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Quantum polarization properties of two-mode energy eigenstates
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We show that any pure, two-modi;photon state wittN odd or equal to two can be transformed into an
orthogonal state using only linear optics. According to a recently suggested definition of polarization degree,
this implies that all such states are fully polarized. This is also found to be true for any pure, two-mode, energy
eigenstate belonging to a two-dimensional(3Uorbit. Complete two- and three-photon bases whose basis
states are related by only phase shifts or geometrical rotations are also derived.
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I. INTRODUCTION Following the thread of Prakash and Chandra, and later
o ) ~ Agarwal[11] and Lehneet al.[12], we have proposedL8]
The polarization of a propagating electromagnetic field isthat the degree of polarization of a quantum state should be
a robust characteristic, which is relatively simple to manipu-given by the maximum observable generalized visib[litg]
late without inducing more than marginal losses. For thisof the state under such $2) transformations. That is, if it is
reason, many recent experiments in quantum optics, such a®ssible to transform a state to an orthogonal state by some
Bell tests[1,2], quantum tomograph}3], entanglement wit- combination of geometrical rotations and phase shifts, then
nesse$4], quantum cryptograph}b,6], and quantum dense the state has a unit degree of quantum polarization.
coding[7], have been performed using polarization bases.  Other attempts have been made to quantify quantum po-
As long as the polarization measurements involve onlyarization. One measure is due to L{i%0], where the degree
qubits, encoded in two orthogonal polarization states of @f polarization is expressed by means of the dispersion of the
single photon, the classical theory of polarizatighand the ~ SU(2) Q function over the Poincaré sphere. A quankityhat
quantum theory9] essentially coincide. However, for mul- can be interpreted as the “effective area” of the sphere where
tiphoton states, there is a divergence between the classichle Q function is different from zero was defined, and the
and the quantum-mechanical concepts of polarization. Statgnaller this area is, the higher the degree of polarization.
that have vanishing expectation values of all three StokegvIth th|§ definition, SU2) cohere_nt states are'fully polar-
parameters are unpolarized according to the conventiondf€d: While the vacuum state, having an isotraiéunction,
classical theory, but may result in full visibility in a quantum as zero degree of polarization. In contrast to our measure,

. d ~which only quantifies the smallest possible overlap between
measuremerjl0-14. Another example of a d|screpancy_be the state and any rotated and phase-shifted state, Luis’ mea-

) . Sure favors states that can become orthogéorahlmost or-
existence of states that are transformed into orthogonal Stat?ﬁogona] under the least “action.” That is, a state wha@e

by geo_metrical rotat_ions of iGO_degrees aro_und the Propagaynction occupies only a small effective area on the Poincaré
tion axis[15]. Classically, only linearly polarized states can sphere need not be rotated by much beforeQffenctions of

f\égl\ée Into ar_1rhorthogonal eo!alr |z_at|0r3 ufp%n al rotatlc:n Ofthe original and the rotated states no longer overlap. In Luis’
= egrees. The apparent “violations™ of the classica Confheory, such states are assigned a large degree of polariza-

cept have led to the notion of states with “hidden polariza+,, This difference between Luis’ measure and ours be-
tion” [16]. . . L _ comes poignant when we study the stg®&s0) (two hori-
Whe.n. d.|scussnjg polarization properties qf qua.ntum ontally linearly polarized photopsand |1, 1) (one
states, it is instructive to look back on the early discussion o orizontally and one vertically linearly polarized photon
unpolarized light. In 1971, Rrgkash and Cha”@f.e] pro- Afccording to Luis’ theory, for which the degree of polariza-
posed that a reasonable definition of an unpolarized state g, of fyo-photon states can take on values between 0 and
light was to require invariance of the state with respect 10y /g hese states have the degree of polarization 4/9 and
geometrical rotations and phase shifts, or any comblnatloa/& respectively. Our measure assigns the value unity for

thereof. Re§tricting ourselyes to the energy eigenstates, tr{ﬁe degree of polarization for both states, as will be shown
corresponding transformations form the group(3U17]. below. The reason is that by geometrical rotations only, both

states may be transformed into orthogonal states.
Another suggested definition of the degree of polarization
*Electronic address: gunnarb@imit.kth.se; URL: http:// for multimode states was given by Karassj@t]. This mea-
www.quantum.se sure is only comparable to ours in the single-mode case
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(which treats two polarization modedn this regime, Karas- Using these two physical operations, we can construct uni-
siov’'s measure coincides with the “classical” definition of tary representations of the group &Vin the different en-
polarization based on the expectation values of the Stokesrgy manifolds a$17]

operators. However, the objective of the present work is to
avoid the known problems associated with the classical defi-
nition. For example, it has been experimentally demonstrated
[22] that it is possible, by applying appropriately chosen . . . .
SU(2) transformations, to transform pure two-photon state Hence, any S(P) transformation can be realized using dif-

. . ALV erential phase shifts and geometrical rotations alone, and
of various degree of classical polarization into an orthogona T .
state any such combination can be described by an operator of the

. I o form (2).

In this paper, we use the definition of polarization degree ™ .. h ¢ . h | f
iven in Ref.[18] and consider pur&l-photon states. In or- Since these transformations preserve the tota numlber 0

9 gpotonsN, we can treat the corresponding energy manifolds

der to speak abOl.Jt polarization at a!l, we have assumed th Separately. We thus use the fact that the Hilbert space of the
we are dealing with a propagating light field, for which we . . .
two harmonic oscillators can be expressed as a direct sum

can define two orthogonal transverse modes. Far from the, — . : _
source, all electromagnetic fields propagating in isotropii‘_@N‘oHN’ whereHy is the Hilbert space consisting of all

O(B’ 0’ CY) = e—iﬁjze—i Gjye—iaazl (2)

media evolve towards transverse fields. Expressing the pola, Wfi";?%ecﬁ'ﬁggt%ﬂ dzt?éez'sl\li?]ti tsrt]g:{nNop as d|/n;en3|on
ization state in terms of the excitation of these two modes i For two-modepbosonic sta?es ir): the 1. m?:i;:)lld .there
therefore justifiable. In the following, we shall take these a A
modes to be plane-wave modes with the electric field diaré three mutually complementary operatdgsJ,, andJ,,
rected in the horizontal and the vertical directions. If theWhose respective eigenstates have linear polarization in di-
horizontal and vertical modes haweandn photons, respec- Fections+ and X, and circular polarization. Although the
tively, we shall denote this state &m,n). three Hermitian opAerailtorsAdo not commute, having the com-
As phase shifts and geometrical rotations are losslessiutation relationgJ,,J,]=iJ,, wherex, y, andz can be cy-
transformations, our treatment based on these operatiomdicly permuted, they are mutually complement#oy unbi-
naturally disintegrates into energy manifolds containing aased [24] only in this manifold, which means that the
different number of photons. Also from an experimentaloverlap between the corresponding normalized eigenstates is
point of view it is natural to consider energy eigenstates1/4?2 in the Hilbert space of dimension 2. The operators are
since photon counters are normally used as detectors in exot complementary in manifolds for whidkd= 2.
periments involving quantized polarization states of light. A sensible approach to avoid the weaknesses of the defi-
Hence, the final projectors are photon number states angition relying on the Stokes operators is to define a state that
therefore the polarization properties of two-mode energyis not invariant under all possible linear polarization trans-
eigenstates are of significant current interest. formations to have a finite degree of quantum polarization.
In an earlier pap€rl8], we have suggested a measure for the
degree of quantum polarization of two-mode states, based on

Il. QUANTUM DEGREE OF POLARIZATION this approach. For pure states, the measure simplifies to
Mathematically, differential phase shifts and geometrical _
rotations can be easily expressed using the Stokes operators. M= \/1 - min(HU(B, 6, )|y, (3)
However, in order to make comparisons with work not re- B.b,a

lated to polarization easier, we will instead use the o
Schwinger boson realization of the angular momentum opwhere the overlap between the original state and the trans-

erators formed state is a measure of distinguishability between the
R two states. According to this definition, any state that is in-
3. = S - l(éﬁf)+ éE)T) variant under the S(2) transformationdJ(8, 6, «) is an un-
X2 2 ’ polarized state and thus has zero degree of quantum polar-
ization. A fully polarized pure state, on the other hand,
A g 1 .. satisfies
Jy= 5= E(éﬁb— ab"), 1)
/gneinKt//IU(ﬂ, 0,0)|)|=0 < 7y=1. 4)
.= §z _Loata gt
.= 2 2(a a-b'b), As we shall show below, for any puié-photon state withN

. . o odd or N=2, there exists a transformation of the form
which equal the corref,pondmg Stokes operators divided bYJ(ﬁ,a,a) that transforms the state into an orthogonal one.

2, as indicated. Hera(b) is the annihilation operator of the Tpat s any pure state in these manifolds is fully polarized.
horizontally(vertically) polarized mod¢23]. The effects of a The general form of an unpolarized quantum state was
differential phase shift otx and a geometrical rotation by derived already in the work of Prakash and Charidéd (see
6/2 are given by the operatoes'®z ande %y, respectively. also[11-13). The only unpolarizedN-photon state is
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N

o1 _ _
pP= N + 1§)|H,N n><n1N n|v (5)

(N/2,N/2|U(0,6,0)|N/2,N/2) = Py5(cos ), 7)
where P, (x) is the Legendre polynomial of order Such a

which is a maximally mixed state. In other words, it is the POlynomial hasn zeros in the interval ~&x<1, so it is
N-photon state with the largest von Neumann entropy. ~ &ways possible to find a solution to the equation
(N/2,N/2|U(0,6,0)|N/2,N/2)=0.

In conclusion, we have shown that all pure states belong-
Il. SU(2) ORBITS ing to orbits of type 1 have unit degree of quantum polariza-

— ... tion irrespective of their excitation.
From our definition of degree of quantum polarization, it

is clear that all states that can be transformed into each other
by an operator of the forrt2) have the same degree of quan-
tum polarization. Such a set dbfphoton states form aorbit It is fairly easy to show that all pure two-photon states
[of the SU2) groupl, andHy is a union of disjoint orbits.  (N=2) have unit degree of quantum polarization. Defining
The case ofN=1 (a polarization qubjtis trivial: there is the step operatonAis:::]Xiijy, transitions between any pair of

only asingle orbit. Itis charactepzed by two real parametersy yiis can be realized by unitary operators of the form
which cover the whole two-dimensional space, i.e., the

Poincaré sphere. As discussed above, the classical theory of cos?y 0 sinY
polarization coincides with the quantum theory for this case. eﬁ(if—if)/zz 0 1 0

We know from the classical theory that we can always find a
combination of geometrical rotations and phase shifts that

transforms a point on the Poincaré sphere to a diametricallyyhich correspond to rotation matrices. Here and throughout
opposite point, implying an orthogonal polarization. Hencethe paper, we have used the basi§0,N),[1,

V. TWO-PHOTON ORBITS OF TYPE 2

, (8

-sind 0 cosd

all pure polarization qubit states have a unit degree of quany-1y, ... [N,0) when writing vectors and matrices. All
tum polarization. _ SU(2) orbits can now be generated by applying the operators
For N>1, there are two types of orbif25). (8) to the statg0, 2) or |2, 0) (but not|1, 1)). Defining the

(i) Type 1. Orbits of states with nontrivial stability group gtates
U(1) and any additional group of discrete symmetry. These o
orbits are two-dimensional and are generated from the bare |¢(ﬁ)>:eﬁ(33—33)/2|2,0> =sind0,2) + cosd2,0), (9)
basis states by applying the operator of the group represen-

tation. However, due to the relati¢@6] the orbits can be identified by a single parameter, which is in
. agreement with our findings in Sec. Ill. Due to the symmetry
U(0,,0)|n,N-n)= (- 1)"IN - n,n), (6) expressed in Eq(6), it suffices [25] to consider G<

) ] < 7/4. We note that the end point¥=0 andd=/4 corre-
there are onl)kN/2J+1 orbits of this type, wherk| de_notes spond to the state, 0) and (|0,2>+|2'0>)/\5, which be-
the largest integer smaller than or equaktd@hese orbits are long to the two orbits of type 1 characterized by the values

isomorphic toS,/H, whereS, denotes the two-dimensional n=0 andn=1 in Eq.(6), respectively. The latter can be seen
sphere andH is the discrete group of symmetry. from the equality '

(ii) Type 2. Orbits which allow only groups of discrete

symmetries. These orbits are three-dimensional and isomor- 0(B, + w2, + wl2)|(wl4)) =i|1,1). (10)
phic to S;/H. The orbit space is defined as the quotient ' ’ ’
Hy/SU(2) and is (2N-3)-dimensional forN>1. For ex- In order for the statéy(9)) to have unit degree of polar-

ample, forN=2, we have dif{,SU(2)]=1, which means ization (4), we must have

that a singlgrea) parameter is needed to separate the orbits. ~
However, forN=3, we have dift{s/SU(2)]=3 and one (UD[U(B,6,a)[¢(9))
hence needs three parameters. = coga - B)sin 29 sirX( 0/2)

+[coda+ B) —isin(a+ B)cos 29]cog(6/2) = 0.
IV. ORBITS OF TYPE 1 (11

Let us first consider the orbits of type 1. These orbits carEight solutions that are independent &fare easily found.
be labeled by the valuee {0,1,...|N/2}}. From Eq.(6), it  They are given by§=mx, B=a+«/2, and a=+x/4 or a
is clear that for every state belonging to an orbit with ==37/4. All these solutions give the same physical final
#+N/2, there exists an orthogonal state within the same orbitstate, described by ca¥0,2)-sin9(2,0).

because the statés,N—n) and [N-n,n) are then orthogo- Since any pure two-photon state can be obtained by ap-
nal. Therefore, all states belonging to orbits witit N/2 are  plying an SU2) operator to some orbit-generating state
fully polarized. |(19)), we conclude that all pure two-photon states can be

States belonging to orbits for whid is an even number mapped onto an orthogonal one using only linear optics. Ac-
and n=N/2 also have unit quantum polarization. To prove cording to our definition(3), these states thus have unit de-
this, we note that gree of polarization.
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VI. COMPLETE TWO-PHOTON BASES A 1 1-i\2
As we have already noted, the state ly) = U(O—Eaﬁ 0= i_ 0 . (16)
L 2] Y14z
|fml4)) = EQO,Z) +12,0) (12 This state can be transformed into two other orthogonal two-

mode states under geometrical rotations of +60 degrees,
belongs to one of the two orbits of type 1 fbhi=2. It can

also be seen as a peculiar circularly polarized $tE6¢ As a 1 V2 +i
consequence of its circular nature, it can be transformed into [ 9 = 0(0, +27/3,0)|[¢h) = —=| +i (6 , (17)
an orthogonal state according to ’ 2y 5 i

V2 -

U(£1/2,6,0)|(/4)) = + ;(|072> -|2,00 (13  Which together witHyy) form a complete orthonormal basis.
V2 Since any unitary transformatio preserves the inner

for any value ofé. According to Eq.(10), SU(2) operators Products, new bases can be created by applying the

can also transforrmy(w/4)) into a state that is orthogonal to ©riginal basis states. If the original basis states belong to the
both Egs.(12) and (13). Hence, in this orbit of type 1, the Same orbit and we use an &) transformation, all basis
SU(2) transformations generate the whole basis set. We havéfates remain within the orbit. Any state belonging to such an
already used this fact to experimentally generate basis stat@EPit ¢an thus be made a basis state of a complete basis by an
that differ only by phase shif27] or geometrical rotations aPPropriately chosen P transformation. _

[15]. That the state§10), (12), and(13) are orthogonal was The _orblt gonS|dered above! which is charactenzed&by '
recently pointed out by Chekhowat al. [22], who denoted =/4, is easily reached expenmentglly using a phot(_)n pair
them [HV), |RL) and|D5} respectively. reflecting the fact generated by spontaneous parametric down-conversion. The
that the ,re résent one’ ho?on in )e/,ach of ag horizontaltaCt that this orbit spans the whole Hilbert spé¢ghas been
vertical I)i/neafbasis the rigF;lt- and left-hand circularly polar-exmoite<j in the experimental realization of relative-phase

ized basis, and the linear basis 45 degrees from the vertici&ﬂesa%ﬂtng:ﬁgd;n lil\'s\lljglghOotgtgoqgu(mggpsoclzanzatlon states
That is, they are the eigenstates with eigenvalue zero of the ' T

operatorsl,, J,, andJ,, respectively.
States that can generate whole basis sets using only linear VIl. PURE STATES WITH AN ODD NUMBER
transformations are very useful, since these transformations OF PHOTONS
are easily realized experimentally. In particular, it is desir- .
able to find states that can generate a whole basis set by Let us denote an arbitrary puhephoton state as

using only phase shifts or geometrical rotations. As phase N
shifts and geometrical rotations are described by the opera- )= > rgn,N - n). (18)
torse”'z ande'™y, such bases can be generated from equi- n=0
partition states in théZ and:]y basis[28], respectively. For N odd, we then find
An equipartition state in thé, basis, i.e., the horizontal- (N+1)/2

vertical basis, can be realized by an (8Jtransformation

. . o
acting on the statgy(/4)) since MUOmalp==i2 2 (- Drirne

k=0
1 (N-2K)«

0(0 0,,7/2) ! i X sin| @ — en-k + (19
0,71 [ K~ okt ———— |
|§1>:,—ZE 0 =,—§ -1, (14) 2
v v - -
1 -1 We thus have(x|U(0,,0)|x)=—(x]U(0,,2m)|x). Since

where 6,= /2 -arcco§l/\3). This state then forms a com- the expressiori19) is purely imaginary, there exists at least
plete basis together with the states generated by subsequéfté value ok for which a state orthogonal t) is obtained.

phase shifts of /3 and -2r/3, Hence, gll pure states with a giver_1 od@ number of photons
have unit degree of quantum polarization.
| etz We note that for an\N-photon state, a differential phase
0 _ shift of 27 does not change the physical state. However, for
1€,9=U(0,0, £ 2n/3)|¢;) = V3 :é sl (15 odd N, it introduces an overall phase factor that equals -1,
—erer which we made use of in the proof above.
Starting with the same stat@(m/4)), an equipartition
state in thel, basis, i.e., the circularly polarized basis, can be VIIl. COMPLETE THREE-PHOTON BASES

obtained by application of the phase smg:arctamll\@
-m/2. Expressed in the horizontal-vertical basis, we then Noting that the stat@/(w/4)), which we used to generate
have complete two-photon bases in Sec. VI is invariant under in-
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terchange of the horizontally and vertically polarized modes,

let us now consider the three-photon states

1
£ =-=(0,3 +[3,0), (20)
V2

1
18y =7=(1,2 +2,1). (21)
V2

Like |#(m/4)), these states are symmetric with respect to the
horizontal and vertical modes, however they belong to orbits

of type 2. Application of the transformatidd(0, 6, 7/2) to
|¢1) gives

1 Upp iUy
U(0,0,7/2)| 0 | 34| —up,+iu
( :T ) =S _ 12. 13 , (22)
V2 0 V2 | Ugtiug
1 — Uy tiug

whereu;; are the real matrix elements of the unitary operator

e'%. In order to generate a complete basis in manifsld
=3, we now look for an equipartition state in analogy with

PHYSICAL REVIEW A 71, 033818(2005

By applying a geometrical rotation of 45 degrees fol-
lowed by a phase shift g8 =arcco$-2/3) to the two sym-
metrical states/;) and|{,), one can also obtain equipartition
states in the circularly polarized basis. In the horizontal-

vertical basis, we then have

1 1
' 0
0 _ ja-i(3/4)arccosl/3) _
U_(B%ZO) 0 :Ief 1+i2y2
\ 1 V”Z—S
0
(26)
and
0 \3
Y 1+i2i2
\ 0 3
0
(27)

the treatment in Sec. VI. That is, we want the magnitude oEach of these states forms a complete basis together with the

all the probability amplitudes to equal IN+1=1/2,which
implies uZ,+u2,=uf,+u2,=1/2.This requirement can be ful-
filled by choosing one of the rotation angleg,
=arcco$+1/3), which give

1
1 (== \E
0(0 0,,72)| 0 +jeti(3/arccosi/3) \5
— = = |- 23
V2 0 2 1+ivy2
1 \E
i

states obtained by geometrically rotating the respective state
by 45, 90, and 135 degrees. The corresponding transforma-

tions are given by the operatoﬂ:d(o,kwlz,O), where k
=1,2,3.

Also in the case of three photons, the orbits to which
some particular symmetrical states belong thus span the
whole Hilbert space, and allow complete bases to be gener-
ated by applying only phase shifts or geometrical rotations.

IX. DISCUSSION AND CONCLUSIONS

Polarization properties of quantum states deviate from the
properties one may extrapolate from classical physics. The

In fact, an equipartition state in the horizontal-vertical basitundamental reason is the concept of orthogonality, which,
can be created by applying any of the eight operatordor classical states, takes on a direct geometrical medfring

0(0,1@,177/2) to the statgl¢y) or |{p). For example, we
have

0 —i+4\2
0 0,6,,72)| 1 gti(1/4)arccos1/3) \6
V0.0, m2)| 1) _ e | a
V2 1 2 -15iy2
O \‘J’g

Subsequent phase shifts®f2, 7, and 3r/2 to the equipar-

the plane perpendicular to the propagation diregtion
whereas orthogonality in Hilbert spaces of dimension greater
than 2 instead implies distinguishability. This means that in
Hilbert spaces of dimension greater than 2, there are more
than two orthogonal states of polarization, as shown above.
The spaces spanned by two- and three-photon states are
still tractable, and we have shown that all pure states in these
spaces have unit degree of quantum polarization. This was
also found to be true for all pure states with any given odd
number of photons. That is, by using only geometrical rota-
tions and phase shifts it is always possible to transform any
such state into an orthogonal one. Equivalently, using the
proper observable, the transformation will result in a unit-

tition states will then generate complete bases. That is, fovisibility projection probability. We have also shown that

any equipartition statéey), the states
le) =U(0,0km/2)|e), k=0,1,2,3, (25)

are mutually orthonormal.

there exist complete two- and three-photon bases whose ba-
sis states are related by transformations that can be realized
using linear optics. In particular, we derived such bases with

basis states related by only phase shifts or geometrical rota-
tions. For two-photon states, these properties have already
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been exploited in various applications of quantum optics.

Finally, we note that it may be possible to generalize sev-
eral of the results presented here. For example, it is natural;%

ask if all pure, two-mode, energy eigenstates can be ma

orthogonal using linear optics. It would also be interesting to
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