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Photon emission from a single-molecule source driven by an rf field
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The behavior of a single molecule driven simultaneously by a laser and by an electric radio frequency field
is investigated using a non-Hermitian Hamiltonian approach. Employing the renormalization group method for
differential equations, we calculate the average waiting time for the first photon emission event to occur, and
determine the conditions for the suppression and enhancement of photon emission. An abrupt transition from
localizationlike behavior to delocalization behavior is found.

DOI: 10.1103/PhysRevA.71.033810 PACS nuntber42.50.Ar, 31.15-p, 33.80-b

Periodic driving of a two-level system can significantly system has been considered in Réf]. We use the same
alter its dynamics. Two renowned examples are dynamicaHamiltonian as the one used in this work; however, instead
localization of ultracold atoms in magneto-optical trah§  of the density matrix equationN7] we consider the
and coherent destruction of tunnelit@DT) for a particle  Schrédinger equation with the non-Hermitian Hamiltonian,
(e.g., an electronin a bistable systerfi2]. In the latter ex- i.e., we include the relaxation term into the Hamiltonian of
ample, a sinusoidal external driving field localizes the electhe system. For a molecule with a ground electronic State
tron in one of the wells of a double-well potential. This is and an excited electronic sta, the Schrédinger equation
done via particular choice of parameters of the driving fieldis [3]

[2]. Such a coherent localization behavior was recently ad-
dressed in Ref[3] in the context of single-molecule spec- . J - Q

I~ [W(1)) =) Vg coswrt|gial + - (Ig)e| +[eXal)
troscopy[4]. ot 2

When a molecule interacts with a continuous wave laser r
field and a much slower radio frequengy) field, one can + (Ve coswyt —i=+ 5>|e><e|}|\lf(t)>, (1)
control the emission of the molecule by the appropriate se- 2
lection of the rf field parameterésee Ref.[3]). Coherent pere 5 is the laser detuningVe = fog X Err, Q= ptegX E
localization in this case manifests itself as the divergence Ofihe Rabi frequenady where pe are permanent dipole mo-
average waiting time for a single-photon emission, evefents of the molecule in staté and|g), Megis the transi-
when the laser frequency is in resonance with the electronigop dipole, andE and E, stand for the amplitudes of the
absorption frequency of the molecule. The rf field effectively|aser and the rf fields, respectively. In EQ) we used the
localizes the wave function of the molecule in its ground,otating wave approximation for the fast on-resonant laser
state (i.e., for certain special parameters of the rf driving fie|d. but not for the slow off-resonant rf field.
field). Note that control of emission by single molecules us-  The chief quantity of interest is the survival probability
ing rf fields has gained interest recently since it can be Useﬁ’o(t)=<\lf(t)|‘lf(t)>, i.e., the probability of no emission event
for single-photon control and hence, possibly for quantumy geeyr in the time interval between 0 andhen, we define

cryptolqu and quantum computldg,S]. . the average waiting time for emission ev¢8t
In this paper we present the criterion for the destruction

and enhancement of emission from a single-molecule source (" 5 5
interacting with an on-resonance continuous wave laser and (=] [[WyO] +[Wet)*]dt. (2)
a rf field. The situation is different from the CDT because the 0
process of photon emission is dissipative and, therefordn what follows, we first consider the case@&1I", w,;, and
causes decoherence in the single-molecule system. Using theter, the case of’ <Q < w;. We solve the Schrédinger
renormalization grougfRG) method for differential equa- equation(1) perturbatively employing the renormalization
tions [6], we obtain analytical expressions for the averagegroup method6] (cf. the recent solution for CDT problem
waiting time(7) of first photon emission. However, the de- [2] with the RG procedurg8]). Note that the limit of small
coherence due to finite lifetime, I/ of the excited state of Rabi frequency({)<w,;) corresponds to the limit of high-
the molecule destroys complete localization. In other wordsfrequency driving field considered previously in the CDT
(7) is always finite. We find tha¢r) exhibits resonance be- problem[2]. We study the effect of the non-Hermitian part of
havior as a function of control parameter. The most surpristhe Hamiltonian on localization behavior in the same limit.
ing result is the existence of a critical value Iofw,; above Introducing scalings— wyt, Ve g—>Ve g/ g, 0l wy,
which the resonance peakise., tendency to localizedisap- I'—I'/w, Q—€eQ/w; (Wheree<1), we pass to the “am-
pear. The transition from coherent localizationlike behaviorplitude”  variables: W(t)=cy()exp{-iVgsint},  We(t)
to noncoherent and delocalized behavior is not smooth.  =c(t)exg{-iV.sint-I"t/2}. Thus, for the case of zero detun-
We study a two-level systeifa molecul¢ and two fields, ing §=0, we arrive at the set of coupled ordinary differential
a laser field and an electric radio frequency field. Such aquations
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where we expanded exponents in series of Bessel functions ,
of the first kindJ, [9] 10

A\

gésint= 2 Jk(f)e'kt- (4) FIG. 1. Scaled mean time for the first emissior) is plotted as
k== a function of modulation inde¥. The solid line represents RG

The modulation indext=V,-V, is a parameter governing prediction of Eq.(9); dots correspond to the numerical solution of
the amplitude of the driving rf fleld Eq. (1). Rabi frequency)=0.1. Radiative decay rates ake=0.5;

To solve Eqs(3) we proceed with the application of the 1.5; 3.0(from bottom to top). Grid lines indicate zeros afy(¢).
RG approach6]. The naive solution to Eq$3) is given by
a power series in smak: (cg,co)"=clO(t)+ec!V(t)+0(€?), 20Tt &, (&)
provided that™(t) areO(1) for all t. At large enough times, Ag(t) = A(0)exp) - > > Zeal [
however, one or several™(t) (n>1) may become greater k==
thanc©(t). Such terms, responsible for the breakdown of the B
naive expansion, are called secular terms. The RG procedure B.(t) = B(O)exp! — E0°Tt D Jﬁ(g)
we carry out below regularizes the naive expansion by iden- RV~ 2 ST+ a2
tifying the secular terms and eliminating th¢#si.

At O(€%, the solution of Eq.(3) is simply a constant At time t=0 we assume that the molecule is in the ground
vector, c9=(A,B)T. Substituting this result into the next- state; hencege(0)=0,c4(0)=1. Applying these initial condi-

()

order equations and integrating, we have tions and replacingh and B with their renormalized values
[Eq. (7)]in ¢© and in Eq.(5), we obtainO(e?) perturbation
I' -2k results for amplitudes, andc,. Then, we switch back to the
(1) = g Ttr2-ikt e g
Gy 'QBk_E_x I((L - ™9 2+ 4Kk2' original variables¥ 4(t) and arrive a(O(ez) resulty
I - 2ik ‘I’g(t) - e—ng sin t—gt, [=—— E k(g)

C(l)_ IQAE Jk(g)(el“t/Zﬂkt 1) (5) 2 F2+4k2’

it + 4K

Further application of the naive procedure produces terms

— Vg sint-T't/2-{t
which grow with timet, i.e., secular terms Pe(t) ehe e 2 38

k=—o
tQZ o (eFt/2+|kt 1)(F 2”()
(gz) =- —Akzx N7 (ff) 4k2 +TInsT) T2+ a2 : (8)
For convenience we set1, keeping in mind that the Rabi
@ frequency() is small. Then, using Eq$2) and(8) we cal-
Co == —Bkz Jk(§) 4k2 +T\sTs (6)  culate the mean waiting timer)
where 7yst stands for nonsecular terms. The following RG (H =102 2 Ji(f) O<&2> (9)
equations for variable& andB are intended to regularize the e T2+ a2 o\r2)
naive expansiofito orderO(€%)] [6]: ) ) _
In Fig. 1 we plot the scaled mean tinhé7), given by Eq.(9)
dAR 62921“ “ Jﬁ(g) as a function of the modulation inde% and compare this
dt Rk_E T2+ 4K’ prediction with the results of numerical solution of E@).
‘°° We observe a good agreement between the numerical and
analytical results, indicating that the RG approach indeed
dBg _ ezﬂzl“ - Jﬁ(g) captured the global behavior df. 4. We also observe that,
E - Br _E T2+ 4Kk2’ for the smallest value of the decay rdtdI'/ w,; in original
k=—o0

units), maxima of{7) occur close to the zeros of the Bessel
where subscript R” indicates that we are solving for the functionJy(£), but with increase i, the maxima of 7) shift
renormalized values of andB. Thus, toO(e®) Ay andBgr  and broaden.
satisfy To determine the positions of the extrema (@ as a
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2 4 £ 6 8 10 for the peaks close to the fireipper curvg and the secondower

curve zeros of] (the first two peaks in Fig.)1 Critical points are
FIG. 2. lllustration of Eq.(10). Bessel functionl, (solid line) marked by stars.
plotted as a function of together with the right-hand side of Eq.
(10), G(I', ). Radiative decay rates af@ I'=1.0; (b) '=2.5. Grid  of an infinite number of critical points. We note that in the
lines indicate zeros af(¢). vicinity of critical point (&,,T,), the straightforward expan-
sion of Eq.(10) yields &, - &x (I',—T')?, with 8=1/2. Fur-
function of £ (Fig. 1) and to investigate the effect of the thermore, as can be concluded from Fig. 2, the neighboring
dissipation on the emission suppressienhancementrite-  pairs of minima and maxima disappear at the same values of
rion, we use Eq(9) and setd(7)/d¢=0. This condition re- T, that is, maxima and minima flow towards each other and
sults in the following transcendental equation: annihilate. In Fig. 3 we plot shifts in the positions of maxima
with respect tc, given by numerical solution of Eq10) as
a function of I'. Both curves in Fig. 3 display excellent
agreement with the results of numerical solution of the
Schrédinger equatiofil).
Solution of Eqg.(10) yields values of¢ which minimize and The RG procedure for the case of nonzero detuning is
maximize(r). These values correspond to enhancement anderformed in a similar fashion and results in
reduction of photon emission rate (k).
In the limit of I'—=0 we recover the well-known condi-
tion, obtained previously in the context of CDJg(&,) =0 (&,
are the zeros of the Bessel functidg). For smalll’, since

shifts in £ with respect ta, are small, we can expand both |n this case, maxima of mean waiting time occur close to
sides of Eq(10) in Taylor series around points. Then, the  zeros ofJ4(¢) (Sis an integer, if T is not large. Otherwise,

©

2 Jk(f)[Jk_l(S) - ‘]k+1(§)] _
Ji(¢) gl T2+ 4Kk2 =G(I,¢). (10

Jo(é) =

w 5 )
(»t=rz> Ji(&) . O(Q

& T2+ 4(k- 6)2 F)' (12

shifts of maxima are given by they shift according to thé=0 scenario. Finally, in connec-
, tion to experimental studies, we should mention that an ex-
E- &~ I > I(€)[ I (&) _Jk-l(gn)]_ (12) pression(7)~! similar to Eq.(12) was given in Ref[10],
B(&) i 2+ 42 where it adequately described the behavior of terrylene in
_ _n-hexadecane at low temperatures.
For arbitrary values of’, Eq. (10) has to be solved numeri- g4 t4r we have considered the situation when Rabi exci-

cally. In Fig. 2 we illustrate this solution by plottin@(T",£)  tation frequencyQ is smaller thanl. In view of single-

and Jo(é) versus¢ for two values oflI'. In Fig. 2a) (I'  molecule experiments carried out in REE1], the opposite
=1.0 we observe the graphs’ crossings close to the roots ofjtuation O >T is also important. Assuming th&2 and I’
the Bessel functiod,. However, as we increadéto 2.5, the < w,;, we now turn to the criterion for the destruction of
crossings disappedFig. 2(b)]. In other words, Eq(10) does  emission for this case, and verify the compatibility of the RG

not have solutions for this value df, and the first two results and of our model Hamiltonian with the available ex-
maxima of(7) do not exist. A similar transition also happens perimental data.

with the minima of (7). As it follows from Eq. (10), the Note that ifI" is smaller thanw,;, we need to modify our
minima are found in the vicinity of zeros df for I' close to  derivation. This time, we keep the laser detunifign the
zero, and disappear for sufficiently larfesee Fig. 2b)]. eematrix element of the Hamiltonian in E¢Ll), and switch

This outcome is an indication of unexpected critical be-to  “amplitudes:” W (t)=c4()exp{-iVgsinwst}, W(t)
havior of(7) in I'. Maxima(minima) of the waiting time(7) =c () exp{=iVesinwt—-T't/2-idt}. We use different scal-
do not disappear gradually with the increasing decay ratengs to ensure that the rf field frequency is much greater than
due to the peaks broadening. Instead, there is a critical valugothQ andI’ (i.e.,I'— el'/ w;, Q— €/ w,f). Our system of
of I for each extremum, which is equivalent to the existenceordinary differential equations now reads
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where all the quantities are in units @f;. Unlike the previ-
ous casdEgs.(5) and(6)], the secular terms appeét in-
teger values 0b) in the naive expansion already at the first

order. The details of calculations with the RG method will be
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given elsewhere; here, we only present the final expression FIG. 4. Comparison of the predictions f6n~*(8) given by Eq.

for the average waiting time

T 023 (é)>
2+ 20%3,(8)%+ 4k - 6%

(DHO=2

k

(13)

The approximate equality sign in E(L3) indicates that it is

(13) (solid lines with the excited state population calculated from
Bloch equationgRef.[11]) for various values of Rabi frequencies
(from bottom to top: (2=0.29; 0.9; 3.2 in units oF . Parameters are
taken from experiment of Refll]: w,;/2w=140 MHz, £=1.14,
I'/277=20 MHz (empty triangles The results are arbitrarily shifted
vertically for clarity.

only valid when resonances are not overlapping, which is

consistent with our assumptidn< w,;. We see that the cri-
terion for destruction of emission is given ky(£€)=0 for
integer values of the detuninf=k (in units of w,;).

nearly perfect agreement between the theory and experiment.
Note that generally solutions of steady-state optical Bloch
equations are not identical to predictions made based on non-

Now, we are ready to compare our theory with experimeniyermitian Hamiltoniar(which captures only the first photon
of Ref. [11]. The experimental results had been matched pregagistics. However, in the limit we are considering, of small

viously with the numerical solution of optical Bloch equa-

tions[11]. We repeat the numerical simulations carried out in
Ref.[11], and compare the results with analytical prediction

of Eqg. (13) in Fig. 4. All three graphs in Fig. 4 illustrate

Q andI’, we expect good agreemefsee Fig. 4
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