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We examine the interaction of a weak probe withN atoms in aL-level configuration under the conditions of
electromagnetically induced transparencysEITd. In contrast to previous works on EIT, we calculate the output
state of the resultant slowly propagating light field while taking into account the effects of ground state
dephasing and atomic noise for a more realistic model. In particular, we propose two experiments using slow
light with a nonclassical probe field and show that two properties of the probe, entanglement and squeezing,
characterizing the quantum state of the probe field, can be well-preserved throughout the passage.
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The coherent and reversible storage of the quantum state
of a light field is an important issue for the realization of
many protocols in quantum-information processing. Re-
cently much work has been done to address this issue by
utilizing the phenomenon of electromagnetically induced
transparencysEITd f1–10g. In this paper, we demonstrate that
under the conditions of EIT, the quantum state of the stored
light field can be well preserved even in the presence of
dephasing and noise.

In a conventional EIT setup, a strong, coherent field
s“control field”d is used to make an otherwise opaque me-
dium transparent near an atomic resonance. A second, weak
field s“probe”d with a restricted bandwidth about this reso-
nance can then propagate without absorption and with a sub-
stantially reduced group velocity compared to a pulse in
vacuum, thus delayingsor effectively “storing”d the light
field within the atomic cloud for a duration equal to the delay
time of the light pulse caused by the EIT medium.

In this paper we concentrate on two representative quan-
tities characterizing the amount of quantum information of a
light field: squeezing, representing a subquantum noise level
of fluctuation in the observable of one beam; and entangle-
ment, where the subquantum noise fluctuation occurs in the
correlation between two beams. We calculate the effect of the
atom-light interaction on each quantity and show that the
slowing of the light need not significantly degrade the infor-
mation carried. Previous works on photon storage have indi-
cated that in the absence of dephasing between the two
ground states of the lambda system, and ignoring the Lange-
vin noise operators arising from atomic coupling to a
vacuum reservoir, the quantum state of light field is well
preserved after traversing the EIT mediumf2,3,11g. Here we
further highlight the robustness of storage using EIT and
show that evenwith dephasing and noise taken into account,
entanglement and squeezing of the pulse at the exit of the
medium need not differ significantly from that of the input
pulse under experimentally realizable parameter regimes.

We follow the model outlined inf2g and use a quasi-one-
dimensional model, consisting of two co-propagating beams
passing through an optically thick medium of lengthL con-
sisting of three-level atoms. The atoms have two metastable
lower statesubl anducl interacting with the two optical fields

Êsz,td andVc as shown in Fig. 1.Êsz,td is a weak quantum

field that couples the ground stateubl and excited stateual,
and is related to the positive frequency part of the electric
field by

Ê+sz,td =Î"vab

2e0V
Êsz,tdeisvab/cdsz−ctd,

where vmn=sEm−End /" is the frequency of theuml↔ unl
transition.V is the quantization volume of the electromag-
netic field, which is taken to be the interaction volume. The
ucl→ ual transition is driven resonantly by a classical coher-
ent control field with Rabi frequencyVc. We consider the
case of copropagating fields to minimize the effects of Dop-
pler shift.

To perform a quantum analysis of the light-matter inter-
action it is useful to introduce locally-averaged atomic op-
erators. Assuming a length intervalDz containsNz@1 atoms

over which the slowly-varying amplitudeÊsz,td does not
change much, we can introduce the locally-averaged, slowly-
varying atomic operators

ŝmnsz,td =
1

Nz
o

zjPNz

ŝmn
j stdeisvmn/cdsz−ctd, s1d

whereŝmn
j std= um jstdlkn jstdu for the j th atom.

Going to the continuum limit, the interaction Hamiltonian
can be written in terms of the locally-averaged atomic opera-
tors as

FIG. 1. L level structure of the atoms.
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Ĥ = −E N"

L
fgŝabsz,tdÊsz,td + Vcsz,tdŝacsz,td + H.c.gdz,

s2d

whereg=dba
Îvab/2e0V" is the atom-field coupling constant,

dba is the atomic dipole moment for theubl↔ ual transition,
and L is the cell length. The equations of motion are then
given by

ṡ̂bb = gbŝaa + gbcsŝcc − ŝbbd − igÊŝab + ig* Ê†ŝba + F̂bb,

ṡ̂cc = gcŝaa + gbcsŝbb − ŝccd − iVcŝac + iVc
*ŝca + F̂cc,

ṡ̂ba = − gbaŝba + igÊsŝbb − ŝaad + iVcŝbc + F̂ba,

ṡ̂bc = − gbcŝbc − igÊŝac + iVc
*ŝba + F̂bc,

ṡ̂ac = − gacŝac − ig* Ê†ŝbc + iVc
*sŝaa − ŝccd + F̂ac,

S ]

]t
+ c

]

]z
DÊ = ig*Nŝba, s3d

where we have included the decays of the atomic dipole
operatorsgm and the associated Langevin noise operators
which describe the effect of spontaneous decay caused by the
coupling of atoms to all the vacuum field modes. The ran-
dom decay process adds noise to individual atomic operators
represented by the single atom Langevin noise operators

F̂mn
i std. The continuous Langevin noise operators are related

to the single-atom noise operators by the same relation as Eq.
s1d

F̂mnsz,td =
1

Nz
o

zjPNz

F̂mn
i stdeisvmn/cdsz−ctd.

The decay rategbc of the coherence between the two ground
states is of critical importance, and arises chiefly from atomic
collisions and atoms drifting out of the interaction region.
For rubidium vapor cells with a buffer gas, typicallygbc
<1 kHz although it is possible to attaingbc<160 Hz f7g.

In order to solve the propagation equations we make the
usual assumption that the quantum field intensity is much
less than that of the classical control fieldVc f2,12g. Assum-
ing all the atoms are initially in the stateubl we can solve Eq.

s3d perturbatively to first order ingÊ /Vc to obtain a set of
three closed equations

ṡ̂ba = − gbaŝba + igÊ + iVcŝbc + F̂ba, s4d

ṡ̂bc = − gbcŝbc + iVc
*ŝba + F̂bc, s5d

S ]

]t
+ c

]

]z
DÊ = ig*Nŝba. s6d

To solve these equations we Fourier transform to the fre-
quency domain via

F̃sz,vd =
1

Î2p
E

−`

`

F̂sz,tdeivtdt,

wherev=0 corresponds to the carrier frequencyvab in the
interaction picture. We solve Eqs.s4d ands5d for ŝba in terms

of Ê, substitute into Eq.s6d, and perform formal integration
over z to obtain the field at the exit of the cell after interac-
tion with the EIT medium. We find

ẼsL,vd = e−LsvdLẼs0,vd +
g*N

c
E

0

L

e−LsvdsL−sd

3 F− VcF̃bcss,vd + sv + igbcdF̃bass,vd
sgab − ivdsgbc − ivd + uVcu2

Gds,

s7d

with

Lsvd =

ugu2N
c

sgbc − ivd

sgba − ivdsgbc − ivd + uVcu2
−

iv

c
. s8d

Equations7d can be interpreted as follows: The amplitude of
the field operator is attenuated and phase shifted according to
the functionLsvd, the values of which depend on the actual
frequency component of the field. ExpandingLsvdL about
the carrier frequencyv=0 gives

LsvdL = KL −
ivL

vg
+

v2

dv2 + Osuvu3d, s9d

where

K =
Nugu2gbc

csgbagbc + uVcu2d
,

vg =
c

1 +
Nugu2suVcu2 − gbc

2 d
sgbagbc + uVcu2d2

,

dv2 =
csgbagbc + uVcu2d3

Nugu2L„uVcu2s2gbc + gbad − gbc
3
…

.

The zeroth order term represents attenuation due to the finite
coherence lifetime between the two ground states which is
proportional to the dephasing rategbc. Note that it also pre-
vents perfect transparency even at resonance and will prob-
ably be the ultimate limitation on storage using EIT type
techniques. However, it is possibly to significantly reduce
gbc by using Bose-Einstein condensates, for example.

The first order term inv describes a modification of the
group velocity from

c → vg =
c

1 +
Nugu2suVcu2 − gbc

2 d
sgbagbc + uVcu2d2

which can be many orders of magnitudes smaller thanc. For
uVcu*2gbc the effect of the nonzerogbc on the group veloc-

PENGet al. PHYSICAL REVIEW A 71, 033809s2005d

033809-2



ity is hardly noticeable. The nonzero dephasing rate does,
however, preventvg from reaching zero. In fact, the group
velocity increases towardsc as uVcu decreases below,2gbc,
although significant absorption due to the breakdown of EIT
will have already occurred onceuVcu becomes comparable to
gbc and thus it is difficult to speak meaningfully of a group
velocity.

The quadratic term in Eq.s9d represents absorption of the
high frequency components that fall outside the EIT trans-
parency windowdv f2g. This justifies the Taylor’s expansion
of Lsvd, since to prevent significant pulse distortion, one
would choose the bandwidth of the input pulseDv to satisfy
Dv /dv!1. For uVcuøgab and smallgbc, dv is approxi-
mately a linearly decreasing function ofgbc, a tool which
could be used experimentally to estimate the value ofgbc.

Returning to Eq.s7d, the second term on the right-hand
side represents vacuum noise added to the probe field as it
interacts with the atoms. We now determine under what con-
ditions this noise contribution is small.

As we are interested in whether the quantum properties of
the input field survive the passage throught the EIT setup, we
consider two quantities of interest: one relating to entangle-
ment and the other to squeezing. Here we propose some
possible experiments that could be performed to discern the
effect of slow light on entanglement and squeezing, and
show how the presence of the dephasing and decay mecha-
nisms that we have included in our model manifest them-
selves in the output beam for each type of experiment.

To investigate the effect of slow light on squeezing, we
consider an experiment where the amount of squeezing be-
fore and after passing through the EIT medium are compared
f8g. For an entanglement measurement, we propose a setup
shown in Fig. 2. Starting with a pair of entangled beams,
which could be produced, for example, from parametric
down conversion, one beam passes through an EIT medium
of lengthL and is consequently delayed by a timetd while
the other beam passes through the same length of vacuum. At
the output, we perform a measurement to quantify the degree
of entanglement between the field that was slowed and the
field that was not.

To quantify squeezing and entanglement, it is usual to
consider the field quadrature operator which has a Fourier
transform in the temporal domain of

X̃out
u svd = ÊsL,vdeiu + Ẽ†sL,− vde−iu. s10d

Using the solutions7d, the output quadrature operator is re-
lated to the input via the relation

X̃out
u svd = X̃in

u svde−LsvdL −
Ng

c
E

0

L

e−LsvdsL−sd

3
VcF̃bcss,vdeiu + Vc

* F̃bc
† ss,− vde−iu

sgba − ivdsgbc − ivd + uVcu2
ds

+
Ng

c
E

0

L

e−LsvdsL−sdsv + igbcd

3
F̃bass,vdeiu − F̃ba

† ss,− vde−iu

sgba − ivdsgbc − ivd + uVcu2
ds, s11d

where we takeg to be real for simplicity.
To calculate the degradation of squeezing after passing

through the EIT medium, we calculate the output squeezing
flux spectrum defined by

Soutsvddsv + v8d =
c

L
kX̃outsvdX̃outsv8dl. s12d

In order to compute Eq.s12d using Eq.s11d it is necessary
to calculate the correlation functions of the Langevin noises
involved. These can be derived using the generalized Ein-
stein relations. In the space-time domain, the generalized
Einstein relation for the single atom operators can be written
as f13,14g

kF̂mn
i st1dF̂ab

j st2dl = kDsŝmn
i ŝab

i d − Dsŝmn
i dŝab

i − ŝmn
i Dsŝab

i dl

3 dst1 − t2ddi j , s13d

where the notationDsŝmn
i d denotes the deterministic part of

the Heisenberg equation of motion forŝmn
i , that is the equa-

tion for ṡ̂mn
i with the Langevin noise terms omitted. The

Dirac delta function in Eq.s13d represents the short memory
of the vacuum reservoir modes while the Kronecker delta
occurs because we assume each atom couples only to its own
reservoir.

Using the definition of the locally-averaged Langevin
force operators in terms of their single atom counterpart, we
derive the following for the nonzero correlations of the con-
tinuous Langevin correlations. After transforming to the fre-
quency domain, these are

kF̃basz1,v1dF̃ab
† sz2,v2dl =

dsz1 − z2ddsv1 + v2d
nA sgbakŝaal

+ 2gbakŝbbl − gbckŝbb − ŝccld,

s14d

kF̃ba
† sz1,v1dF̃bcsz2,v2dl =

dsz1 − z2ddsv1 + v2d
nA gbckŝacl,

s15d

kF̃bc
† sz1,v1dF̃basz2,v2dl =

dsz1 − z2ddsv1 + v2d
nA gbckŝcal,

s16d

FIG. 2. Setup to measure whether entanglement of slowed light

is preserved.X̂ and Ŷ are two entangled beams whereX̂ passes
through an EIT medium and is consequently delayed by timetd

while Ŷ travels in vacuum. The angleu andf denotes the specific
quadrature to be interrogated.
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kF̃bcsz1,v1dF̃bc
† sz2,v2dl =

dsz1 − z2ddsv1 + v2d
nA sgbakŝaal

+ gbckŝcc + ŝbbld, s17d

kF̃bc
† sz1,v1dF̃bcsz2,v2dl =

dsz1 − z2ddsv1 + v2d
nA sgbakŝaal

+ gbckŝcc + ŝbbld, s18d

wheren is the atomic density,A is the cross section area of
the beam and we have takengb=gc=gba=gca in Eq. s3d for
convenience.

We substitute Eq.s11d into Eq. s12d and simplify using
Eqs.s14d–s18d. In accordance with the weak probe assump-
tion we also setkŝaal<kŝccl<kŝacl<0. The output squeez-
ing spectrumsnormalized with shot noise at 1d is

Soutsvd = Sinsvde−2 RehLsvdjL +
Nugu2

c
F1 − e−2 RehLsvdjL

2 RehLsvdj G
3

sv2 + gbc
2 ds2gba − gbcd + 2uVcu2gbc

usgba − ivdsgbc − ivd + uVcu2u2
. s19d

Before discussing how much the squeezing in the probe
beam degrades due to the slow light propagation, we first
consider how the entanglement between two beams degrades
after one of the fields passes through an EIT medium. If we
define the difference operator between the quadratures of the

two beamsX̂in
u std and Ŷin

fstd as

Ẑinsu,f,td = X̂in
u std − Ŷin

fstd s20d

then the two beams are said to be entangled when both of the
combinations involving non-commuting observables for one

of the beamsẐinsu ,f ,td and Ẑinsu+p /2 ,f−p /2 ,td are
squeezedf15,16g. Note that squeezing in both is required to
constitute an Einstein-Podolsky-RosensEPRd paradoxf17g,
and that squeezing in just one variable is insufficient.

At the output of the EIT medium, we account for the
effects of slow light by looking for squeezing in the time
adjusted variable

Ẑoutsu,f,td = X̂out
u st + tdd − Ŷout

f std, s21d

where td=Ls1/vg−1/cd is the delay due to the EIT effect
compared to light that had travelled distanceL in vacuum.
Again, for a nonclassical correlation between the two beams,

we require squeezing inẐoutsu ,f ,td and Ẑoutsu+p /2 ,f
−p /2 ,td. Fourier transforming Eq. s21d we obtain

Z̃outsu ,f ,vd=X̃out
u svde−ivtd−Ỹout

f svd with Ỹout
f =Ỹin

feivL/c, the
phase shift arising from free evolution of the light field that
has propagated through a distanceL in vacuum at speedc.

Defining the flux of entanglement spectrum for

Z̃outsu ,f ,vd in a way analogous to Eq.s12d

Aoutsu,f,vddsv + v8d =
c

L
kZ̃outsu,f,vdZ̃outsu,f,v8dl,

s22d

the entanglement criteria described abovescalled Duan’s in-
separability criteriaf15gd can be recast using Duan’s insepa-
rability measureIsvd into the formf15,16g

Isvd = ÎAoutsu,f,vdAoutsu + p/2,f − p/2,vd , 1.

s23d

Evaluating the right-hand side of Eq.s22d using Eq.s11d
and s14d–s18d we get

L

c
dsv + v8dAoutsu,f,vd

= kX̃in
u svdX̃in

u sv8dle−2 RehLsvdjL − kX̃insvdu

3Ỹin
fsv8dle−fLsvd+iv/vggL − kỸin

fsvdX̃in
u sv8dl

3e−fLs−vd−iv/vggL + kỸin
fsvdỸin

fsv8dl

+ dsv + v8d
Nugu2

c
F1 − e−2 RehLsvdjL

2 RehLsvdj G
3

sv2 + gbc
2 ds2gba − gbcd + 2uVcu2gbc

usgba − ivdsgbc − ivd + uVcu2u2
. s24d

Note that the noise addition represented by the last term in
Eq. s24d is identical to the one that appeared in the output
squeezing spectrum, a clear consequence of our choice of
entanglement measure. Also from this term, we see that the
destructive effects are independent of the particular quadra-
ture considered. In other words, the imperfections in the
setup adversely affect the phase and amplitude correlations
by the same amount.

For a clearer insight into how the entanglement is af-
fected, it is instructive to utilize the Taylor’s expansion for
Lsvd in Eq. s9d and throw away the quadratic and higher
order terms on the grounds that the probe bandwidth is well
inside the transparency window. Then under the parameter
regime when the absorption is lowsKL!1d, the entangle-
ment at the output is

Aoutsu,f,vd < Ainsu,f,vde−KL +
Nugu2

c
F1 − e−2KL

2K
G

3
sv2 + gbc

2 ds2gba − gbcd + 2uVcu2gbc

usgba − ivdsgbc − ivd + uVcu2u2
.

s25d

As an indication of the amount of degradation in squeez-
ing and entanglement, we consider a cell of length 3.5 cm
with atomic density of 131012 atoms per cm3, gba
=6p MHz, gbc=10 Hz, andVc=30p MHz. The modified
group velocity is 3100 ms−1 corresponding to a delay time of
11 ms and a transparency window of 6.5 MHz. For normal-
ized noise variance and choosing Duan’s inseparability mea-
sure as defined in Eq.s23d to be initially 0.4 at 1 MHzs1.0 is
the standard quantum limitd, the output variance characteriz-
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ing squeezing retained in the slowed light is 0.43, and the
output entanglement is 0.45. In contrast, keeping all other
parameters the same but choosinggbc=5 kHz, the normal-
ized noise variance and entanglement measure at the output
are 0.49 and 0.53 respectively, with no significant changes in
group velocity or transparency window. Thus we see that
preservation of quantum properties relies crucially on having
small values ofgbc as well as the probe bandwidth staying
well inside the transparency window, as can be seen from the
presence ofv2 type terms in Eqs.s19d ands24d. Mechanisms
for reducinggbc via buffer gas in vapor cells have been in-
vestigated experimentallyf7,18g.

In conclusion, we have demonstrated that both entangle-
ment and squeezing of the probe field can be almost per-
fectly preserved under slow light setup, even when quantum

noise due to atom-light interactions are taken into account,
provided the ground state decoherence rategbc is sufficiently
small. In many experimental situations, however, there may
be other mechanisms, for example, coupling to states outside
the L system, which are the dominant contribution to losses
in EIT f19g. Also, we have only considered the slow light
scenario while the key to true storage of light using EIT
relies on dynamically controllingVc as outlined inf2g. Nev-
ertheless, our results still underline the robustness of
quantum-information delay using an atomic lambda system,
allowing the possibility of using slow light for squeezing or
entanglement experiments.

We acknowledge helpful discussions with John Close and
funding from the Australian Research Council.
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