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We show that any pure, two-mode,N-photon state withN odd or equal to two can be transformed into an
orthogonal state using only linear optics. According to a recently suggested definition of polarization degree,
this implies that all such states are fully polarized. This is also found to be true for any pure, two-mode, energy
eigenstate belonging to a two-dimensional SUs2d orbit. Complete two- and three-photon bases whose basis
states are related by only phase shifts or geometrical rotations are also derived.
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I. INTRODUCTION

The polarization of a propagating electromagnetic field is
a robust characteristic, which is relatively simple to manipu-
late without inducing more than marginal losses. For this
reason, many recent experiments in quantum optics, such as
Bell testsf1,2g, quantum tomographyf3g, entanglement wit-
nessesf4g, quantum cryptographyf5,6g, and quantum dense
coding f7g, have been performed using polarization bases.

As long as the polarization measurements involve only
qubits, encoded in two orthogonal polarization states of a
single photon, the classical theory of polarizationf8g and the
quantum theoryf9g essentially coincide. However, for mul-
tiphoton states, there is a divergence between the classical
and the quantum-mechanical concepts of polarization. States
that have vanishing expectation values of all three Stokes
parameters are unpolarized according to the conventional
classical theory, but may result in full visibility in a quantum
measurementf10–14g. Another example of a discrepancy be-
tween the classical and quantum notion of polarization is the
existence of states that are transformed into orthogonal states
by geometrical rotations of ±60 degrees around the propaga-
tion axis f15g. Classically, only linearly polarized states can
evolve into an orthogonal polarization upon a rotation of
±90 degrees. The apparent “violations” of the classical con-
cept have led to the notion of states with “hidden polariza-
tion” f16g.

When discussing polarization properties of quantum
states, it is instructive to look back on the early discussion of
unpolarized light. In 1971, Prakash and Chandraf10g pro-
posed that a reasonable definition of an unpolarized state of
light was to require invariance of the state with respect to
geometrical rotations and phase shifts, or any combination
thereof. Restricting ourselves to the energy eigenstates, the
corresponding transformations form the group SUs2d f17g.

Following the thread of Prakash and Chandra, and later
Agarwal f11g and Lehneret al. f12g, we have proposedf18g
that the degree of polarization of a quantum state should be
given by the maximum observable generalized visibilityf19g
of the state under such SUs2d transformations. That is, if it is
possible to transform a state to an orthogonal state by some
combination of geometrical rotations and phase shifts, then
the state has a unit degree of quantum polarization.

Other attempts have been made to quantify quantum po-
larization. One measure is due to Luisf20g, where the degree
of polarization is expressed by means of the dispersion of the
SUs2d Q function over the Poincaré sphere. A quantityS that
can be interpreted as the “effective area” of the sphere where
the Q function is different from zero was defined, and the
smaller this area is, the higher the degree of polarization.
With this definition, SUs2d coherent states are fully polar-
ized, while the vacuum state, having an isotropicQ function,
has zero degree of polarization. In contrast to our measure,
which only quantifies the smallest possible overlap between
the state and any rotated and phase-shifted state, Luis’ mea-
sure favors states that can become orthogonalsor almost or-
thogonald under the least “action.” That is, a state whoseQ
function occupies only a small effective area on the Poincaré
sphere need not be rotated by much before theQ functions of
the original and the rotated states no longer overlap. In Luis’
theory, such states are assigned a large degree of polariza-
tion. This difference between Luis’ measure and ours be-
comes poignant when we study the statesu2, 0l stwo hori-
zontally linearly polarized photonsd and u1, 1l sone
horizontally and one vertically linearly polarized photond.
According to Luis’ theory, for which the degree of polariza-
tion of two-photon states can take on values between 0 and
4/9, these states have the degree of polarization 4/9 and
1/6, respectively. Our measure assigns the value unity for
the degree of polarization for both states, as will be shown
below. The reason is that by geometrical rotations only, both
states may be transformed into orthogonal states.

Another suggested definition of the degree of polarization
for multimode states was given by Karassiovf21g. This mea-
sure is only comparable to ours in the single-mode case
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swhich treats two polarization modesd. In this regime, Karas-
siov’s measure coincides with the “classical” definition of
polarization based on the expectation values of the Stokes
operators. However, the objective of the present work is to
avoid the known problems associated with the classical defi-
nition. For example, it has been experimentally demonstrated
f22g that it is possible, by applying appropriately chosen
SUs2d transformations, to transform pure two-photon states
of various degree of classical polarization into an orthogonal
state.

In this paper, we use the definition of polarization degree
given in Ref.f18g and consider pureN-photon states. In or-
der to speak about polarization at all, we have assumed that
we are dealing with a propagating light field, for which we
can define two orthogonal transverse modes. Far from the
source, all electromagnetic fields propagating in isotropic
media evolve towards transverse fields. Expressing the polar-
ization state in terms of the excitation of these two modes is
therefore justifiable. In the following, we shall take these
modes to be plane-wave modes with the electric field di-
rected in the horizontal and the vertical directions. If the
horizontal and vertical modes havem andn photons, respec-
tively, we shall denote this state asum,nl.

As phase shifts and geometrical rotations are lossless
transformations, our treatment based on these operations
naturally disintegrates into energy manifolds containing a
different number of photons. Also from an experimental
point of view it is natural to consider energy eigenstates,
since photon counters are normally used as detectors in ex-
periments involving quantized polarization states of light.
Hence, the final projectors are photon number states and
therefore the polarization properties of two-mode energy
eigenstates are of significant current interest.

II. QUANTUM DEGREE OF POLARIZATION

Mathematically, differential phase shifts and geometrical
rotations can be easily expressed using the Stokes operators.
However, in order to make comparisons with work not re-
lated to polarization easier, we will instead use the
Schwinger boson realization of the angular momentum op-
erators

Ĵx =
Ŝx

2
=

1

2
sâ†b̂ + âb̂†d,

Ĵy =
Ŝy

2
=

1

2i
sâ†b̂ − âb̂†d, s1d

Ĵz =
Ŝz

2
=

1

2
sâ†â − b̂†b̂d,

which equal the corresponding Stokes operators divided by

2, as indicated. Hereâsb̂d is the annihilation operator of the
horizontallysverticallyd polarized modef23g. The effects of a
differential phase shift ofa and a geometrical rotation by

u /2 are given by the operatorse−iaĴz ande−iuĴy, respectively.

Using these two physical operations, we can construct uni-
tary representations of the group SUs2d in the different en-
ergy manifolds asf17g

Ûsb,u,ad = e−ibĴze−iuĴye−iaĴz. s2d

Hence, any SUs2d transformation can be realized using dif-
ferential phase shifts and geometrical rotations alone, and
any such combination can be described by an operator of the
form s2d.

Since these transformations preserve the total number of
photonsN, we can treat the corresponding energy manifolds
separately. We thus use the fact that the Hilbert space of the
two harmonic oscillators can be expressed as a direct sum
H= %N=0

` HN, whereHN is the Hilbert space consisting of all
two-mode N-photon states. Note thatHN has dimension
N+1 and corresponds to a spin system of spinS=N/2.

For two-mode bosonic states in theN=1 manifold, there

are three mutually complementary operatorsĴz, Ĵx, and Ĵy,
whose respective eigenstates have linear polarization in di-
rections1 and 3, and circular polarization. Although the
three Hermitian operators do not commute, having the com-

mutation relationsfĴx, Ĵyg= iĴz, wherex, y, andz can be cy-
clicly permuted, they are mutually complementarysor unbi-
asedd f24g only in this manifold, which means that the
overlap between the corresponding normalized eigenstates is
1/Î2 in the Hilbert space of dimension 2. The operators are
not complementary in manifolds for whichNù2.

A sensible approach to avoid the weaknesses of the defi-
nition relying on the Stokes operators is to define a state that
is not invariant under all possible linear polarization trans-
formations to have a finite degree of quantum polarization.
In an earlier paperf18g, we have suggested a measure for the
degree of quantum polarization of two-mode states, based on
this approach. For pure states, the measure simplifies to

hq =Î1 − min
b,u,a

zkcuÛsb,u,aduclz2, s3d

where the overlap between the original state and the trans-
formed state is a measure of distinguishability between the
two states. According to this definition, any state that is in-

variant under the SUs2d transformationsÛsb ,u ,ad is an un-
polarized state and thus has zero degree of quantum polar-
ization. A fully polarized pure state, on the other hand,
satisfies

min
b,u,a

zkcuÛsb,u,aduclz = 0 ⇔ hq = 1. s4d

As we shall show below, for any pureN-photon state withN
odd or N=2, there exists a transformation of the form

Ûsb ,u ,ad that transforms the state into an orthogonal one.
That is, any pure state in these manifolds is fully polarized.

The general form of an unpolarized quantum state was
derived already in the work of Prakash and Chandraf10g ssee
also f11–13gd. The only unpolarizedN-photon state is
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r̂ =
1

N + 1o
n=0

N

un,N − nlkn,N − nu, s5d

which is a maximally mixed state. In other words, it is the
N-photon state with the largest von Neumann entropy.

III. SU(2) ORBITS

From our definition of degree of quantum polarization, it
is clear that all states that can be transformed into each other
by an operator of the forms2d have the same degree of quan-
tum polarization. Such a set ofN-photon states form anorbit
fof the SUs2d groupg, andHN is a union of disjoint orbits.

The case ofN=1 sa polarization qubitd is trivial: there is
only a single orbit. It is characterized by two real parameters,
which cover the whole two-dimensional space, i.e., the
Poincaré sphere. As discussed above, the classical theory of
polarization coincides with the quantum theory for this case.
We know from the classical theory that we can always find a
combination of geometrical rotations and phase shifts that
transforms a point on the Poincaré sphere to a diametrically
opposite point, implying an orthogonal polarization. Hence,
all pure polarization qubit states have a unit degree of quan-
tum polarization.

For N.1, there are two types of orbitsf25g.
sid Type 1. Orbits of states with nontrivial stability group

Us1d and any additional group of discrete symmetry. These
orbits are two-dimensional and are generated from the bare
basis states by applying the operator of the group represen-
tation. However, due to the relationf26g

Ûs0,p,0dun,N − nl = s− 1dnuN − n,nl, s6d

there are onlybN/2c+1 orbits of this type, wherebxc denotes
the largest integer smaller than or equal tox. These orbits are
isomorphic toS2/H, whereS2 denotes the two-dimensional
sphere andH is the discrete group of symmetry.

sii d Type 2. Orbits which allow only groups of discrete
symmetries. These orbits are three-dimensional and isomor-
phic to S3/H. The orbit space is defined as the quotient
HN/SUs2d and is s2N−3d-dimensional forN.1. For ex-
ample, forN=2, we have dimfH2SUs2dg=1, which means
that a singlesreald parameter is needed to separate the orbits.
However, for N=3, we have dimfH3/SUs2dg=3 and one
hence needs three parameters.

IV. ORBITS OF TYPE 1

Let us first consider the orbits of type 1. These orbits can
be labeled by the valuenP h0,1, . . . ,bN/2cj. From Eq.s6d, it
is clear that for every state belonging to an orbit withn
ÞN/2, there exists an orthogonal state within the same orbit,
because the statesun,N−nl and uN−n,nl are then orthogo-
nal. Therefore, all states belonging to orbits withnÞN/2 are
fully polarized.

States belonging to orbits for whichN is an even number
and n=N/2 also have unit quantum polarization. To prove
this, we note that

kN/2,N/2uÛs0,u,0duN/2,N/2l = PN/2scosud, s7d

wherePnsxd is the Legendre polynomial of ordern. Such a
polynomial hasn zeros in the interval −1,x,1, so it is
always possible to find a solution to the equation

kN/2 ,N/2uÛs0,u ,0duN/2 ,N/2l=0.
In conclusion, we have shown that all pure states belong-

ing to orbits of type 1 have unit degree of quantum polariza-
tion irrespective of their excitation.

V. TWO-PHOTON ORBITS OF TYPE 2

It is fairly easy to show that all pure two-photon states
sN=2d have unit degree of quantum polarization. Defining

the step operatorsĴ±= Ĵx± iĴy, transitions between any pair of
orbits can be realized by unitary operators of the form

eqsĴ−
2−Ĵ+

2d/2 = 3 cosq 0 sinq

0 1 0

− sinq 0 cosq
4 , s8d

which correspond to rotation matrices. Here and throughout
the paper, we have used the basissu0,Nl , u1,
N−1l , . . . ,uN,0ld when writing vectors and matrices. All
SUs2d orbits can now be generated by applying the operators
s8d to the stateu0, 2l or u2, 0l sbut not u1, 1ld. Defining the
states

ucsqdl = eqsĴ−
2−Ĵ+

2d/2u2,0l = sinqu0,2l + cosqu2,0l, s9d

the orbits can be identified by a single parameter, which is in
agreement with our findings in Sec. III. Due to the symmetry
expressed in Eq.s6d, it suffices f25g to consider 0øq
øp /4. We note that the end pointsq=0 andq=p /4 corre-
spond to the statesu2, 0l and su0,2l+ u2,0ld /Î2, which be-
long to the two orbits of type 1 characterized by the values
n=0 andn=1 in Eq.s6d, respectively. The latter can be seen
from the equality

Ûsb, ± p/2, 7 p/2ducsp/4dl = i u1,1l. s10d

In order for the stateucsqdl to have unit degree of polar-
ization s4d, we must have

kcsqduÛsb,u,aducsqdl

= cossa − bdsin 2q sin2su/2d

+ fcossa + bd − i sinsa + bdcos 2qgcos2su/2d = 0.

s11d

Eight solutions that are independent ofq are easily found.
They are given byu=p, b=a±p /2, and a= ±p /4 or a
= ±3p /4. All these solutions give the same physical final
state, described by cosqu0,2l−sinqu2,0l.

Since any pure two-photon state can be obtained by ap-
plying an SUs2d operator to some orbit-generating state
ucsqdl, we conclude that all pure two-photon states can be
mapped onto an orthogonal one using only linear optics. Ac-
cording to our definitions3d, these states thus have unit de-
gree of polarization.
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VI. COMPLETE TWO-PHOTON BASES

As we have already noted, the state

ucsp/4dl =
1
Î2

su0,2l + u2,0ld s12d

belongs to one of the two orbits of type 1 forN=2. It can
also be seen as a peculiar circularly polarized statef15g. As a
consequence of its circular nature, it can be transformed into
an orthogonal state according to

Ûs±p/2,u,0ducsp/4dl = ±
i

Î2
su0,2l − u2,0ld s13d

for any value ofu. According to Eq.s10d, SUs2d operators
can also transformucsp /4dl into a state that is orthogonal to
both Eqs.s12d and s13d. Hence, in this orbit of type 1, the
SUs2d transformations generate the whole basis set. We have
already used this fact to experimentally generate basis states
that differ only by phase shiftsf27g or geometrical rotations
f15g. That the statess10d, s12d, ands13d are orthogonal was
recently pointed out by Chekhovaet al. f22g, who denoted

them uHVl, uRLl, and uDD̄l, respectively, reflecting the fact
that they represent one photon in each of a horizontal-
vertical linear basis, the right- and left-hand circularly polar-
ized basis, and the linear basis ±45 degrees from the vertical.
That is, they are the eigenstates with eigenvalue zero of the

operatorsĴz, Ĵy, and Ĵx, respectively.
States that can generate whole basis sets using only linear

transformations are very useful, since these transformations
are easily realized experimentally. In particular, it is desir-
able to find states that can generate a whole basis set by
using only phase shifts or geometrical rotations. As phase
shifts and geometrical rotations are described by the opera-

torse−iaĴz ande−iuĴy, such bases can be generated from equi-

partition states in theĴz and Ĵy basisf28g, respectively.

An equipartition state in theĴz basis, i.e., the horizontal-
vertical basis, can be realized by an SUs2d transformation
acting on the stateucsp /4dl since

uj1l =
Ûs0,uz,p/2d

Î2 31

0

1
4 =

i
Î33 1

− 1

− 1
4 , s14d

whereuz=p /2−arccoss1/Î3d. This state then forms a com-
plete basis together with the states generated by subsequent
phase shifts of 2p /3 and −2p /3,

uj2,3l = Ûs0,0, ± 2p/3duj1l =
i

Î33 e±i2p/3

− 1

− e7i2p/34 . s15d

Starting with the same stateucsp /4dl, an equipartition

state in theĴy basis, i.e., the circularly polarized basis, can be
obtained by application of the phase shiftay=arctans1/Î2d
−p /2. Expressed in the horizontal-vertical basis, we then
have

uc1l =
Ûs0,0,ayd

Î2 31

0

1
4 =

1
Î631 − iÎ2

0

1 + iÎ2
4 . s16d

This state can be transformed into two other orthogonal two-
mode states under geometrical rotations of ±60 degrees,

uc2,3l = Ûs0, ± 2p/3,0duc1l =
1

2Î33
Î2 + i

± iÎ6

Î2 − i
4 , s17d

which together withuc1l form a complete orthonormal basis.

Since any unitary transformationV̂ preserves the inner

products, new bases can be created by applyingV̂ to the
original basis states. If the original basis states belong to the
same orbit and we use an SUs2d transformation, all basis
states remain within the orbit. Any state belonging to such an
orbit can thus be made a basis state of a complete basis by an
appropriately chosen SUs2d transformation.

The orbit considered above, which is characterized byq
=p /4, is easily reached experimentally using a photon pair
generated by spontaneous parametric down-conversion. The
fact that this orbit spans the whole Hilbert spaceH2 has been
exploited in the experimental realization of relative-phase
states f27g, three mutually orthogonal polarization states
f15g, and two-mode, two-photon qutritsf29,30g.

VII. PURE STATES WITH AN ODD NUMBER
OF PHOTONS

Let us denote an arbitrary pureN-photon state as

uxl = o
n=0

N

rne
iwnun,N − nl. s18d

For N odd, we then find

kxuÛs0,p,aduxl = − i2 o
k=0

sN+1d/2

s− 1dkrkrN−k

3 sinFwk − wN−k +
sN − 2kda

2
G . s19d

We thus havekxuÛs0,p ,0duxl=−kxuÛs0,p ,2pduxl. Since
the expressions19d is purely imaginary, there exists at least
one value ofa for which a state orthogonal touxl is obtained.
Hence, all pure states with a given odd number of photons
have unit degree of quantum polarization.

We note that for anyN-photon state, a differential phase
shift of 2p does not change the physical state. However, for
odd N, it introduces an overall phase factor that equals −1,
which we made use of in the proof above.

VIII. COMPLETE THREE-PHOTON BASES

Noting that the stateucsp /4dl, which we used to generate
complete two-photon bases in Sec. VI is invariant under in-
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terchange of the horizontally and vertically polarized modes,
let us now consider the three-photon states

uz1l =
1
Î2

su0,3l + u3,0ld, s20d

uz2l =
1
Î2

su1,2l + u2,1ld. s21d

Like ucsp /4dl, these states are symmetric with respect to the
horizontal and vertical modes, however they belong to orbits

of type 2. Application of the transformationÛs0,u ,p /2d to
uz1l gives

Ûs0,u,p/2d
Î2 3

1

0

0

1
4 =

ei3p/4

Î2 3
u11 + iu14

− u12 + iu13

u13 + iu12

− u14 + iu11

4 , s22d

whereuij are the real matrix elements of the unitary operator

e−iuĴy. In order to generate a complete basis in manifoldN
=3, we now look for an equipartition state in analogy with
the treatment in Sec. VI. That is, we want the magnitude of
all the probability amplitudes to equal 1/ÎN+1=1/2,which
impliesu11

2 +u14
2 =u12

2 +u13
2 =1/2.This requirement can be ful-

filled by choosing one of the rotation anglesu±
=arccoss±1/Î3d, which give

Ûs0,u±,p/2d
Î2 3

1

0

0

1
4 =

± ie±is3/4darccoss1/3d

2 3
1

i 7 Î2
Î3

1 ± iÎ2
Î3

i

4 . s23d

In fact, an equipartition state in the horizontal-vertical basis
can be created by applying any of the eight operators

Ûs0, ±u± , ±p /2d to the stateuz1l or uz2l. For example, we
have

Ûs0,u±,p/2d
Î2 3

0

1

1

0
4 =

e±is1/4darccoss1/3d

2 3
1

− i ± Î2
Î3

− 1 7 iÎ2
Î3

i

4 . s24d

Subsequent phase shifts ofp /2, p, and 3p /2 to the equipar-
tition states will then generate complete bases. That is, for
any equipartition stateue0l, the states

uekl = Ûs0,0,kp/2due0l, k = 0,1,2,3, s25d

are mutually orthonormal.

By applying a geometrical rotation of 45 degrees fol-
lowed by a phase shift ofby=arccoss−Î2/3d to the two sym-
metrical statesuz1l anduz2l, one can also obtain equipartition
states in the circularly polarized basis. In the horizontal-
vertical basis, we then have

Ûsby,p/2,0d
Î2 3

1

0

0

1
4 =

− ie−is3/4darccoss1/3d

2 3
1

0

1 + i2Î2
Î3

0
4

s26d

and

Ûsby,p/2,0d
Î2 3

0

1

1

0
4 =

− ie−is3/4darccoss1/3d

2 3
Î3

0

−
1 + i2Î2

3

0
4 .

s27d

Each of these states forms a complete basis together with the
states obtained by geometrically rotating the respective state
by 45, 90, and 135 degrees. The corresponding transforma-

tions are given by the operatorsÛs0,kp /2 ,0d, where k
=1,2,3.

Also in the case of three photons, the orbits to which
some particular symmetrical states belong thus span the
whole Hilbert space, and allow complete bases to be gener-
ated by applying only phase shifts or geometrical rotations.

IX. DISCUSSION AND CONCLUSIONS

Polarization properties of quantum states deviate from the
properties one may extrapolate from classical physics. The
fundamental reason is the concept of orthogonality, which,
for classical states, takes on a direct geometrical meaningsin
the plane perpendicular to the propagation directiond,
whereas orthogonality in Hilbert spaces of dimension greater
than 2 instead implies distinguishability. This means that in
Hilbert spaces of dimension greater than 2, there are more
than two orthogonal states of polarization, as shown above.

The spaces spanned by two- and three-photon states are
still tractable, and we have shown that all pure states in these
spaces have unit degree of quantum polarization. This was
also found to be true for all pure states with any given odd
number of photons. That is, by using only geometrical rota-
tions and phase shifts it is always possible to transform any
such state into an orthogonal one. Equivalently, using the
proper observable, the transformation will result in a unit-
visibility projection probability. We have also shown that
there exist complete two- and three-photon bases whose ba-
sis states are related by transformations that can be realized
using linear optics. In particular, we derived such bases with
basis states related by only phase shifts or geometrical rota-
tions. For two-photon states, these properties have already
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been exploited in various applications of quantum optics.
Finally, we note that it may be possible to generalize sev-

eral of the results presented here. For example, it is natural to
ask if all pure, two-mode, energy eigenstates can be made
orthogonal using linear optics. It would also be interesting to
know which SUs2d orbits can be used to generate complete
bases.
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