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In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helicities are bound into pairs
and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The nonpolariton
system constitutes free thermal radiation in the blackbody. The present paper investigates the radiation prop-
erties of a Kerr nonlinear blackbody. We found that the spectral energy density and radiation pressure of a Kerr
nonlinear blackbody are larger than those of a normal blackbody and that these two quantities are monotoni-
cally decreasing functions of the Kerr nonlinear coefficient. Above the transition temperature the photon
system is in a normal thermal radiation state, but below the transition temperature it is in a squeezed thermal
radiation state. In the transition from the normal to the squeezed thermal radiation state, the phase symmetry of
the photon system is spontaneously broken.
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I. INTRODUCTION

Recently, quantum nonlinearity has gained extensive
study. The statistics of polaritons in the nonlinear regime has
been discussedf1g. In the presence of a second-order nonlin-
earity, the effects of a Kerr nonlinearity in second-harmonic
generation have been investigated by using the positiveP
representation and a linearized fluctuation analysisf2g. A
scheme for the quantum teleportation of the polarization
state of a photon employing a cross-Kerr medium was pre-
sented and the experimental feasibility of the scheme dis-
cussedf3g. Within the framework of quantum-field theory, it
has been shown that the photon system in a Kerr nonlinear
blackbody is in a squeezed thermal radiation statef4,5g.

Since the electromagnetic field is a quantum system of
photons, the electromagnetic field in certain nonlinear media
can exhibit some unusual quantum effects. Now consider a
blackbody whose interior is filled by a Kerr nonlinear crys-
tal. The crystal constitutes a Kerr nonlinear medium for the
electromagnetic field. Further, the crystal is in thermal equi-
librium with the electromagnetic field. The crystal and the
thermal radiation constitute a system. We call this system a
Kerr nonlinear blackbody. Such a Kerr nonlinear blackbody
can be regarded as a rectangular crystal that has perfectly
conducting walls and is kept at a constant temperatureT. As
shown in Fig. 1, there is a small hole in a wall through which
thermal radiation can pass. In recent workf4,5g, we have
shown that the photon blackbody field in a Kerr nonlinear
crystal is a squeezed thermal radiation state. In the present
paper, we shall study the radiation properties of a Kerr non-
linear blackbody. We shall also investigate the symmetry of
the squeezed thermal radiation state. Additional features that
are worthy of exploration are pointed out here.

The electromagnetic field in thermal equilibrium is called
blackbody radiation or thermal radiation. The bare photons
in blackbody radiation can sense an attractive effective inter-
action by exchange of virtual nonpolar phonons. Such an
interaction leads to a squeezed thermal radiation state, in
which bare photons with opposite wave vectors and helicities
are bound into pairs and unpaired bare photons are trans-
formed into a different kind of quasiparticle, the nonpolari-

ton. A nonpolariton is a condensate of virtual nonpolar
phonons in momentum space below a transition temperature
formed through a nonlinear photon-phonon interaction, with
a bare photon acting as the nucleus of condensation. The
vacuum for nonpolaritons is a condensate consisting of pho-
ton pairs and single nonpolaritons are elementary excitations
from such a condensate. The squeezed thermal radiation state
possesses some peculiar properties. First, the spectral energy
density and radiation pressure of a Kerr nonlinear blackbody
are larger than those of a normal blackbody. Second, the
spectral energy density and radiation pressure are monotoni-
cally decreasing functions of the Kerr nonlinear coefficient.
Third, in the transition from the normal to the squeezed ther-
mal radiation state, the phase symmetry of the photon system
is spontaneously broken. The predicted properties of the
squeezed thermal radiation state might to be verified in
present-day physics laboratories.

The remainder of this paper is organized as follows. Sec-
tion II describes some properties of a normal blackbody. In
Sec. III, we diagonalize the Hamiltonian of the photon sys-
tem in a Kerr nonlinear blackbody. Section IV exposes the
radiation properties of a Kerr nonlinear blackbody and gives
the numerical calculation of physical quantities concerned.
In Sec. V, we describe the symmetry change on phase tran-
sition. A comprehensive discussion is given in Sec. VI.

FIG. 1. A Kerr nonlinear blackbody: a rectangular Kerr nonlin-
ear crystal enclosed by perfectly conducting walls and kept at a
constant temperature; there is a very small hole in a wall.
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II. NORMAL BLACKBODY

A. Quantization procedure

At the beginning of the 20th century the interpretation of
the blackbody radiation spectrum revealed the dual character
of electromagnetic radiation and became one of the origins
of quantum theory. By definition, a blackbody absorbs 100%
of all thermal radiation falling upon it. A close approxima-
tion to the blackbody is a small hole in a cavity in a solid that
is maintained at some steady absolute temperatureT. We
shall call this system a normal blackbody. The electromag-
netic field is composed of mutually exciting electric and
magnetic fieldsE andB. The electromagnetic field is a trans-
verse field, propagates in vacuum with the speedc of light,
and satisfies the Maxwell equations. Since there are no free
charges in the blackbody, we can set the scalar potential of
the electromagnetic field to be zero. Hence, the electromag-
netic field can be characterized by a single vector potential
A, which satisfies the Coulomb gauge= ·A =0. Conse-
quently, the electric and magnetic fields are given by

E = −
]A

]t
, B = = 3 A . s1d

The Hamiltonian of the electromagnetic field reads

Hem=E drS e0

2
E2 +

1

2m0
B2D , s2d

wheree0 andm0 are the permittivity and the permeability of
vacuum, respectively, withe0m0=c−2.

Now we need to quantize the electromagnetic field. Since
plane-wave modes constitute a complete orthonormal set,
they can be used for the expansion of the electromagnetic
field in any arbitrary geometry. The blackbody occupies a
volumeV. In terms of the creation and annihilation operators
aks

† andaks of circularly polarized photons with wave vector
k and helicitys= ±1, the vector potential of the electromag-
netic field is expanded as

Asr ,td = o
ks
S "

2Ve0vk
D1/2

faksstdekseik·r + aks
† stdeks

* e−ik·rg,

s3d

where " is the reduced Planck’s constant,vk =cuk u is the
angular frequency of a photon, andek,±1 are two orthonormal
circular polarization vectors perpendicular tok. The photon
operators obey the Bose equal-time commutation relations:

faksstd,ak8s8
† stdg− = dk,k8dss8, faksstd,ak8s8stdg− = 0.

s4d

They have the time dependence:aksstd=akss0dexps−ivktd
andaks

† std=aks
† s0dexpsivktd. On substituting Eqs.s1d ands3d

into Eq. s2d, the Hamiltonian of the electromagnetic field is
quantized as

Hem= o
ks

qvkaks
† aks, s5d

where the zero-point energy terms are dropped. Equations5d
represents the Hamiltonian of the system of noninteracting
photons in a normal blackbody.

Nks=aks
† aks are known as the number operators of pho-

tons. The number operators have the eigenvaluesnks

=0,1,2, . . . .Since the number operators commute withHem,
the number of photons in each modeks is constant in time.
The number operators form a complete commuting set and
simultaneous eigenstates of this set are given by

uhnksjl = p
ks
F 1

Înks!

saks
† dnksGu0l, s6d

where u0l is the vacuum state of the electromagnetic field.
The state vectors6d is symmetric under the interchange of
any two creation operators, consistent with the Bose-Einstein
statistics. Because the number of photons is variable, the
chemical potential of the photon system is null. Conse-
quently,Hem is a grand canonical Hamiltonian.

B. Thermal radiation state

The state vectors6d signifies a multimode number state of
photons, which is a pure state and therefore far from thermal
equilibrium. However, the electromagnetic field within a
blackbody is in thermal equilibriumf6g. Such equilibrium is
established via the continual absorption and emission of pho-
tons by matter. The electromagnetic field in thermal equilib-
rium is called blackbody radiation and characterized by a
definite temperatureT. The photons in blackbody radiation
are in a thermal radiation state, which is called a normal
state. In order to characterize the thermal radiation state, we
need to conceive a grand canonical ensemble of photons.
Some identical systems of the ensemble may be in an eigen-
state of the HamiltonianHem given by Eq. s5d, while the
distribution of the ensemble over the eigenstates is described
by the density operator of the thermal radiation state

r =
exps− Hem/kBTd

Tr exps− Hem/kBTd
, s7d

wherekB is Boltzmann’s constant. The basis states used in
the trace are the eigenstates of the HamiltonianHem, which
are given by Eq.s6d. The main thermodynamic quantity in
normal blackbody radiation is the total energyEn or the en-
ergy densityun=En/V, which is the ensemble average of the
corresponding microscopic quantity,

En = o
ks

"vkkNksl. s8d

Here we have utilized the average notationkNksl
=TrsrNksd.

It is easily found that the ensemble average of the number
operator of photons in a modeks satisfies the well-known
Bose-Einstein distribution,
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kNksl =
1

e"vk/kBT − 1
. s9d

Putting Eq.s9d into Eq. s8d and in the usual way altering the
summation to an integration, we obtain

En = VE
0

`

rnsv,Tddv, s10d

rnsv,Td =
"

p2c3

v3

e"v/kBT − 1
. s11d

Equations11d for the spectral energy density of blackbody
radiation is called Planck’s formula. The spectral energy den-
sity of blackbody radiation has a maximum at a frequency
vm defined by the equation,

3 −
xex

ex − 1
= 0, s12d

wherex="vm/kBT. The numerical solution of Eq.s12d gives

"vm/kBT = 2.821 44. s13d

With the new variable of integrationx="v /kBT, the re-
sulting integral in Eq.s10d is equal top4/15. Equations10d
yields

En = 4sVT4/c, s14d

wheres=p2kB
4 /60"3c2 is called the Stefan-Boltzmann con-

stant. Thus the total energy of blackbody radiation is propor-
tional to the fourth power of the temperature. This is the
Stefan-Boltzmann law. For the future study, we need to write
the energy density of normal blackbody radiation,

unsTd = 4sT4/c. s15d

Thereby the pressure of normal blackbody radiation is given
by

PnsTd = 1
3unsTd. s16d

III. KERR NONLINEAR BLACKBODY

The model of a Kerr nonlinear blackbody was described
in I. The crystal under study is a covalent one. The optical
vibration modes of a covalent crystal are all nonpolar modes
that carry no electric dipole moments, so they are infrared
inactive. For convenience the crystal is taken to be of cubic
symmetry, so it is optically isotropic. A Kerr nonlinear crys-
tal must be centrosymmetric. By “nonlinearity” we mean that
the crystal is first-order Raman active. Nonpolar modes in a
centrosymmetric crystal have even parity and are Raman ac-
tive f7g. In the cubic system, the common covalent crystals
that are both centrosymmetric and Raman active have a dia-
mond structure. At this point, the crystal studied is deter-
mined as a specific crystal with a diamond structure, such as
C. In a diamond-structure crystal a primitive cell contains
two identical atoms that exhibit a triply degenerate nonpolar
mode at zero wave vector, which is Raman active. For the
Raman-active mode the two atoms in the primitive cell move

in antiphase. Because the following treatment has no relation
to acoustic modes, the vibrational modes of the crystal are
limited to the Raman-active mode, whose zero-wave-vector
frequency is denoted byvR.

In Ref. f5g we have known that the interaction between
photons and phonons can lead to an attractive effective in-
teraction among the photons themselves. The attractive ef-
fective interaction leads to bound photon pairs. The physical
background for pairing is simple. A photon can emit or ab-
sorb a virtual nonpolar phonon. The emission of virtual non-
polar phonons by photons means that the photon is clothed
with a cloud of virtual nonpolar phonons. If a second photon
is near this cloud, it experiences a force of attraction. In the
standing-wave configuration a photon pair is stable only if
the two photons have opposite wave vectors and helicities.
The pair Hamiltonian of the photon system is

Hem8 =
1

2o
ks

"vksaks
† aks + a−k,−s

† a−k,−sd

+ o
ks,k8s8

Vks,k8s8ak8s8
† a−k8,−s8

† a−k,−saks, s17d

where the photons have the pair potential

Vks,k8s8 = H− V0"vk"vk8 if vk andvk8 , vR,

0 otherwise,
J

s18d

where V0 is a positive constant. We shall assume that the
crystal has a dispersion-free refractive indexn, so that the
photonic frequency is given byvk =cuk u /n.

Unpaired bare photons in the photon system are trans-
formed into a different kind of quasiparticle, the nonpolari-
ton. A nonpolariton is a condensate of virtual nonpolar
phonons in momentum space, with a bare photon acting as
the nucleus of condensation. The diagonalization of the pair
Hamiltonians17d can be performed by the Bogoliubov trans-
formation:

cks = UaksU† = akscoshwks − a−k,−s
† sinhwks,

cks
† = Uaks

† U† = aks
† coshwks − a−k,−ssinhwks, s19d

where the parameterwks is assumed to be real and spheri-
cally symmetric:w−k,−s=wks. cks

† and cks are the creation
and annihilation operators, respectively, of nonpolaritons in
the photon system; they also obey Bose equal-time commu-
tation relations such as Eq.s4d. The transition from the op-
erators of bare photons to those of nonpolaritons can be ef-
fected by a unitary transformation:

U = expF1

2o
ks

wkssaks
† a−k,−s

† − a−k,−saksdG . s20d

It is well known that the unitary transformation does not
change the energy spectrum of the photon system. The nor-
malized state vector of photon pairs in the photon system
may be constructed asuGl=Uu0l, such thatcksuGl=0.

As we know, the pair Hamiltonians17d can be solved only
when the pair potentialVks,k8s8 is negative. Under the mean-
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field approximationf5g, the pair Hamiltonian of the photon
system is diagonalized into

Hem8 = Ep + o
ks

"ṽksTdcks
† cks. s21d

The idea of a mean-field approximation was introduced by
the Weiss theory of ferromagnetism to deal with phase tran-
sitions f8g. Here the idea is that individual nonpolaritons
move independently in a mean field caused by all the other
photons, which includes parts of the photon-photon interac-
tion. The frequency of nonpolaritons is acquired asṽksTd
=vsTduk u wherevsTd is the velocity of nonpolaritons deter-
mined by the equation

vsTd = 2sc/ndV0o
k

8"vk coth
"vsTduk u

2kBT
, s22d

where the prefactor 2 arises from the summation over helici-
ties and the prime on the summation symbol means thatvk
,vR. Ep is the energy of the system of photon pairs, as
given by

Ep = o
ks
F"vk sinh2wks

+ 1
4 sinh 2wks o

k8s8

Vks,k8s8 sinh 2wk8s8G , s23d

where the parameterwks is determined by the relations

tanh 2wks = DsTd, vsTd = sc/ndÎ1 − D2sTd. s24d

DsTd is the order parameter for pairing of photons.
The velocityvsTd determined by Eq.s22d is a monotoni-

cally increasing function of temperatureT, which is equal to
c/n at the transition temperatureTc. In other words, the order
parameterDsTd is a monotonically decreasing function of
temperatureT, which vanishes at the transition temperature
Tc. In Ref. f5g we showed that belowTc the photon system is
in a squeezed thermal radiation state, in which the photons
with opposite wave vectors and helicities are bound into
pairs and unpaired photons are transformed into nonpolari-
tons. At Tc, both photon pairs and nonpolaritons become
single bare photons. AboveTc, a Kerr nonlinear blackbody
behaves like a normal blackbody.

IV. RADIATION PROPERTIES

A. Formulas

For future study it will be convenient to define the number
operatorsNks=cks

† cks for nonpolaritons. The number opera-
tors have the eigenvaluesnks=0, 1, 2,…. The eigenstates of
number operatorsNks are given by

uhnksjl = p
ks
F 1

Înks!
scks

† dnksGuGl. s25d

The Hilbert space of the photon system is spanned by the
complete orthonormal basis vectorsuhnksjl. We have shown
that a Kerr nonlinear blackbody below the transition tem-

peratureTc is in the squeezed thermal radiation state. In or-
der to characterize the squeezed thermal radiation state, we
need to conceive a grand canonical ensemble of nonpolari-
tons. Some identical systems of the ensemble may be in an
eigenstate of the HamiltonianHem8 given by Eq.s21d, while
the distribution of the ensemble over the eigenstates is de-
scribed by the density operator of the squeezed thermal ra-
diation state,

r =
exps− Hem8 /kBTd

Tr exps− Hem8 /kBTd
, s26d

where the basis states used in the trace are the eigenstates of
the HamiltonianHem8 , which are given by Eq.s25d.

The gas of free nonpolaritons constitutes a thermal radia-
tion in the Kerr nonlinear blackbody. In what follows we
shall study the properties of such thermal radiation. A main
thermodynamic quantity in the Kerr nonlinear blackbody is
the energyEr of the thermal radiation, as given by

Er = o
ks

"ṽksTdkNksl. s27d

It is useful to introduce a dimensionless constantg. The con-
stantg is meaningful only ifg,1 and signifies the coupling
strength between a bare photon and virtual nonpolar
phonons. The dimensionless parameterg is directly propor-
tional to the Kerr nonlinear coefficient. The requirement of
g,1 shows that our theory applies only to the weak nonlin-
ear case. Inasmuch as most materials are weakly nonlinear,
the requirement ofg,1 holds usually. Both the transition
temperatureTc and velocityvsTd depend on the parameterg.
For example, the zero-temperature velocity has a value
vs0d=gc/n.

Our main task is to calculate the energyEr of the thermal
radiation defined by Eq.s27d. It is easily found that the en-
semble average of the number operator of nonpolaritons in a
modeks satisfies the well-known Bose-Einstein distribution

kNksl =
1

e"ṽksTd/kBT − 1
. s28d

Putting Eq.s28d into Eq. s27d and in the usual way altering
the summation to an integration, we obtain

Er = VE
0

`

rrsṽ,Tddṽ, s29d

rrsṽ,Td =
"

p2v3sTd
ṽ3sTd

e"ṽsTd/kBT − 1
, s30d

where ṽsTd=vsTduk u. With the new variable of integration
x="ṽ /kBT, the resulting integral in Eq.s29d is equal to
p4/15. Then Eq.s29d yields the following result:ErsTd
=VursTd and

ursTd = 4ssTdT4/vsTd, s31d

where ursTd is the energy density of the thermal radiation
and ssTd=p2kB

4 /60"3v2sTd is the temperature-dependent
Stefan-Boltzmann constant.ursTd is a monotonically increas-
ing function of temperatureT and at zero temperature it is
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equal to zero. The radiation pressure of a Kerr nonlinear
blackbody is immediately given byPrsTd= 1

3ursTd. Therefore,
the radiation pressure is also a monotonically increasing
function of temperatureT.

B. Numerical calculation

rrsṽ ,Td given by Eq. s30d denotes the spectral energy
density of the thermal radiation in a Kerr nonlinear black-
body and is an observable. The frequency of nonpolaritons
can be written asṽksTd=fnvsTd /cgvk in terms of the bare
photon frequencyvk =cuk u /n. Therefore, we define the spec-
tral energy density of the Kerr nonlinear blackbody radiation
r̃rsv ,Td by the transformation

rrsṽ,Tddṽ = r̃rsv,Tddv. s32d

Consequently,r̃rsv ,Td is given by

r̃rsv,Td =
"vsTd

p2sc/nd4

v3

efnvsTd/cgqv/kBT − 1
. s33d

Similar to the spectral energy density of normal blackbody
radiation discussed in Sec. II, the maximum of the spectral
energy density of Kerr nonlinear blackbody radiation is lo-
cated at

"vm/kBT = 2.821 44c/nvsTd. s34d

At temperaturesTùTc,vsTd=c/n, such that the spectral en-
ergy density of Kerr nonlinear blackbody radiation is the
same as that of normal blackbody radiation. At temperatures
T,Tc,vsTd,c/n, such that the spectral energy density of
Kerr nonlinear blackbody radiation is different from that of
normal blackbody radiation. For example, the maximum of
the spectral energy density of Kerr nonlinear blackbody ra-
diation is located at a higher frequency in comparison with
normal blackbody radiation.

For convenience, in Eq.s33d we set the refractive index
n=1, such that Eq.s33d can be compared with Eq.s11d. As

known, both transition temperatureTc and velocityvsTd de-
pend on the dimensionless parameterg. Tc=464.9 K atg
=0.9. We assume that the Kerr nonlinear blackbody is at
temperatureT=241.75 K, so it is in a squeezed thermal ra-
diation state.vsTd=0.916c at g=0.9 andT=241.75 K. The
spectral energy density of blackbodies at temperatureT
=241.75 K is plotted in Fig. 2 as a function of its frequency,
where the dashed and solid lines correspond to the normal
and Kerr nonlinear blackbodies, respectively. There are the
two features:s1d the spectral energy density of the Kerr non-
linear blackbody is larger than that of the normal blackbody;
s2d the peak frequency of the Kerr nonlinear blackbody is at
vm=9.751731013 s−1 while the peak frequency of the nor-
mal blackbody is atvm=8.929731013 s−1. The two features
are due to the fact that in the squeezed thermal radiation state
the velocityvsTd of nonpolaritons is smaller than the speedc
of light. The spectral energy density of blackbodies at fre-
quencyv=vR=2.5131014 s−1 is plotted in Fig. 3 as a func-
tion of relative temperaturex=kBT/"v, where the dashed
and solid lines correspond to the normal and Kerr nonlinear
blackbodies, respectively. There are the two features:s1d the
spectral energy densities are monotonically increasing func-
tions of T as temperature increases from zero to transition
temperatureTc; s2d the spectral energy density of the Kerr
nonlinear blackbody is equal to that of the normal blackbody
at T=Tc, because ofvsTcd=c.

The energy densityursTd and radiation pressurePrsTd of a
Kerr nonlinear blackbody depend on dimensionless param-
eter g and thus we setg=0.9. The variation ofunsTd and
ursTd with relative temperaturex=kBT/"vR is shown in Fig.
4, where the dashed and solid lines correspond to the normal
and Kerr nonlinear blackbodies, respectively, and tempera-
ture T varies from zero to transition temperatureTc. There
are the three features:s1d unsTd andursTd are monotonically
increasing functions of temperatureT; s2d at zero tempera-
ture uns0d=urs0d=0 and at transition temperatureTcunsTcd
=ursTcd=22.016 Mev m−3; s3d as 0,T,Tc,unsTd,ursTd.

FIG. 2. Variation of spectral energy density
with frequencyv; the dashed and solid lines cor-
respond to the normal and Kerr nonlinear black-
bodies, respectively.
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The radiation pressure of blackbodies is plotted in Fig. 5 as a
function of relative temperaturex=kBT/"vR, where tempera-
ture T varies from zero to transition temperatureTc. The
dashed and solid lines correspond to the normal and Kerr
nonlinear blackbodies, respectively. Figure 5 shows that the
radiation pressure of a Kerr nonlinear blackbody can be
larger than that of a normal blackbody and that both are
equal at the transition temperatureTc.

We think that the valueg=0.9 used in Figs. 2–5 corre-
sponds to a realistic material at least. For fixed temperature
T=241.75 K and varying frequencyv, Fig. 6 shows varia-
tion of the spectral energy densityrr with the parameterg.
The spectral energy density is a monotonically decreasing
function of the parameterg at a fixed temperature and fre-
quency. As known, transition temperatureTc depends on the
dimensionless parameterg, i.e., Tc=Tcsgd. Now we need to
introduce a new relative temperatureT/Tcsgd. For varying

relative temperatureT/Tcsgd, Fig. 7 shows variation of the
radiation pressurePr with the parameterg. The radiation
pressure is also a monotonically decreasing function of the
parameterg at a fixed relative temperature. The reason for
these results is that the larger the parameterg, the smaller is
the energy of the nonpolariton system.

V. BROKEN SYMMETRY

The superconducting theory of solids established by
Bardeen, Cooper, and Schrieffer is a striking success of the
quantum field theory of solidsf9,10g. The basic physical
mechanism is that the electron-electron Coulomb repulsion is
overcome by the attractive interaction via acoustic phonons,
leading to massive electron pairs known as Cooper pairs,
which incorporate the acoustic phonons and hence propagate
without phonon scattering. The transition of the electron sys-

FIG. 3. Variation of spectral energy density
with relative temperaturex=kBT/qvR, where the
temperatureT varies from zero to the transition
temperatureTc. The dashed and solid lines corre-
spond to the normal and Kerr nonlinear black-
bodies, respectively.

FIG. 4. Variation of energy density with rela-
tive temperaturex=kBT/"vR, where the tempera-
ture T varies from zero to the transition tempera-
ture Tc. un andur denote the energy densities of
the normal and Kerr nonlinear blackbodies,
respectively.
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tem from the normal to the superconducting state is con-
nected with a change in the gauge symmetry of the system’s
state. Many important concepts in this theory have a certain
generality and are sure to be applicable to the photon system.
In the squeezing transition of the photon system, what sym-
metry is broken?

In order to answer the question, we first discuss the sym-
metry of the normal thermal radiation state of the photon
system above the transition temperatureTc. With a single
mode indexm=ks, one can introduce the coherent state of
the µth mode:uaml=Dsamdu0l whereDsamd is the so-called
displacement operator

Dsamd = expsamam
† − am

* amd, s35d

with am being a complex number. Further one can introduce
the density operator of the normal thermal radiation state of
the mth mode:

rm =
exps− "vmNm/kBTd

Tr exps− "vmNm/kBTd
, s36d

whereNm=am
†am is the number operator of photons. In quan-

tum optics, it is well known that the probability of finding
the mth mode in the stateuaml is defined by theQ represen-
tation:

FIG. 5. Variation of radiation pressure with
relative temperaturex=kBT/"vR, where the tem-
peratureT varies from zero to the transition tem-
peratureTc. The dashed and solid lines corre-
spond to the normal and Kerr nonlinear
blackbodies, respectively.

FIG. 6. For three values ofg, variation of the
spectral energy density of a Kerr nonlinear black-
body with frequencyv.
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Qsamd =
1

p
kamurmuaml. s37d

It is easily found that theQ representation of the normal
thermal radiation state is given by a Gaussian distribution
f11g,

Qsamd =
1

ps1 + kNmld
expS−

uamu2

1 + kNml
D , s38d

wherekNml is given by Eq.s9d. The real and imaginary parts
of am represent two quadrature phase variables; hence there
is an equipartition ofQsamd in the phase space. Therefore,
theQ representation of the normal thermal radiation state has
phase symmetry.

Next we inspect the symmetry of the squeezed thermal
radiation state of the photon system at zero temperature. The
ground state is a many-mode squeezed vacuum stateuGl
=Uu0l where the many-mode squeeze operatorU is given by
Eq. s20d. Now we concentrate on a single-mode squeezed
vacuum stateurml=Ssrmdu0l where the single-mode squeeze
operatorSsrmd is given by

Ssrmd = expf 1
2rmsam

2 − am
†2dg, s39d

with rm=−wm being a real number. Because the stateurml is a
pure state, the density operator of the state takes the form
rm= urmlkrmu. In this case, the probability of finding themth
mode in the coherent stateuaml is given by theQ represen-
tation:

Qsamd =
1

p
kamurmuaml =

1

p
zkamurmlz2. s40d

In terms of the quadrature phase variablesx1=sam+am
* d /2

andx2=sam−am
* d /2i, it is easily found that theQ represen-

tation of the squeezed vacuum state is given byf12g

Qsx1,x2d =
sechrm

p
expf− sx1

2 + x2
2d − sx1

2 − x2
2dtanhrmg.

s41d

Hence there is an unequal partition ofQsx1,x2d in the phase
space. Therefore, theQ representation of the squeezed
vacuum state apparently lacks phase symmetry. We conclude
that in the transition from the normal to the squeezed thermal
radiation state, the phase symmetry is spontaneously broken.

VI. DISCUSSION

In this paper we expose the radiation properties of the
photon system in a Kerr nonlinear blackbody. The photon
system below a transition temperature is in a squeezed ther-
mal radiation state. The photon system in the squeezed ther-
mal radiation state consists of two parts: photon pairs and
individual nonpolaritons. The nonpolariton system consti-
tutes free thermal radiation in the Kerr nonlinear blackbody.
The spectral energy densityrrsTd and radiation pressure
PrsTd of the Kerr nonlinear blackbody are monotonically in-
creasing functions of temperatureT. It is easy to understand
why rsTd andPrsTd increase with increasing of temperature.
Both rrsTd and PrsTd measure the nonpolariton number. As
the temperature is increased, the nonpolariton number in-
creases correspondingly, sorrsTd andPrsTd become larger.

It has been found that the spectral energy density and
radiation pressure of a Kerr nonlinear blackbody are larger
than those of a normal blackbody. The reason for this is as
follows. The thermal radiation of a Kerr nonlinear blackbody
manifests itself in the form of the nonpolariton system,
whereas the thermal radiation of a normal blackbody mani-
fests itself in the form of the bare photon system. A nonpo-
lariton is the condensate of virtual nonpolar phonons with a
bare photon acting as the nucleus of condensation, and so the

FIG. 7. For three values ofg, variation of the
radiation pressure of a Kerr nonlinear blackbody
with relative temperatureT/Tcsgd.
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energy of the nonpolariton system is the sum of the energies
of the nonpolar phonon system and the bare photon system.
Consequently, the energy of the nonpolariton system is larger
than that of the bare photon system. We have observed a
peculiar property that the spectral energy density and radia-
tion pressure of a Kerr nonlinear blackbody are monotoni-
cally decreasing functions of the Kerr nonlinear coefficient
g. The physical mechanism for it is simple. The parameterg
signifies the coupling strength between a bare photon and
virtual nonpolar phonons. The larger the parameterg, the
smaller is the coupling strength. When the parameterg is
increased, the nonpolar phonon weight in a nonpolariton is
decreased, so that the energy of the nonpolariton system be-
comes smaller. In the strong-coupling limit 0,g!1, the
energy of the nonpolariton system is largest. This case shows
that arbitrarily weak nonlinearity can destroy a linear photon
system. Now we realize that weak nonlinearity can cause a
major changing of states from normal to squeezed thermal
radiation states. Inasmuch as the Kerr nonlinearity in our
theory originates from the Raman nonlinearity of phonons,
we conclude that the Raman nonlinearity of phonons is
weak. However, in the weak-coupling limitg=1, all nonpo-
laritons become bare photons.

Now we discuss how to measure the spectral energy den-
sity. There is a small hole in one wall of a Kerr nonlinear
blackbody. BelowTc a small number of nonpolaritons es-
capes through the hole at a spectral energy densityrrsv ,Td.
By using a spectroscope and adjusting temperatureT, one
can draw the curvesrrsv ,Td, which should be identical with
Figs. 2 and 3. Further, by using a pressure gauge and adjust-

ing temperatureT, one can find the temperature dependence
of the radiation pressurePrsTd predicted in Fig. 5. Finally, by
using different Kerr nonlinear materials, one can find the
dependence of the spectral energy density and radiation pres-
sure on the parameterg predicted in Figs. 6 and 7.

To sum up, we have investigated the radiation properties
for a blackbody whose interior is filled by a Kerr nonlinear
crystal. The photon system below the transition temperature
consists of photon pairs and individual nonpolaritons. The
nonpolariton system constitutes thermal radiation in the Kerr
nonlinear blackbody. It has been found that the spectral en-
ergy density and radiation pressure of a Kerr nonlinear
blackbody are larger than those of a normal blackbody. The
spectral energy density and radiation pressure are monotoni-
cally decreasing functions of the Kerr nonlinear coefficient.
Above the transition temperature the photon system is in a
normal thermal radiation state, but below the transition tem-
perature it is in a squeezed thermal radiation state. In the
transition from the normal to the squeezed thermal radiation
state, the phase symmetry of the photon system is spontane-
ously broken. The predicted properties might be verified in
present-day physics laboratories.
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