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In this Brief Report the properties of both dynamical and static entanglement in the integrable quantum
dimer are studied in terms of the reduced-density linear entropy and von Neumann entropy with various
coupling parameters, total boson numbers, and initial states. The mean entanglement, which is defined to be
averaged over time, is used to describe the influence of the classical separatrix on the behavior of entangle-
ment. It is shown that the mean entanglement exhibits a maximum near the position of the corresponding
classical separatrix energy and that the static entanglement of the state with the largest eigenvalue of the
quantum spectrum displays a maximum near the bifurcation point. For weak coupling and larger total boson
number the maximum entanglement state is exactly at the position of the classical separatrix and bifurcation.
In strong coupling all initial states have nearly the same mean entanglement.
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Quantum entanglement has rightly been the subject of
much study in recent years as a potential resource for com-
munication and information processingf1g. Lots of effects
have been devoted to characterize the impact of quantum
phase transitions on entanglementf2–8g. It is shown that the
entanglement measured by the von Neumann entropy or the
pairwise concurrence is largest near quantum critical points
in some modelsf2–5g. But in other models the entanglement
measured by the concurrence or the linear entropy displays a
jump at the transition pointf6–8g. These mean that the en-
tanglement behavior near and at the quantum phase transi-
tion depends on the measure of entanglement and the studied
models. For the Dicke model the quantum phase transition is
just at the classical bifurcation point in the corresponding
analogf8,9g. Thus systematic analysis of the classical bifur-
cation behavior in the corresponding classical model helps
one to understand the entanglement properties near the tran-
sition point or bifurcation pointf8,9g. Recently, such an in-
vestigation has also been applied to Jahn-Teller modelsf10g.
It is demonstrated that the static entanglement described by
von Neumann entropy in the ground state of Jahn-Teller
models has an extinct change near the classical bifurcation
f10g. In this Brief Report, we study the integrable quantum
dimer f11g, whose classical version exhibits exactly one bi-
furcation and separatrix manifold. Therefore, the influence of
the bifurcation and separatrix on both dynamical and static
entanglement is investigated. It should be mentioned that the
correspondence between classical and quantum properties of
the dimer system was studied in Refs.f11,12g. It is shown
that a drastic change in the splittings of quantum energy
levels occurs at the position of the classical separatrixf11g.

The integrable quantum dimer is of physical important in
many subjects such as in a two-species Bose-Einstein con-
densate, two modes of electromagnetic fields interacting in
Kerr media, and excitons in two coupled semiconductor mi-
crocrystallites. For the former two cases, the entanglement
dynamics has been studied in detail in terms of both the
reduced von Neumann entropy and the reduced linear en-

tropy f13g. For the latter case, exciton entanglement is quan-
tified in terms of the reduced von Neumann entropyf14g,
where it is observed that the nonlinear interaction between
excitons increases the maximum values of the entropy of
entanglement more that that of the linear coupling model.
However, the entanglement near or at the classical separatrix
and bifurcation has not yet been considered in Refs.f13,14g.
Here we will explore the behavior of the entanglement near
or at the classical bifurcation and separatrix from various
coupling parameters, total boson numbers, and initial states
in the integrable quantum dimer.

We study the integrable quantum dimer model with the
same Hamiltonian as in Ref.f11g s"=1 hereafterd:

H = a1
†a1 + a2

†a2 +
1

2
fsa1

†a1d2 + sa2
†a2d2g + Csa1

†a2 + a2
†a1d,

s1d

where ai and ai
† si =1,2d are the annihilation and creation

operators on sitei and C is the linear coupling parameter
between site 1 and site 2. The quantum Hamiltonian, Eq.s1d,
conserves the total boson numberN=n1+n2, whereni =ai

†ai
is the boson number on sitei, so that together with the en-
ergy there are two integrals of the motion and the quantum
system is integrable. Diagonalization of the quantum Hamil-
tonian, Eq.s1d, in a basis of number statesun1,n2l gives the
quantum spectrum with the corresponding eigenvectors. The
extension of Eq.s1d becomes a useful model for the descrip-
tion of the highly excited vibrational spectra of polyatomic
moleculesf15g.

The classical counterpart of the quantum Hamiltonian,
Eq. s1d, is obtained using the well-known correspondence
between creation-annihilation operators and action-angle
variables,

ai
† → Ji

1/2eifi, ai → Ji
1/2e−ifi , s2d

so the classical Hamiltonian in terms of canonical variables
sJ1,J2,f1,f2d has the form
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Hc = J1 + J2 +
1

2
sJ1

2 + J2
2d + 2CÎJ1J2 cossf1 − f2d. s3d

The generating functionF=sf1−f2dJ1+ 1
2sf1+f2dJ2 de-

fines a canonical changes of variablessI1,I2,f1,f2d
→ sJ1,J2,c1,c2d. The Hamiltonian, Eq.s3d, in terms of new
variables becomes

Hc = I2 +
1

2
S2I1

2 +
1

2
I2
2D + 2CÎ1

4
I2
2 − I1

2 cossc1d. s4d

The new anglec2= 1
2sf1+f2d is ignorable so that the conju-

gate variableI2=J1+J2 is a constant of the motion, which
corresponds to the total boson numberN—that is,I2=N.

The fixed points in thesc1,I1d plane can be obtained ana-
lytically by finding the root of the set of equations

ċ1 =
]Hc

]I1
= 0, İ1 = −

]Hc

]c1
= 0. s5d

We find such four fixed points, labeled byP1, P2, P3, andP4,
where the fixed pointP4 is just the reflection through the
I1=0 line of P3. The positions of those fixed points in the
sc1,I1d are

P1:c1 = 0, I1 = 0,

P2:c1 = p, I1 = 0,

P3,P4:c1 = 0, I1
2 =

1

4
I2
2 − C2. s6d

Computation of the eigenvalues of the fixed-point stability
matrices shows that the fixed pointP1 is stable for allC and
given energyE and the fixed pointP2 remains stable forI2
ø2C and becomes unstable forI2ù2C. The fixed pointsP3
and P4 exist and are stable forI2ù2C and occur through a
bifurcation from P1. The bifurcation is at the position of
couplingCb= I2/2 for givenI2. The corresponding separatrix
manifold is uniquely defined by the energy ofP1 at a given
values ofI2ù2C. It is straightforward to show that the fixed
points, Eq.s6d, correspond to maxima, minima, or saddle
point of the energy in the allowed energy interval for a given
value of I2. The energies of those fixed points are given by

E1 = I2 +
1

4
I2
2 + CI2,

E2 = I2 +
1

4
I2
2 − CI2,

E3,4= I2 +
1

2
I2
2 + C2. s7d

For I2ø2C, we haveE1ùE2 sP1 maximum,P2 minimumd.
For I2ù2C it follows thatE3,4ùE1ùE2 sP3 andP4 maxima,
P1 saddle,P2 minimumd.

Now, we turn to study the dynamics of entanglement in
the quantum model. Several measures of quantum entangle-
ment have been introduced, which include entanglement of
formationf16g, entanglement of distillationf17g, relative en-
tropy of entanglementf18g, linear entropy of entanglement
f19g, concurrencef20g, negativityf21g, and so on. In our case
the entanglement is described by the linear entropyslstd and
the von Neumann entropysnstd, defined byf19g

slstd = 1 − Tr1r1std2, snstd = − Tr1fr1stdln r1stdg, s8d

where Tr1 denotes a trace over the first subsystem andr1std
is the reduced-density matrices,r1std=Tr2ucstdlkcstdu, where
indices 1 and 2 stand for the degree of freedom on sites 1 and
2, respectively, anducstdl is the quantum state of the full
system, which evolves in time under the action of Hamil-
tonian, Eq.s1d.

The static entanglement of a pure state can be measured
by the linear entropyEl and the von Neumann entropyEn of
reduced density of matricesf19g,

El = 1 − Triri
2, En = − Trisri ln rid, i P h1,2j, s9d

whereri is the reduced density of subsystemi. The entropies
defined by Eq.s9d do not depend on time because they are
for a pure state.

For studying the dynamical properties of quantum en-
tanglement, we take stateu0,Nl or uN,0l to be the initial state
since its quantum eigenenergy isN+ 1

2N2, which is the maxi-
mum energy without the coupling between two sites in both
the classical and quantum cases. With such an initial state,
Fig. 1 shows the entanglement dynamics described by von
Neumann entropy for the couplingC=2, 10, and 18 with the
total boson numberN=20 in Fig. 1sad and withN=35 in Fig.
1sbd. Similar behaviors are also found for the calculations of
the linear entropy. A number of observations on Fig. 1 are in
order. First, the increasing rate of the entropy is more rapidly
as the couplingC increases in the early-time evolution. Sec-
ond, for a weak couplingC=2, the entropy is quasiperiodic

FIG. 1. von Neumann entropy
snstd for the initial stateu0,Nl or
uN,0l with two total boson num-
bers N=20 sad and N=35 sbd.
Here three different coupling pa-
rameters are used:C=2 sdotted
lined, C=10 ssolid lined, and C
=18 sdashed lined.
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with its period decreasing asN increases. However, for the
larger couplingC=10 and 18, the maxima of the entropy
increase withN. Third, for a fixedN, the maximum entropy
increases up to a saturation value as the coupling increases.
The larger the coupling, the larger the oscillatory frequency
of the entropy is. A similar behavior is also observed in an
integrable Jaynes-Cummings modelf22g. We noted that the
small-amplitude oscillations of entropy may be regarded as
fingerprints of the underlying classical chaos in smooth
Hamiltonian systemsf23g. Thus such behavior appearing in
integrable models should be a border effect. Finally, the in-
fluence of the bifurcation atCb=10 for N=20 andCb=17.5
for N=35 on the entanglement cannot be recognized in terms
of the dynamical property of both entropies. Therefore, we
turn to our attention to study the mean entanglement defined
to be averaged over time. It is shown that such a mean en-
tanglement is a good quantity in describing the influences of
quantum phase transitions and classical or quantum chaos on
the behavior of the entanglement in some modelsf6,8g.

The mean entanglementsSl andSn are defined by

Sl =
1

T
E

0

T

slstddt,

Sn =
1

T
E

0

T

snstddt, s10d

whereT is the total time of evolution, which is taken to be 1
in scaled units throughout the paper. We also used the total
time of evolution in the calculation of the mean entangle-
ment. It was found that that did not change the results.

Figures 2sad and 2sbd show the mean entanglementsSl
andSn varing with the coupling parameterC, where theN is
taken to be 10, 20, and 35 as an example and the initial state
is also taken to beu0,Nl or uN,0l. The static entanglements

El andEn calculated by Eq.s9d for the state with the largest
eigenvalues of the quantum spectrum are also plotted in Figs.
2scd and 2sdd for comparison.

Some important properties are observed in Fig. 2. First,
the mean dynamical entropiesSl andSn and the static entro-
piesEl andEn in the strong coupling regime increase as the
total boson numberN increases. The slope of curves in the
small coupling regime decreases as the total boson numberN
increases. Second, the entropiesSl and Sn fluctuate with
small amplitude near their maximum value forN=10. This
amplitude decreases asN increases further, while the mean
linear entropy above the critical point fluctuates in small am-
plitude in nonintegrable Dicke modelsf8g. Third, both dy-
namical and static entropies increase as the coupling param-
eterC increases up to a value and then decrease by a little as
C increases further. For the mean dynamical entropy, such a
value of C obtained numerically is 3.3, 5.6, and 7.8 forN
=10, 20, and 35, respectively, which is near the separatrix
couplingCs=N/4 that is determined by setting the quantum
eigenenergyN+ 1

2N2 of the initial stateu0,Nl or uN,0l be
equal to the classical separatrix energyE1 given by Eq.s7d.
The difference between the obtained coupling and the sepa-
ratrix coupling decreases asN increases. For the static entro-
pies El and En of the state with maximum eigenvalues, the
coupling with its maximum entropy is 3.6, 7.8, and 14.5 for
N=10, 20, and 35, respectively, which can be compared with
the bifurcation couplingCb=N/2. It is also noted that the
difference between the obtained value and the bifurcation
coupling decreases asN increases. Finally, both quantitiesSl
andSn give the same coupling with the mean maximum en-
tropy, and so do the quantitiesEl andEn. However, the von
Neumann entropyEn exhibits a more extinct maximum value
asN increases.

Figure 3 shows the mean dynamical von Neumann en-
tropy Sn with varying initial states, where the total boson
numberN is taken to be 20 and the coupling parameterC is
set to be 0.05, 0.8, 5.0, and 18.0, as an example. The initial

FIG. 2. The dependence of the
entropySl sad, Sn sbd, El scd, and
En sdd on the coupling parameter
C with three different total boson
numbers N=10 sdotted lined, N
=20 ssolid lined, and N=35
sdashed lined. The initial state of
sad and sbd is u0,Nl or uN,0l, and
the state of scd and sdd is the
eigenstate of the maximum quan-
tum eigenvalue.
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states areum,N−ml or equivalently uN−m,ml with m
=1, . . . ,10. Some observations in Fig. 3 are in the following.
The stateu1, 19l or u19, 1l with the larger entropy changes to
the stateu0, 20l or u20, 0l as the coupling parameterC in-
creases from small coupling to the couplingC=5. This sug-
gests that the larger entanglement state can be prepared with
the nearly the same boson number on each site in weak cou-
pling. For strong coupling that is larger than 5, all states have
nearly the same mean entropy as indicated forC=5 andC
=18. For the couplingC=0.05, the state with the maximum
entropy isu1, 19l or u19, 1l whose quantum eigenenergy is
exactly equal to the classical separatrix energy, while for the
couplingC=0.8, that isu5, 15l or u15, 5l, which is notu6, 14l

or u14, 6l corresponding to its classical separatrix energy.
This implies that the maximum entanglement state is exactly
at the state whose quantum eigenenergy is the same as the
classical separatrix energy only in weak coupling.

In summary, we have investigated both dynamical and
static entanglements in the integable quantum dimer with
various coupling parameters, total boson numbers, and initial
states, where the entanglement is measured by the linear en-
tropy and von Neumann entropy. The dependence of the
mean entanglement averaged over time and the static en-
tanglement on the coupling parameter shows that a maxi-
mum entanglement is near the position of the corresponding
classical separatrix and bifurcation. In the strong coupling
regime all initial states have nearly the same mean entangle-
ment. It is demonstrated that a maximum entanglement for
finite total boson number is exactly at the position of the
classical separatrix and bifurcation only in weak coupling.
Therefore, the larger entanglement state can be prepared by a
quantum state with the total boson number being made to be
equal on each site in the model in weak coupling since the
capability of extremely long coherence time in Bose-Einstein
condensatesf24g might lead to engineering many-particle en-
tanglement to be feasible.
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FIG. 3. The mean von Neumann entropySn for various initial
states um,N−ml or uN−m,ml, m=0, . . . ,N/2, with total boson
number N=20 and four different coupling parametersC=0.05
swith !d, C=0.8 swith Pd, C=5 swith qd, andC=18 swith pd.
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