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The behavior of a single molecule driven simultaneously by a laser and by an electric radio frequency field
is investigated using a non-Hermitian Hamiltonian approach. Employing the renormalization group method for
differential equations, we calculate the average waiting time for the first photon emission event to occur, and
determine the conditions for the suppression and enhancement of photon emission. An abrupt transition from
localizationlike behavior to delocalization behavior is found.
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Periodic driving of a two-level system can significantly
alter its dynamics. Two renowned examples are dynamical
localization of ultracold atoms in magneto-optical trapsf1g,
and coherent destruction of tunnelingsCDTd for a particle
se.g., an electrond in a bistable systemf2g. In the latter ex-
ample, a sinusoidal external driving field localizes the elec-
tron in one of the wells of a double-well potential. This is
done via particular choice of parameters of the driving field
f2g. Such a coherent localization behavior was recently ad-
dressed in Ref.f3g in the context of single-molecule spec-
troscopyf4g.

When a molecule interacts with a continuous wave laser
field and a much slower radio frequencysrfd field, one can
control the emission of the molecule by the appropriate se-
lection of the rf field parametersssee Ref.f3gd. Coherent
localization in this case manifests itself as the divergence of
average waiting time for a single-photon emission, even
when the laser frequency is in resonance with the electronic
absorption frequency of the molecule. The rf field effectively
localizes the wave function of the molecule in its ground
state si.e., for certain special parameters of the rf driving
fieldd. Note that control of emission by single molecules us-
ing rf fields has gained interest recently since it can be used
for single-photon control and hence, possibly for quantum
cryptology and quantum computingf4,5g.

In this paper we present the criterion for the destruction
and enhancement of emission from a single-molecule source
interacting with an on-resonance continuous wave laser and
a rf field. The situation is different from the CDT because the
process of photon emission is dissipative and, therefore,
causes decoherence in the single-molecule system. Using the
renormalization groupsRGd method for differential equa-
tions f6g, we obtain analytical expressions for the average
waiting time ktl of first photon emission. However, the de-
coherence due to finite lifetime, 1/G, of the excited state of
the molecule destroys complete localization. In other words,
ktl is always finite. We find thatktl exhibits resonance be-
havior as a function of control parameter. The most surpris-
ing result is the existence of a critical value ofG /vrf above
which the resonance peakssi.e., tendency to localized disap-
pear. The transition from coherent localizationlike behavior
to noncoherent and delocalized behavior is not smooth.

We study a two-level systemsa moleculed and two fields,
a laser field and an electric radio frequency field. Such a

system has been considered in Ref.f7g. We use the same
Hamiltonian as the one used in this work; however, instead
of the density matrix equationf7g we consider the
Schrödinger equation with the non-Hermitian Hamiltonian,
i.e., we include the relaxation term into the Hamiltonian of
the system. For a molecule with a ground electronic stateugl
and an excited electronic stateuel, the Schrödinger equation
is f3g

i
]

]t
uCstdl = HVg cosvrf tuglkgu +

V

2
suglkeu + uelkgud

+ SVe cosvrf t − i
G

2
+ dDuelkeuJuCstdl. s1d

Here, d is the laser detuning,Ve,g=me,g3Erf, V=meg3E
sthe Rabi frequencyd, whereme,g are permanent dipole mo-
ments of the molecule in statesuel and ugl, meg is the transi-
tion dipole, andE and Erf stand for the amplitudes of the
laser and the rf fields, respectively. In Eq.s1d we used the
rotating wave approximation for the fast on-resonant laser
field, but not for the slow off-resonant rf field.

The chief quantity of interest is the survival probability
P0std=kCstd uCstdl, i.e., the probability of no emission event
to occur in the time interval between 0 andt. Then, we define
the average waiting time for emission eventf3g

ktl =E
0

`

fuCgstdu2 + uCestdu2gdt. s2d

In what follows, we first consider the case ofV!G ,vrf, and
later, the case ofG,V!vrf. We solve the Schrödinger
equation s1d perturbatively employing the renormalization
group methodf6g scf. the recent solution for CDT problem
f2g with the RG proceduref8gd. Note that the limit of small
Rabi frequencysV!vrfd corresponds to the limit of high-
frequency driving field considered previously in the CDT
problemf2g. We study the effect of the non-Hermitian part of
the Hamiltonian on localization behavior in the same limit.

Introducing scalingst°vrf t, Ve,g°Ve,g/vrf, d°d /vrf,
G°G /vrf, V°eV /vrf swheree!1d, we pass to the “am-
plitude” variables: Cgstd=cgstdexph−iVg sin tj, Cestd
=cestdexph−iVe sin t−Gt /2j. Thus, for the case of zero detun-
ing d=0, we arrive at the set of coupled ordinary differential
equations
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d

dt
cg = − iece

V

2 o
k=−`

`

e−ikt−Gt/2Jksjd,

d

dt
ce = − iecg

V

2 o
k=−`

`

eikt+Gt/2Jksjd, s3d

where we expanded exponents in series of Bessel functions
of the first kindJk f9g

eij sin t = o
k=−`

`

Jksjdeikt. s4d

The modulation indexj=Ve−Vg is a parameter governing
the amplitude of the driving rf field.

To solve Eqs.s3d we proceed with the application of the
RG approachf6g. The naive solution to Eqs.s3d is given by
a power series in smalle: scg,cedT=cs0dstd+ecs1dstd+Ose2d,
provided thatcsndstd areOs1d for all t. At large enough times,
however, one or severalcsndstd sn.1d may become greater
thancs0dstd. Such terms, responsible for the breakdown of the
naive expansion, are called secular terms. The RG procedure
we carry out below regularizes the naive expansion by iden-
tifying the secular terms and eliminating themf6g.

At Ose0d, the solution of Eq.s3d is simply a constant
vector, cs0d=sA,BdT. Substituting this result into the next-
order equations and integrating, we have

cg
s1d = − iVB o

k=−`

`

Jksjds1 − e−Gt/2−iktd
G − 2ik

G2 + 4k2 ,

ce
s1d = − iVA o

k=−`

`

JksjdseGt/2+ikt − 1d
G − 2ik

G2 + 4k2 . s5d

Further application of the naive procedure produces terms
which grow with timet, i.e., secular terms

cg
s2d = −

tV2

2
A o

k=−`

`

Jk
2sjd

G

G2 + 4k2 + TNST,

ce
s2d = −

tV2

2
B o

k=−`

`

Jk
2sjd

G

G2 + 4k2 + TNST, s6d

whereTNST stands for nonsecular terms. The following RG
equations for variablesA andB are intended to regularize the
naive expansionfto orderOse3dg f6g:

dAR

dt
= −

e2V2G

2
AR o

k=−`

`
Jk

2sjd
G2 + 4k2 ,

dBR

dt
= −

e2V2G

2
BR o

k=−`

`
Jk

2sjd
G2 + 4k2 ,

where subscript “R” indicates that we are solving for the
renormalized values ofA and B. Thus, toOse3d AR and BR

satisfy

ARstd = As0dexpH−
e2V2Gt

2 o
k=−`

`
Jk

2sjd
G2 + 4k2J ,

BRstd = Bs0dexpH−
e2V2Gt

2 o
k=−`

`
Jk

2sjd
G2 + 4k2J . s7d

At time t=0 we assume that the molecule is in the ground
state; hence,ces0d=0,cgs0d=1. Applying these initial condi-
tions and replacingA and B with their renormalized values
fEq. s7dg in cs0d and in Eq.s5d, we obtainOse2d perturbation
results for amplitudesce andcg. Then, we switch back to the
original variablesCe,gstd and arrive atfOse2d resultsg

Cgstd = e−iVg sin t−zt, z =
e2V2

2 o
k=−`

`

Jk
2sjd

G

G2 + 4k2 ,

Cestd = − ieVe−iVe sin t−Gt/2−zt o
k=−`

`

Jksjd

3
seGt/2+ikt − 1dsG − 2ikd

G2 + 4k2 . s8d

For convenience we sete=1, keeping in mind that the Rabi
frequencyV is small. Then, using Eqs.s2d and s8d we cal-
culate the mean waiting timektl

ktl−1 = GV2 o
k=−`

`
Jk

2sjd
G2 + 4k2 + OSV2

G2D . s9d

In Fig. 1 we plot the scaled mean timeGktl, given by Eq.s9d
as a function of the modulation indexj, and compare this
prediction with the results of numerical solution of Eq.s1d.
We observe a good agreement between the numerical and
analytical results, indicating that the RG approach indeed
captured the global behavior ofCe,g. We also observe that,
for the smallest value of the decay rateG sG /vrf in original
unitsd, maxima ofktl occur close to the zeros of the Bessel
functionJ0sjd, but with increase inG, the maxima ofktl shift
and broaden.

To determine the positions of the extrema ofktl as a

FIG. 1. Scaled mean time for the first emissionGktl is plotted as
a function of modulation indexj. The solid line represents RG
prediction of Eq.s9d; dots correspond to the numerical solution of
Eq. s1d. Rabi frequencyV=0.1. Radiative decay rates areG=0.5;
1.5; 3.0sfrom bottom to topd. Grid lines indicate zeros ofJ0sjd.
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function of j sFig. 1d and to investigate the effect of the
dissipation on the emission suppressionsenhancementd crite-
rion, we use Eq.s9d and setdktl /dj=0. This condition re-
sults in the following transcendental equation:

J0sjd =
G2

J1sjdok=1

`
JksjdfJk−1sjd − Jk+1sjdg

G2 + 4k2 = GsG,jd. s10d

Solution of Eq.s10d yields values ofj which minimize and
maximizektl. These values correspond to enhancement and
reduction of photon emission rate 1/ktl.

In the limit of G→0 we recover the well-known condi-
tion, obtained previously in the context of CDT,J0sjnd=0 sjn

are the zeros of the Bessel functionJ0d. For smallG, since
shifts in j with respect tojn are small, we can expand both
sides of Eq.s10d in Taylor series around pointsjn. Then, the
shifts of maxima are given by

j − jn ,
G2

J1
2sjndok=1

`
JksjndfJk+1sjnd − Jk−1sjndg

G2 + 4k2 . s11d

For arbitrary values ofG, Eq. s10d has to be solved numeri-
cally. In Fig. 2 we illustrate this solution by plottingGsG ,jd
and J0sjd versusj for two values ofG. In Fig. 2sad sG
=1.0d we observe the graphs’ crossings close to the roots of
the Bessel functionJ0. However, as we increaseG to 2.5, the
crossings disappearfFig. 2sbdg. In other words, Eq.s10d does
not have solutions for this value ofG, and the first two
maxima ofktl do not exist. A similar transition also happens
with the minima of ktl. As it follows from Eq. s10d, the
minima are found in the vicinity of zeros ofJ1 for G close to
zero, and disappear for sufficiently largeG fsee Fig. 2sbdg.

This outcome is an indication of unexpected critical be-
havior of ktl in G. Maxima sminimad of the waiting timektl
do not disappear gradually with the increasing decay rate,
due to the peaks broadening. Instead, there is a critical value
of G for each extremum, which is equivalent to the existence

of an infinite number of critical points. We note that in the
vicinity of critical point sjcr ,Gcrd, the straightforward expan-
sion of Eq.s10d yields jcr−j~ sGcr−Gdb, with b=1/2. Fur-
thermore, as can be concluded from Fig. 2, the neighboring
pairs of minima and maxima disappear at the same values of
Gcr, that is, maxima and minima flow towards each other and
annihilate. In Fig. 3 we plot shifts in the positions of maxima
with respect tojn given by numerical solution of Eq.s10d as
a function of G. Both curves in Fig. 3 display excellent
agreement with the results of numerical solution of the
Schrödinger equations1d.

The RG procedure for the case of nonzero detuning is
performed in a similar fashion and results in

ktl−1 = GV2 o
k=−`

`
Jk

2sjd
G2 + 4sk − dd2 + OSV2

G2D . s12d

In this case, maxima of mean waiting time occur close to
zeros ofJdsjd sd is an integerd, if G is not large. Otherwise,
they shift according to thed=0 scenario. Finally, in connec-
tion to experimental studies, we should mention that an ex-
pressionktl−1 similar to Eq. s12d was given in Ref.f10g,
where it adequately described the behavior of terrylene in
n-hexadecane at low temperatures.

So far we have considered the situation when Rabi exci-
tation frequencyV is smaller thanG. In view of single-
molecule experiments carried out in Ref.f11g, the opposite
situation V.G is also important. Assuming thatV and G
!vrf, we now turn to the criterion for the destruction of
emission for this case, and verify the compatibility of the RG
results and of our model Hamiltonian with the available ex-
perimental data.

Note that ifG is smaller thanvrf, we need to modify our
derivation. This time, we keep the laser detuningd in the
ee-matrix element of the Hamiltonian in Eq.s1d, and switch
to “amplitudes:” Cgstd=cgstdexph−iVg sinvrf tj, Cestd
=cestdexph−iVe sinvrf t−Gt /2−idtj. We use different scal-
ings to ensure that the rf field frequency is much greater than
bothV andG si.e., G°eG /vrf, V°eV /vrfd. Our system of
ordinary differential equations now reads

FIG. 2. Illustration of Eq.s10d. Bessel functionJ0 ssolid lined
plotted as a function ofj together with the right-hand side of Eq.
s10d, GsG ,jd. Radiative decay rates aresad G=1.0; sbd G=2.5. Grid
lines indicate zeros ofJ0sjd.

FIG. 3. The shiftssj−jnd /jn found from Eq.s10d ssolid linesd
are compared to those found from numerical solution of Eq.s1d
sboxesd. They are plotted as a function ofG sG /vrf in original unitsd
for the peaks close to the firstsupper curved and the secondslower
curved zeros ofJ0 sthe first two peaks in Fig. 1d. Critical points are
marked by stars.
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dcgstd

dt
= −

ieV

2
o

k=−`

`

e−ikt−idtJksjdcestd,

dcestd
dt

= −
ieV

2 o
k=−`

`

eikt+idtJksjdcgstd −
eG

2
cestd,

where all the quantities are in units ofvrf. Unlike the previ-
ous casefEqs. s5d and s6dg, the secular terms appearsat in-
teger values ofdd in the naive expansion already at the first
order. The details of calculations with the RG method will be
given elsewhere; here, we only present the final expression
for the average waiting time

ktl−1sdd < o
k

GV2Jksjd2

G2 + 2V2Jksjd2 + 4sk − dd2 . s13d

The approximate equality sign in Eq.s13d indicates that it is
only valid when resonances are not overlapping, which is
consistent with our assumptionG!vrf. We see that the cri-
terion for destruction of emission is given byJksjd=0 for
integer values of the detuningd=k sin units of vrfd.

Now, we are ready to compare our theory with experiment
of Ref. f11g. The experimental results had been matched pre-
viously with the numerical solution of optical Bloch equa-
tionsf11g. We repeat the numerical simulations carried out in
Ref. f11g, and compare the results with analytical prediction
of Eq. s13d in Fig. 4. All three graphs in Fig. 4 illustrate

nearly perfect agreement between the theory and experiment.
Note that generally solutions of steady-state optical Bloch
equations are not identical to predictions made based on non-
Hermitian Hamiltonianswhich captures only the first photon
statisticsd. However, in the limit we are considering, of small
V andG, we expect good agreementssee Fig. 4d.
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