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For quantum systems described by finite matrices, linear and affine maps of matrices are shown to provide
equivalent descriptions of evolution of density matrices for a subsystem caused by unitary Hamiltonian evo-
lution in a larger system; an affine map can be replaced by a linear map, and a linear map can be replaced by
an affine map. There may be significant advantage in using an affine map. The linear map is generally not
completely positive, but the linear part of an equivalent affine map can be chosen to be completely positive and
related in the simplest possible way to the unitary Hamiltonian evolution in the larger system.
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We are accustomed to the use of linear maps of matrices
to describe evolution of density matrices in the dynamics of
open quantum systemsf1–9g. It was pointed out recently
f10g that affine maps might be used as well. I will show here
that the linear and affine methods of description are equiva-
lent for systems described by finite matrices: an affine map
can be replaced by a linear map, and a linear map can be
replaced by an affine map. There may be significant advan-
tage in using an affine map. A linear map that describes
evolution of density matrices for a subsystem caused by uni-
tary Hamiltonian evolution in a larger system is generally not
completely positivef11g, but the linear part of an equivalent
affine map can be chosen to be completely positive and re-
lated in the simplest possible way to the unitary Hamiltonian
evolution in the larger system. The equivalence demonstrated
here is for a finite-dimensional Hilbert space. It may be that
one kind of map will work where the other does not when
the Hilbert space is infinite-dimensional. There too it may be
advantageous to have two alternatives.

Consider a quantum system described byN3N matrices.
Let L be a linear map ofN3N matrices toN3N matrices; it
takes eachN3N matrix Q to anN3N matrix LsQd. Let K
be anN3N matrix. The mapM that takes eachN3N matrix
Q to the matrix

MsQd = LsQd + K s1d

is calledaffine. Let r ands beN3N density matrices and let

t = qr + s1 − qds s2d

with 0,q,1. Thent is a density matrix and

Mstd = qLsrd + s1 − qdLssd + K

= qfLsrd + Kg + s1 − qdfLssd + Kg

= qMsrd + s1 − qdMssd. s3d

If Msrd andMssd are density matrices, thenMstd is a den-
sity matrix and it is related toMsrd andMssd the same as it
would be if M were linear. The property of linear maps that

has physical meaning for density matrices is provided by
affine maps as well.

In the N2-dimensional linear space ofN3N matrices
we can find a basis ofN2 Hermitian matricesFm for
m=0,1,… ,N2−1 such thatF0 is 1 and

TrfFmFng = Ndmn. s4d

If r is a density matrix, then

r =
1

N
S1 + o

a=1

N2−1

kFalFaD s5d

with kFal=TrfFarg, and

Msrd =
1

N
SLs1d + o

a=1

N2−1

kFalLsFadD + K

=
1

N
SLs1d + NK + o

a=1

N2−1

kFalLsFadD . s6d

Compare this with the result of a linear map that takes each
N3N matrix Q to anN3N matrix Q8. It gives

r8 =
1

N
S18 + o

a=1

N2−1

kFalFa8D . s7d

The affine map and the linear map give the same result for all
density matrices if

18 = Ls1d + NK, Fa8 = LsFad. s8d

Specification of a linear map means independent specifi-
cation of its action on each basis matrix 1 andFa for
a=1,2,… ,N2−1. We can choose 18 and Fa8 to match any
affine map. Conversely, we can chooseLs1d, K, andLsFad to
match any linear map, but the choice ofLs1d and K is not
unique.

Specifically, suppose the density matrices are for a sub-
system of a larger system. Evolution of these density matri-
ces caused by unitary Hamiltonian evolution in the larger
system can almost always be described by a linear map of
matricesf11g. This linear map is generally not completely
positive, but the linear partL of the equivalent affine map is*Electronic address: tjordan@d.umn.edu
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completely positive whenLs1d andK are chosen so thatLs1d
is 1. We can see this from the paper of Jordan, Shaji, and
Sudarshanf11g: if Ls1d is 1, thenL is their linear map with
zeros for the parameters that involve mean values of quanti-
ties for the larger system; and when these parameters are all
zero, their linear map is completely positive. For the two-
qubit example that they work out in detail, ifLs1d is 1 thenL
is the linear map witha1 and a2 both zero; they observe
explicitly that if a1 and a2 are zero, the map is completely
positive for all t. In general, ifLs1d is 1 thenL is the linear
map with the parametersdm all zero. For any initial state of
the subsystem, there is a density matrix for an initial state of
the larger system that gives zeros for the parametersdm and
is a product of the density matrix for the subsystem and a
density matrix for the other part of the larger system; all that
is required is zeros for mean values of quantities for the other
part of the larger system. When the parametersdm are zero,
the map can be obtained from unitary Hamiltonian evolution

starting from an initial product state for the larger system.
This implies that the map is completely positive. In fact, if
Ls1d is 1, then for each matrixr for the subsystem, density
matrix or not,

Lsrd =
1

M
TrRfe−iHtr ^ 1ReiHtg s9d

wheree−iHt
¯eiHt gives the unitary Hamiltonian evolution of

density matrices in the larger system,R denotes the other
part of the larger systemsthe remainder or rest of the larger
system, which could be a reservoird, so 1R is the unit matrix
for R and TrR is the trace over the states ofR, andM is the
dimension of the Hilbert space forR; this holds for all the
basis matrices except 1 regardless of howLs1d and K are
chosen, and it holds for 1 whenLs1d is 1. ThusL is related in
the simplest possible way to the unitary Hamiltonian evolu-
tion in the larger system.
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