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Absorption spectrum of an atom strongly coupled to a high-temperature reservoir
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We study the absorption spectrum of a weak probe field near resonant to an atomic transition, the upper level
of which is strongly coupled to a third level by the interaction with a Lorentzian bosonic reservoir, such as,
e.g., a mode of a higlp cavity or a local vibration in a solid. The reservoir coupling is approximated by the
interaction with a classical complex Gaussian-Markovian random prdcessrol field, which is justified
when the reservoir temperature exceeds significantly the mode frequency or when tigedagity is pumped
by broadband incoherent radiation. The present theory is applicable also when the control field is chaotic laser
light. We assume that the rms control-field Rabi frequeNgyis much greater than the field detunidg,
which, in turn, is much greater than the material relaxation constants. We reveal and describe analytically all
qualitatively different regimes of the spectrum modification and obtain their validity conditions. The analytical
results are verified by numerical calculations using the exact continued-fraction solution. The analytical for-
mulas obtained allow one to perform fast computer calculations for arbitrarily small values of the reservoir
(control-field bandwidthv, in contrast to the known numerical methods, which require sharply increasing
computational resources with a decrease.dh the most interesting case<V,, the spectrum consists of two
peaks, the nonvanishing bandwidth and material relaxation affecting mainly the dip between the peaks. The
results obtained in the static limite., a very narrow reservgiare independent of the reservoir band shape.

We reveal reservoir-induced transparer®IT)—i.e., absorption reduction due to the reservoir coupling.
Moreover, two unexpected, remarkable features are uncovered in a range of intermediate valard 4,
YA <Vav<|A 3 (T is the spectral width in the absence of the control jiedah extra peakin the dip and a
resonance-absorptiaecreaseby a half(i.e., anincrease of RIT relative to the static limit. The existence of
the above spectral features depends on the statistical details of the control-field temporal behavior.
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I. INTRODUCTION mechanical oscillatofcantilevej [15], and (d) the electron

Decoherence of quantum systems due to their interactiongPin ©f @ magnetic impurity in a quantum-Hall-effect system
with the environment is the main obstacle for quantum cominteracting with localized phonorid6J.
putation and therefore it has attracted a significant interest in '€ Population relaxation and resonance fluorescence
recent year§1]. The system-environment coupling is often SPECtrum of a two-level atom coupled to a thermal cavity
weak, so that effects of the environment on quantum systen{§0de was studied numerically ja7]. In a recent pap€l8]
can be treated perturbatively or by such standard methods 44 dynamics of a two-level system strongly coupled to a
master equations, cumulant expansions, quantum Mon orentzian bosonic reservoir centered at the endrgywas

: : - . Studied analytically in the limit of a high temperature
Carlo simulations, etc[2—4]. The strong-coupling case is S N .
much less understood. It was studied, e.g., for the familiaT'kBT>ﬁw°’ wherekg is the Boltzmann constant. Such a

spin-boson modd], where the system-reservoir interaction fimit is obtained, e.g., when the ambient temperature is suf-
P . ' y o - ficiently high (which is achievable at microwave frequen-
commutes with théunperturbeglsystem Hamiltoniarfa “di-

R . cies or when a high@ cavity is pumped by broadband in-
agonal” coupling. , coherent radiation(achievable at optical and microwave

An “off-diagonal” coupling of a quantum system to a res- frequencies A warm reservoir may have an advantage when
ervoir, which is of interest here, may become strong, wheny strong coupling is required, since the coupling intensity is
ever there is a sharp feature in the reseryo&aj resonant proportional toT in the high-temperature limit. Moreover,
to a quantum transition in the systd®l. The evolution of &  the problem of an atom strongly coupled to a thermal reser-
two-level system coupled to a zero-temperature reservoir cajoir (e.g., a damped cavitys of principal importance in the
be obtained exactly for the general cé6e-8] and therefore quantum theory of dampirigt]. Surprisingly, in Ref[18] the
is rather well understood. However, the finite-temperaturelecoherence was shown to ocoumch slowethan the popu-
case is much less amenable to an analytical solution andhtion relaxation/19], in sharp contrast to the familiar cases
therefore, remains still largely unexplored. of a weak and/or zero-temperature coupling.

To be more specific, we consider a narrow bosonic reser- In the present paper, unlikd7,18, we assume that the
voir with the Lorentzian spectral shape, such as, e.g., @aservoir couplesinpopulatedevels of an atom and study
damped quantum oscillator. This case is realized in a numbehe modification of the absorption spectrum of a weak probe
of diverse physical situations, including, in particul@),im-  field at an adjacent transition. In terms of cdag we con-
purities in solids interacting with local vibratiofi8—11], (b) sider the zero-photon line shape of an impurity coupled to a
an atom coupled to a hig®- optical [12] or microwave local vibration mode. Previously, this problem was studied
[13,14] cavity mode,(c) a nuclear spin attached to a nano- for a weak coupling and arbitrary temperature, when the res-
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ervoir was shown to induce thé&emperature-dependent pected, remarkable spectral features are revealed for interme-
broadening and shift of the linf9]. In contrast, a strong diate values ofV, (or »): an extra peakin the dip and a
coupling can split the line into two peaks, as was shown forresonance-absorption coefficiesitcreaseby a half relative
case(b), where the problem was solved for zero temperaturao the static limit. Section VI provides concluding remarks.

and an arbitrary coupling strength. In particular, a strongrhe Appendix contains details of the derivations.
atom-mode coupling causes such phenomena as the vacuum

Rabi splitting[20], population trappin21], and lasing with- [l. FORMULATION OF THE PROBLEM

out inversion[22,23. i ) . )
In the high-temperature limit specified above, one can ap- Consider a medium consisting of three-level atoms with

proximate the coupling to a bosonic reservoir by the interacthe ground statég) and two other statef) and [b). The

tion with a classical chaotidcomplex Gaussianfield atoms are assumed to be homogeneously broadened, the half

[18,19,24—2§ This allows one to use in the present case thévidth at half maximum of transitiong)—|a) and |g)-|b)

results obtained for the absorption-spectrum modification bypeingI” andT™’, respectively. If the transitiofa)—|b) is lin-

a chaotic field with a Lorentzian spectru@7—33. Refer- early coupled to a narrow high-temperature bosonic reser-

ences[30-33 provided a comprehensive description of thevoir, the atomic Hamiltonian in the rotating-wave approxi-

absorption-spectrum modification by(aearjresonant cha- mation is[18]

otic control field of an arbitrary intensity. In particular, it

appeared that a strong field can split the spectrum into either H(t) = = 2 Ao|b)(b| + A[Vc(t)[b)(a| + H.c]. (2.9

two or ev_enthreepeaks. Moreover, we revealed electromag-Here the coupling amplitud®,(t) is a complex Gaussian

netlca_lly induced transparenc(ElT)_of the same order of process and the reservdiield) detuningA .= w,— wys Where

magnitude a:{pr even equal tpEIT mcjuced by a coher_ent w is the center frequency of the reserveiield), w;=a,

monochromatic field34,35. With the increase of the field —w;, andiw, is the energy of level). The Hamiltoniar(2.1)

bandwidth, the EIT generally decreases, but sometimegescribes also the coupling to a chaotic electromagnetic field
[31,33 can increase The case of an off-resonant chaotic 30];

field was treated previously only for a sufficiently weak cou- _
pling [29]. This case can be important practically, e.g., to E(t) =E(t)e”' ! +c.c. (2.2
avoid Doppler broadenin5]. A decrease of absorption due _ . _ _
to a reservoir is called here the reservoir-induced transpa;[hen the coup!mg amplitude,(t .__dbaEC(t?/ﬁ N calle_d the
ency(RIT), by analogy with EIT. The phenomenon of RIT is (COMPleX Rabi frequencyd; being the dipole matrix ele-
equivalent to EIT in the situations, when the reservoir can pdnent for tranS|t_|od|>—|J>. . o
substituted by a laser field, such as, e.g., in the case of zero- 1N€ reservoifor the control fields(t)] modifies absorp-
[21,27 and high-temperature electromagnetic reservoirs. 1on of a weak probe field near resonant to the dipole-
In the present paper we consider an atom strongly and oftllowed transition|g)~(a) (|a) and [b) are assumed to be
resonantly coupled to a high-temperature Lorentzian bosonigMPy in the absence of the probe fieldhe probe-field
reservoir. The absorption spectrum at an adjacent transitiofSorption coefficiend(w) is [31]
is studied, special attention being paid to the RIT. We focus 4rNw|d, 2
on two important occurrences of the RIT: at the material a(w) = 2
resonancé€RIT1) and at the absorption minimu(®IT2). We hc
use several approximate analytical approaches, which allo
us to reveal and describe all qualitatively different regimes o . : , .
the probe-spectrum modification. An important advantage o acuum speed of light is the probe-field frequency is

the analytical formulas obtained is that they allow one totEZ mrj(;gte)(.efrie?; tg:tj:]??s _?ﬁ; l;rg;(\)/rcjl'tji(r)nnekﬁfiizi;rﬁa?slsaver-
perform fast computer calculations for arbitrarily small val- P 9. P

ues of the control-fieldmode bandwidth ». In contrast aged over the field fluctuations, which is denoted by the
computational resources required for the known numericaﬁ)verbar n Eq.(2.3).

techniques, such as the Monte Carlo metf@sl, numerical . The reservoir can prqduce a de.cfease of the probe absorp-
solution of partial differential equationg31,39, and the tion at certain frequenciegeservoir-induced transparengy

continued-fraction calculatiof82,33, sharply increase with which is compensated by an increase of the probe absorption
a decrease of 7 at other frequencies, in view of the sum r{i32,3¢

The paper organization is as follows. The problem is for- Jm

A(A), (2.3

¥X/here K(A) is the scaled absorption coefficiert,is the

mulated in Sec. Il. Section Il is devoted to the static limit, A(A)dA = 7. (2.9

where the reservoitfield) spectral widthv is very small.

Now the spectrum consists of two broad peaks, material regelow we often callV (t) the Rabi frequency and use the
laxation affecting mainly the dip between them. The resultserm “control field” instead of “reservoir” to be in line with

of Sec. Ill holdirrespective of the reservoir spectral shape previous paper§30-33. We assume, for definiteness, the
The case of a Lorentzian reservoir with an arbitrary width isjgqder scheméawy < w,< wy); however, all the subsequent

studied analytically and numerically in Secs. (e formal-  oquits remain valid also for thé scheme(wy> w,, o)
ism) and V (the absorption spectrumin particular, it ap- upon the substitutiofido]

pears that in a certain interval of the rms coupling amplitudes
Vy (or v) RIT2 is independent o¥/,. Moreover, two unex- W — — w. (2.5

—00
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£14 — 1 C,\V?2
§1.2 Ast(A):@lF'm — 21 —
% 1 0 VI + AT+ A"
8 0.8
Sose + A’(arcta = +arcta AI) (3.6
S04 T Tl :
§ 0.2
0 Here C,=e"7=0.56, wherey=0.58 is the Euler constant
-3 -2 -1 0 1 2 3
Probe detuning [38]-
FIG. 1. The static line shapgst(A) for Vo=1 andA.=0.1 with A. Spectral shape

I'=I""=0 (solid curve andI'=I""=0.01 (dotted curve Lo .
1. Vanishing relaxation
_Taking into account that the average Rabi frequency In the limit of the vanishing material relaxation,

V.(t)=0, the reservoifcontrol field is characterized by the T —o, (3.7
rms Rabi frequency,=(]V ?"?, the bandwidthv, and the S
detuningA.. In the present paper we focus on the situation ofEd- (3.2 becomeg39] (see the solid line in Fig.)1

a strong, off-resonant control field, when the detuning domi- _ m|A’] o
nates the material relaxation constants, but is less ¥han Ay(A) = 79‘“ Nog(AA"). (3.9
0
(@ Vo> |Ad, (b) [A]>T,T". (2.6

Equation(3.8) implies that there is a complete transparency

Below we mainly concentrate on the strong-coupling case —
AA)=0 forAA’' <O, (3.9

i.e., for A in the interval between one- and two-photon reso-
Under conditions(2.6) and (2.7) the spectrum is approxi- nanceg0 and A, respectively, whereas at the frequencies
mately symmetric, being split into two peak&utler-Towns  of the one- and two-photon resonances there are discontinui-
splitting [37]). Then the main effect of the material relax- ties of the spectrum and its derivative, respectively.

ation and the field bandwidth is to modify the line shape of Outside of a narrow central part, the spectr(818) can be

V0> V. (27)

the dip between the peaks, as shown below. approximateddue to Eq.(2.6)] as
— T Ag A
IIl. STATIC LIMIT (VERY NARROW RESERVOIR) Ag(A) = 2 1+ oA fl[A+ > (1A] > |Ad]).
Here we consider the limit where the reservg@ontrol- (3.10

field) bandwidthv is negligibly small(quasistatic regimeIn . ) ]
this case, the coupling amplitudé.(t) is changing very Equat|on.(3.1_0) shows that the spectrum is nearly mirror
slowly and the spectrum can be obtained by averaging thatymmetric with respect td=-A./2. The asymmetry of the

for a coherent control field over the Rayleigh distribution ~SPectrum arises from the factor in the parentheses in Eq.
(3.10, which is close to 1 fotA|>|A.. The spectrum con-

f(V) = (2QVIV3)exp(- VAIV3), (3.1) sists of two peaks with the maxima
with V=|V|, yielding [30] Ag*AD = (T20)V5h  Ap=~VoV2;  (3.1D)
Kst(A):ngRd:’eﬁ"VgEl('l:f’/V(Z,). (3.2)  the peaks approximately mimic the amplitude distribution
_ _ . _ (3.1 and have width on the order &f,
HereE,(---) is an integral exponential functidi38] and The spectrunt3.8) can be interpreted as the Autler-Towns
~ ~ doublet induced by a coherent control field, which is inho-
r=r-iA, I"=I"-iA’, (3.3 mogeneously broadened due to the distributi@rl) [40].
h The small- and large-detuning cases discussed above corre-
where spond to the weak{V=<|A) and strong-(V>|A|) field
A" =A+A= 0+ 0~ oy (3.4  cases of the Autler-Towns splitting.
is the two-photon detuning. Note that E.2) and the sub- 2. Nonvanishing relaxation

sequent results of this section are independent of the band
shape of the reservoior the control fielgl.

For sufficiently small detuningd, so thatV3s> (I'+|A|)
X(T'"+|A']) or, in view of Eq.(2.6),

The effects of nonvanishing material relaxation show up
at frequencies, where the absorption is weak—i.e., in the dip
between the peaks and at the wings of the spectag® Fig.

1). The transformation of the dip is of the main interest. In

IA] <V, (3.5)  View of the smaliness of the relaxation constants with respect
to the detuning(Eq. (2.6)], the dip can be considered as
Eq. (3.2 yields in the first approximatiof30,31] consisting of three overlapping parts: the two edges of the
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dip in the vicinities of the one- and two-photon resonancesontrol field generally broadens and shifand possibly

and the bottom of the dip, as follows.

splits) the spectral line. For the present case in the static

WhenT" (I'") is nonzero, the above spectral sharp featurdimit, RIT1 is given by[see Eq(3.12]

at A=0 (A=-A,) is smoothed out. Indeed, as follows from
Eqg. (3.6), for |A|<|A,| on the outer side of the one-photon
frequency (i.e., the side farther from the two-photon fre-
quency, where A;,A>0, and for|A|<T on the inner side
(AA<0),

i(7—T|A’| +A’arcta A)
Vi\ 2 T/

Equation(3.12 simplifies, for sufficiently large detunings on
the outer side,

A(A) = (3.12

A’
Vo

A
V3A
this expression being close to E§.8).

Similarly, for |[A’|<|A on the outer side of the two-

photon resonancéA A’ <0) and for|A’|<T" on the inner
side(A.A’>0), Eq. (3.6 yields

A{A) = r<Al<[A], (3.13

— 1 A aA’

A) =—| A’arctan— - ——sgnA
As(A) vé( M =5 SgnAc
CV3

|AC|VT,2+ A/Z)’

where sgi.=A./|A,. Expression(3.14) is a monotonous
function, which becomes, on the outer side for<|A’|
<[Ad,

+I"In (3.19

A(8) = 7'V,
overlapping with Eq(3.9).

(3.15

7T|Ac|
V3

Ay0) = (3.18
Second, there is a possibility of R(€alled here RITRat

the absorption minimum between the one- and two-photon

resonances. From EQ3.16 we obtain the absorption-

minimum position and value, respectively, to be

1-G+\1+6G+G?2

Ap= A.=-0q(G)A., (3.19

4
— I KV3T+T")
Ap) = —SIn————. 3.20
HereG=I"/T" and the quantity
C,eC/a(6)-G-1
L (3.21)

= L+eqeL-q0)]

[with g(G) defined in(3.19] weakly depends oG=I"/1",
varying fromC, for I’ <I" to (4/e)C;=1.47C, for I''>T.

For I'"<T', Eq. (3.19 implies that the minimum of ab-
sorption(RIT2) is achieved near the two-photon resonance,
viz., at

The frequency interval between the one- and two-photon

resonances, defined A’ <0 with [A|>T and|A’|>T", is
a low-absorption regiofthe bottom of the dip In the above
interval Eq.(3.6) yields

— 1(T|A| C,V2
ASI(A):—( +IMIn——"1, (3.16
Vol 14| |AA]
whereC,=e7"1~0.21. Equation(3.16 describes an asym-

metric dip.
Finally, the far wings of the spectrum follow from Eq.

(3.2 on using the asymptotic formula for the integral expo-

nential function[38],

r

21
0
— +
AZ

A4

The second term here can be appreciabldforT'.

A(A) = (A > Vp). (3.17)

B. RIT

A=AL=-(1-T"IT)A,, (3.22
whereas the value at the minimum follows from E8.20):
— ' CyVAD
Ap) =—In I'<n). 3.23
As(Ap) V2" a2 ( ) (3.23
In the opposite casE<I", Egs.(3.19—3.2)) yield
— 2" CyV,
AgAn) = —In—=2 A =-AJ2,  (3.24
Vo o lAd

whereC,=2e72712~0.91.

The fact that the minimal absorption coefficigBt20 is
proportional tol"’ is a result of quantum interference, which
is destructive fol"’ <TI" and constructive foF’ >T" [30,35.
For strong destructive interferenfé<T", the position of the
absorption minimun{(3.22) is close to the two-photon reso-
nance. In the casé’ =0, the probe absorption vanishes at the
exact two-photon resonané€ =0 (or A=-A,). With the in-
crease of™’ the position of the minimum moves towards the
one-photon resonance, reaching the middle point between
the one- and two-photon resonances in the case of strong
constructive interferencE’ >1" [see Eq(3.29)].

In the case of the coherent control field the absorption
minimum is obtained atA,=-A ('+I"")/(I'+2I'") [30].

As mentioned above, the control field decreases and inFhis dependence &, onI" andI" is very similar to that in
creases absorption in different spectral intervals. In thé=g. (3.19. In the case of the coherent control field the ab-
present off-resonant case there are two frequencies, wheresarption minimumA(Am)=l“’/V(2, [30]. Comparing the latter
decrease of absorption is especially important. First, RIT alfresult with Eq.(3.20 shows that an off-resonant intensity-
ways occurs at the resonance frequefiRyT1), since the fluctuating control field creates RIT2 of the same order of
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magnitude as that due to a coherent field of the same inten- There exists no exact closed solution of E@s3). There-
sity. This conclusion extends the similar observation maddore we shall employ three approximate analytical solutions

earlier[30] for the (nearjresonant case.

valid in different, but overlapping, regions. Two of these so-

Note that for the absorption minimum to be interpreted adutions were obtained previous[$0,31,33, but were not yet

RIT2, the inequality
A(An) < Ag(Ap)
should hold, where

Ao(A) =TI+ A%

(3.29

(3.2

is the absorption coefficient in the absence of the control

field. As follows from Egs.(3.19 and (3.20, in the off-
resonance cas@.6) the inequality(3.25 is equivalent to

V3> T'AZT. (3.27)

Inequality(3.27) is violated only for very strong constructive

interference—viz., fol™’ /T =V3/A%> 1 [cf. Eq. (2.6)]. We
should mention that the RIT2 conditidB.27), obtained here
for an intensity-fluctuating field with the distributio3.1),
coincides with that for a coherent fie[@0].

IV. CHAOTIC FIELD

A. Formalism

In Sec. Il we have considered the limit of a very-narrow-
band reservoitcontrol field with an arbitrary spectral shape.
To take into account effects of a final bandwidth, we consider

a Lorentzian band shape
Vﬁv

go(w) =

analyzed for the strong, off-resonant coupling. The analytical
results are verified in Sec. V by numerical calculations per-
formed with the help of the exact solution in the form of a

continued fractiori33].

B. Previously known analytical solutions

1. Neglect of Iiﬁfb

If |A’] is sufficiently large, the third term on the left-hand
side of Eq.(4.3b is small in comparison with the first term
and can be neglected in the first approximation. Then the
solution of Eqs.(4.3) is[31,33

— F(1,1;1+d0;—zo))
A(A)'Re(r—im(ﬂo—l)v |

whereF(--) is the hypergeometric functigrd8] and

(4.5

_ 2V \ _f*‘(ﬁo‘l)lf
ﬁO_(“ﬁ) CY 2B
_1\2
=B (4.6
4P

As shown in the Appendix, sufficient conditions for the va-
lidity of Eq. (4.5 are

(Vg2 < [Ad*?

(4.7)

As mentioned in Sec. IlY,(t) is a complex Gaussian pro- and

cess, called also a chaotic fidl@4,25. Its correlation func-
tion, given by the Fourier transform E@L.1), is exponential,
(V(H)V-(0))=V2e™; hence V((t) is both Gaussian and Mar-
kovian.

Now the probe absorption spectrum is given[Bg]

AA) =27 Re( f ’ T (V)V dv> . (4.2)
0

HereV,(V) and an auxiliary quantitﬁ'b(V) obey the equa-
tions[30,32

TV, -V, + LW, = - f(V), (4.33
“T'V,+ V¥, +L,¥, =0, (4.3b)
where the stochastic operatdds|
a Vav o [ d VA
Lo= Lo\ ﬂ—<V—> Li=Lo- i; (4.9
VoV 2V oV\ oV 2V

The first term inL, is similar to that arising in a diffusion

equation due to an external force, whereas the other terms in

Lo andL, correspond to a free diffusidin the absence of an
external forcg in the V, plane with the diffusion coefficient
D=Vv/2.

Al <A (4.8

Consider the special cases of Bg.5. In the limit »
—0, Eqg. (4.5 can be shown to reduce to the exact static-
limit result (3.2). For the strong-field case in study, Eg.6),
the dip region, Eq(3.5, can be described by the simplified
expressiorf31,33

— I'[1 CA2 1
A(A) =R —2[—|n%’ - lp(a0+ —)} . (4.9
Vol 2 8l 2
Here (- --) is the logarithmic derivative of th& function
[38] anda,=TTI"/(8V2»)]V2
2. Neglect of LgW,

Similarly to the above, ifA| is sufficiently large, the third
term on the left-hand side of E¢4.3a can be neglected in
the first approximation. This yields the analytical solution
[30]

e( F(1,2;1+d:-2) )
AT +(28- 1]/

— I 2
AL =Tz TR

(4.10

where
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B=N1+2V3(T), z=(B-1)(4P),

d=[(28-Dv+T'1(2Bv). (4.12)

As shown in the Appendix, sufficient conditions for the va-

lidity of Eq. (4.10 are Eq.(4.7) and

A" <[Ad. (4.12

Consider special cases. In the limit- 0, Eq.(4.10 tends
to the static resul(3.2) [30]. In the cas€2.6) and(3.5), Eq.
(4.10 can be reduced in the first approximation| 8]

r_ 1,,Cv%

1
2 8vr

A(A) =R
(4.13
wherea=T"[T/(8V2y)]V2

C. Small-v corrections

The above approximate solutions were obtained by ne-

glecting one of the two stochastic terms in E¢$.3). An

PHYSICAL REVIEW A 71, 033806(2005

1 T'2(V)
POV = ——| Ly——z -
VZ+TT' | V2+TT

VE(V)
1 ~—~
VZ+TT!
(4.22

Inserting Eq.(4.20 into Eg. (4.2) on account of Egs.
(4.22 and(4.4) and integrating by parts yields

A(A) = Ag(A) + Ag(A) + A(A), (4.23

whereKd(A) andKf(A) correspond to the free-diffusion and
force terms inLy andL, [see the remark after E¢4.4)]:

_ b T
Af(A) = 20 Re %[(% +2) E4(b)

—4§+Qa@],
r

A(A) = W2 Re(eP(2T T E,(b) - Eq(b)]
- Ei(b) + 3E,(b) - 2E3(b)}).

(4.243

(4.24b

alternative analytical approach is to consider corrections tdélereb= l“l“’/V2 andE,(b)=/7x"e™dx is an integral expo-

the static solution.
If both |T'| and |T"’| are sufficiently large, the stochastic

terms in Egs(4.3) can be taken into account perturbatively.

To this end, we cast Ed4.3) in a matrix form
BY(V)=F + M¥(V), (4.14

where ¥=(¥,, ¥,)" and F=(f(V),0)" are column vectors

and
(f v) Goo>
B= ], = .
0 L

_V F/

In the zero approximation we negledtV in Eq. (4.14 and
obtain

(4.19

V(V) = ¥S(V) =B IF, (4.16)
whereWsY(V) is the solution of Eqs(4.3) in the static limit

(v—0) and
1 (T' -V
Bl= —= ( N ) (4.17
V2+IT"\V r
In the next approximation, we insert
P(V) = ¥S(V) + T (V) (4.19
into Eq.(4.14 and setMW¥ (V)= MWS{(V), yielding
vO(V) =B IMPS(V). (4.19
Thus,
W, (V) = PS(V) + T (v), (4.20
where
V) =T f(VI(V2+TT"), (4.21)

nential functlor[38] In the derivation of Eq94.24) we used
the equality

J (x+b)"e*dx= b "e’E, (b). (4.25
0
It can be showri38] that, for|b| <1,
Eib)=-Inb-1y, Eyb)=n-1)"n>1),
(4.263
whereas, fofb|>1,
E,(b) =b ™1 —n/b + O(|b|?)]. (4.26b

It is useful to note that the summands proportionaftoin
the brackets of Eq4.249 and in the braces of E¢4.24b
result from the terni W, in Egs.(4.3), the other summands

resulting, correspondingly, from the tennﬁfb in Egs. (4.3

[cf. Eq.(4.22].
In the dip region(3.5), in view of Eq.(2.6), one obtains

(4.27)

In this case|b|<1 and one obtains from Eq$4.24) and
(4.264 that

Vo> |T|, T

(4.283

— r T
Ad(A) = %Re[: iy + 2+ 'y:| . (4.28b
0 r 0

In view of Egs.(4.27) and(4.28),
Ag(A) = A(A)
and hencer(A) can be neglected in E¢4.23), yielding

(1A < Vo) (4.29

033806-6



ABSORPTION SPECTRUM OF AN ATOM STRONGLY. PHYSICAL REVIEW A 71, 033806(2005

AB) = Ag(A) + Aq(A). (4.30 AA) ~ M{Z_ |m¢<%_eﬂ/4i>}_ (5.4
V,

\J/él

Here |=\V3u/|AsgnA,, |I|[(<|AJ) being a characteristic
V. PROBE ABSORPTION SPECTRUM length of change of the line shap6.4). In view of Eq.
(5.19, the line shapg5.4) simplifies for sufficiently large
detunings, yielding on the outer and inner sides of the one-
photon resonance, respectively,

In the casg2.7), which is of the main interest here, the
reservoir widthy is so narrow that the probe absorption spec-
trum is still close to the static limit. Modifications of the
spectrum due to temporal fluctuations occur only in the fre- — A’ v
quency intervals where absorption is small—i.e., for the dip Ad) = v Taaz \77Y) (5.59
and spectral wings. 0

— v A
AA) = — (——>1). 5.5h
A. Narrow-band field @ 3A2 I ( )
For a narrow-band field, Eq4.7), a modification of the The most striking feature of the line shaf®4) is the

dip line shape due to a finite bandwidthoccurs in a fre- presence of sbump (extra peak)Numerical calculations
quency range, which includes the interval between the oneyield the maximum

and two-photon resonancédefined byAA’ <0) and close o 117mA + Ay

vicinities of the latter(4.8) and(4.12), whereas the main part AA)) = e Al

, A;=153. (5.6)
of the static spectruni3.8) remains unchanged. Vg '

Correspondingly, there is also a minimum, the position of
1. Dip shape which is obtained from Eq(5.59: A,=(2V3v/3m)Y3sgnA..

It is convenient to divide the dip into three overlapping Thzls result holds’;o;k (Vem21|Ad, ~ Whereas 2f0f
parts, described by simple expressidos Sec. ll). In par-  (Vo»?/|AJ<T'<4\Vgr/[A] the correction FA/VGA
ticular, in the intervals(4.8) and (4.12) the solutions(4.5)  should be included into Ed5.5a [cf. Eq. (3.13)], yielding
and (4.10, respectively, simplify to Eqs(4.9) and (4.13.  A2=2V5u/TA..

They describe smoothing of the edges of the two spectral The absorption at the one-photon resona(RE1) fol-

components, which increases with the increase. of lows from Eq.(5.4) to be
One can use the asymptotic expansj88] of (---) to _ A
obtain the formula$31] A0) ~ — (5.7)

avi -
— -1 -4
3o+ 1/2) =Inao+ (242) "+ Offao ™) (5.13 In the present case, RIT1 has a remarkable feature. As fol-
and[30] lows from a comparison of Eq93.18 and (5.7), A(0)

Ha+1)=Ina+(2a)t- (12291 +O(|la]™), (5.1b ~A(0)/2; i.e., for a sufficiently large, the absorption co-

_ _ . efficient at the one-photon resonan@RIT1) is approxi-
which allow one to reduce the solutiof$.9 and(4.13 in  ately halfthat in the static limit. Such a behavior is rather
the first approximation to the static limi8.6). The validity  ,nysual, since in most cases, in agreement with intuition,
conditions of the static limit in t?e |nterva[9.28) and(4.12  {ansparency decreases with an increase of the rate of fluc-
are given by the inequalitie®o|°>1 and|a®>1, respec- yations » (a known exception is the constructive-
tively. The above inequalities are most restrictive for the onejnterference case with msonantcontrol field[31,33).

and two-photon resonances, respectively, yielding the condi- |, 4 vicinity of the two-photon resonancd.12) for
tions

2\W2r>T'V|Ad, 5.8
Vi <T2A ], (5.29 0 Ad ©8
terms involvingl” andI'’ can be neglected in E¢4.13 and
V2y <T"2A, (5.2 We obtain
respectively. When any of the conditio(&2) is violated, the K(A) ~ A /L(l _ £ K |m¢<1 _ e3wi/4A__’) )
probe absorption significantly depends @ms a result, the V§|Ac| I 14 Vel
sharp features in vicinities oA=0 and A=-A; become (5.9
smoather. _ _
Consider first the vicinity(4.8) of the one-photon reso- As follows from this equation,
nance, where, under the condition . 5
— AA) = 4/ Al <\VaAd);  (5.10
42> T\[A] (5.3 W=\ (a1<Walad): - 510

opposite to Eq(5.2a, the material constants can be droppedi.e., the absorption at the two-photon resonadée0 in-
in Eq. (4.9 in the first approximation, yielding creases withw. On the outer side of the two-photon reso-
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nance (A,A’ <0) for _|A’|>\r’V_(2)v/|AC| the quasistatic line V’%<|AC|\'T. (5.16)
shapd Eqg. (3.8)] remains practically unchanged. This results _
from the fact that Eq.(5.9) reduces to EQ.(3.15 for  The absorption coefficient at the minimuhtA,,) is obtained

VWl |A] <|A’|<|AJ(AA’ <0), in view of Eq.(5.1b. by setting in Eq(5.129 A’ =A,+A; andA=A.. For
Consider now the dip-bottom shape in the interval be- V§v<F’2A§/F, (5.17)

tween the one- and two-photon resonances, at a sufficient °
separation from them, defined by the simultaneous inequaline quantities\,, [Eq. (5.15] andA(A,,) reduce to their qua-

ties sistatic value3.22 and(3.23.
) o NN N AR T However, forViv=T"2A2/T" the spectral minimum sig-
AN <O, Al WorAL T, A5 VoKL nificantly depends om. In particular, in the interval
(5.11) N v =
|AJT'INT < \Vgv < |ANT, (5.18
In particular, in the parts of the intervéd.11) defined by the o - )
inequalities \V2u/|A]<|A|<|A] and V’—ng/IAC|<|A’| the minimum position shifts towards the one-photon reso-

<|A. one can use the solutiong.9 and (4.13 with nanceA=0 with an increase of the field intensity and/or
lal,|ag/>1. In view of Egs.(5.1a and (5.1b, this yields Pandwidth, according to the expression

cgzrreptiong to Fhe static res.ult proportional &2 or Am=Ac[— 1+V"2VSv/(3FA§)], (5.19
a,—i.e., linear inv. The solutions(4.9) and (4.13 were o _ _ _

obtained by means of of an omission of some terms propomwhereas the minimum value increases witas \v:

tional to v in Egs. (4.3 and, as a result, have a limited - a3
validity. To describe the spectrum in the whole interval AA,) = \ ) (5.20
(5.11 one needs the solution of Eqg..3) up to first order in VolA|

v—i.e., Eq.(4.30: The sharp asymmetry, which characterizes the line shape in

o 1 GV TIA) — the quasistatic regimgsee Sec. Il is smoothed out with the
A(A) = —2<F'In 2 f’ + ) +A(A). (5.123 increase ofv: however in the interval5.18 the line shape
Vo [AA"| A still remains highly asymmetric.

Though in the region(5.18 the absorption minimum is
e . _ determined by the~dependent ternt5.12b [cf. Egs.(5.19
and av-dependent termy(A)=Aq(A) given by Eq.(4.283:  anq(5.20)], the dip line shapés.12a and(5.12h as a whole

_ 2y v is not completely dominated by the ter(A). To find un-

AulA) = 3AA| T 3a2 (512 ey which conditionA;(A) dominates in Eq(5.123 (for an
hus. d » he ab he d arbitrary relation betweeh andI'’), consider typical values
Thus, due to temporal fluctuations, the absorption at the di A ; AAY
bottom increases linearly with. It is remarkable that the o A,[A|~[A’]~[Ad. Then Edq.(5.123 yields A(A)~ (I
v-dependent terng5.12b in the spectrum is independent of
the field strengthV,.

This line shape is a superposition of the static re€ilt6)

+T)/V2+ v/ AZ The latter relation implies that the dip line
shape is described in the first approximation by &q12b
when the bandwidthy and/or the coupling amplitud€, are

2 RIT? sufficiently large:

2 I\ A2
The dip-bottom line shap.123 has qualitatively differ- Vor> (I'+T")Ac. (5.29)

ent forms in the caseb’<I" andI"=T". In the latter case  The line shap€5.12h is a somewhat asymmetric dip with
for sufficiently smallv the dip minimum is close to the static the shape independent of The minimum of the dip is lo-
value (3.16), whereas the minimum absorption coefficient is cated at

v 2 5 —
A(Ay) ~ T IV3+ VA2 (5.13 A= \52 lAc ~_0.618,, (5.22
[cf. Egs.(3.20), (5.123, and(5.12b]. Thus, the line shape of
the dip bottom is approximately quasistatic for which is thegolden section of the interval between the one-
and two-photon resonance$he minimum value is
Vay <T'AZ (5.14 -
— 11+5/5 v v
and depends appreciably erfor Vir=T"AZ2 Aldm) = 6 A2 3-70;- (5.23
Cc Cc

In the casd™ <T  the dip is highly asymmetric. An analy-

sis of Eq.(5.129 yields that the position of the absorption = Consider now the RIT2 validity conditions. As mentioned

minimum is close to the two-photon resonance, above, for a very small reservoir bandwidthRIT2 is guar-
anteed under the conditiof8.27). With an increase of the

A =—A +A F_’(l 1+ 8FV§1/> (5.15 bandwidth» the minimal absorption increases; hence, an ad-
mT T Teor V 3r'2A2)’ : ditional RIT2 validity condition involvingr should appear.

The latter is obtained by inserting E45.22 and(5.23) into

which holds until|A,+A | <|AJ—i.e., for Eq. (3.25, yielding the condition
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v<I. (5.29

Note that, untilV3<|A%/T, the inequality(5.24) is stricter
than the validity condition(4.7) of the present theory.

When the bandwidthr is so large that conditiofd.7) is
violated, the probe-absorption coefficient does not change
significantly over the spectral interval between one- and two- T2 2 15 I 4 Bd v
photon resonance&ee Sec. VB and there remains only A% TIAc| 42 1Al r [Acl

one important RIT frequency—viz., the probe resonance o o
(RITY). FIG. 2. The log-log plot of the boundariéthick solid lineg of

different regimes(denoted by roman numeralé the parameter
B. Broadband (quasiresonant) field space, withl,=maxT',I"’} andT'"_=min{T",T"’}. Boundary 2 exists
only in the casd’>T".

In the case of a broadband field,

(V21)2Rs A2 (5.25  shape with the vanishing control field, E&.26.

A, can be considered as a small parameter, and, as the first
approximation, one can use the results obtained for the
resonant-field casgs2,33. The spectral wings for an arbitrasyfollow from the cu-
mulant expansioiisee Eq.(4.14) in [33]),

C. Spectral wings

1. Strong coupling

217
When the coupling is strong or moderatg= v, one can AN = r Vo' +v) >
neglect the material constants in E¢4.3). Though the re- Ad) A? ¥ A% (1A]> Vo), (5.30

sulting equations cannot be solved analytically, one can ob- . . .
tain that, in the limit of a strong coupling, which is an extension of Eq3.17). As follows from Eq.

(5.30, the spectral wings appreciably depend on the band-
AZ < (Van)2B< V3, (5.26)  width » when bothy>T andv=T".

Alternatively, the result5.30 can be obtained from Egs.
(4.23 and(4.24), on taking into account that the inequality
|A|>V, is equivalent tdb|>1, in view of Eq.(2.6), and on

the spectrum still consists of two peaks. RIT1 is well de-
scribed by the result32]

_ A3 using Eq.(4.26h. Note that the summands resulting from the
A(0) = 1-728VT/3 (5.27  term Ly¥, in Eq. (4.3 [cf. the remark after Eq(4.26h]
0

cancel in the derivation of Eq5.30. Hence, the solution
obtained for the resonant cadg=0 (see numerical calcula- (4.10, unlike Eq.(4.5), describes correctly the wing5.30).
tions in Sec. VE The spectrumK(A) is close to the value
(5.27 in the spectral intervalA|<(V3»)*3, the minimum D. Separation of the situations
occurring for the probe frequency between the one- and two- To summarize the above results, consider the transforma-

photon resonancesee Sec. V E For greater detunings one tion of the probe spectrum with the increase of the band-
can obtain from Eqgs(4.30 and (4.289 a correction to the  wjdth for a fixed control-field intensity. Figure 2 shows the

static result(3.8): boundaries of different regimes of the behavior of an atom
o alA| » coupled to a high-temperature Lorentzian reserv@r
AQ) =~ —-—— [(Vin)'P<|A] <Vl Gaussian-Markovian amplitude-phase fluctuating fieftat
Vo 3A an off-resonant, strong couplinge consider only the upper

(5.28  half plane in Fig. 2, in accordance with conditi¢8.6)].

When the control field has a very narrow bandwidth, so that
Note that forA.=0, Eq.(5.28 reduces to the resub.8) and

. : . the both condition$5.2) hold (region | in Fig. 3, the spec-
(5.9 in Ref.[32], obtained by a different method. trum shape is quasistatisee Sec. I)l. Between boundaries 1

2. Weak coupling and 7 in Fig. 2 the line shape significantly dependsyoin
particular, forI’'<I'" (I'>T") the one-photor{two-photon
‘edge of the spectral dip is described by Eg4) [Eq. (5.9)]
in regions Il and VI in Fig. 2, whereas the other edge is given

With the increase of the bandwidth, the hole depth de
creases, until av~V, the dip vanishes and the spectrum

becomes a single broad, slightly_ asymmetric peak. In th%y Eq.(5.9 [Eg. (5.4)] in the area between lines 3 and 5. In
weak-coupling case’>Vy, the main part of the spectrum regions | and Il the dip bottom depends on material relax-

becomes a Lorentzian centered at the one-photon resonangg. -4 hence on quantum interference. The dip bottom

with the width decreasing withr [33]: remains mainly static in region li.e., between lines 1 and
— r +V§/y 4) for '<T" or in region II' for I'>T" (strong destructive
AA) =—F5— (Al<w). (5.29  interferencg In the latter case in region”I[Eq. (5.18] the
(I'+Vglv)e+ A . ) L o
line shape depends omin a vicinity of the spectral mini-
Finally, as follows from Eq.(5.29, for a very large band- muml[Egs.(5.19 and(5.20]. In regions VI and lll in Fig. 2
width »>V3/T, the probe spectrum approaches the linethe line shape is independent of material relaxafiexcept
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FIG. 3. |0910K(A) as a function ofA for V=1, A,=0.1,T FIG. 5. The absorption coefficiemTt(A) as a function ofA for

=104 I'"=10°, and »=0 (curve 3, =10 (curve 2, v=107  Vo=1, A;=0.1, I'=10% I'"=10° and »=0 (curve 3, »=10"°
(curve 3, v=10" (curve 4, andv=10" (curve 5. Curve 2 corre-  (curve 2, v=10"* (curve 3, andv=10"3 (curve 4. Curves 2 and 3
sponds to region Tland line 3 in Fig. 2, curve 3 corresponds to correspond to region VI and curve 4 corresponds to boundary 5 in
region II", curve 4 corresponds to boundary 4, and curve 5 correFig. 2.
sponds to region VI.

parison with Eq.5.3139 and (5.31D, to yield very accurate
for far wings, Eq.(5.30]. In particular, in region V[condi-  results in their validity regions obtained above.
tions (4.7) and (5.21)] the dip-bottom line shape is propor-  Figures 3—6 show the transformation of the probe spec-
tional to v, being independent of the control-field intensity trum with an increase of the control-field bandwidththe
[Eg. (5.12B], whereas in region II[Eqg. (5.26)] the broad- other parameters being fixed. The static-limit curves 1 in
band, strong-coupling regime holfiggs.(5.27 and(5.29]. Figs. 3, 5, and 6 were plotted by E¢.2). The “exact”
In region IV the coupling is weak and the spectrum is givencurves for nonvanishing were plotted by Eq(5.31g9 and
by the single peak5.29, whereas to the right of boundary 7 (5.31b, except for the plots withv<<1076 (curves 2 and 3 in
the control field is so broadband that it does not affect thd=ig. 3) obtained by using Eqd3.2), (4.5, and (4.10 in
unperturbed spectruit8.26). intervals of their validity[see the remark after E¢5.313

and (5.31B]. In Figs. 3-6 we concentrate on the case of

strong destructive interferend& >1""), which is favorable

E. Numerical results and discussion for RIT. Curve 1 in Fig. 3 shows the static shape of the
For numerical calculations we have used an exact solutiofiPe€ctral dip, which is highly asymmetric, the minimum being
in the form of the continued fractiof83] near the two-photon resonaniaee Eqs(3.22 and(3.23)].
. As shown in Figs. 3—6, absorption at the spectral mini-
A(A) = Re(l~“ +D,) %, (5.313 mum increases withv. The position of the minimum in Fig.
3 shifts with» toward the one-photon resonance, as expected
where(n=1,2,..) for region II' [see Eqgs(5.15 and (5.20]. Figure 4 shows
nVS curve 4 of Fig. 3 together with approximate formul&s4),

n= = — ) (5.9, (5.123, and (5.12h. It demonstrates that the above
Ir+@n-1v+ nVS/(F+2nv+ D+1) formulas hold in overlapping spectral intervals and allow
(5.31b together for a rather accurate description of the spectral dip
in regions Il and VI. The extra peak near the one-photon
The convergence of the continued fractigh.3139 and resonance can be seen in Figs(cBrves 3-%and 5(curve
(5.31h sharply worsens with the decreasepfleading to  2). The extra peak shifts and broadens witapproximately
extensive computational times for sufficiently small  as v [see Eqs(5.4) and (5.6)]]. When v increases so that
Therefore for very small we performed numerical calcula- inequality (4.7) becomes not too strong, the local maximum
tions by the formula$3.2), (4.5), and(4.10), which allow for
fast calculations for any and have been verified, by a com-

D
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]
| -
N o

Absorption coefficient

l
n
[3,]

Log of absorption

-35 g ¢
-0.15 -01 -005 O 0.05 _
Probe detuning FIG. 6. The absorption coefficiedt{(A) as a function ofA for
o Vo=1, A;=0.1, I'=10% I''=108, and »=0 (curve 2, v=1073
FIG. 4. logoA(A) as a function ofA for Vp=1, A.=0.1,T (curve 2, v=0.01(curve 3, v=0.1(curve 4, v=1 (curve 9, and
=104 I'"=105, and v=107 (curve 1. For comparison, we plot »=3 (curve §. Curves 2 and 5 correspond to boundaries 5 and 6 in
approximate results: curve 2, EG.4); curve 3, Eq.(5.9); curve 4,  Fig. 2, respectively, curves 3 and 4 correspond to region I, and
Eq. (5.12g and(5.12h. curve 6 corresponds to region IV.

Probe detuning
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3, ency, especially for resonano®IT1l) and off-resonance
(RIT2) types of it. The formulas obtained have been shown
to provide readily numerical results for very small reservoir
widths », when the existing numerical methods are ineffec-
tive. We have revealed two unexpected spectral features,
which are induced by temporal fluctuations of the control
~ % _'5“? ~5 o 55 % field in certain ranges of the values of the bandwidthan
“ logygv ' increaseof RIT1 with v and anextra peaknear the probe
resonance. These remarkable features are properties of the
FIG. 7. Dependence of the resonance absorpit® on the peculiar line shapé5.4), which emerges in a vicinity of the
field bandwidthv in the log-log scalecurve 3, with Vo=1, A,  ©ONne-photon resonance due to diffusion of the complex am-

=0.1, andI'=I""=10"* For comparison, we show the analytical plitude.

result (4.5) (curve 2 and the numerical solution obtained fAg It is noteworthy that the above unexpected spectral fea-
=I'=I'"=0[32] (curve 3. tures are specific to the present statistical model of control-
field temporal behavior. Indeed, they can be shown to be
absent for an uncorrelated-jurfip0] control field, which has
the same amplitude distributig.1) and the spectrurtd.l)

as the chaotic field considered here.

disappearssee curve 3 in Fig.)5 since the analytic solution
(4.5 and the ensuing equation&.4)—(5.6) become not ex-
act. Figure 6 shows the line shape for sufficiently largAs
demonstrated by Fig. 6, in region 1l the line shape changes
weakly in the interval between one- and two-photon reso- ACKNOWLEDGMENT
nances, the Spectra| minimum OCCUrring in the latter interval. The present research was Supported by the Ministry of
Absorption at the minimum increases with the increase,of = Apsorption via the Center for Absorption of Scientists.
until at v~ V, the spectral dip disappears and the spectrum
becomes a single slightly asymmetric, broad p@akve 5 in APPENDIX: VALIDITY CONDITIONS OF THE
Fig. 6). With the further increase af the spectrum becomes ANALYTICAL SOLUTIONS (4.5) AND (4.10)
a symmetric Lorentzian pedkurve 6 in Fig. 6, Eq(5.29], N o
the height of which increases and the width decreases, until it Necessary conditions for the validity of Eq4.5) and Eq.
approaches the unperturbed line sh&p26). (4.10, respectively, ar¢33]

The dependence of the resonance absorgiien RIT1) [ , g ] [ -
on the control-field bandwidth is shown in Fig. Acurve J). Wor < (I +[ADGT +|A[+T7 +[A7), - (Ala)
Note a counterintuitive fact of a decrease of absorption with

respect to the static value by approximately a heff Eq. v<T'+[A"], (Alb)
(5.7)], which holds in regions Il and V(10 °<v<1072 in and[30]

Fig. 7). A comparison of curves 1 and 2 in Fig. 7 shows that

analytic formula(4.5) describes well the resonant absorption \”’V_cz)])< (r+ |A|)(\/F +|A| + \/1“’ +|A]), (A2a)
in case(4.7) (regions |1, I, and VJ}, whereas a comparison of

curves 1 and 3 reveals that the result for the resonant absorp- y<T +Al (A2b)

tion (RIT1) with a resonantcontrol field obtained in Ref.

[32] approximates very well the present case of a off-Consider the dip regiori3.5, where the most interesting
resonant control field when the bandwidth is sufficientlymodification of the spectrum occurs. As noted after Eq.
broad[Eq. (5.25—i.e., regions Il and I]. Note that curve 3  (5.11), in this region, except for narrow vicinities of one- and
in Fig. 7 has two linear asymptotes: the smalébne, Eq. two-photon resonances, the solutio@s5) and (4.10 pro-
(5.27), and the larges one, A(0)=»/V2, implied by Eg. vide small corrections to the static result and thus overlap

(5.29 with a negligiblel". For very largev curve 1 in Fig. 7 with the approximate solutiof¥.30). The first-order correc-

tends to a constant corresponding to the unperturbed line, NS Provided by Eqs(4.5 and (4.10 are given by the
second and first terms in E@4.283, respectively[cf. the

compliance with Eq(5.29.

P a(5.29 remark after Eq(4.26a and(4.26h]. Hence, if the solutions
(4.5 and(4.10 hold in the interval3.5), then|I'|<|I'’| and
IT|>|T"|, respectively. On the account of E.6), this

In the present paper we have provided a comprehensiveeans that inside the spectral regi@mb) the solutiong4.5)
analytic treatment of the spectrum of weak-probe-field ab-and(4.10 hold in the interval€4.8) and(4.12), respectively.
sorption affected by a strong, off-resonant coupling of anNote that in these intervals the conditiosla) and (A2a)
adjacent atomic transition to a high-temperature Lorentziamre equivalent to Eq(4.7), whereas conditiongéAlb) and
bosonic reservoir or to chaotic laser light. Furthermore, wgA2b) reduce tov<|A|. The latter inequality is weaker than
have made a detailed analysis of reservoir-induced transpakq. (4.7), in view of Eq. (2.6).

VI. CONCLUSION
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