PHYSICAL REVIEW A 71, 033804(2005

Optical hyperparametric oscillations in a whispering-gallery-mode resonator:
Threshold and phase diffusion
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We present a theoretical analysis of optical parametric oscillations through four-wave mixing in a nonlinear
high-Q whispering-gallery-mode resonator. It is shown that even a small flux of pump photons is sufficient to
reach the threshold of the oscillations. We demonstrate that due to narrow bandwidth of the resonator modes as
well as the high efficiency of the resonant frequency conversion the oscillator produces a stable narrow-band
beat note of the pump, signal, and idler waves making an all-optical secondary frequency reference feasible.
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I. INTRODUCTION used as a secondary frequency referdrieg.
The hyperparametric oscillations involving an atomic sys-

Hyperparametric optical oscillatidri], also known in fi-  tem placed into a cavitye.g., Ref[5]) and oscillations oc-
ber optics as modulation instabilify2], is based on four- curring in an optical cavity filled with a transparent nonlinear
wave mixing (FWM) among two pump, signal, and idler Kerr medium[13,14] have certain differences. For instance,
photons, and results in the growth of the signal and idleiin the first case, the oscillation frequency is given by both the
optical sidebands from vacuum fluctuations at the expense dfequency of the atomic two-photon Raman transition and
the pumping wave. The hyperparametric oscillations are difthe resonator mode structure, while in the second case it is
ferent from the parametric ones. The parametric oscillationsletermined by the resonator mode structure only. On the
(i) are based o'® nonlinearity coupling three photons, and other hand, the mathematical description of both processes is
(i) have phase matching conditions involving far separategimilar because they both are based on the four-wave mixing.
optical frequencies, that can only be satisfied in birefringenfThe nonlinear resonators can be considered “artificial at-
materials in the forward direction. In contrast, the hyperparaoms,” like semiconductor quantum dots. This is especially
metric oscillationg(i) are based o® nonlinearity coupling true for open high® microresonators made of dispersive
four photons, andii) have phase matching conditions in- nonlinear dielectrics because modes of the resonators are
volving nearly degenerate optical frequencies that can be sasubstantially nonequidistant and resonantly enhanced nonlin-
isfied in most materials both in the forward and backwardearities are high.
directions. Here we theoretically study hyperparametric oscillations

Observations of hyperparametric oscillations in transparin a nonlinear ring, e.g., WGM resonator, primarily focusing
ent solids are hindered by the small nonlinearity of the ma-on the properties of the beat-note signal produced by mixing
terials, so the oscillations are usually observed with pulsedhe optical pump and the generated sidebands on a fast pho-
pumping light, to increase optical intensity, and with opticaltodiode. For a resonator with gigahertzs difference between
fibers, to increase the interaction lendth3]. A significant  frequencies of the neighboring resonator modes belonging to
reduction of the oscillation threshold is possible by means othe same mode familjthe free spectral rangd=SR)], this
various resonant structures. The use of a cavity could sulibeat note signal is at microwave frequencies. We show that
stantially enhance the efficiency of the FWM process resultthe beat-note signal depends on the FSR frequency of the
ing in the observation of oscillations in the continuous waveresonator. We found that the beat note does not experience a
(cw) regime [4]. Oscillations have also been observed infrequency shift due to the self- and cross-phase modulation

atomic vapor cells placed in optical resonatf®s-8|. Ul- effects because of the intrinsic symmetry of the FWM pro-
tralow threshold mirrorless cw hyperparametric oscillationscess in the resonator
were obtained in multilevel coherent medi@l, where the The phase stability of the signal increases with increase of

medium itself played the role of the resonator. Recently, thehe Q factor of the resonator modes for the same given value
study of hyperparametric oscillations had an interesting twisbf the pump power. There exists a maximum of the phase
connected with the development of whispering-gallery-modestability (minimum of the phase diffusigrof the beat-note
(WGM) as well as photonic cryst4ll0,11] microresonator signal that does not depend either on the pump powé) or
technology. factor of the modes. Keeping in mind that WGMJfactor
The oscillations occurring in cavities or cavitylike sys- can exceed 78 (a few tens of kilohertz resonance linewigith
tems filled with transparent solids were analyzed theoretif15], we find the Allan deviation factor of the oscillations to
cally, e.g., in isotropic photonic crysta42], and were ob- be smaller than 1T0? s™V/2 for sub-mW optical pumping. The
served experimentally in crystaline WGM resonatorspump threshold could reach mW levels for reasonable ex-
[13,14). It was suggested, in particular, that the narrow-bandyerimental parameters.
beat-note signal between the optical pump and the generated This paper is organized as follows: In Sec. Il we introduce
sidebands emerging from a highWGM resonator could be the basic equations. In Sec. lll we discuss the steady-state
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solution of the equations for expectation values and find theshould be taken into account because absorption of the pump

oscillation threshold. In Sec. IV we study phase diffusion ofand the generated light results in a change of the resonator

the generated microwave signal. In Sec. V we discuss simitemperature. Because the modes are confined nearly in the

larities and differences in the cavity-based and atomic mediagame geometrical volume, the thermal frequency shift is

based oscillators. Calculation details are presented in the Amearly the same for all the modes.

pendixes. Thermal nonlinearity is important in higg-WGM reso-

nators[15-18. For instance, because of the thermal nonlin-

IIl. BASIC EQUATIONS earity, the trace of the resonance on the screen of oscillo-

Optical oscillations could occur in an optical fiber or in a SCOP€ changes depending on the laser power and the speed

resonator that is filled with a medium possessing Kerr non@nd direction of the laser scan, i.e., coefficie(if) generally
linearity [2]. The nonlinearity results in a four-photon pro- depends on time if external conditions vary. The dependence
cess likefiwo+hwy— fiw; +hw,, also known as a hyperpara- ¢an be described with two intrinsic relaxation time constants,
metric process, which leads to generation of coherent opticgn€ of which is responsible for flow of heat from the mode
signals from vacuum fluctuations at frequencigsand w,. ~ Volume to the rest of the resonator, and the other for heat
Generally, in a resonator the following relationships hold:€xchange between the resonator and the external environ-
w1~ o+ wpsraNd Wy~ wo— wesgy Wherewy is the frequency Ment. To reduce the influence of nonlinearity on the mea-

of the external pumping wave in resonance with one of théurement results, the laser scan should be either fast com-
resonator’'s modes, andsg stands for the FSR frequency Pared with the relaxation constants and the light power must
interval of the resonator. A further increase of the opticalPe small, or the temperature shift should be compensated by
pumping power and appropriate phase matching conditiongtroducing electronic feedback into the system that tunes the
could result in the generation of numerous sidebands; howaser frequency with the mode shfft4]. In the latter case

ever, for the sake of simplicity, we restrict our consideration«(T) reaches a steady-state value and can efficiently be con-

to three modes. sidered as a constant.

Langevin equations for the slow amplitude operatars Thermal dependence of the index of refraction for trans-
B,, andB_ of the intracavity fields can be presented in theparent crystals and fused silica can significantly exceed the
form (see Appendix A frequency shift due to self- and cross-phase modulation ef-

_ fects induced by the electronic nonlinearity of the material.

A=-T,A+ig[ATA+ 2B!B, + 2B'B_]A + 2igA'B,B_ For example, for a calcium fluoride resonatas,(T)

= 0yl IT=w, X 10° K™ (o, is the resonant fre-
qguency of a mode This frequency shift is five orders of

. magnitude larger than the width of the resonanceQif
B,=-T,B, +ig[2ATA+ BB, + 2B'B_]B, +igB'AA =10 for a single degree of temperature change. This shift
generally does not lead to the saturation of the FWM process

+ FO+ FCO! (1)

*F+Fe., ) because it mildly changes the free spectral range of the reso-
_ nator: Sesd T) = wesy *n/ T = wespX 107° K4, and barely
B_=-T_B_+ig[2ATA+ ZB:[B+ + BIB_]B_ + igBIAA changes the behavior of the beat note of the pump and side-
FE +F 3) bands. Because FSR depends on temperature, the tempera-
_+F., .
ture can be used to tune the oscillator frequency.
where Dimensionless slowly varying annihilation operatdks
i B,, andB_ in Egs.(1)—(3) are normalized such that average
Fo=i(wo— @+ xo(T)) + 70+ Yeo, [(ATAY|, |(B!B,)|, and|(BB_)| describe average photon num-

_ ~ ber in the corresponding modes,
r,= |((U+ —w.t K+(T)) T Yt Vers
N fiwgC

(1)0 y
I =i(w-—o_+ k() +y-+ ye. No Vo

wo, w4, andw_ are the eigenfrequencies of the optical cavityis & coupling constanf, is an optical constant that charac-
modes;y,, v:, and y_ are the internal decay rates of the terizes the strength of the optical nonlinearityjs the linear
modes;'ycol Vetr and V.- are the decay rates due to external refractive index of the material} is the mode volume, and

(5)

coupling; w is the carrier frequency of the external putdp,  is the speed of light in the vacuum.
. and@_ are the carrier frequencies of generated light Langevin forceF, stands for the external pumping of the
and B_, respectively. These frequencies are determined bysystem with nonzero expectation value
the oscillation process and cannot be controlled externally. 7P
However, there is a ratio between théemergy conservation (Fo) = /222, (6)
law): fiwg

20= 0, + 0. @) where Py is the pump power of the mode applied from the

outside. Expectation values of the other forces are equal to
Coefficient «(T) describes the frequency shift of the zero. All the forces are uncorrelated. Commutation relations
mode k due to the temperature change. This coefficienfor them are[FJ-(t),FT(t’)]:ZyjcS(t—t’).
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where Al Aot (Bl ,B: ou) describes power of the carrier Input power P /P,

(sidebandsexiting the resonator. FIG. 1. Dependence of the punifeft) and a sidebandright)

power on the input pump power for the case of identical resonator
ll. SOLUTION: EXPECTATION VALUES modes and pump frequency such tagt o+ «(T)=1.8y. Stable
oscillations occur in the region confined between poiktand B

Solving Egs.(1)—<(3) in steady statgsee Appendix B g)ointc shows the center of the regipn

keeping expectation values only, and assuming that th

modes are identical, i.ey.+ e+ = Y-+ Y- = %+ Yeo, Which s ¢orresponding resonator mode cannot be varied arbitrarily.
justified by observation with actual resonators, we find therne getuning allows us to compensate for the frequency shift

oscillation frequency for generated fields, of the mode due to self- and cross-phase modulation effects.
1 The smallest possible detuning, when the oscillations still
W-W_ =W, - w= E(w+ -w.), (9)  exist, is equal tavg—w+x(T) =1.733 Yo+ 7o)

To study the stability of the system we note that small
i.e., the beat-note frequency depends solely on the frequend§itial perturbations of all parameters of a stable oscillator
difference between the resonator moeSR frequencyand  should decrease in time. We find eigenvalues of equations
does not depend on the light power, or the laser detuningﬁat describe the time evolution of the fluctuations of the
from the pumping mode. This result shows an advantage dfystem[see Appendix C, Eq4C1)HC6)]. The oscillations
our oscillator over the oscillator based on atomic coherencedre stable in the region of parameters where all the eigenval-
e.g., where the oscillation frequency depends on the ac-Statkes correspond to the solutions decreasing in time. This re-

shift (pump powey [19]. gion is located between pointsandB on our plots(see Fig.
Threshold optical power can be found from the steady-l and following figures It is worth noting that the stability
state solution of sefl)—(3), conditions are different from those for a resonator with in-

5 ternal pumping.
Yot Yeo gV Let us now consider the FWM process in a critically
2 2yp MAQ? coupled resonator and compare it with the process in an
. ] overcoupled resonator. We assume that the lod@gddctor
where the numerical fa_ctor 1.54 comes from_ thg influence ofs well as the other parameters of the modes stay the same in
the self-phase modulation effects on the oscnlatlon thresholdyoth cases, with the exception of the ratio between the values
The threshold value for a CaResonator isPy,~0.3mW,  of the transmission and absorption rates. We found that the
where ng=1.44 is the refractive index of the material;  sigepand power decreases four times for the critically
=3.2x10"*° cn?/W is the nonlinearity coefficient for cal- coupled resonator compared with the case of overcoupled
cium fluoride, V~10*cm® is the mode volume,Q resonator(see Fig. 2, though the functional shape of the
=wol 2(0+ ¥e) =6 X 10%, %= Y0, @andA=1.32um. Nearly dependence is the same in both cases. The transmission
the same estimations are valid for fused silica resonators. cyrve for the pump light changes compared to the over-
We solve Egs(1)—(3) numerically and evaluate the de- coupled systentsee Fig. 3. The difference arises because a
pendencies of the output pump and a sideband power on thggnificant amount of the pump as well as sideband power is
value of the input pump power, focusing on two particularahsorbed in the critically coupled resonator.
cases of an idealor overcouplel resonator y,=0 (7 The dependence of the power of the pump radiation leav-
> 7o), and critically coupled resonatop= . ing the critically coupled resonator is presented in Fig. 3. The
For the overcoupled resonator the sum of the powers ofiashed line stands for the transmission of the resonator for
the sidebands and the pump leaving the resonator is alwayse pump light in the case of no oscillations excitgdvial
conservedPp ot Pe+ ourt Pa- ou=Po. The dependencies of solution, (B,)|=0. The solid line shows the region where
the values of the powers on the pump power are presented tscillations can be excited. In that region the solution de-
Fig. 1. Here and in what follows the value of the pump picted by the dashed line is not stable because sidebands start
(Pa ou) @s well as sidebanPg o) power is shown normal-  to grow from fluctuations taking power from the pump light.
ized with the value of the input pump pow@?,). The input  Only the section of solid curve located between pdirand
pump power is shown normalized with the oscillation thresh-B corresponds to the stable oscillations.
old power(Py,). The dependencies of the maximum power of the gener-
As is shown in Appendix B, the value of the detuning of ated sidebands and the corresponding optimum tuning of the
the carrier frequency of the pump from the frequency of thepump laser frequency on the pump power are shown in Fig.

Py =1.54 (10)
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o’ results from the different frequency spaces between one side-
3 0.012} band and the pump, and the pump and the other sideband

e [see the second terms in the right-hand side of Egs(3)].
o) . . . .
] We considered only three interacting modes in the model,
g 0.008} h :
s owever, experiments show that a larger number of modes
§ could participate in the proce$3,14]. Those modes could
5 0.004F change the efficiency curvé&ig. 4) rather significantly. The
i number of participating modes is limited by the nonequidis-
SZ} 0.000 . . tance of the modes of the resonator. Generally, modes of a
o] 1.055 1.060 1.065 resonator are not equidistant because of the second-order dis-

Input power POIP‘h

persion of the material and the geometrical dispersion given
by the mode structure. We introdu@=(2wy— w,—w_)/ ¥y

FIG. 2. Dependence of the sideband power on the input pumpq take the second-order dispersion of the resonator into ac-

power for the case of identical resonator modes and pump fr
guency such thabg— w+«(T)=1.8vp+ ¥c0) (¥0="vc0)- Stable oscil-
lations occur in the region between poiftsand B (point C shows

the center of the region

4 for the case of an overcoupled resonator. The value of thg\/
optimum detuning increases with the pump power to com
pensate for the power-dependent phase mismatch arisiHB
from the cross-phase modulation eff¢2f. This mismatch

o
©

o
)
T
.

(a)

0.5

10.4

e-

count. If [D| =1 the modes of the resonator are essentially
not equidistant and therefore multiple harmonic generation is
not possible.

Geometrical dispersion for the main mode sequence of a
GM resonator isD=0.41c/(y,Rnym®?) [20,21], for a
resonator with radiu®; w,, wy, andw_ are assumed to be
+1, m, and m-1 modes of the resonatofw,Rn,

=mc, m>1). For R=0.4 cm, y,=2Xx 10° rad/s,m=3x 1

we obtainD=7x 107*, therefore the geometrical dispersion
is relatively small. However, the dispersion of the material
can be large enough. For instance, using Sellmeier’s disper-
sion equation for CafFwe find D=0.1 at 1.3um laser
wavelength. This implies that approximately three sideband

n-ﬂ

3

n:t

(4]

g 04 el 10.3 X .

o A e pairs can be generated in the system. For small resonators
E c e {0.2 geometrical dispersion could greatly exceed the material dis-
302 B persion.

2 00 : 10-1 Let us now discuss the phase between generated side-
=1 . i 1 L L s L . .

o 0 1 2 3 41.055 1.060 bands, and the influence of this phase on the power of the

Input power P /P,

signal generated on a photodiode that absorbs both the car-
rier and sidebands. The average power at the beat-note fre-

FIG. 3. Dependence of the pump power on the input pumpduency(w,—w_)/2 is equal to
power for the case of identical resonator modes and pump fre- _ * .
Prw= 2R2p|AoutB+ outt B- outAout|21 (11

quency such thaby— w+ «(T)=1.8(yg+ v). Stable oscillations oc-

cur in the _region between pc_)inat!sandB (point C shows the center whereA,,; andB, . are to be found from Eq<7) and(8),

of the region. The dashed line shows the response of the systerrk is a transformation coefficient of the optical power to a
photocurrent, ang is the resistance at the output of the

with no oscillations excited(b) stands for the details of the pump
in th ili ion. . .
power dependence in the stability region photodiode. The typical values ar®=0.7A/V, and p

e’ 05 7 =500Q).
3 PTEEELR S 6 / It is convenient to introduce paramet®r describing the
E 047 = g relative phase between generated sidebands:
s ¥ 5
2 03} ‘ + r * *
.§' / 20 4 . P = AouB+ outt B- OutAOUtIZ (12)
2 N — i ./ - * * .
% ° : g 3 # (AoutB+ oull +[B_ outAouID2
@ 01! s 7l - ' i
‘% ; § ol If =0, the phases of the sidebands arshifted with re-
g 0.0 5 — 5 3 5 3 4 r spect to each other and the light produced in the FWM pro-
Input power P /P, cess is phase modulated. In the opposite case, wiheh,

the light is amplitude modulated. We found that for the over-

FIG. 4. Optimum sideband powéeft) achieved at the optimum coupled resonator the signal is mostly phase modulated,
detuning of the pump laser frequengight) versus the input pump  while for the critically coupled resonator it is mostly ampli-
power for the case of identical modes of an overcoupled resonatotude modulatedFig. 5).
Solid line stands for a resonator with no dispersibr=0), dashed
line stands for the resonator with nonzero dispers@r0.3). It is
easy to see that at sufficiently large optical pump power and opti-
mum pumping frequency complete redistribution of the pump
power into sidebands is possible.

IV. SOLUTION: PHASE DIFFUSION
Let us present the slow amplitudes of the field as
A= ([(A)] + oA Potod0) (13
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g s0f @ ,go.es- R V. DISCUSSION

© 251 8 & 080 > It is easy to see from Eq10) that the efficiency of the

& 201 % 075 hyperparametric process increases with a decrease of the

2151 A 5 A mode volume. Reducing the size of the resonator could result

§ 10} & 070 in a dramatic reduction of the threshold for the oscillation.

§ 05} 8 065/ Since the mode volume may be roughly estimatedVas

2 00 s z s . ~2m\R?, it is clear that reducing the radi&®sby an order of

& 1056 1060 1.064 1.068 1055 1.060  1.085 magnitude would result in two orders of magnitude reduction
Input power P /P,

in the threshold of the parametric process. This could place
FIG. 5. Phase paramet&b for overloaded(a) and critically WGM resonators in the same CIaS§ as the oscillators pased on
loaded(b) resonators. All parameters coincide with parameters uset‘.’fltomIC coherencEQ]. Howev_er, unlike th? frquency differ-
in Figs. 1-3. ence between S|debanQS in the atomic oscillator, the fre-
guency of the WGM oscillator could be free from powac
Stark shifts and the stability of the microwave beat-note
signal generated in the process increases with the oscillation
threshold increasél8).
B_=([(B.)| + 6B_)&(¢-+9¢-) (15) The oscillations in nonlinear media could be masked with
stimulated Raman scatterif®RS and other nonlinear ef-
fects. This is also expected and observed in WGM resona-
tors. For instance, the threshold for the SRS process in a
WGM resonator may be estimated frd22]

B, = (|(B.)] + 0B, )50 (14

where 8A, 6B,, and 5B_ stand for the amplitude fluctuations
of the fields, andd¢y, d¢,, and é¢_ stand for the phase
fluctuations of the fields. For the sake of simplicity we con-
sider the case of identical modes, whéB,)|=[(B.)]

=[(B)|.
Using such a decomposition we obtain linearized differ- b ﬂlngv 19
ential equations for the fluctuatiotisee Appendix € Solu- R™ Ga2Q? (19

tion of these equation allows us to find phase diffusion for
the beat-note signal, proportional £y, B oui+B_ o, Aour as

well as to study the stability of the oscillations whereG is the Raman gain coefficient. For fused silica and
X - 11 :
The phase diffusion coefficient of the beat-note signaSOMe transparent crystas=10"""cm/W. Comparing Egs.
could be estimated from (10) and(19) we estimateP,,/ Pr=1.
Hence an observation of secondary lines in the vicinity of
Ps out/ Y0+ Yeo |2 2 the optical pumping line in the SRS experiments with WGM
Dw=11+ 1-54_h e silica microresonators was interpreted as four-wave mixing
t Cl

between the pump and two Raman waves generated in the
resonator, rather than as the four-photon parametric process
based on electronic Kerr nonlinearity of the medii22]. An
interplay among various stimulated nonlinear processes has
wherePg o is the output power of a sideband. This expres-also been observed and studied in droplet spherical micro-
sion is valid for the oscillations not far from the oscillation cavities[23]. Therefore additional studies of the effects are

(Yoo + Y0)? Tievg

X )
4 PB out

(16)

threshold. The expression could be optimized at important and crystalline WGM resonators could be helpful
P 2 2 here. In contrast with resonators fabricated with amorphous
Pg Opt:—‘h<A> (17) materials and liquids, higkp crystalline resonators would
154\ yo+ ¥e0 allow a better discrimination of the third-order nonlinear pro-

The minimum phase diffusion coefficient is cesses and the observatior) _of pure hyperparamgtric oscilla-
tion signals because of additional selection rules imposed by
the crystal symmetry.

Generally, pushing) factors of WGM resonators higher
would result in ultimate similarities between properties of
The minimum phase diffusion does not depend on the paatoms, quantum dots, and the resonator modes. For example,
rameters of the resonator except its volume. It is interestindor very highQ microresonators the material dispersion re-
to note that the oscillations are more stable for larger resosults in significantly nonequidistant mode spectrum. This
nators(larger mode volumey). spectrum would create an effective “two-level” system

The Allan deviation indicating the stability of the gener- within the resonator. Strong confinement of the light in the
ated beat-note signdlat microwave frequency for larger resonator along with higlp factors would result in initializ-
resonators is opead wbeat:(ZIQmW/twf)eagl’Z. We could esti- ing efficient nonlinear processes on low light levels even
Mate opead Wpear=6 X 10714/t for wy=w=1.4x10%rad/s, with small nonlinearities of optically transparent materials.
wpea=5%X 10 rad/s, andy,=v,. The resonator tempera- High efficiency controllable light coupling to the resonator
ture should be properly stabilized to achieve the estimatethodes[11] would allow integrating the resonators to optical
stability. fiber networks.

(Yot %)? ho %0t Yeohiwghoh
2 PB opt 2’)/(:0 4’77Vn0

(18)
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VI. CONCLUSION a=-iwga+ig[a’a+ 2blb, + 2b'b_la+ 2iga’b,b_,

We have theoretically studied properties of optical hyper- (A2)
parametric oscillations in a hig@-whispering-gallery-mode
resonator. Due to the long interaction times of the pumping = _j,. b, +ig[2a’a+b!b, + 2b'b_]b, +igh'aa,
light with the material, even the small cubic nonlinearity of
the material results in an efficient low-threshold generation
of optical sidebands. Beat-note signal between the sidebands .
and the pump is characterized with a slow phase diffusion b_=iw_b_+ig[2a'a+ 2bib, +b'b_]b_ + igbIaa.

(A3)

independent of the phase diffusion of the pumping laser. This (A4)
process can be used for the demonstration of a different kind
of an all-optical frequency reference. This set of equation describes unitary evolution of the loss-

less system. We consider an open system. To describe the
open system we introduce decay terms as well as Langevin
ACKNOWLEDGMENTS fluctuation forces. Moreover, we have to take into account

) o ] frequency shift due to temperature change of the resonator.
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Space Administration, and with support from the DARPA +2iga’b,b_+ fo+ fog, (AB)
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b, =—[iw, +ir.(T) + 7, + yoi ]bs +ig[2aTa+ blb,

APPENDIX A: HAMILTONIAN AND BASIC EQUATIONS + Zbib_]b+ + ing[aa+ fo+fe, (AB)
The Hamiltonian describing the system of three modes L . . + N
interacting by means of cubic nonlinearity is b-=-lio +ix(T)+y-+ v ]b_+ig[2a'a+ 2b.b,

H=Ho+V, Ho=fhoea'a+hw,blb, +hoblb., +blb_Jb_+igblaa+ -+ fc.. (A7)

The Langevin forces are described by the following nonva-
nishing commutation relations:

[fot), f3(t)] = 208t = 1), [f.(0),F1(t")] =298t -t),
+a'blb,a+a'b’b_a) - g(b’blaa+a’a’b,b_), (A1)

_ | IR f]= 28t - 1), [feolt), Flolt)] = 29008t~ 1),
wherew,, w,, andw_ are the eigenfrequencies of the optical
cavity modesa, b,, andb_ are the annihilation operators for [f_ (t) fI.(t')]= 2y, 8t —t'), [fe(t), fL_(t")] = 2y, St - t'),
these modes, respectivetyjs the coupling constaiisee Eq.
(5)]. Deriving this coupling constant we assume thiatthe (A8)
index of refraction of the material can be presented in theand average values

form n=ng+n,l, wherel denotes the time-average intensity

of the field; (i) the modes are nearly overlapped geometri-;¢ _ 2%0P0 it FVN= (N =(F Y= (f V=(f)=0

. . . . <c0> € ’ <+> <—> <c+> <c—> <c> ’

cally, which is true if the frequency difference between them hawg

is small. (A9)
The interaction part of the Hamiltonian is found from

usual Kerr HamiltonianV=-%(g/2):(a+b,+b_+H.c.)*, where P, is the pump power of the mode. We assume that

where “ -+ " means normal ordering, with application of the fluctuations entering each mode are in the coherent state
rotating wave approximation. The simplified interactionand are uncorrelated with each other.

Hamiltonian contains three terms responsible for self-phase Let us introduce now slowly varying amplitudes for the
modulation, cross-phase modulation, and four-wave mixingmode operators as follows:

This simple model is valid for media with nonresonant elec- T R T U

tronic ngnlinearities, e.g., some transparent crystals and a=Ae'"\b, =B.e""\b- =B.e"", (A10)
fused silica[24,25. The sign of the interaction part is de- wherew is the carrier frequency of the external pump of the
rived from expression for a mode resonant frequeagy modea, @, and . are the frequencies of modes andb_,
~mc/(Rn) and the definition of the nonlinear index of re- respectively. Those frequencies obey rat#®. Then from
fraction. It is important to note that the self- and cross-phas&gs.(A2)—(A4) it is easy to derive Eqg1)—(3) for the slow
modulation terms of the Hamiltonian have the same order omplitudes of the intracavity fields. This is the basic set of
magnitude as the four-wave mixing term and hence they inequations we are going to analyze. It is worth noting that this

V= - hg(afa*aa+ biblb,b, + bibb_b.) - 24g(blblb,b_

fluence significantly the oscillations in the system. set has a lot in common with the set of coupled wave equa-
Using Hamiltonian(Al) we derive equations of motion tions derived for light propagation in optical fib€i3,26,27
for the field operators, and atoms in a cavitj28].
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APPENDIX B: STEADY-STATE SOLUTION OF EQS. (1)~(3) A,+A_=2Ay-D. (B10)

FOR EXPECTATION VALUES ] ]
Eqations(B6)—(B10) allow us to find parameteis ¢, A,, A_

Let us solve sefl)—(3) in steady state keeping expecta- as well as a ratio betwed#, and B_:

tion values only, __ __
_ ')’+7— Y+Y-

2 . 2 2\ 2
To(A) = igL(A2 + 2B+ 2R + 2igA BB &7 32 T a g picte T Drdar3AB BN
+(Feo), (B1) (B11)
T(B.) =ig(2(A)+ 2B + [(BA(B.) +ig(BIXAY?, singp = \T7- (612
(B2) Yot
[—
I(B.) =ig(2(A)? + (B_)[? + 2|(B,)[P)(B_) +ig(B (A cosd= {200~ D - &4+ 3B+ BY) W%, y- (613
(B3) (Ve +72)E '
It is convenient to introduce combined decay rates for the Vs o V=V
modes asy;=v;+y.;, and to rewrite Eqs(B1)—(B3) as well A, =(240-D)= =t §2+Bi+ B_)?
as Eq. (4) with respect to dimensionless variables Y- Y-
=g(A)*/7% where <A>=|<A>|expi¢o; B.=[(B)| /(A +E(¥-B2-7.B9), (B14)
where (B,)=[(B.)|expi¢, ; B_=|(B_)|/[(A)| where (B_)
=[(B-)|expid_; = ~do where<Fco> (Feolexpighe 7. T
$=200= b= i A, =[w, =, +k(D)]/75; and A=~ A-=(2ho-D)Zm = - H2H B+ B
+k(T)]/%,. The pumping force can be conveniently trans- . 2+ ’
formed to a dimensionless valde (g/ 7o) Y?|(Fco)| /7o, di- = §(y-BZ - y.B7), (B15)
mensionless drive detuning can be introdudeg-[wy—
+k(T)]/ 7y, as well. We assume that the temperature is stabi- B+ -
lized such that it is possible to neglect by the temperature B-_ z (B16)
modification of the resonator FSR, so &]lare identical and
equal tox. Now, from Egs.(B4) and (B5) we find ¢ and, sayB_:
Generally, modes of a resonator are not equidistant be- — 2 (3o =)
cause of the second-order dispersion of the material as well {1 + 2%33} + |:Ao_ é- 2553(%
as geometrical dispersion given by the mode structure. To Yo PACAETS
take the second-order dispersion of the resonator into ac- 7.(240-D) ¥ 2 2
count we introduceD=(2wy—w,—w_)/7y=B"1 (YR?B'3), =0 — __B_) = (B17)
where 8’ and 8’ come from the dispersion relation £yt ) Y+
w ®o ’ 1 U 2 \"E ?— 2
—N(w) = —ng+ B'(w = wp) + =" (w — wg) cosy=—|1+2—B|, (B18)
c c 2 f Yo
for the resonator of radiu]; andw,, wy, andw_ are assumed Ip -~ -2
to bem+1, m, andm-1 modes of the resonatéw,Rn, siny= \—g{Ao— E- 2553(%
=mc, m>1). f Ye(Yet72)
Finally, we arrive at 5 (2A~—=D Y
_ » 22207D) 3%:%) (819)
VEL - 2¢B,B_sin §) = f cosy, (B4) En+y) 7%

To simplify analysis of the set of equations it is conve-
\“‘E{Ao‘ g1+ 2B2+ B2+ B,B.cos)]} = f sin ¥, (B5) nient to assume that, =7y_=7%,. This assumption is justified
by the fact that identical, closely separated in frequency,
_ _ ) modes of a resonator have identid@l factors. ThenB,
Y+Bi+ ypéB-sing=0, (B6)  =B_=p. Equations(B14) and (B15) transform to Eq.(9).
The oscillation amplitude is determined by E¢B11) and
[A, - &2+ B2+ 2B?)|B, - £éB.cos¢ =0, (B7) (B17), that could be rewritten in the form

48 -1)-(20p-D - 6B2-49)%=0,  (B20)

Y-B_+yéB,sing =0, (B8)
H(1+2B%2+[Ag- é-B%2A,-D-6£B%)1% =12, (B21)

[A_-&2+B2+2B%)]B_- ¢B,cos¢p=0, (B9  From Eq.(B20) we get
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=2t -1 ty D, 3¢B2. (B22)

The external pump power with which Eq®20) and(B21)

and have a nontrivial solution approaches its smallest pos-

sible value(oscillation thresholgwhen the laser frequency is
determined by the*" sign in Eq.(B22). The threshold con-
ditions (assumingD=0) are

£=1.175, (B23)
Ag=1.733, (B24)
f=1.24. (B25)

Equation(B25) can be rewritten with respect to the pump
power[see Eq(10)].

To find microwave power generated on a photodiode we
rewrite Eqg.(11) in the form

43’2 '562 2% \’/E i
Prw=2R%pPo— | | =2 -
™ ° 7’(2) f2 Yo f
Moy aE V|2
+e'¢<#’\—§—e—'¢> , (B26)
Yo
where we used the relations
(27’co|<B+>|> 4% _ £8?
[(F oo Y% 2
(B27)
ZVCOLE P 2 _ Pa out
?O f PO .

APPENDIX C: STEADY-STATE SOLUTION
OF EQS. (1)-(3) FOR FLUCTUATIONS—STABILITY
ANALYSIS AND FREQUENCY DRIFT

Substituting Eqs(13)—(15) into Egs.(1)—<3), and intro-
ducingF;=F+F;, we derive a set of equations for the am-
plitude fluctuations,

|< c0>|
(A
+ [(Feo[Sin ¢ 8o + 2g|(A)|[(B)sin ¢ (8B + B,)

SA=-——2cosy SA+ 2g(A)||(B)|2cos ¢ 8¢

PHYSICAL REVIEW A 71, 033804(2005

. |<FCO>| . ) oA |<FCO>|
_ 2_ _
oo (29'<A>' 2" ) ©

+ 29|(B)|(2 + cos¢)(8B_ + 8B.)— 2g|(B)|%sin ¢ 6¢

" (EO - <FC0>)e_i¢o - H.C.
2i(A)] ’

oS Sy

(C9

(B)|

[y 2B-+ 9B *)]
A
@)
F.e'% - H.c.
2i[(B)|

5, = 20[(A)| {2&\ '

+g|(A)|cos¢ [25A+ SB_ - 6B+)}

- gl(A)|%sin ¢ 5 + (C5)

25A+U

() (2B ‘SB‘)}

KA
(B)]

_gi¢- -

¢_= 29|<A>|{

+g|(A)|cos ¢ [25A gy (6B- = J}

A Psing sp+ A.c.

2[B) (o

Using this set we derive two equation sets,

|< cO>|
(A
+ (Feollsin g ¢ + 29(A)||(B)[sin ¢ (8B_ + 5B.)

SA=-——cosy SA+ 2g[(A)||(B)|2cos ¢ S

+ S(Fo- oo™+ Ho), )
: Feo)| . oA Fq
ah (29|<A>|2 ) |<|<A(>)|>|Sln "’) A |<|<A(>)|>|C°s¢ 20

+29|(B)|(2 + cose) (B + 5B,)- 2g|(B)|%sin ¢ 5¢
. (Fo—(Foo))eo—H.c.
2i[(A)] ’

(CY

L 0B, + 5B = - 4g|(A)|(B)|sin ¢ 5A - 20|(B)|[(A)*cos 5
+ ~[(Fo— (Feo))e %+ H.cl], (CY)

2 += (F+e'¢’++F “i9-+ H.c), (C9)

:—g|<A>|sin¢[2|<B>|5A+|<A>|<as_—5s+>] o
e cO . o
~ ol Bcoss sgt SFue v e, (G2 047 F 2N oSt + T rsn i
|< cO>|
= - glAVlsing [2|<B>|5A— (A (3B - oB.)] "2 () oSV 0 20BN+ 2 Cosg)(5B + B.)
2 _ 2
- ol EBcoss sw+ SFeT+He) (CY +2gsiné (el - 2B ¢

and phase fluctuations

(Fo—(Fo))e %o —H.c.
iA
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F.e'%-Hc F.e'$-H.c. 14
- , - , , (C10
20[(B) 20[(8) s
and :‘:
© 42
) ) SB.- B £
8. = 8= 29([(A)Pcos +[(B))— S
(B) £,
+ L(E el —F_e'* —H.c)
2||<B>| ’ B , 1'01 3 4
(C11) Input power P /P,

. . FIG. 6. Paramete€ corresponding to the optimum sideb and
SB_ - 8B, = 29|(A)|%sin ¢ (5B_ - 5B,) power achieved at the optimum detuning of the pump laser fre-
1 _ quency(see Fig. 4 versus the input pump power for the case of
+=(F_e'%--F,e*+H.c), (Cl2 identical modes of an overcoupled resonator. The solid line st and s
2 for a dispersionless resonai@® =0), the dashed line st and sfor the

Using the first set we could study the stability of the oscilla-"éSonator with nonzero dispersiob=0.3).
tions. The second set of equations, always stable because

sin¢$<0, allows us to find the phase diffusion of the beat 54— s¢,= 54, 5¢_

note generated in the process of adsorption of the pump and

sidebands on a fast photodiode. _ (A)cos¢ +|(B)*F.e'* —F_e"'* +Hi.c.
Keeping in mind that in the case of stable oscillations [(A)|%sin ¢ 4((B)|
oB_-6B,=0, we arrive at . E+e—i¢+ —F.ei%—Hec. (15
S~ = (A)? cose + [(B)Fe™ - F_e¢- + H.c. 4i[(B)|
’ ) [(A)? sin 2|(B)l Using expressiongsee Eq.(B12)] sing$=-1/¢ and cosp
F.e'¢ - F_e¢ - H.c. =+\&-1/¢ we derive the expression for the diffusion coef-
: (C13 ficient for the beat note,
2i[(B)|
or, using the fact that the equation corresponding to the en- D= [1 +(VE-1 iggz)z]ﬁﬂ (C16)

ergy conservation law4) can be derived in the case of long 4 Pg oyt

integration time for stable oscillations, resulting in Eq.(16) in the limit £&~1. This is a valid ap-

G _ost _sh _ sh proximation. For instance, in the case of overcoupled reso-
04 =260 09, = 64-=0, (C19 nator and optimum laser tuningee Fig. 4 the parameteg

we obtain has the power dependence depicted in Fig. 6.
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