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We discuss an approach to the problem of creating a photon-number-resolving detector using the giant Kerr
nonlinearities available in electromagnetically induced transparency. Our scheme can implement a photon-
number quantum-nondemolition measurement with high efficiencys,99%d using fewer than 1600 atoms
embedded in a dielectric waveguide.
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In recent years we have seen signs of a new technological
revolution, caused by a paradigm shift to information pro-
cessing using the laws of quantum physics. One natural ar-
chitecture for realizing quantum-information-processing
sQIPd technology would be to use states of light as the
information-processing medium. There have been signifi-
cance developments in all-optical QIP following the recent
discovery by Knill, Laflamme, and Milburn that passive lin-
ear optics, photodetectors, and single-photon sources can be
used to create massive reversible nonlinearitiesf1g. Such
nonlinearities are an essential requirement for optical QIP
and many communication applications. These nonlinearities
allow efficient gate operations to be performed. In principle,
fundamental operations such as the nonlinear sign shift and
controlled-NOT gates have been demonstrated experimentally
f2–4g. However, such operations are relatively inefficient
sthey have a probability of success significantly less than
50%d and so are not scalable, due primarily to the current
state of the art in single-photon sources and detectors. Good
progress is being made on the development of single-photon
sourcesf5,6g. Absorptive single-photon-resolution detection
is possiblef7–9g, with efficiencies up to,90% svisible spec-
trumd and,30% sinfrared, microwavesd. However,true uni-
versal optical QIP will require significant further improve-
ments in detector efficiencies, which will likely require a
drastic change of approach to detection technologyf9–11g.

In this article, we propose an implementation of the
quantum-nondemolition sQNDd single-photon detection
scheme originally described by Imoto, Haus, and Yamamoto
f12g, with the required optical nonlinearity provided by the
giant Kerr effect achievable with ac Stark-shifted electro-
magnetically induced transparencysEITd f13g. We show be-
low that the scheme uses about 1600 EIT atoms and a weak
pulse in the probe mode to achieve an error probability less
than 1%. The effect of the QND measurement in turn means
that signal photons are not destroyed and can be reused if
requiredf14g. Furthermore, for a signal mode in a superpo-
sition statessuch as a weak coherent stated the number-
resolving QND measurement projects the signal mode into a

definite number statef15g, so the detector can be used as a
heralded source of number eigenstates. We focus on EIT as
an example here since it has already been used successfully
to demonstrate cross-Kerr nonlinearities at low light levels in
rubidium f16,17g. From the perspective of realizing our de-
tector application, we concentrate on potential condensed-
matter mechanisms of EIT. However, clearly any system ca-
pable of producing a comparable form and strength of Kerr
interaction can be used, including optical fibersf18g, silica
whispering-gallery microresonatorsf19g, and cavity QED
systemsf14,20g.

Before we begin our detailed discussion of the EIT detec-
tion scheme, we first consider the photon-number QND mea-
surement using a cross-Kerr nonlinearityf12,21g. The Kerr
Hamiltonian has the canonical form

HQND = "xa†ac†c, s1d

where the signalsprobed mode has creation and destruction
operators given bya†,asc†,cd, respectively, andx is the
strength of the nonlinearity. If the signal field containsna
photons and the probe field is in an initial coherent state with
amplitudeac, the cross-Kerr optical nonlinearity causes the
combined system to evolve as

uCstdlout = eixta†ac†cunaluacl = unaluace
inaxtl. s2d

We observe immediately that the Fock stateunal is unaffected
by the interaction, but the coherent stateuacl picks up a
phase shift directly proportional to the number of photonsna
in the unal state. If we measure this phase shift using a ho-
modyne measurementsdepicted schematically in Fig. 1d, we
can infer the number of photons in the signal modea. The
homodyne apparatus allows measurement of the quadrature
operatorx̂sfd;ceif+c†e−if, with an expected resultkx̂sfdl
=2 Refacgcosd+ i2 Imfacgsind, where d=f+naxt. For a
real initial ac, a highly efficient homodyne measurement of
the momentum quadratureY; x̂sp /2d would yield the signal
kYl=2ac sinsnaxtd with a variance of 1, thus giving a signal-
to-noise ratiosSNRd of RY=2ac sinsnaxtd. If the input in
modea is the Fock state eitheru0l or u1l, the corresponding
output state of the probe modec is the coherent stateuacl or
uace

ixtl. Using a momentum quadrature measurement, the
probability of misidentifying one of these states for the other
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is thenPerror=
1
2erfcsRY/2Î2d. A signal-to-noise ratio ofRY

=4.6 would thus givePerror,10−2. To achieve the necessary
phase shift we requireac sinsxtd<2.3, which can be
achieved in a number of ways dependent upon the range of
values available forac andxt. For example, we could choose
ac@2.3 with xt small and satisfy the above inequality; alter-
natively, we could choosext=p /2 with ac=2.3. The particu-
lar regime chosen depends on the strength of the Kerr non-
linearity achievable in the physical system.

Figure 2 generalizes the detector shown schematically in
Fig. 1 to the case where the polarization of the input state is
resolved into different paths by a polarizing beam splitter. In
general we may wish to apply different phase shifts to the
two distinct polarizations, but in the case shown in Fig. 2 an
identical phase shift is applied to each path, so that the de-
tector is insensitive to the polarization of the input state. This
is a particularly useful approach when the efficiency of the
EIT system and/or the optical propagation pathse.g., as pro-
vided by a photonic crystal waveguide optimized for either
TE or TM modesd is polarization dependent.

We now address the generation of the cross-Kerr nonlin-
earity required to perform the QND measurement. We con-
sider a modelsdepicted in Fig. 3d of the nonlinear electric
dipole interaction between three quantum electromagnetic
radiation fields with angular frequenciesva,vb,vc and a cor-

responding four-levelN atomic systemf22g. Modeb should
be thought of as a pump or coupling field: by choosing the
correct conditions, we can factor both the coupling field and
the atom out of the evolution of the atom-field system, cre-
ating an effective cross-Kerr nonlinear interaction between
modesa and c. The effective vacuum Rabi frequency for
each mode is defined asuVku2=ssk/hkAdAkDvk/8p, where
sk;3lk

2/2p is the resonant atomic absorption cross section
at wavelengthlk>2pc/vk f23g, hk is the refractive index of
the waveguide material,A is the effective laser mode cross-
sectional area,Ak; fke

2vk
2/2pe0mec

2 for a transition with
oscillator strengthfk, andDvk is the bandwidth of the profile
function describing the adiabatic interaction of a pulsed laser
field with a stationary atomf24–26g.

It is difficult to achieve a substantial vacuum Rabi fre-
quency using free-space fieldsf27g, but encapsulating one or
more atoms in a waveguidessuch as a line defect in a pho-
tonic crystal structured allows field transversality to be main-
tained at mode cross-sectional areas on the order ofA
<sl /3hd2. Consider, then, a two-dimensional photonic crys-
tal waveguide constructed from diamond thin filmsh=2.4d,
with nitrogen-vacancysNVd color centers fabricated in the
center of the waveguide channelf30,31g. The optical transi-
tion at 637 nm in NV-diamond has an oscillator strength of
approximately 0.12, within a factor of 3 of that of rubidium,
which has been used successfully to demonstrate cross-Kerr
nonlinearities at low light levelsf16,17g. An EIT transmis-
sion window of about 8 MHz has been observed experimen-
tally f30g, so a pulse withDvk/2p&5 MHz should propa-
gate through this window with negligible loss. The
corresponding vacuum Rabi frequency is thereforeV
<3.6 MHz.

We consider a numberN of N atoms, fixed and stationary
within a cylinder that is narrow but long compared to the
optical wavelengths, with the three frequency modes of the
system driven by Fock states containingna, nb, andnc pho-
tons, respectively. If the durations of the three pulse envelope
functions are long compared to the lifetime of the atomic
level u2l, the evolution of the amplitude where all of the
atoms are in the ground stateu1l is simply given by
u1,na,nb,ncl→e−iWtu1,na,nb,ncl. In general,W is complex
fsee Eq.s139d in Ref. f22gg; other states contribute to the full

FIG. 1. Schematic diagram of a photon-number quantum-
nondemolition detector based on a cross-Kerr optical nonlinearity
f12g. The two inputs are a Fock stateunal swith na=0, 1,… in the
signal modea and a coherent state with real amplitudeac in the
probe modec. The presence of photons in modea causes a phase
shift on the coherent stateuacl directly proportional tona which can
be determined with a momentum quadrature measurement.

FIG. 2. Schematic diagram of a polarization-preserving photon-
number quantum-nondemolition detector based on a pair of identi-
cal cross-Kerr optical nonlinearities. The signal mode is a Fock
state with an unknown polarization, which is resolved into orthogo-
nal polarization states by a polarizing beam splitter. The phase shift
applied to the probe mode is proportional tona, independent of the
polarization of the signal mode.

FIG. 3. Schematic diagram of the interaction between a four-
levelN atom and a nearly resonant three-frequency electromagnetic
field. We note that the annihilation of a photon of frequencyvk is
represented by the complex numberVk.
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evolution and there is photon absorption and loss in the sys-
tem. However, for our detector we require the probability of
even single-photon loss from modea to be very small, with
a realW preserving the norm ofu1,na,nb,ncl. For this, we
assume that the laser frequenciesva and vb are both pre-
cisely tuned to the corresponding atomic transition frequen-
cies, so that the EIT Raman resonance condition is satisfied.
Then, in the weak-signal regime, we assume that the deco-
herence rategk is dominated by spontaneous emission from
atomic levelukl, and thatuVau&g2, so thatW is given by

W=
NuVau2uVcu2nanc

ncuVbu2nb + isg4uVbu2nb + g2uVcu2ncd
, s3d

where nc;vc−v43. In principle, in this regime we must
havencuVbu2nb@g4uVbu2nb+g2uVcu2nc to obtain a nearly real
W and a low residual absorption. As we shall show below, in
practical cases whereuWtu!1, this constraint can be substan-
tially relaxed. For NV-diamond,g2

−1=2325 nsf28,29g, and
the spin decoherence lifetime is 0.1 msf30,31g, so for N
&10 000, dephasing can be neglected, anduVau /g2<1.

Under these conditions, the stateu1,na,nb,ncl simply ac-
quires a phase shift which is the basis for the emergence of
the approximate cross-Kerr nonlinearityf22g. In general,
when the pump and probe fields are intense coherent states
sparametrized byab and ac, respectivelyd, the evolution of
the state u1,na,ab,acl can be approximated as
u1,na,ab,ace

−inasu−ikdl f22g, where the angleu and the re-
sidual absorptionk is defined for the caseuVbu2= uVcu2 by

u − ik =
NuVau2t

ncuabu2 + isg4uabu2 + g2uacu2d
. s4d

This is equivalent to a damped evolution generated by the
cross-Kerr Hamiltonian of Eq.s1d, with u=xt.

What values ofu-and, therefore,RY-are achievable? To
establish an estimate we need to make several assumptions
about the physical system and its geometry. We assume that
the interaction regionswhere the light andN atoms interactd
is encapsulated within the photonic crystal waveguide de-
scribed above, and that the pulses have weakly super-
Gaussian profiles so that the bandwidth-interaction time
product is Dvkt<3p, giving uVau2t<81hg2/8p. Suppose
now that the largest phase shift that can be applied in prac-
tice swithout significantly distorting the signal pulsed is umax,
and that the corresponding value ofac needed to obtain a
given signal-to-noise ratio is thereforeac=RY/2umax sif
umax!1d. Using Eq. s4d, we can calculate the minimum
number of atoms and the corresponding minimum detuning

nc needed to generate this phase shift, by taking the real part
and solving fornc explicitly. As nc is required to be real we
find

Nmin =
2umax

uVau2t
sg4uabu2 + g2uacu2d =

g2RY
2

2umaxuVau2tSg4uabu2

g2uacu2
+ 1D

s5d

with

ncmin =
NminuVau2t
2uabu2umax

=
g4uabu2 + g2uacu2

uabu2
. s6d

When we chooseN=Nmin andnc=ncmin, we find thatk=u, so
that the state u1,na,ab,acl evolves according to
u1,na,ab,ace

−s1+idnaul. Therefore, whenu!1, the residual
absorption of a signal photon in modea can also be made
intrinsically small, even though the detuning is not large
compared to the absorption linewidthf32g.

Figure 4 shows the minimum number of NV-diamond
color centers as a function of the maximum single-photon
phase angle for three different values of the error probability
Perror. We note thatg4=g2 for the optical transitions in NV-
diamond, and for convenience we have chosenknbl=10kncl,
requiring a minimum detuningncmin/g2=1.1 in all three
cases. Note that the minimum number of atoms needed to
obtain a given phase shift decreases as the phase shift in-
creases, because the constraint that the signal-to-noise ratio
remain constant allows the values ofuabu anduacu to decrease
asumax increases. As an example, we choosePerror=0.01 and
umax=0.01 rad, requiringkncl=5.63104 to maintain RY

=4.6. Therefore,N<1600 is sufficient to achieve the desired
phase shift, resulting in a residual absorption of less than 1%.

There is considerable flexibility in the engineering-design
parameter space for this implementation of the QND detec-
tor. For example, if we chooseumax=0.1, following the de-
sign procedure outlined above forPerror=0.01 leads to a re-
sidual absorption of almost 10% forN<160 andkncl<560.
However, if we increase the number of atoms to 800 and the
detuning tonc=11g2, then the absorption is reduced to 1%.
Note also that the detector can perform a QND measurement
on a Fock state withna.1 with single-photon resolution.
For example, asna increases from 1 to 2, the phase shiftnau
doubles, and the SNR also increases from 4.6 to 9.2 for
constantac. The detector sensitivity improves until the phase
shift becomes so large that one of two fundamental limits is
reached: either the SNR decreases below the 1% error

FIG. 4. Plot of the minimum number of NV-diamond color centers needed to generate the phase shiftumax for three different values of
the error probabilityPerror in the casena=1. We have chosenknbl=10kncl, requiring a minimum detuningncmin/g2=1.1.
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threshold, or the strong nonlinear interaction begins to sig-
nificantly distort the pulse profile of the signal Fock state.

In summary, we have presented a scheme for a highly
efficient photon-number quantum-nondemolition detector
swith single-photon resolutiond based on the cross-Kerr non-
linearity produced by an EIT condensed-matter system with
approximately 1600 color centers. We have explored several
different operating regimes, and we have examined in detail
the performance of the detector for a NV-diamond photonic
crystal waveguide system. In particular, we have shown that
efficient detection is possible with small phase shifts, which
will likely be necessary to ensure that the EIT optical non-
linearity does not distort the pulse envelope of the signal
state. Future modeling will address detector performance for
pulsed Fock state profile functions, and much experimental
work remains to be done to implement such a detector. For
example, fabricating EIT atomic or molecular systems into a
dielectric waveguide is challenging but feasible. A method
for orienting the color-center spins uniformly in such a

condensed-matter system must be found, and spatial hole-
burning techniques will be needed to overcome the effects of
inhomogeneous broadening on the transparency of a
condensed-matter mediumf33g. The overall efficiency of the
detector is likely to be limited by the efficiency of the homo-
dyne measurement of the phase shift, which will depend on
the degree to which the homodyne detector can be spatiotem-
porally mode matched to a single-photon signal. Neverthe-
less, EIT provides us with the best known candidate mecha-
nism for the implementation of the original QND proposal
by Imoto, Haus, and Yamamotof12g, and even a weak non-
linearity could allow efficient reuse of resources in linear-
optics quantum-computation schemes.
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