
to be averaged over time. It is shown that such a mean erc increases further. For the mean dynamical entropy, such a
tanglement is a good quantity in describing the influences o¥alue of C obtained numerically is 3.3, 5.6, and 7.8 fur
quantum phase transitions and classical or quantum chaos &0, 20, and 35, respectively, which is near the separatrix

the behavior of the entanglement in some mod@&/s]. coupling Cs=N/4 that is determined by setting the quantum
The mean entanglemen$sand S, are defined by eigenenergyf\l+%N2 of the initial state|0,N) or |N,0) be
equal to the classical separatrix eneigygiven by Eq.(7).
1 (T The difference between the obtained coupling and the sepa-
S= T f s(bdt, ratrix coupling decreases &kincreases. For the static entro-
0 piesE, andE, of the state with maximum eigenvalues, the

coupling with its maximum entropy is 3.6, 7.8, and 14.5 for
1 (T N=10, 20, and 35, respectively, which can be compared with
sn:—f s,(t)dt, (10)  the bifurcation couplingC,=N/2. It is also noted that the
TJo difference between the obtained value and the bifurcation
coupling decreases &sincreases. Finally, both quantiti€s
whereT is the total time of evolution, which is taken to be 1 and S, give the same coupling with the mean maximum en-
in scaled units throughout the paper. We also used the totatopy, and so do the quantiti€s andE,. However, the von
time of evolution in the calculation of the mean entangle-Neumann entrop¥, exhibits a more extinct maximum value
ment. It was found that that did not change the results. asN increases.

Figures Za) and 2b) show the mean entanglemerss Figure 3 shows the mean dynamical von Neumann en-
andS, varing with the coupling paramet€, where theN is  tropy S, with varying initial states, where the total boson
taken to be 10, 20, and 35 as an example and the initial stateumberN is taken to be 20 and the coupling parameies
is also taken to b¢0,N) or [N,0). The static entanglements set to be 0.05, 0.8, 5.0, and 18.0, as an example. The initial
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20 o ] or |14, & corresponding to its classical separatrix energy.
T s Fog This implies that the maximum entanglement state is exactly
15 i at the state whose quantum eigenenergy is the same as the
. : oo classical separatrix energy only in weak coupling.
w10 In summary, we have investigated both dynamical and
static entanglements in the integable quantum dimer with
0.5 o various coupling parameters, total boson numbers, and initial
0.0] s a states, where the entanglement is measured by the linear en-
tropy and von Neumann entropy. The dependence of the
o 2 4 6 8 10 mean entanglement averaged over time and the static en-

tanglement on the coupling parameter shows that a maxi-
FIG. 3. The mean von Neumann entrofy for various initial  mum entanglement is near the position of the corresponding

states|m,N-m) or [N-m,m), m=0,... N/2, with total boson classical separatrix and bifurcation. In the strong coupling
number N=20 and four different coupling parameteG=0.05  regime all initial states have nearly the same mean entangle-
(with %), C=0.8 (with ®), C=5 (with o), andC=18 (with ). ment. It is demonstrated that a maximum entanglement for

finite total boson number is exactly at the position of the
states arelm,N-m) or equivalently [N-m,m) with m  classical separatrix and bifurcation only in weak coupling.
=1,...,10. Some observations in Fig. 3 are in the following.Therefore, the larger entanglement state can be prepared by a
The statd1, 19 or |19, 1) with the larger entropy changes to quantum state with the total boson number being made to be
the statgl0, 20 or |20, O as the coupling paramet€ in-  equal on each site in the model in weak coupling since the
creases from small coupling to the coupli@g5. This sug- capability of extremely long coherence time in Bose-Einstein
gests that the larger entanglement state can be prepared withndensatel24] might lead to engineering many-particle en-
the nearly the same boson number on each site in weak cotanglement to be feasible.
pling. For strong coupling that is larger than 5, all states have We would like to thank the members at Centre for Non-
nearly the same mean entropy as indicatedd@er5 andC  linear Studies of Hong Kong Baptist University for valuable
=18. For the couplingc=0.05, the state with the maximum discussions and comments. This work was supported in part
entropy is|1, 19 or |19, 1) whose quantum eigenenergy is by the grants from the Hong Kong Research Grants Council
exactly equal to the classical separatrix energy, while for théRGC) and a Hong Kong Baptist University Faculty Re-
couplingC=0.8, that is5, 15 or |15, 5, which is not|6, 14  search GrantFRG).
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