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We study the absorption spectrum of a weak probe field near resonant to an atomic transition, the upper level
of which is strongly coupled to a third level by the interaction with a Lorentzian bosonic reservoir, such as,
e.g., a mode of a high-Q cavity or a local vibration in a solid. The reservoir coupling is approximated by the
interaction with a classical complex Gaussian-Markovian random processscontrol fieldd, which is justified
when the reservoir temperature exceeds significantly the mode frequency or when the high-Q cavity is pumped
by broadband incoherent radiation. The present theory is applicable also when the control field is chaotic laser
light. We assume that the rms control-field Rabi frequencyV0 is much greater than the field detuningDc,
which, in turn, is much greater than the material relaxation constants. We reveal and describe analytically all
qualitatively different regimes of the spectrum modification and obtain their validity conditions. The analytical
results are verified by numerical calculations using the exact continued-fraction solution. The analytical for-
mulas obtained allow one to perform fast computer calculations for arbitrarily small values of the reservoir
scontrol-fieldd bandwidthn, in contrast to the known numerical methods, which require sharply increasing
computational resources with a decrease ofn. In the most interesting casen!V0, the spectrum consists of two
peaks, the nonvanishing bandwidth and material relaxation affecting mainly the dip between the peaks. The
results obtained in the static limitsi.e., a very narrow reservoird are independent of the reservoir band shape.
We reveal reservoir-induced transparencysRITd—i.e., absorption reduction due to the reservoir coupling.
Moreover, two unexpected, remarkable features are uncovered in a range of intermediate values ofn andV0,
G2uDcu!V0

2n! uDcu3 sG is the spectral width in the absence of the control fieldd: anextra peakin the dip and a
resonance-absorptiondecreaseby a half si.e., anincrease of RITd relative to the static limit. The existence of
the above spectral features depends on the statistical details of the control-field temporal behavior.
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I. INTRODUCTION

Decoherence of quantum systems due to their interactions
with the environment is the main obstacle for quantum com-
putation and therefore it has attracted a significant interest in
recent yearsf1g. The system-environment coupling is often
weak, so that effects of the environment on quantum systems
can be treated perturbatively or by such standard methods as
master equations, cumulant expansions, quantum Monte
Carlo simulations, etc.f2–4g. The strong-coupling case is
much less understood. It was studied, e.g., for the familiar
spin-boson modelf5g, where the system-reservoir interaction
commutes with thesunperturbedd system Hamiltoniansa “di-
agonal” couplingd.

An “off-diagonal” coupling of a quantum system to a res-
ervoir, which is of interest here, may become strong, when-
ever there is a sharp feature in the reservoirsneard resonant
to a quantum transition in the systemf6g. The evolution of a
two-level system coupled to a zero-temperature reservoir can
be obtained exactly for the general casef6–8g and therefore
is rather well understood. However, the finite-temperature
case is much less amenable to an analytical solution and,
therefore, remains still largely unexplored.

To be more specific, we consider a narrow bosonic reser-
voir with the Lorentzian spectral shape, such as, e.g., a
damped quantum oscillator. This case is realized in a number
of diverse physical situations, including, in particular,sad im-
purities in solids interacting with local vibrationsf9–11g, sbd
an atom coupled to a high-Q optical f12g or microwave
f13,14g cavity mode,scd a nuclear spin attached to a nano-

mechanical oscillatorscantileverd f15g, and sdd the electron
spin of a magnetic impurity in a quantum-Hall-effect system
interacting with localized phononsf16g.

The population relaxation and resonance fluorescence
spectrum of a two-level atom coupled to a thermal cavity
mode was studied numerically inf17g. In a recent paperf18g
the dynamics of a two-level system strongly coupled to a
Lorentzian bosonic reservoir centered at the energy"vc was
studied analytically in the limit of a high temperature
T,kBT@"vc, wherekB is the Boltzmann constant. Such a
limit is obtained, e.g., when the ambient temperature is suf-
ficiently high swhich is achievable at microwave frequen-
ciesd or when a high-Q cavity is pumped by broadband in-
coherent radiationsachievable at optical and microwave
frequenciesd. A warm reservoir may have an advantage when
a strong coupling is required, since the coupling intensity is
proportional toT in the high-temperature limit. Moreover,
the problem of an atom strongly coupled to a thermal reser-
voir se.g., a damped cavityd is of principal importance in the
quantum theory of dampingf4g. Surprisingly, in Ref.f18g the
decoherence was shown to occurmuch slowerthan the popu-
lation relaxationf19g, in sharp contrast to the familiar cases
of a weak and/or zero-temperature coupling.

In the present paper, unlikef17,18g, we assume that the
reservoir couplesunpopulatedlevels of an atom and study
the modification of the absorption spectrum of a weak probe
field at an adjacent transition. In terms of casesad, we con-
sider the zero-photon line shape of an impurity coupled to a
local vibration mode. Previously, this problem was studied
for a weak coupling and arbitrary temperature, when the res-
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ervoir was shown to induce thestemperature-dependentd
broadening and shift of the linef9g. In contrast, a strong
coupling can split the line into two peaks, as was shown for
casesbd, where the problem was solved for zero temperature
and an arbitrary coupling strength. In particular, a strong
atom-mode coupling causes such phenomena as the vacuum
Rabi splittingf20g, population trappingf21g, and lasing with-
out inversionf22,23g.

In the high-temperature limit specified above, one can ap-
proximate the coupling to a bosonic reservoir by the interac-
tion with a classical chaoticscomplex Gaussiand field
f18,19,24–26g. This allows one to use in the present case the
results obtained for the absorption-spectrum modification by
a chaotic field with a Lorentzian spectrumf27–33g. Refer-
encesf30–33g provided a comprehensive description of the
absorption-spectrum modification by asnear-dresonant cha-
otic control field of an arbitrary intensity. In particular, it
appeared that a strong field can split the spectrum into either
two or eventhreepeaks. Moreover, we revealed electromag-
netically induced transparencysEITd of the same order of
magnitude assor even equal tod EIT induced by a coherent
monochromatic fieldf34,35g. With the increase of the field
bandwidth, the EIT generally decreases, but sometimes
f31,33g can increase. The case of an off-resonant chaotic
field was treated previously only for a sufficiently weak cou-
pling f29g. This case can be important practically, e.g., to
avoid Doppler broadeningf35g. A decrease of absorption due
to a reservoir is called here the reservoir-induced transpar-
encysRITd, by analogy with EIT. The phenomenon of RIT is
equivalent to EIT in the situations, when the reservoir can be
substituted by a laser field, such as, e.g., in the case of zero-
f21,22g and high-temperature electromagnetic reservoirs.

In the present paper we consider an atom strongly and off
resonantly coupled to a high-temperature Lorentzian bosonic
reservoir. The absorption spectrum at an adjacent transition
is studied, special attention being paid to the RIT. We focus
on two important occurrences of the RIT: at the material
resonancesRIT1d and at the absorption minimumsRIT2d. We
use several approximate analytical approaches, which allow
us to reveal and describe all qualitatively different regimes of
the probe-spectrum modification. An important advantage of
the analytical formulas obtained is that they allow one to
perform fast computer calculations for arbitrarily small val-
ues of the control-fieldsmoded bandwidth n. In contrast,
computational resources required for the known numerical
techniques, such as the Monte Carlo methodf25g, numerical
solution of partial differential equationsf31,32g, and the
continued-fraction calculationf32,33g, sharply increase with
a decrease ofn.

The paper organization is as follows. The problem is for-
mulated in Sec. II. Section III is devoted to the static limit,
where the reservoirsfieldd spectral widthn is very small.
Now the spectrum consists of two broad peaks, material re-
laxation affecting mainly the dip between them. The results
of Sec. III hold irrespective of the reservoir spectral shape.
The case of a Lorentzian reservoir with an arbitrary width is
studied analytically and numerically in Secs. IVsthe formal-
ismd and V sthe absorption spectrumd. In particular, it ap-
pears that in a certain interval of the rms coupling amplitudes
V0 sor nd RIT2 is independent ofV0. Moreover, two unex-

pected, remarkable spectral features are revealed for interme-
diate values ofV0 sor nd: an extra peakin the dip and a
resonance-absorption coefficientdecreaseby a half relative
to the static limit. Section VI provides concluding remarks.
The Appendix contains details of the derivations.

II. FORMULATION OF THE PROBLEM

Consider a medium consisting of three-level atoms with
the ground stateugl and two other statesual and ubl. The
atoms are assumed to be homogeneously broadened, the half
width at half maximum of transitionsugl− ual and ugl− ubl
beingG andG8, respectively. If the transitionual− ubl is lin-
early coupled to a narrow high-temperature bosonic reser-
voir, the atomic Hamiltonian in the rotating-wave approxi-
mation isf18g

Hstd = − "Dcublkbu + "fVcstdublkau + H.c.g. s2.1d

Here the coupling amplitudeVcstd is a complex Gaussian
process and the reservoirsfieldd detuningDc=vc−vba, where
vc is the center frequency of the reservoirsfieldd, vi j =vi
−v j, and"vi is the energy of leveluil. The Hamiltonians2.1d
describes also the coupling to a chaotic electromagnetic field
f30g:

Ecstd = Ecstde−ivct + c.c. s2.2d

Then the coupling amplitudeVcstd=−dbaEcstd /" is called the
scomplexd Rabi frequency,dij being the dipole matrix ele-
ment for transitionuil− u jl.

The reservoirfor the control fieldEcstdg modifies absorp-
tion of a weak probe field near resonant to the dipole-
allowed transitionugl− ual sual and ubl are assumed to be
empty in the absence of the probe fieldd. The probe-field
absorption coefficientāsvd is f31g

āsvd =
4pNvudagu2

"c
ĀsDd, s2.3d

where ĀsDd is the scaled absorption coefficient,c is the
vacuum speed of light,v is the probe-field frequency,N is
the number of the atoms per unit volume, andD=v−vag is
the probe-field detuning. The absorption coefficient is aver-
aged over the field fluctuations, which is denoted by the
overbar in Eq.s2.3d.

The reservoir can produce a decrease of the probe absorp-
tion at certain frequenciessreservoir-induced transparencyd,
which is compensated by an increase of the probe absorption
at other frequencies, in view of the sum rulef32,36g

E
−`

`

ĀsDddD = p. s2.4d

Below we often callVcstd the Rabi frequency and use the
term “control field” instead of “reservoir” to be in line with
previous papersf30–33g. We assume, for definiteness, the
ladder schemesvg,va,vbd; however, all the subsequent
results remain valid also for theL schemesvb.va,vgd
upon the substitutionf30g

vc → − vc. s2.5d
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Taking into account that the average Rabi frequency

V̄cstd=0, the reservoirscontrol fieldd is characterized by the
rms Rabi frequencyV0=suVcu2d1/2, the bandwidthn, and the
detuningDc. In the present paper we focus on the situation of
a strong, off-resonant control field, when the detuning domi-
nates the material relaxation constants, but is less thanV0:

sad V0 @ uDcu, sbd uDcu @ G,G8. s2.6d

Below we mainly concentrate on the strong-coupling case

V0 @ n. s2.7d

Under conditionss2.6d and s2.7d the spectrum is approxi-
mately symmetric, being split into two peakssAutler-Towns
splitting f37gd. Then the main effect of the material relax-
ation and the field bandwidth is to modify the line shape of
the dip between the peaks, as shown below.

III. STATIC LIMIT (VERY NARROW RESERVOIR)

Here we consider the limit where the reservoirscontrol-
fieldd bandwidthn is negligibly smallsquasistatic regimed. In
this case, the coupling amplitudeVcstd is changing very
slowly and the spectrum can be obtained by averaging that
for a coherent control field over the Rayleigh distribution

fsVd = s2V/V0
2dexps− V2/V0

2d, s3.1d

with V= uVcu, yielding f30g

ĀstsDd = V0
−2ReG̃8eG̃G̃8/V0

2
E1sG̃G̃8/V0

2d. s3.2d

HereE1s¯d is an integral exponential functionf38g and

G̃ = G − iD, G̃8 = G8 − iD8, s3.3d

where

D8 = D + Dc = v + vc − vbg s3.4d

is the two-photon detuning. Note that Eq.s3.2d and the sub-
sequent results of this section are independent of the band
shape of the reservoirsor the control fieldd.

For sufficiently small detuningsD, so thatV0
2@ sG+ uDud

3sG8+ uD8ud or, in view of Eq.s2.6d,

uDu ! V0, s3.5d

Eq. s3.2d yields in the first approximationf30,31g

ĀstsDd =
1

V0
2FG8 ln

C1V0
2

ÎsG2 + D2dsG82 + D82d

+ D8Sarctan
D

G
+ arctan

D8

G8
DG . s3.6d

Here C1=e−g<0.56, whereg<0.58 is the Euler constant
f38g.

A. Spectral shape

1. Vanishing relaxation

In the limit of the vanishing material relaxation,

G,G8 → 0, s3.7d

Eq. s3.2d becomesf39g ssee the solid line in Fig. 1d

ĀstsDd =
puD8u

V0
2 e−DD8/V0

2
usDD8d. s3.8d

Equations3.8d implies that there is a complete transparency

ĀstsDd = 0 for DD8 , 0, s3.9d

i.e., for D in the interval between one- and two-photon reso-
nancess0 and −Dc, respectivelyd, whereas at the frequencies
of the one- and two-photon resonances there are discontinui-
ties of the spectrum and its derivative, respectively.

Outside of a narrow central part, the spectrums3.8d can be
approximatedfdue to Eq.s2.6dg as

ĀstsDd <
p

2
S1 +

Dc

2D
D fSUD +

Dc

2
UD suDu @ uDcud.

s3.10d

Equation s3.10d shows that the spectrum is nearly mirror
symmetric with respect toD=−Dc/2. The asymmetry of the
spectrum arises from the factor in the parentheses in Eq.
s3.10d, which is close to 1 foruDu@ uDcu. The spectrum con-
sists of two peaks with the maxima

Āsts±Dmd < sp/Î2edV0
−1, Dm < V0/Î2; s3.11d

the peaks approximately mimic the amplitude distribution
s3.1d and have width on the order ofV0.

The spectrums3.8d can be interpreted as the Autler-Towns
doublet induced by a coherent control field, which is inho-
mogeneously broadened due to the distributions3.1d f40g.
The small- and large-detuning cases discussed above corre-
spond to the weak-sV& uDcud and strong-sV@ uDcud field
cases of the Autler-Towns splitting.

2. Nonvanishing relaxation

The effects of nonvanishing material relaxation show up
at frequencies, where the absorption is weak—i.e., in the dip
between the peaks and at the wings of the spectrumssee Fig.
1d. The transformation of the dip is of the main interest. In
view of the smallness of the relaxation constants with respect
to the detuningfEq. s2.6dg, the dip can be considered as
consisting of three overlapping parts: the two edges of the

FIG. 1. The static line shapeĀstsDd for V0=1 andDc=0.1 with
G=G8=0 ssolid curved andG=G8=0.01 sdotted curved.
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dip in the vicinities of the one- and two-photon resonances
and the bottom of the dip, as follows.

WhenG sG8d is nonzero, the above spectral sharp feature
at D=0 sD=−Dcd is smoothed out. Indeed, as follows from
Eq. s3.6d, for uDu! uDcu on the outer side of the one-photon
frequency si.e., the side farther from the two-photon fre-
quencyd, whereDcD.0, and for uDu&G on the inner side
sDcD,0d,

ĀstsDd =
1

V0
2Sp

2
uD8u + D8arctan

D

G
D . s3.12d

Equations3.12d simplifies, for sufficiently large detunings on
the outer side,

ĀstsDd <
puD8u

V0
2 −

GDc

V0
2D

sG ! uDu ! uDcud, s3.13d

this expression being close to Eq.s3.8d.
Similarly, for uD8u! uDcu on the outer side of the two-

photon resonancesDcD8,0d and for uD8u&G8 on the inner
side sDcD8.0d, Eq. s3.6d yields

ĀstsDd =
1

V0
2SD8arctan

D8

G8
−

pD8

2
sgnDc

+ G8 ln
C1V0

2

uDcuÎG82 + D82D , s3.14d

where sgnDc=Dc/ uDcu. Expressions3.14d is a monotonous
function, which becomes, on the outer side forG8! uD8u
! uDcu,

ĀstsDd < puD8u/V0
2, s3.15d

overlapping with Eq.s3.8d.
The frequency interval between the one- and two-photon

resonances, defined byDD8,0 with uDu@G anduD8u@G8, is
a low-absorption regionsthe bottom of the dipd. In the above
interval Eq.s3.6d yields

ĀstsDd =
1

V0
2SGuD8u

uDu
+ G8ln

C2V0
2

uDD8u
D , s3.16d

whereC2=e−g−1<0.21. Equations3.16d describes an asym-
metric dip.

Finally, the far wings of the spectrum follow from Eq.
s3.2d on using the asymptotic formula for the integral expo-
nential functionf38g,

ĀstsDd =
G

D2 +
V0

2G8

D4 suDu @ V0d. s3.17d

The second term here can be appreciable forG8@G.

B. RIT

As mentioned above, the control field decreases and in-
creases absorption in different spectral intervals. In the
present off-resonant case there are two frequencies, where a
decrease of absorption is especially important. First, RIT al-
ways occurs at the resonance frequencysRIT1d, since the

control field generally broadens and shiftssand possibly
splitsd the spectral line. For the present case in the static
limit, RIT1 is given byfsee Eq.s3.12dg

Āsts0d =
puDcu
2V0

2 . s3.18d

Second, there is a possibility of RITscalled here RIT2d at
the absorption minimum between the one- and two-photon
resonances. From Eq.s3.16d we obtain the absorption-
minimum position and value, respectively, to be

Dm = −
1 − G + Î1 + 6G + G2

4
Dc ; − qsGdDc, s3.19d

ĀstsDmd =
G8

V0
2ln

KV0
2sG + G8d
G8Dc

2 . s3.20d

HereG=G /G8 and the quantity

K =
C1e

G/qsGd−G−1

s1 + GdqsGdf1 − qsGdg
s3.21d

fwith qsGd defined ins3.19dg weakly depends onG=G /G8,
varying fromC1 for G8!G to s4/edC1<1.47C1 for G8@G.

For G8!G, Eq. s3.19d implies that the minimum of ab-
sorptionsRIT2d is achieved near the two-photon resonance,
viz., at

D = Dm = − s1 − G8/GdDc, s3.22d

whereas the value at the minimum follows from Eq.s3.20d:

ĀstsDmd =
G8

V0
2ln

C1V0
2G

G8Dc
2 sG8 ! Gd. s3.23d

In the opposite caseG!G8, Eqs.s3.19d–s3.21d yield

ĀstsDmd =
2G8

V0
2 ln

C4V0

uDcu
, Dm = − Dc/2, s3.24d

whereC4=2e−g/2−1/2<0.91.
The fact that the minimal absorption coefficients3.20d is

proportional toG8 is a result of quantum interference, which
is destructive forG8,G and constructive forG8.G f30,35g.
For strong destructive interferenceG8!G, the position of the
absorption minimums3.22d is close to the two-photon reso-
nance. In the caseG8=0, the probe absorption vanishes at the
exact two-photon resonanceD8=0 sor D=−Dcd. With the in-
crease ofG8 the position of the minimum moves towards the
one-photon resonance, reaching the middle point between
the one- and two-photon resonances in the case of strong
constructive interferenceG8@G fsee Eq.s3.24dg.

In the case of the coherent control field the absorption
minimum is obtained atDm=−DcsG+G8d / sG+2G8d f30g.
This dependence ofDm on G andG8 is very similar to that in
Eq. s3.19d. In the case of the coherent control field the ab-
sorption minimumAsDmd=G8 /V0

2 f30g. Comparing the latter
result with Eq.s3.20d shows that an off-resonant intensity-
fluctuating control field creates RIT2 of the same order of
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magnitude as that due to a coherent field of the same inten-
sity. This conclusion extends the similar observation made
earlier f30g for the snear-dresonant case.

Note that for the absorption minimum to be interpreted as
RIT2, the inequality

ĀsDmd ! A0sDmd s3.25d

should hold, where

A0sDd = G/sG2 + D2d s3.26d

is the absorption coefficient in the absence of the control
field. As follows from Eqs.s3.19d and s3.20d, in the off-
resonance cases2.6d the inequalitys3.25d is equivalent to

V0
2 @ G8Dc

2/G. s3.27d

Inequalitys3.27d is violated only for very strong constructive
interference—viz., forG8 /G*V0

2/Dc
2@1 fcf. Eq. s2.6dg. We

should mention that the RIT2 conditions3.27d, obtained here
for an intensity-fluctuating field with the distributions3.1d,
coincides with that for a coherent fieldf30g.

IV. CHAOTIC FIELD

A. Formalism

In Sec. III we have considered the limit of a very-narrow-
band reservoirscontrol fieldd with an arbitrary spectral shape.
To take into account effects of a final bandwidth, we consider
a Lorentzian band shape

gcsvd =
V0

2n

psv2 + n2d
. s4.1d

As mentioned in Sec. II,Vcstd is a complex Gaussian pro-
cess, called also a chaotic fieldf24,25g. Its correlation func-
tion, given by the Fourier transform Eq.s4.1d, is exponential,
kVcstdVc

*s0dl=V0
2e−nt; hence,Vcstd is both Gaussian and Mar-

kovian.
Now the probe absorption spectrum is given byf30g

ĀsDd = 2p ReSE
0

`

CasVdV dVD . s4.2d

HereCasVd and an auxiliary quantityC̃bsVd obey the equa-
tions f30,32g

− G̃Ca − VC̃b + L0Ca = − fsVd, s4.3ad

− G̃8C̃b + VCa + L1C̃b = 0, s4.3bd

where the stochastic operatorsf18g

L0 =
n

V

]

]V
V2 +

V0
2n

2V

]

]V
SV

]

]V
D, L1 = L0 −

V0
2n

2V2 . s4.4d

The first term inL0 is similar to that arising in a diffusion
equation due to an external force, whereas the other terms in
L0 andL1 correspond to a free diffusionsin the absence of an
external forced in the Vc plane with the diffusion coefficient
D=V0

2n /2.

There exists no exact closed solution of Eqs.s4.3d. There-
fore we shall employ three approximate analytical solutions
valid in different, but overlapping, regions. Two of these so-
lutions were obtained previouslyf30,31,33g, but were not yet
analyzed for the strong, off-resonant coupling. The analytical
results are verified in Sec. V by numerical calculations per-
formed with the help of the exact solution in the form of a
continued fractionf33g.

B. Previously known analytical solutions

1. Neglect of L1C̃b

If uD8u is sufficiently large, the third term on the left-hand
side of Eq.s4.3bd is small in comparison with the first term
and can be neglected in the first approximation. Then the
solution of Eqs.s4.3d is f31,33g

ĀsDd = ReSFs1,1;1 +d0;− z0d
G − iD + sb0 − 1dn D , s4.5d

whereFs¯d is the hypergeometric functionf38g and

b0 = S1 +
2V0

2

nG̃8
D1/2

, d0 =
G̃ + sb0 − 1dn

2b0n
,

z0 =
sb0 − 1d2

4b0
. s4.6d

As shown in the Appendix, sufficient conditions for the va-
lidity of Eq. s4.5d are

sV0
2nd1/2 ! uDcu3/2 s4.7d

and

uDu ! uDcu. s4.8d

Consider the special cases of Eq.s4.5d. In the limit n
→0, Eq. s4.5d can be shown to reduce to the exact static-
limit result s3.2d. For the strong-field case in study, Eq.s2.6d,
the dip region, Eq.s3.5d, can be described by the simplified
expressionf31,33g

ĀsDd = ReH G̃8

V0
2F1

2
ln

C1
2V0

2

8nG̃8
− cSa0 +

1

2
DGJ . s4.9d

Here cs¯d is the logarithmic derivative of theG function

f38g anda0=G̃fG̃8 / s8V0
2ndg1/2.

2. Neglect of L0Ca

Similarly to the above, ifuDu is sufficiently large, the third
term on the left-hand side of Eq.s4.3ad can be neglected in
the first approximation. This yields the analytical solution
f30g

ĀsDd =
G

G2 + D2 − V0
2ReS Fs1,2;1 +d;− zd

G̃2fG̃8 + s2b − 1dng
D ,

s4.10d

where
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b = Î1 + 2V0
2/snG̃d, z= sb − 1d2/s4bd,

d = fs2b − 1dn + G̃8g/s2bnd. s4.11d

As shown in the Appendix, sufficient conditions for the va-
lidity of Eq. s4.10d are Eq.s4.7d and

uD8u ! uDcu. s4.12d

Consider special cases. In the limitn→0, Eq.s4.10d tends
to the static results3.2d f30g. In the cases2.6d ands3.5d, Eq.
s4.10d can be reduced in the first approximation tof30g

ĀsDd = ReH G̃8

V0
2F1

2
ln

C1
2V0

2

8nG̃
− csa + 1d +

1

2aGJ ,

s4.13d

wherea=G̃8fG̃ / s8V0
2ndg1/2.

C. Small-n corrections

The above approximate solutions were obtained by ne-
glecting one of the two stochastic terms in Eqs.s4.3d. An
alternative analytical approach is to consider corrections to
the static solution.

If both uG̃u and uG̃8u are sufficiently large, the stochastic
terms in Eqs.s4.3d can be taken into account perturbatively.
To this end, we cast Eq.s4.3d in a matrix form

BCsVd = F + MCsVd, s4.14d

where C=sCa,CbdT and F=(fsVd ,0)T are column vectors
and

B = SG̃ V

− V G̃8
D, M = SL0 0

0 L1
D . s4.15d

In the zero approximation we neglectMC in Eq. s4.14d and
obtain

CsVd < CstsVd = B−1F, s4.16d

whereCstsVd is the solution of Eqs.s4.3d in the static limit
sn→0d and

B−1 =
1

V2 + G̃G̃8
SG̃8 − V

V G̃
D . s4.17d

In the next approximation, we insert

CsVd = CstsVd + Cs1dsVd s4.18d

into Eq. s4.14d and setMCsVd<MCstsVd, yielding

Cs1dsVd = B−1MCstsVd. s4.19d

Thus,

CasVd = Ca
stsVd + Ca

s1dsVd, s4.20d

where

Ca
stsVd = G̃8fsVd/sV2 + G̃G̃8d, s4.21d

Ca
s1dsVd =

1

V2 + G̃G̃8
FL0

G̃82fsVd

V2 + G̃G̃8
− VL1

VfsVd

V2 + G̃G̃8
G .

s4.22d

Inserting Eq.s4.20d into Eq. s4.2d on account of Eqs.
s4.22d and s4.4d and integrating by parts yields

ĀsDd = ĀstsDd + ĀdsDd + ĀfsDd, s4.23d

whereĀdsDd and ĀfsDd correspond to the free-diffusion and
force terms inL0 andL1 fsee the remark after Eq.s4.4dg:

ĀdsDd = 2n ReH eb

G̃G̃8
FS G̃8

G̃
+ 2DE3sbd

− 2S G̃8

G̃
+ 1DE4sbdGJ , s4.24ad

ĀfsDd = nV0
−2 Re„ebh2G̃8G̃−1fE2sbd − E3sbdg

− E1sbd + 3E2sbd − 2E3sbdj…. s4.24bd

Hereb=G̃G̃8 /V0
2 andEnsbd=e1

`x−ne−bxdx is an integral expo-
nential functionf38g. In the derivation of Eqs.s4.24d we used
the equality

E
0

`

sx + bd−ne−xdx= b1−nebEnsbd. s4.25d

It can be shownf38g that, for ubu!1,

E1sbd < − ln b − g, Ensbd < sn − 1d−1sn . 1d,

s4.26ad

whereas, forubu@1,

Ensbd = b−1e−bf1 − n/b + Osubu−2dg. s4.26bd

It is useful to note that the summands proportional toG̃8 in
the brackets of Eq.s4.24ad and in the braces of Eq.s4.24bd
result from the termL0Ca in Eqs.s4.3d, the other summands

resulting, correspondingly, from the termL1C̃b in Eqs.s4.3d
fcf. Eq. s4.22dg.

In the dip regions3.5d, in view of Eq. s2.6d, one obtains

V0 @ uG̃u,uG̃8u. s4.27d

In this caseubu!1 and one obtains from Eqs.s4.24d and
s4.26ad that

ĀdsDd < ReF n

3G̃
S 2

G̃8
−

1

G̃
DG , s4.28ad

ĀfsDd <
n

V0
2ReF G̃8

G̃
+ ln

G̃G̃8

V0
2 + 2 +gG . s4.28bd

In view of Eqs.s4.27d and s4.28d,

ĀdsDd @ ĀfsDd suDu ! V0d s4.29d

and henceĀfsDd can be neglected in Eq.s4.23d, yielding
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ĀsDd < ĀstsDd + ĀdsDd. s4.30d

V. PROBE ABSORPTION SPECTRUM

In the cases2.7d, which is of the main interest here, the
reservoir widthn is so narrow that the probe absorption spec-
trum is still close to the static limit. Modifications of the
spectrum due to temporal fluctuations occur only in the fre-
quency intervals where absorption is small—i.e., for the dip
and spectral wings.

A. Narrow-band field

For a narrow-band field, Eq.s4.7d, a modification of the
dip line shape due to a finite bandwidthn occurs in a fre-
quency range, which includes the interval between the one-
and two-photon resonancessdefined byDD8,0d and close
vicinities of the latters4.8d ands4.12d, whereas the main part
of the static spectrums3.8d remains unchanged.

1. Dip shape

It is convenient to divide the dip into three overlapping
parts, described by simple expressionsscf. Sec. IIId. In par-
ticular, in the intervalss4.8d and s4.12d the solutionss4.5d
and s4.10d, respectively, simplify to Eqs.s4.9d and s4.13d.
They describe smoothing of the edges of the two spectral
components, which increases with the increase ofn.

One can use the asymptotic expansionf38g of cs¯d to
obtain the formulasf31g

csa0 + 1/2d = ln a0 + s24a0
2d−1 + Osua0u−4d s5.1ad

and f30g

csa + 1d = ln a + s2ad−1 − s12a2d−1 + Osuau−4d, s5.1bd

which allow one to reduce the solutionss4.9d and s4.13d in
the first approximation to the static limits3.6d. The validity
conditions of the static limit in the intervalss4.8d ands4.12d
are given by the inequalitiesua0u2@1 and uau2@1, respec-
tively. The above inequalities are most restrictive for the one-
and two-photon resonances, respectively, yielding the condi-
tions

V0
2n ! G2uDcu, s5.2ad

V0
2n ! G82uDcu, s5.2bd

respectively. When any of the conditionss5.2d is violated, the
probe absorption significantly depends onn. As a result, the
sharp features in vicinities ofD=0 and D=−Dc become
smoother.

Consider first the vicinitys4.8d of the one-photon reso-
nance, where, under the condition

4ÎV0
2n @ GÎuDcu s5.3d

opposite to Eq.s5.2ad, the material constants can be dropped
in Eq. s4.9d in the first approximation, yielding

ĀsDd <
uD8u
V0

2 Hp

4
− ImcS1

2
− epi/4 D

Î8l
DJ . s5.4d

Here l =ÎV0
2n / uDcusgnDc, ul us!uDcud being a characteristic

length of change of the line shapes5.4d. In view of Eq.
s5.1ad, the line shapes5.4d simplifies for sufficiently large
detunings, yielding on the outer and inner sides of the one-
photon resonance, respectively,

ĀsDd <
puD8u

V0
2 +

n

3D2 SD

l
@ 1D , s5.5ad

ĀsDd <
n

3D2 S−
D

l
@ 1D . s5.5bd

The most striking feature of the line shapes5.4d is the
presence of abump (extra peak). Numerical calculations
yield the maximum

ĀsD1d <
1.17puDc + D1u

V0
2 , D1 < 1.53l . s5.6d

Correspondingly, there is also a minimum, the position of
which is obtained from Eq.s5.5ad: D2=s2V0

2n /3pd1/3sgnDc.
This result holds for G! sV0

2nd2/3/ uDcu, whereas for
sV0

2nd2/3/ uDcu!G!4ÎV0
2n / uDcu the correction −GDc/V0

2D
should be included into Eq.s5.5ad fcf. Eq. s3.13dg, yielding
D2=2V0

2n /GDc.
The absorption at the one-photon resonancesRIT1d fol-

lows from Eq.s5.4d to be

Ās0d <
puDcu
4V0

2 . s5.7d

In the present case, RIT1 has a remarkable feature. As fol-

lows from a comparison of Eqs.s3.18d and s5.7d, Ās0d
< Āsts0d /2; i.e., for a sufficiently largen, the absorption co-
efficient at the one-photon resonancesRIT1d is approxi-
mately halfthat in the static limit. Such a behavior is rather
unusual, since in most cases, in agreement with intuition,
transparency decreases with an increase of the rate of fluc-
tuations n sa known exception is the constructive-
interference case with aresonantcontrol field f31,33gd.

In a vicinity of the two-photon resonances4.12d for

2ÎV0
2n @ G8ÎuDcu, s5.8d

terms involvingG andG8 can be neglected in Eq.s4.13d and
we obtain

ĀsDd <Î n

V0
2uDcu

X1 −
D8

l Hp

4
+ ImcS1 − e3pi/4 D8

Î8l
DJC .

s5.9d

As follows from this equation,

ĀsDd <Î n

V0
2uDcu

suD8u ! ÎV0
2n/uDcud; s5.10d

i.e., the absorption at the two-photon resonanceD8=0 in-
creases withn. On the outer side of the two-photon reso-
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nance sDcD8,0d for uD8u@ÎV0
2n / uDcu the quasistatic line

shapefEq. s3.8dg remains practically unchanged. This results
from the fact that Eq.s5.9d reduces to Eq.s3.15d for
ÎV0

2n / uDcu! uD8u! uDcusDcD8,0d, in view of Eq. s5.1bd.
Consider now the dip-bottom shape in the interval be-

tween the one- and two-photon resonances, at a sufficient
separation from them, defined by the simultaneous inequali-
ties

DD8 , 0, uDu @ ÎV0
2n/uDcu,G, uD8u @ ÎV0

2n/uDcu,G8.

s5.11d

In particular, in the parts of the intervals5.11d defined by the
inequalities ÎV0

2n / uDcu! uDu! uDcu and ÎV0
2n / uDcu! uD8u

! uDcu one can use the solutionss4.9d and s4.13d with
uau , ua0u@1. In view of Eqs.s5.1ad and s5.1bd, this yields
corrections to the static result proportional toa−2 or
a0

−2—i.e., linear in n. The solutionss4.9d and s4.13d were
obtained by means of of an omission of some terms propor-
tional to n in Eqs. s4.3d and, as a result, have a limited
validity. To describe the spectrum in the whole interval
s5.11d one needs the solution of Eqs.s4.3d up to first order in
n—i.e., Eq.s4.30d:

ĀsDd =
1

V0
2SG8ln

C2V0
2

uDD8u
+

GuD8u
uDu

D + Ā1sDd. s5.12ad

This line shape is a superposition of the static results3.16d
and an-dependent termĀ1sDd=ĀdsDd given by Eq.s4.28ad:

Ā1sDd =
2n

3uDD8u
+

n

3D2 . s5.12bd

Thus, due to temporal fluctuations, the absorption at the dip
bottom increases linearly withn. It is remarkable that the
n-dependent terms5.12bd in the spectrum is independent of
the field strengthV0.

2. RIT2

The dip-bottom line shapes5.12ad has qualitatively differ-
ent forms in the casesG8!G and G8*G. In the latter case
for sufficiently smalln the dip minimum is close to the static
value s3.16d, whereas the minimum absorption coefficient is

ĀsDmd , G8/V0
2 + n/Dc

2 s5.13d

fcf. Eqs.s3.20d, s5.12ad, ands5.12bdg. Thus, the line shape of
the dip bottom is approximately quasistatic for

V0
2n ! G8Dc

2 s5.14d

and depends appreciably onn for V0
2n*G8Dc

2.
In the caseG8!G the dip is highly asymmetric. An analy-

sis of Eq.s5.12ad yields that the position of the absorption
minimum is close to the two-photon resonance,

Dm = − Dc + Dc
G8

2G
S1 +Î1 +

8GV0
2n

3G82Dc
2D , s5.15d

which holds untiluDm+Dcu! uDcu—i.e., for

ÎV0
2n ! uDcuÎG. s5.16d

The absorption coefficient at the minimumĀsDmd is obtained
by setting in Eq.s5.12ad D8=Dm+Dc andD<Dc. For

V0
2n ! G82Dc

2/G, s5.17d

the quantitiesDm fEq. s5.15dg andĀsDmd reduce to their qua-
sistatic valuess3.22d and s3.23d.

However, forV0
2n*G82Dc

2/G the spectral minimum sig-
nificantly depends onn. In particular, in the interval

uDcuG8/ÎG ! ÎV0
2n ! uDcuÎG, s5.18d

the minimum position shifts towards the one-photon reso-
nanceD=0 with an increase of the field intensity and/or
bandwidth, according to the expression

Dm = Dcf− 1 +Î2V0
2n/s3GDc

2dg , s5.19d

whereas the minimum value increases withn asÎn:

ĀsDmd =
Î8Gn/3

V0uDcu
. s5.20d

The sharp asymmetry, which characterizes the line shape in
the quasistatic regimessee Sec. IIId, is smoothed out with the
increase ofn: however in the intervals5.18d the line shape
still remains highly asymmetric.

Though in the regions5.18d the absorption minimum is
determined by then-dependent terms5.12bd fcf. Eqs.s5.19d
ands5.20dg, the dip line shapes5.12ad ands5.12bd as a whole

is not completely dominated by the termĀ1sDd. To find un-

der which conditionĀ1sDd dominates in Eq.s5.12ad sfor an
arbitrary relation betweenG andG8d, consider typical values

of D , uDu,uD8u,uDcu. Then Eq. s5.12ad yields ĀsDd,sG
+G8d /V0

2+n /Dc
2. The latter relation implies that the dip line

shape is described in the first approximation by Eq.s5.12bd
when the bandwidthn and/or the coupling amplitudeV0 are
sufficiently large:

V0
2n @ sG + G8dDc

2. s5.21d

The line shapes5.12bd is a somewhat asymmetric dip with
the shape independent ofn. The minimum of the dip is lo-
cated at

Dm = −
Î5 − 1

2
Dc < − 0.618Dc, s5.22d

which is thegolden section of the interval between the one-
and two-photon resonances. The minimum value is

ĀsDmd =
11 + 5Î5

6

n

Dc
2 < 3.70

n

Dc
2 . s5.23d

Consider now the RIT2 validity conditions. As mentioned
above, for a very small reservoir bandwidthn, RIT2 is guar-
anteed under the conditions3.27d. With an increase of the
bandwidthn the minimal absorption increases; hence, an ad-
ditional RIT2 validity condition involvingn should appear.
The latter is obtained by inserting Eqs.s5.22d ands5.23d into
Eq. s3.25d, yielding the condition
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n ! G. s5.24d

Note that, untilV0
2! uDcu3/G, the inequalitys5.24d is stricter

than the validity conditions4.7d of the present theory.
When the bandwidthn is so large that conditions4.7d is

violated, the probe-absorption coefficient does not change
significantly over the spectral interval between one- and two-
photon resonancesssee Sec. V Bd, and there remains only
one important RIT frequency—viz., the probe resonance
sRIT1d.

B. Broadband (quasiresonant) field

In the case of a broadband field,

sV0
2nd2/3 @ Dc

2, s5.25d

Dc can be considered as a small parameter, and, as the first
approximation, one can use the results obtained for the
resonant-field casef32,33g.

1. Strong coupling

When the coupling is strong or moderate,V0*n, one can
neglect the material constants in Eqs.s4.3d. Though the re-
sulting equations cannot be solved analytically, one can ob-
tain that, in the limit of a strong coupling,

Dc
2 ! sV0

2nd2/3 ! V0
2, s5.26d

the spectrum still consists of two peaks. RIT1 is well de-
scribed by the resultf32g

Ās0d < 1.728
n1/3

V0
4/3 s5.27d

obtained for the resonant caseDc=0 ssee numerical calcula-

tions in Sec. V Ed. The spectrumĀsDd is close to the value
s5.27d in the spectral intervaluDu! sV0

2nd1/3, the minimum
occurring for the probe frequency between the one- and two-
photon resonancesssee Sec. V Ed. For greater detunings one
can obtain from Eqs.s4.30d and s4.28ad a correction to the
static results3.8d:

ĀsDd <
puD8u

V0
2 −

n

3D82 fsV0
2nd1/3 ! uDu ! V0g.

s5.28d

Note that forDc=0, Eq.s5.28d reduces to the results5.8d and
s5.9d in Ref. f32g, obtained by a different method.

2. Weak coupling

With the increase of the bandwidth, the hole depth de-
creases, until atn,V0 the dip vanishes and the spectrum
becomes a single broad, slightly asymmetric peak. In the
weak-coupling casen@V0, the main part of the spectrum
becomes a Lorentzian centered at the one-photon resonance
with the width decreasing withn f33g:

ĀsDd =
G + V0

2/n

sG + V0
2/nd2 + D2 suDu ! nd. s5.29d

Finally, as follows from Eq.s5.29d, for a very large band-
width n@V0

2/G, the probe spectrum approaches the line

shape with the vanishing control field, Eq.s3.26d.

C. Spectral wings

The spectral wings for an arbitraryn follow from the cu-
mulant expansionssee Eq.s4.14d in f33gd,

ĀsDd =
G

D2 +
V0

2sG8 + nd
D4 suDu @ V0,nd, s5.30d

which is an extension of Eq.s3.17d. As follows from Eq.
s5.30d, the spectral wings appreciably depend on the band-
width n when bothn@G andn*G8.

Alternatively, the results5.30d can be obtained from Eqs.
s4.23d and s4.24d, on taking into account that the inequality
uDu@V0 is equivalent toubu@1, in view of Eq.s2.6d, and on
using Eq.s4.26bd. Note that the summands resulting from the
term L0Ca in Eq. s4.3d fcf. the remark after Eq.s4.26bdg
cancel in the derivation of Eq.s5.30d. Hence, the solution
s4.10d, unlike Eq.s4.5d, describes correctly the wingss5.30d.

D. Separation of the situations

To summarize the above results, consider the transforma-
tion of the probe spectrum with the increase of the band-
width for a fixed control-field intensity. Figure 2 shows the
boundaries of different regimes of the behavior of an atom
coupled to a high-temperature Lorentzian reservoirsor
Gaussian-Markovian amplitude-phase fluctuating fieldd for
an off-resonant, strong couplingfwe consider only the upper
half plane in Fig. 2, in accordance with conditions2.6dg.
When the control field has a very narrow bandwidth, so that
the both conditionss5.2d hold sregion I in Fig. 2d, the spec-
trum shape is quasistaticssee Sec. IIId. Between boundaries 1
and 7 in Fig. 2 the line shape significantly depends onn. In
particular, forG,G8 sG.G8d the one-photonstwo-photond
edge of the spectral dip is described by Eq.s5.4d fEq. s5.9dg
in regions II and VI in Fig. 2, whereas the other edge is given
by Eq. s5.9d fEq. s5.4dg in the area between lines 3 and 5. In
regions I and II the dip bottom depends on material relax-
ation and hence on quantum interference. The dip bottom
remains mainly static in region IIsi.e., between lines 1 and
4d for G&G8 or in region II9 for G@G8 sstrong destructive
interferenced. In the latter case in region II9 fEq. s5.18dg the
line shape depends onn in a vicinity of the spectral mini-
mum fEqs.s5.19d ands5.20dg. In regions VI and III in Fig. 2
the line shape is independent of material relaxationfexcept

FIG. 2. The log-log plot of the boundariessthick solid linesd of
different regimessdenoted by roman numeralsd in the parameter
space, withG+=maxhG ,G8j andG−=minhG ,G8j. Boundary 2 exists
only in the caseG@G8.
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for far wings, Eq.s5.30dg. In particular, in region VIfcondi-
tions s4.7d and s5.21dg the dip-bottom line shape is propor-
tional to n, being independent of the control-field intensity
fEq. s5.12bdg, whereas in region IIIfEq. s5.26dg the broad-
band, strong-coupling regime holdsfEqs.s5.27d ands5.28dg.
In region IV the coupling is weak and the spectrum is given
by the single peaks5.29d, whereas to the right of boundary 7
the control field is so broadband that it does not affect the
unperturbed spectrums3.26d.

E. Numerical results and discussion

For numerical calculations we have used an exact solution
in the form of the continued fractionf33g

ĀsDd = ResG̃ + D1d−1, s5.31ad

wheresn=1,2,…d

Dn =
nV0

2

G̃8 + s2n − 1dn + nV0
2/sG̃ + 2nn + Dn+1d

.

s5.31bd

The convergence of the continued fractions5.31ad and
s5.31bd sharply worsens with the decrease ofn, leading to
extensive computational times for sufficiently smalln.
Therefore for very smalln we performed numerical calcula-
tions by the formulass3.2d, s4.5d, ands4.10d, which allow for
fast calculations for anyn and have been verified, by a com-

parison with Eq.s5.31ad and s5.31bd, to yield very accurate
results in their validity regions obtained above.

Figures 3–6 show the transformation of the probe spec-
trum with an increase of the control-field bandwidthn, the
other parameters being fixed. The static-limit curves 1 in
Figs. 3, 5, and 6 were plotted by Eq.s3.2d. The “exact”
curves for nonvanishingn were plotted by Eq.s5.31ad and
s5.31bd, except for the plots withn,10−6 scurves 2 and 3 in
Fig. 3d obtained by using Eqs.s3.2d, s4.5d, and s4.10d in
intervals of their validityfsee the remark after Eq.s5.31ad
and s5.31bdg. In Figs. 3–6 we concentrate on the case of
strong destructive interferencesG@G8d, which is favorable
for RIT. Curve 1 in Fig. 3 shows the static shape of the
spectral dip, which is highly asymmetric, the minimum being
near the two-photon resonancefsee Eqs.s3.22d and s3.23dg.

As shown in Figs. 3–6, absorption at the spectral mini-
mum increases withn. The position of the minimum in Fig.
3 shifts withn toward the one-photon resonance, as expected
for region II9 fsee Eqs.s5.15d and s5.20dg. Figure 4 shows
curve 4 of Fig. 3 together with approximate formulass5.4d,
s5.9d, s5.12ad, and s5.12bd. It demonstrates that the above
formulas hold in overlapping spectral intervals and allow
together for a rather accurate description of the spectral dip
in regions II and VI. The extra peak near the one-photon
resonance can be seen in Figs. 3scurves 3–5d and 5scurve
2d. The extra peak shifts and broadens withn approximately
as În fsee Eqs.s5.4d and s5.6dg. When n increases so that
inequality s4.7d becomes not too strong, the local maximum

FIG. 3. log10 ĀsDd as a function ofD for V0=1, Dc=0.1, G
=10−4, G8=10−6, and n=0 scurve 1d, n=10−9 scurve 2d, n=10−7

scurve 3d, n=10−6 scurve 4d, andn=10−5 scurve 5d. Curve 2 corre-
sponds to region II9 and line 3 in Fig. 2, curve 3 corresponds to
region II9, curve 4 corresponds to boundary 4, and curve 5 corre-
sponds to region VI.

FIG. 4. log10 ĀsDd as a function ofD for V0=1, Dc=0.1, G
=10−4, G8=10−6, and n=10−6 scurve 1d. For comparison, we plot
approximate results: curve 2, Eq.s5.4d; curve 3, Eq.s5.9d; curve 4,
Eq. s5.12ad and s5.12bd.

FIG. 5. The absorption coefficientĀsDd as a function ofD for
V0=1, Dc=0.1, G=10−4, G8=10−6, and n=0 scurve 1d, n=10−5

scurve 2d, n=10−4 scurve 3d, andn=10−3 scurve 4d. Curves 2 and 3
correspond to region VI and curve 4 corresponds to boundary 5 in
Fig. 2.

FIG. 6. The absorption coefficientĀsDd as a function ofD for
V0=1, Dc=0.1, G=10−4, G8=10−6, and n=0 scurve 1d, n=10−3

scurve 2d, n=0.01 scurve 3d, n=0.1 scurve 4d, n=1 scurve 5d, and
n=3 scurve 6d. Curves 2 and 5 correspond to boundaries 5 and 6 in
Fig. 2, respectively, curves 3 and 4 correspond to region III, and
curve 6 corresponds to region IV.
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disappearsssee curve 3 in Fig. 5d, since the analytic solution
s4.5d and the ensuing equations,s5.4d–s5.6d become not ex-
act. Figure 6 shows the line shape for sufficiently largen. As
demonstrated by Fig. 6, in region III the line shape changes
weakly in the interval between one- and two-photon reso-
nances, the spectral minimum occurring in the latter interval.
Absorption at the minimum increases with the increase ofn,
until at n,V0 the spectral dip disappears and the spectrum
becomes a single slightly asymmetric, broad peakscurve 5 in
Fig. 6d. With the further increase ofn the spectrum becomes
a symmetric Lorentzian peakfcurve 6 in Fig. 6, Eq.s5.29dg,
the height of which increases and the width decreases, until it
approaches the unperturbed line shapes3.26d.

The dependence of the resonance absorptionsi.e., RIT1d
on the control-field bandwidthn is shown in Fig. 7scurve 1d.
Note a counterintuitive fact of a decrease of absorption with
respect to the static value by approximately a halffcf. Eq.
s5.7dg, which holds in regions II and VIs10−9!n!10−3 in
Fig. 7d. A comparison of curves 1 and 2 in Fig. 7 shows that
analytic formulas4.5d describes well the resonant absorption
in cases4.7d sregions I, II, and VId, whereas a comparison of
curves 1 and 3 reveals that the result for the resonant absorp-
tion sRIT1d with a resonantcontrol field obtained in Ref.
f32g approximates very well the present case of a off-
resonant control field when the bandwidth is sufficiently
broadfEq. s5.25d—i.e., regions III and IVg. Note that curve 3
in Fig. 7 has two linear asymptotes: the small-n one, Eq.

s5.27d, and the large-n one, Ās0d=n /V0
2, implied by Eq.

s5.29d with a negligibleG. For very largen curve 1 in Fig. 7
tends to a constant corresponding to the unperturbed line, in
compliance with Eq.s5.29d.

VI. CONCLUSION

In the present paper we have provided a comprehensive
analytic treatment of the spectrum of weak-probe-field ab-
sorption affected by a strong, off-resonant coupling of an
adjacent atomic transition to a high-temperature Lorentzian
bosonic reservoir or to chaotic laser light. Furthermore, we
have made a detailed analysis of reservoir-induced transpar-

ency, especially for resonancesRIT1d and off-resonance
sRIT2d types of it. The formulas obtained have been shown
to provide readily numerical results for very small reservoir
widths n, when the existing numerical methods are ineffec-
tive. We have revealed two unexpected spectral features,
which are induced by temporal fluctuations of the control
field in certain ranges of the values of the bandwidthn: an
increaseof RIT1 with n and anextra peaknear the probe
resonance. These remarkable features are properties of the
peculiar line shapes5.4d, which emerges in a vicinity of the
one-photon resonance due to diffusion of the complex am-
plitude.

It is noteworthy that the above unexpected spectral fea-
tures are specific to the present statistical model of control-
field temporal behavior. Indeed, they can be shown to be
absent for an uncorrelated-jumpf30g control field, which has
the same amplitude distributions3.1d and the spectrums4.1d
as the chaotic field considered here.
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APPENDIX: VALIDITY CONDITIONS OF THE
ANALYTICAL SOLUTIONS (4.5) AND (4.10)

Necessary conditions for the validity of Eqs.s4.5d and Eq.
s4.10d, respectively, aref33g

ÎV0
2n ! sG8 + uD8udsÎG + uDu + ÎG8 + uD8ud, sA1ad

n ! G8 + uD8u, sA1bd

and f30g

ÎV0
2n ! sG + uDudsÎG + uDu + ÎG8 + uD8ud, sA2ad

n ! G + uDu. sA2bd

Consider the dip regions3.5d, where the most interesting
modification of the spectrum occurs. As noted after Eq.
s5.11d, in this region, except for narrow vicinities of one- and
two-photon resonances, the solutionss4.5d and s4.10d pro-
vide small corrections to the static result and thus overlap
with the approximate solutions4.30d. The first-order correc-
tions provided by Eqs.s4.5d and s4.10d are given by the
second and first terms in Eq.s4.28ad, respectivelyfcf. the
remark after Eq.s4.26ad ands4.26bdg. Hence, if the solutions

s4.5d ands4.10d hold in the intervals3.5d, thenuG̃u! uG̃8u and

uG̃u@ uG̃8u, respectively. On the account of Eq.s2.6d, this
means that inside the spectral regions3.5d the solutionss4.5d
ands4.10d hold in the intervalss4.8d ands4.12d, respectively.
Note that in these intervals the conditionssA1ad and sA2ad
are equivalent to Eq.s4.7d, whereas conditionssA1bd and
sA2bd reduce ton! uDcu. The latter inequality is weaker than
Eq. s4.7d, in view of Eq. s2.6d.

FIG. 7. Dependence of the resonance absorptionĀs0d on the
field bandwidthn in the log-log scalescurve 1d, with V0=1, Dc

=0.1, andG=G8=10−4. For comparison, we show the analytical
result s4.5d scurve 2d and the numerical solution obtained forDc

=G=G8=0 f32g scurve 3d.
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