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We investigate control schemes for the dynamics of a collection of dipole-interacting three-level atoms in V-
or L- configuration. For this, we discuss the strong-field steady-state behavior of these systems under the
influence of external parameters such as the relative phase between the two applied strong driving laser fields,
the ratio of spontaneous decay and incoherent pumping rates, the splitting frequency between closely spaced
atomic states, or a surrounding thermal bath. We show that these may act as convenient tools to sensitively
control the collective dynamics of the atoms. As applications, we analyze the fluorescence and absorption
properties of the atomic samples. Finally, we discuss the transient behavior to show that the presented schemes
feature a rapid system evolution as required for many applications.

DOI: 10.1103/PhysRevA.71.033802 PACS numberssd: 42.50.Fx, 42.50.Lc

I. INTRODUCTION

Apart from the fundamental interest in quantum optical
systems, they are ideal candidates for a broad range of ap-
plicationsf1g. Typical requirements for possible applications
are, e.g., a fast system evolution, complete population trans-
fer between various system states of interest, and the avail-
ability of convenient external control parameters. Some of
these requirements may be addressed by making use of col-
lective effects, as initiated in a classic work by Dickef2g.
There, a sample of dipole-interacting atoms confined in a
small linear region compared to the emission wavelength
was discussed. Dicke showed that such a sample ofN excited
atoms forms a collective dipole moment, which leads to ef-
fects such as a superradiant fluorescence intensity propor-
tional toN2 and a quantum dynamicsN times faster than for
single atoms. He also discussed subradiant states of the at-
oms where, under special conditions, the emission of pho-
tons can be inhibited in the atomic sample. Since Dicke, the
concept of collectivity has received considerable attention,
demonstrating a wide range of collective phenomenaf3–25g.
Some of these effects have also been verified experimentally
f7–9g. The collective spontaneous emission of an ensemble
of densely spaced few-level atoms depends crucially on the
environmental reservoir and may be influenced to some de-
gree by coherent external electromagnetic fieldssEMFsd. For
example, when a collection of two-level emitters is placed
within a photonic band-gap material, the superradiant emis-
sion remains localized in the vicinity of the radiators, leading
to a steady state with spontaneously broken symmetry in
which the atomic system acquires a macroscopic polarization
f10g. The presence of a small number of thermalized photons

in a microcavity mode surrounding the atomic ensemble
leads to an enhancement of the collective two-photon spon-
taneous decay ratef11g. Applying microwave pulses to the
two lower levels of three-level atoms in a quasidegenerate
L-type configuration one can switch the superradiant and
subradiant processes from off to on and vice versaf12g,
while superfluorescence without inversion in such a coher-
ently driven three-level system was shown to occur in Ref.
f13g. The output intensity of a superradiant laser scales asN2,
while its linewidth is proportional toN−2f14g. Controlled by
coherent sources of light, collections of atomic few-level
systems may exhibit interesting steady-state characteristics
like jumps and discontinuous behaviorsf15–20g. Similar ef-
fects are also possible with incoherent driving fieldsf21g.
Thus collective atomic systems may have various advantages
over single-atomic systems such as the acceleration of the
atomic dynamics by a factor ofN. This explains the consid-
erable recent interest in collective phenomena, e.g., in quan-
tum computation and quantum entanglement theories as well
as in cooling processes. For instance, a technique for ma-
nipulating quantum information stored in collective states of
mesoscopic ensembles is given inf22g, while the decoher-
ence of collective atomic spin states due to inhomogeneous
coupling is discussed inf23g. Schemes for entangling atomic
ensembles through laser manipulation were proposed inf24g.
The collective cooling effects of atoms in a cavity were in-
vestigated both theoreticallyf25g and experimentallyf9g.

A recent idea to provide a convenient control parameter in
quantum optics is based on the relative phase between driv-
ing laser fieldsf26–30g. Typically, this requires quantum in-
terference between multiple-atomic-transition pathways
which is known to give rise to many interesting applications
f31,32g. In f26g, the phase dependence of the resonance fluo-
rescence spectrum in a single three-levelL-type atom was
discussed. Inf27g, spectral narrowing and fluorescence
quenching in an atomic four-level system were reported.
Light amplification without inversion may also be controlled
by the relative phasef28g. The phase control was used in
manipulating the spontaneous emission of single atoms in
different surroundings as in photonic crystalsf29g. The fea-
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sibility of the control of photoabsorption via the relative
phase of two fields was also demonstrated experimentally
f30g.

In this article, we discuss control schemes for a collection
of three-level atoms embedded in a lossy cavity. Our goal is
to find convenient control parameters to make the advantages
of collective systems accessible for possible applications.
For this we investigate the dependence of the steady-state
properties of the atomic sample on external parameters such
as the relative phase between two applied strong driving la-
ser fields, the ratio of spontaneous decay and incoherent
pumping rates, the splitting frequency between closely
spaced atomic states, or a surrounding thermal bath. As di-
rect applications, we also analyze the fluorescence and the
absorption spectra of the systems. Finally we discuss the
time evolution of the atomic sample into the steady state to
verify the fast system evolution which is typical for collec-
tions of atoms. Due to the general approach, our analysis
applies to atoms in both V andL configurations as shown in
Fig. 1, and allows us to obtain analytical expressions for the
steady-state solutions of the discussed setups.

By appropriately choosing the relative phase, all atoms
may be trapped in the upper atomic state doublet of the
three-level systems in V configuration, and in the lower dou-
blet for theL system. Similar effects occur without phase-
dependent terms if the ratios of the spontaneous decay and
the incoherent repumping rates are varied. In these trapping
states, the total collective fluorescence light is completely
suppressed for the phase-dependent scheme, while for the
other scheme the inhibition of the entire collective fluores-
cent light occurs for theL atoms only. For different values of
the relative phase or of the ratio of spontaneous decay rates
and incoherent repumping these doublet states may also be
partially depleted. Increasing the number of involved atoms
leads to a more rapid transfer of the atoms into the trapping
state or vice versa. This property may be used to build fast
optical switching devicessswitching time ts,N−1d conve-
niently controlled by the relative phase of the two laser
fields. As an additional weak probe beam would experience
absorption or gain depending on the steady state of the col-
lection of atoms, this fast switching between the ground and
the excited states might be used to construct a quantum op-
tical transistor. We further show that the system dynamics
may also be controlled by surrounding thermal fields and by
the splitting frequency between the two closely spaced
atomic bare states in the V- andL-type systems.

The paper is organized as follows. In Sec. II we introduce
the various systems of interest discussed in this article and
derive the corresponding master equation. In Sec. III the ex-
act steady-state solution to this master equation is derived
and discussed for several system setups. The following Sec.
IV analyzes the transient behavior of the atomic samples.
Sections V and VI investigate the fluorescence and absorp-
tion properties of the collective systems, respectively. Finally
the results are summarized in Sec. VII.

II. THE MODEL AND MASTER EQUATION

Our model system consists of an ensemble of three-level
atoms with a configuration of energy levels as shown in Fig.
1. We discuss both V andL configurations as these may be
described in a uniform manner with the employed ansatz. As
we want to describe the collective effects of the system by
using collective operators, we assume the sample of atoms to
be confined in a region which is small as compared to the
wavelengthsl of the atomic transitionssDicke modeld. Fur-
thermore we impose the conditiondl3,1 for the atomic
density d such that collisions among the radiators are
avoided in our setup. However, the low density also restricts
the possible number of atoms in the sample. In order to over-
come this restriction, it is possible to relax the above condi-
tion that the sample is small as compared to the incident
wavelength for one or two dimensions. This yields pencil-
shaped or disk-shaped samples. Our analysis also applies to
these geometries, if one introduces a geometry-dependent
factor m as prefactor to the atomic decay widthsf4–6g. In
these setups, dephasing by dipole-dipole interactions among
the radiators is avoided due to the low density, but the total
number of atoms and thus the collective effects can still be
considerable due to the extended geometry.

The two dipole-allowed transitions between the states
u2l↔ u1l and u3l↔ u1l are driven independently by two
strong coherent fields with Rabi frequencies 2V2 and 2V3
and phasesf2 and f3, respectively. In the V system, the
upper statesu2l and u3l decay to the ground state with decay
rates 2g2 and 2g3, while in theL system, the upper stateu1l
decays to the ground statesu2l and u3l with rates 2g2 and
2g3.

Adopting the mean-field, dipole, and rotating-wave ap-
proximations, one may write the Hamiltonian describing the
interaction of the V-type atoms with the cavity EMF and the
external coherent fields in the interaction picture asf15g

H = Hf + H0 + Hi , s1d

where

Hf = "svc − vLda†a,

H0 = "D2S22 + "D3S33 + o
a[h2,3j

h"VaSa1e
ifa + H.c.j,

Hi = i o
a[h2,3j

sgW ·dWa1dha†S1a − Sa1aj.

Here,vc is the frequency of the cavity mode, andvL;vL2
=vL3 is the frequency of the two applied external fields with

FIG. 1. Bare-state notation of the employed three-level Vsleftd
and L srightd systems. Indicated also are two spontaneous decay
ratesg2 and g3 on the corresponding allowed transitionssdashed
arrowsd and the driving fieldssdouble arrowd with the correspond-
ing Rabi frequenciesV2 andV3.
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detuningsD2=v21−vL and D3=v31−vL to the atomic tran-

sition frequenciesv21 and v31. sgW ·dWa1d describes the atom-
field coupling, anda† sad are the creationsannihilationd op-
erators for cavity photonssa=fa†g†d. The collective operators

Sab = o
j=1

N

Sab
s jd = o

j=1

N

ual j jkbu ; ualkbu s2d

describe transitions among the collective statesubl and ual
for aÞb and collective populations fora=b, and satisfy the
commutation relationfSab ,Sb8a8g=dbb8Saa8−daa8Sb8b for
ha ,a8 ,b ,b8j[ h1,2,3j.

In Eq. s1d, the first term represents the free EMF, whereas
the second term is the Hamiltonian describing the free atoms
and the coupling to the external coherent fields. The last term
considers the interaction of the atomic sample with the cavity
mode.

In the Heisenberg picture and for V-type samples, the
time evolution of the mean value of an arbitrary collective
atomic operatorOstd may be written as followsf3,11g:

d

dt
kOstdl −

i

"
kfH0,Ostdgl = − o

a[h2,3j

sgW ·dWa1d
"

hka†fS1a,Ostdgl

+ kfOstd,Sa1galj, s3d

where the notationk¯l indicates averaging over the initial
state of both the atoms and the thermal EMF environment
system. Assuming that the atomic subsystem couples weakly
to the surrounding EMF, i.e., in the bad-cavity limit, the
EMF operators can be eliminated from the above equation of
motion. On solving formally the Heisenberg equations for
the cavity field operators one can represent the solutions in
the form f33g

a†std = af
†std + as

†std, s4d

with

af
†std = af

†s0deisdc+ikdt, s5d

as
†std = "−1 o

a[h2,3j

sgW ·dWa1d
k − isdc − Dad

Sa1std, s6d

as the free and the source parts of the EMF operators, respec-
tively. Here,k is the rate at which the cavity is losing pho-
tons, anddc=vc−vL. To represent the cavity field operators
in this way one has to impose the restriction that the time
required for a light signal to cross the atomic sample is
shorter than any other relaxation times in the system, i.e., the
system loses the memory of its past. Introducing Eq.s4d in
Eq. s3d and using Bogoliubov’s lemmaf34g to represent the
free atom-field correlatorskaf

†stdAstdl and kAstdafstdl via the
atomic operators and the bath characteristics only, we obtain
an equation describing the quantum dynamics of any collec-
tive atomic operator:

d

dt
kOstdl −

i

"
kfH0,Ostdgl = − o

a[h2,3j
GahkSa1fS1a,Ostdgl

+ nak†Sa1,fS1a,Ostdg‡lj

− o
aÞb[h2,3j

GabhkSa1fS1b,Ostdgl

+ nak†Sa1,fS1b,Ostdg‡lj + H.c.

s7d

Here, the decay constants are

Ga =
sgW ·dWa1d2

"2fk − isdc − Dadg
, s8d

Gab =
sgW ·dWa1dsgW ·dWb1d

"2fk − isdc − Dadg
s9d

for aÞb[ h2,3j, and na=fexpsj"va1d−1g−1 is the mean
thermal photon number at the atomic frequenciesva1=va

−v1 and at temperatureT fj=skBTd−1 with the Boltzmann
constantkBg. Note that in Eq.s7d for the in general non-
Hermitian atomic operatorsOstd, the H.c. terms should be
evaluated without conjugatingOstd, i.e., by replacingO+std
with Ostd in the Hermitian conjugate parts. Next, from Eq.
s7d, one can obtain the equation for the density matrixrstd.
As

TrS d

dt
Ostdrs0dD = TrS d

dt
rstdOs0dD ,

we obtain for a V-type sample the density matrixf35g

d

dt
rstd +

i

"
fH0,rg = − o

a[h2,3j
sGahfSa1,S1arg

+ na†Sa1,fS1a,rg‡j + rpafS1a,Sa1rgd
− o

aÞb[h2,3j
sGabhfSa1,S1brg

+ na†Sa1,fS1b,rg‡jd + H.c. s10d

In Eqs.s7d and s10d, the first term followingdkOstdl /dt and
drstd /dt describes the coupling to the coherent driving fields.
The second term considers the incoherent interaction of the
atomic sample with the environmental bath. As expected, the
thermal bath induces atomic transitionsu2l↔ u1l and
u3l↔ u1l with rates proportional to the mean thermal photon
number at the corresponding atomic transition frequency. In
Eq. s10d, we additionally introduced phenomenologically an
incoherent repumping of the atoms from the ground to the
excited levels as shown in Fig. 1, as this will turn out to be a
crucial ingredient of our control schemes. These terms are
proportional to the pump ratesrpa

sa=2,3d. The last term of
Eqs. s7d and s10d accounts for the spontaneously generated
coherencesSGCd or cross-coupling effects via the exchange
of virtual photons on atomic transitionsu2l→ u1l→ u3l or
vice versa. The notation “virtual” here refers to the fact that
photons involved in these processes cannot be detected. In
free space, these cross-damping effects are strongly depen-
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dent on the mutual orientation of the dipole momentsdW21 and

dW31 of the two transitions. It is absent fordW21'dW31 and is

maximal for dW21idW31 f1g. While the conditiondW21idW31 is
rarely met in atomic setups, it is possible to overcome this
difficulty by letting the atoms interact with the EMF of a
preselected cavity mode in the bad-cavity limit. With suitable
cavity parameters, one may obtain SGC even for initially
orthogonal dipole moments, as was shown inf36g. However,
our analysis does not depend explicitly on the cavity, such
that different schemes which provide nonzero values for
SGC may be equally applied. Following similar steps as de-
scribed above, one may also derive the corresponding master
equation describing a sample ofL-type atoms. It may be
obtained from Eqs.s7d ands10d by swapping the two indices
of each transition operator havinga or b as one of the indi-
ces, e.g.,Sa1↔S1a.

III. STEADY-STATE SOLUTIONS
OF THE MASTER EQUATION

In this section we derive exact strong-field steady-state
solutions to the master equation Eq.s10d for several setups of
interest, where with exact we mean valid for all numbers of
atoms and without further approximations other than the
secular approximation. We then discuss how the collective
properties of the atomic samples may be modified by means
of the external parameters.

A. Phase manipulation of collective processes

In this subsection, we investigate the dependence of the
collective quantum dynamics on the relative phase between
the applied external coherent fieldsf19g. For this, we assume
the two atomic transitions to be degenerate and the environ-
mental temperature to be zero, i.e.,na=0. In the V -system,
with dc=Da=0 in Eq. s10d, one obtains gaªGa

=sgW ·dWa1d2/ s"2kd as the spontaneous decay rates into the cav-
ity mode on the transitionsual→ u1l, while gabªGab

=hÎgagb are the cross-damping contributions withh as a
control parameter which is unity for maximal cross-damping
contributions and zero if these cross-coupling terms are ab-
sent saÞb[ h2,3jd. The parameterh also allows one to
account for possible external perturbations such as collisions
which may reduce the SGC contribution. However, as was
already shown for particular decoherence sources in collec-
tive systemsf37g, moderate disturbances may be compen-
sated by increasing the number of atoms or the intensities of
the applied fields. In particular, whileh needs to be above
zero, it may be less than unity in our scheme. As we are
interested in the strong-field limit Va@Nga,
Nrpa

sa[ h2,3jd, we change to the dressed-state picturessee
Fig. 2d:

uC1l = cosũu2l − sin ũu3l,

uC2l =
1
Î2

hsin ũu2l + cosũu3l + u1lj,

uC3l =
1
Î2

h− sinũu2l − cosũu3l + u1lj, s11d

where sinũ=V2/Ṽ, and cosũ=V3/Ṽ with Ṽ=ÎV2
2+V3

2. We

also apply the transformationS̃a1=Sa1e
ifasS̃1a=S1aeifad in

Eq. s10d for V- sL-dtype atoms and drop the tilde afterward
for notational simplicity. Taking advantage of Eqs.s11d in
the transformed Eq.s10d and neglecting terms that oscillate

with frequenciesṼ and larger in a secular approximation,
one arrives at the following dressed master equation:

ṙ + iṼfRz,rg = −
1

2
hg−sfR12,R21rg + fR13,R31rgd

+ fsfR21,R12rg + fR31,R13rgdj

−
g+

4
hfR23,R32rg + fR32,R23rg + fRz,Rzrgj

+ H.c., s12d

where

g− = g2 cos2 ũ + g3 sin2 ũ − g23 cossDfd sin 2ũ, s13d

f = rp2
cos2 ũ + rp3

sin2 ũ, s14d

g+ = sg2 + rp2
d sin2 ũ + sg3 + rp3

d cos2 ũ

+ g23 cossDfd sin 2ũ. s15d

Here,Rz=R22−R33 with Rab= uCalkCbu for ha ,bj[ h1,2,3j
and Dfªf2−f3. The operatorsRab represent a rotation of
the collective bare-state operators and hence satisfy the same
commutation relation as the old operators. As with the bare-
state equations, the corresponding dressed master equation
for a L system is the same as Eq.s12d except for the permu-
tation of the indices in the right-hand part of it.g− can be
interpreted as a dressed decay rate,f is a dressed pumping
rate, andg+ describes the distribution of population between
two of the dressed states as indicated in Fig. 2.

The dressed master equations for both V- andL-type
samples admit an exact steady-state solutionssubindexsd of
the following form:

FIG. 2. Dressed-state notation of the three-level systems indi-
cating the allowed transitions among the dressed states together
with the dressed relative decay rates. The left scheme stands for the
V radiators while the right one represents theL atoms.
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rs = Z−1o
r=0

N

XVsLd
r o

m=0

r

ur,mlkm,r u. s16d

Here,ur ,ml are eigenstates of the operatorsR=R22+R33, R33
andR11+R22+R33 with eigenvaluesr ,m, andN, respectively,
and Z is a normalization constant chosen such that Trhrsj
=1 f17,19,20,35g. The coefficientXV is given by the ratio of
the dressed spontaneous decay rateg− to the dressed pump-
ing rate f, andXL is the inverse ofXV ssee Fig. 2d:

XV =
g−

f
, XL =

f

g−
. s17d

The steady-state atomic population of the dressed states is
then given by

kR11ls =
NXN+2 − sN + 2dXN+1 + NsX − 1d + 2X

sX − 1dfsN + 1dXN+2 − sN + 2dXN+1 + 1g

and kR33ls=kR22ls=kRls/2 with kRls=N−kR11ls. Here, we
have dropped the index ofX because all discussed popula-
tions depend identically on the respectiveXV andXL param-
eters for both systems. The steady-state behavior of the col-
lective atomic operators for some particular values of the
parameterX is given in Table I. The mean steady-state
atomic population in the collective bare stateu1l can be cal-
culated by the relationkS11ls=fN−kR11lsg /2.

For simplicity, in the following we consider the caseg2
=g3ªg0, rp2

=rp3
ªrp. The parameterX may then be written

as XV=Ch1−h sin 2ũ cosDfj with XL=XV
−1. C=g0/ rp is the

ratio of spontaneous decay and incoherent repumping in the
atomic systems. BothC andXV sXLd will turn out to crucially
influence the system behavior.

First we investigate the caseh=1, ũ=p /4, andC=4, i.e.,
the decay dominates over the repumping. Figure 3sad shows
the steady-state population per atom in the collective dressed
stateuC1l for different numbers of atomsN against the rela-
tive phase between the two applied strong laser fields for
V-type systems. The corresponding results for theL system
are displayed in Fig. 4sad. As can be seen, a single V-type
atom sN=1d may only be trapped inuC1l for Df=n
32p sn[ h0,1,…jd, while a singleL-type atom may not be
trapped with incoherent pumping. However, a collection of
atomssN@1d allows for trapping for both the V and theL
systems. The rangedsDfd of the phase difference, for which
the collective coherent population trapping effect occurs,
grows with an increasing number of atoms, until in the limit
N→` the system exhibits jumps between two states with
either all or none of the population in the collective state

uC1l. In order to understand this behavior of the dressed-state
steady-state populationuC1l, we take the limitN→` of its
population per atomkR11ls/N. As shown in Table I, one ob-
tains 1 for 0øX,1, 1/3 forX=1, and 0 forX.1. Thus the

jumps occur atX=1, which in our exampleh=1, ũ=p /4,
and for C.0.5, corresponds to a phase difference of
cosDf=1−1/C. Then the trapping ranges for the V andL
systems are given by

dsDfdV = 2 arccosf1 − 1/Cg, s18d

dsDfdL = 2sp − arccosf1 − 1/Cgd. s19d

On increasingC by decreasing the incoherent pump rates, the
trapping ranges of the V system become very narrow while
for theL radiators the trapping domains become wider. Note
that in the absence of incoherent pumpingsC→`d only the
L-type samples can be trapped, including the single-atom
case N=1. In this case without incoherent pumping, the
steady-state populations of the dressed states of both samples
are insensitive to the relative phaseDf, except for the spe-

TABLE I. Mean steady-state values of the collective
operators.

X=0 X=1 X→`

kRls 0 2/3N N

kR2ls 0 1/2NsN+ 1/3d N2

kR11ls N 1/3N 0

FIG. 3. The dependence ofsad, sbd the steady-state population of
the collective dressed stateuC1l and scd, sdd of the total collective
steady-state fluorescence intensity as a function of the relative
phaseDf for the V system. The dash-dotted, dashed, and solid

curves correspond toN=1, 10, and 200, respectively. Furtherũ
=p /4, h=1, Fsrd=1, andC=sad, scd 4, sbd, sdd 0.5.

FIG. 4. The same as in Fig. 3 but for theL sample.
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cial caseDf=2pn andũ=p /4, where the collective dressed
stateuC1l decouples from the interaction with the environ-
mental bath.

For Cø0.5, i.e., dominating repumping, the results shown
in Figs. 3sbd and 4sbd may be interpreted accordingly. The
main difference is that the conditionXVø1sXLù1d is al-
ways satisfied, such that the collective dressed stateuC1l is
never entirely depleted in the V system and never fully popu-
lated in theL case. Thus no discontinuities can be observed.

Figures 5 and 6supper rowd show the dependence of the
steady-state population in the collective dressed stateuC1l on
the parameterC, for both h=0 andh=1. In these cases the
trapping is feasible for a large sample of V- orL-type atoms
and the collective jumpssor discontinuities forN→`d occur
at X=1. These discontinuities may be explained as phase
transitionsf17g and are due to the fact that the sample of
atoms forms a collective dipole moment which evolves on a
time scaleN times faster than the single-atom dipole mo-
ment, thus allowing for corresponding changes of the collec-
tive dressed steady-state populations. They occur for the
VsLd system at the points where the dressed spontaneous

decay out ofsintod stateuC1l just equals the dressed pumping
in the reverse directionssee Fig. 2d.

We end this subsection by noting that in the strong-field
limit with incoherent repumping the trapping of a large en-
semble in principle does not require the presence of the
cross-damping terms, that is, for large samples one can trap
the radiators with bothh=0 andhÞ0. Also, for large sys-
tems, the collective trapping dressed stateuC1l can be com-
pletely depopulated in both cases. However, for smaller
V-type samples it is difficult to trap the atoms without cross-
coupling terms since then one needsC=0, i.e., rp→` or
g0→0. Similarly, trapping of a small sample ofL atoms
without the cross-damping terms requiresC→`, i.e., rp→0
or g0→`. However, this limiting case corresponds to the
well-known decay-independent coherent population transfer
mechanism between statesu2l andu3l via adapting the inten-
sities of the driving fields appropriately. Thus the cross-
damping terms make the presented schemes more efficient
especially for smaller samples. Furthermore, without the
cross-damping terms, no phase control of the system dynam-
ics is possible.

B. Magnetic and thermal influences on collective processes

In this section we investigate the influence of the thermal
environment and the splitting frequency between the two
closely spaced atomic states on the collective quantum dy-
namics for both the V and theL systemsf20g. The influence
of incoherent driving fields on the collective dynamics is
discussed inf21g. We assume the frequencies of the two
coherent driving fields to be equal to the average of the two
atomic transition frequencies,v0ªsv21+v31d /2, such that
DªD2=−D3. Also, we choose equal phasesf2=f3=0, no
incoherent pumpingrp=0, and cavity parametersdc=0 and
k@D. The corresponding master equation may then be ob-
tained from Eq.s10d. In the following, we again discuss the
strong-field limit Va@Ngasn+1d, a[ h2,3j, and consider
two different cases for the splitting between the two closely
spaced upperslowerd atomic states in the V-sL-dtype sys-
tem. The first configuration is given byV0ªV2=V3 and will
be referred to as thenondegenerate system. The second con-
figuration may be obtained by assumingv23=0 and will be
referred to as thedegeneratesystem.

For the nondegenerate emitters we transfer into the fol-
lowing dressed-state picture:

uC2l =
1

2
hssinu + 1du2l − ssinu − 1du3lj +

1
Î2

cosuu1l,

uC1l =
1
Î2

cosuhu2l − u3lj − sinuu1l,

uC3l =
1

2
hssinu − 1du2l − ssinu + 1du3lj +

1
Î2

cosuu1l

s20d

with sinu=v23/ s2Vd, cosu=Î2V0/V, and V

=Î2V0
2+sv23/2d2. For the degenerate systems we use the

FIG. 5. The dependence of the steady-state population in the
collective dressed stateuC1l and the total collective intensity on the
ratio C=g0/ rp. The left column corresponds to the V sample, the
right to the L system. The dash-dotted, dashed, and solid curves

correspond toN=1, 10, and 200, respectively. Here,h=0, ũ=p /4,
andFsrd=1.

FIG. 6. The same as in Fig. 5 but forh=1 andDf=p.
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transformation in Eq.s11d. Note that throughout the article
the expressions containing the generalized Rabi frequency

with tilde si.e., Ṽd refer to the degenerate atomic ensembles,
while those without the tildesi.e., Vd belong to the nonde-
generate atomic samples. Substituting Eqs.s11d and s20d in
Eq. s10d and neglecting terms that oscillate with frequencies

VsṼd and larger in a secular approximation as well as as-
suming thatg0ªg2=g3=g23 si.e., h=1d, one can show that
the dressed master equation has the same form as Eq.s12d,
but with

g− = 2g0n sin2 u, s21d

f = 2g0s1 + ndsin2 u, s22d

g+ = 2g0s1 + 2ndcos2 u s23d

for the nondegenerate system, and

g− = g0s1 + nds1 − sin 2ũd, s24d

f = g0ns1 − sin 2ũd, s25d

g+ = g0s1 + 2nds1 + sin 2ũd s26d

for the degenerate system. Here,n=fexpsj"v0d−1g−1 is the
mean thermal photon number at the average atomic fre-
quencyv0 and at temperatureT. Thus, the exact steady-state
solution of the dressed master equation is again given by Eq.
s16d, but with coefficientsXVsLd given by

XV =
n

n + 1
, XL =

n + 1

n
for V2 = V3, v23 Þ 0,

XV =
n + 1

n
, XL =

n

n + 1
for V2 Þ V3, v23 = 0.

The dressed steady-state atomic populations then can be
evaluated using Eq.s16d. On inserting the above coefficients
XVsLd into Eq.s16d we obtain that the collective dressed-state
population of the degenerate V-type system is equal to the
corresponding population of the nondegenerateL-type at-
oms. Correspondingly, nondegenerate V and degenerateL
systems are equivalentssee Fig. 7d. For a small mean number
n of thermal photons and a large sample, i.e.,N@1, all the
steady-state atomic population is in the collective dressed
stateuC1l for the V scheme with nondegenerate upper bare
states as well as for theL atoms with degenerate lower bare
atomic states. In contrast to that, the collective dressed state
uC1l will be empty for L atoms with nondegenerate lower
bare atomic states and for V atoms with degenerate upper
bare states in this casessee Fig. 7d. For an intense thermal
bath,n@1 such thatX<1, all the collective dressed states
are populated equally, i.e.,kR11ls=kR22ls=kR33ls=N/3. These
observations may be explained by noting that forv23Þ0
snondegenerate cased the spontaneous emission populates the
collective dressed stateuC1l for the V emitters and depopu-
lates it for theL atoms, while for the degenerate casev23

=0 sand ũÞp /4d the spontaneous emission acts in the op-

posite direction, i.e., depopulates theuC1l dressed state for V
atoms and populates it forL radiators. In the special case

ũ=p /4 and v23=0, the collective dressed stateuC1l de-
couples from the interaction with the environment such that
the steady-state behavior in this case depends on the initial
preparation of the sample.

Thus, by slightly varying the frequency differencev23,
e.g., via an external applied magnetic field, in addition to
changing the intensities of the external coherent sources, the
dressed spontaneous decay reverses its direction which re-
sults in large changes of the collective atomic population of
the trapping stateuC1l. In Fig. 7, these changes correspond
to jumps from the upper branch to the lower one or vice
versa.

In conclusion, the strongly driven atomic three-level
samples allow for a substantial modification of the steady-
state population distribution controlled by various external
parameters. The third atomic level together with the specific
choices of external influences discussed in this section thus
allows for a better control over the collective system dynam-
ics than in corresponding two-level schemesf15g, where, for
example, steady-state population inversion requires the pres-
ence of special environments such as photonic crystalsf37g.
Particular examples for this are the phase control and the
strong dependence of the results on the splitting frequency
between the two upperslowerd states in the V-sL-dtype
sample.

IV. TIME EVOLUTION OF THE DRESSED-STATE
POPULATIONS

While up to now we have focused our analysis on the
steady-state properties of the given system, in this section we
discuss the transient system dynamics. This is of particular
interest for possible applications, which usually rely on a fast
evolution into the various stable configurations. From the

FIG. 7. The dependence of the collective steady-state population
of dressed stateuC1l and the total fluorescence intensity on both
transitions versus the mean thermal photon numbern. The left col-
umn corresponds to V systems, the right toL-type systems. Dashed
lines represent degenerate schemes, while the solid curves are for
the nondegenerate closely spaced bare-state models. Here,N=200
souter curvesd and 10sinner curvesd.
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master equation Eq.s12d for the collective population in the
dressed stateuC1l of a degenerate V sample we obtain:

d

dt
kR11stdlV = − g−hkR12R21l + kR13R31lj + fhkR21R12l

+ kR31R13lj. s27d

For aL sample the corresponding equation may be obtained
from Eq. s27d by exchangingg−↔ f. Generally, for a collec-
tion of atoms it is difficult to obtain a closed system of equa-
tions for the atomic population operators, because the equa-
tions for the first-order atomic correlators are expressed in
terms of the second-order ones, the equations for second-
order atomic correlators are represented via the third-order
correlators, and so on. However, we can solve Eq.s27d ap-
proximately by neglecting the fluctuation of the mean popu-
lation in stateuC1l if the number of atomsN is large. Thus
for N@1, the collective second-order atomic correlators my
be decoupled as followsf38g:

kRabRbal < kRaalk1 + Rbbl s28d

for bÞa. In this approximation, for V andL samples, the
time-dependent dressed population ofuC1l is given by

kR11stdl =

a − b
a − R0

b − R0
e−ugsa−bdtu

1 −
a − R0

b − R0
e−ugsa−bdtu

, s29d

with initial condition R0=kR11s0dl, g=sg−− fd, andXÞ1. If
X.1, then in the limitN→` one hasa→0, b→N, while
for X,1, one obtainsa→N andb→0. For X=1, the exact
solution which is valid for any number of atoms is

kR11stdl =
N

3
+ HkR11s0dl −

N

3
Je−3get. s30d

For X=1, the above decoupling scheme is not required, as
this value corresponds to the caseg−= f ;ge where Eq.s27d
contains correlation functions which may be evaluated with-
out further approximations. These results also explain the
delay of the temporal evolution due to SGC effects reported
in f39g. There, no incoherent pumping was considered, i.e.,
f =0. The temporal evolution then depends ong−, which is a
function of the relative phaseDf. This can result in a slow-
down of the temporal evolution, as the trapping stateuC1l
decouples forg−→0. However, incoherent pumping and
thus nonvanishingf allows as to avoid such problems. The
time evolution of the collective populations in the remaining
dressed states may be obtained from Eqs.s29d and s30d by
usingoi=1

3 kRiistdl=N and kR22stdl=kR33stdl ssee Fig. 2d.
Without incoherent pumping, the population inuC1l is

again given by Eq.s29d, but with gª2g0 sin2 u for the non-

degenerate system, andgªg0s1−sin 2ũd the degenerate sys-
tem. In the limit N@ h1,nj, we obtaina→N and b→0 sa
→0 and b→Nd for the nondegenerate VsLd ensembles or
vice versa for degenerate configurations. Here, one has to

exclude the special casesu=0 andũ=p /4, as then the trap-
ping stateuC1l decouples from the interactionsf39g.

Thus, in summary, the time required to evolve into the
steady state forXÞ1 is proportional toN−1, as is well known
for collective systemsf2–6g. This allows one to apply our
scheme, e.g., to build fast optical switching devicesf19g.

V. THE COLLECTIVE RESONANCE
FLUORESCENCE SPECTRA

To further discuss the system properties we now investi-
gate the total steady-state spectrumSsvd of the collective
fluorescence light emitted on both transitionsu2l↔ u1l and
u3l↔ u1l. It is given by the real part of the Fourier transform
of the correlation function of the EMFf1g

Ssvd ~ lim
t→`
E

0

t

dt eivtkEs−dsrW,t + tdEs+dsrW,tdl.

Here,Es−d and Es+d are the positive and negative frequency
parts of the amplitude of the EMF operatorE. As the radia-
tors are embedded in the cavity, they emit photons in the
cavity mode only. This means that the photons can be de-
tected after they leak through the cavity walls. For a V-type
atomic sample, in the far-zone limit,r = urWu@l, one can ex-
press the entire fluorescence spectrum via the collective
atomic operators as

SsvdV = FsrdReE
0

`

dt eisv−v0dthkS31stdS13l + kS21stdS12l

+ hfkS21stdS13le−iDf + kS31stdS12leiDfgj, s31d

where Fsrd is a geometrical factor which we set equal to
unity in the following. For aL-type system the expression
for the fluorescence spectrumSsvdL is obtained by a permu-
tation of the indices in the above expression, e.g.,S12↔S21.
As can be seen from the last addend in Eq.s31d, for hÞ0, in
both types of samples the emission on the atomic transitions
u2l↔ u1l and u3l↔ u1l is coupled. This gives rise to various
spectral features which we discuss in the next section.

A. Phase manipulation of the collective spectral features

First we investigate the feasibility of phase controlling the
collective resonance fluorescence spectrum emitted by a col-
lection of degenerate V- andL-type radiators. Employing
Eq. s11d in Eq. s31d, in the secular approximation, one can
represent the total fluorescence spectrum for a V-type sample
in terms of the dressed atomic correlators:

SsvdV = ReE
0

`

dt eisv−v0dtS V−
2

2Ṽ2
hkR12stdR21l + kR13stdR31lj

+
V+

2

4Ṽ2
hkR23stdR32l + kR32stdR23l + kRzstdRzljD ,

s32d

whereV±
2=Ṽ2h1±h cossDfdsin 2ũj. On analyzing Eq.s32d,

we find that forh=1 and a suitable choice of the relative
phases and the intensities of the external fields, one can in-
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hibit the spectral lines with intensities proportional toV+ or
V−, respectively.

The dressed atomic correlation functions, which enter in
Eq. s32d, can be calculated by using Eq.s12d and the quan-
tum regression theoremf40g. Thus, for both V- andL-type
atoms one finds

d

dt
kR12stdR21l = − iṼkR12stdR21l − gVsLdkR12stdR21l 7

gc

2
kfN

− 2R11std,R12stdg+R21l,

d

dt
kR13stdR31l = iṼkR13stdR31l − gVsLdkR13stdR31l 7

gc

2
kfN

− 2R11std,R13stdg+R31l,

d

dt
kR23stdR32l = 2iṼkR23stdR32l − g̃VsLd

3kR23stdR32l ± gckfR11std,R23stdg+R32l,

d

dt
kRzstdRzl = − gVsLdkRzstdRzl ± gckfR11std,Rzstdg+Rzl.

s33d

Here, the single-atom spectral widths of the spectral compo-

nents emitted at frequenciesv0± Ṽ, v0±2Ṽ, andv0 are

gV = sg+ + 2g− + fd/2, s34d

g̃V = s3g+ + 2fd/2, s35d

gV = g+ + f s36d

for a V-type system, and

gL = sg+ + g− + 2fd/2, s37d

g̃L = s3g+ + 2g−d/2, s38d

gL = g+ + g− s39d

for a L-type system. Also,gc=sg−− fd /2, and the notation
f¯ ,¯g+ indicates the anticommutator. The last term in each
equation of Eq.s33d vanishes forN=1. Thus, these terms
proportional to the anticommutators represent the collective
contribution to the spectral widths. These contributions make
it difficult to find an exact solution to Eq.s33d for N.1. An
approximate method to find the time-dependent solutions is
to decouple the collective atomic correlators as in Sec. IV.
For this, we represent the terms which are proportional to the
anticommutator as

kfN − 2R11std,R1astdg+Ra1l < 2kN − 2R11lskR1astdRa1l
s40d

for a[ h2,3j. This procedure is valid for large atomic en-
sembles, i.e.,N@1, as then the fluctuations of the population
in the dressed stateuC1l are negligible. In other words, the
steady-state variancekDR11ls=fkR11

2 ls−kR11ls
2g /N2 should be

very small sor zerod to allow for the decoupling. It is not
difficult to show that forX.1 and X,1 the steady-state
variancekDR11ls is zero, while forX=1 it is proportional to
N−1/2, i.e.,ÎkDR11ls~N−1/2 ssee Table Id. Thus, forN@1 one
introduces an error proportional toN−1/2 in the calculations
of the collective correlations functionskRabstdRbal f38g in
making use of the above decoupling scheme. After the de-
coupling of the collective dressed atomic correlators, one
obtains the following expression for the collective resonance
fluorescence spectrum:

Ssvdi = I
±Ṽ

sid F Gi

Gi
2 + sD − Ṽd2

+
Gi

Gi
2 + sD + Ṽd2G + I

0,±2Ṽ

sid

3F G̃i

G̃i
2 + sD − 2Ṽd2

+ 2
Gi

Gi
2 + D2 +

G̃i

G̃i
2 + sD + 2Ṽd2

G .

s41d

Here, i [ hV,Lj, D=v−v0, and we have used the equalities

kR12R21ls = kR13R31ls = NfkRls/2 + 1g − kR2ls/2 − kRls,

s42d

kR21R12ls = kR31R13ls = sN + 1dkRls/2 − kR2ls/2, s43d

kR23R32ls = kR32R23ls = kR2ls/6 + kRls/3, s44d

kRz
2ls = 2kR23R32ls = 2kR32R23ls, s45d

with

kR2ls = fN2sN + 1dXN+4 − Ns3N2 + 6N − 1dXN+3

+ sN + 2ds3N2 + 3N − 2dXN+2 + 2X + 4X2

− sN + 2dsN + 1d2XN+1g/fsX − 1d2 3 hsN + 1dXN+2

− sN + 2dXN+1 + 1jg. s46d

For both V- andL-type samples, the collective resonance
fluorescence spectrum in general consists of five lines with

GVsLd = gVsLd ± gcfN − 2kR11lsg,

G̃VsLd = g̃VsLd 7 2gckR11ls,

GVsLd = gVsLd 7 2gckR11ls, s47d

as the collective spectral widths of the spectral components

emitted at frequencieshv0± Ṽ ,v0±2Ṽ ,v0j. The respective
peak intensities are

I
±Ṽ

sVd
=

V−
2

2Ṽ2
kR12R21ls, s48d

I
0,±2Ṽ

sVd
=

V+
2

4Ṽ2
kR23R32ls, s49d

I
±Ṽ

sLd
=

V−
2

2Ṽ2
kR21R12ls, s50d
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I
0,±2Ṽ

sLd
=

V+
2

4Ṽ2
kR32R23ls. s51d

For a V-type sample, Fig. 8 shows the steady-state fluo-
rescence spectrum, where the left column corresponds toN
=10 and the right column is forN=100, while the upper row
displays the caseC=0.5 and the lower row shows the case
C=4. The solid lines correspond to a relative phaseDf
=p /2, i.e., XV=C. The dashed lines are drawn forXV=1
which is equivalent toDf=psDf=cos−13/4d for C=0.5sC
=4d. The main properties of the collective spectral lines are
as follows. IfXV=1, then the widths of all lines are the same
as for a single atom, while the peak intensities are propor-
tional to the squared number of atoms,N2. If XV,1, then the
spectral widths for all bands and the peak intensities for the
lines at ±Ṽ are proportional to the number of atomsN, while
the peak intensities of the lines located ath±2Ṽ ,0j are inde-
pendent ofN. For XV.1 the spectral widths are a linear

function of N for the spectral lines at ±Ṽ, while the intensi-
ties are independent ofN for these lines. The spectral widths

for the bands ath±2Ṽ ,0j are the same as for a single atom,
while the intensities scale asN2.

Figure 9 depicts the corresponding results for aL-type
sample. Here, the solid lines are drawn forDf=0, i.e.,XL

→`. The dashed lines correspond toXL=1 or Df=psDf
=cos−13/4d for C=0.5sC=4d. If XL=1, then the peak inten-
sities of all five spectral lines scale asN2, while the spectral
widths are the same as for a single atom. ForXL,1, the
peak intensities of the spectral bands are independent ofN,
while their spectral widths are a linear function ofN. If XL

.1, then the peak intensities and the spectral widths of the

lines located at ±Ṽ depend linearly onN. At frequencies

h±2Ṽ ,0j, the peak intensities are proportional to the squared
number of atoms and the widths are the same as for a single
atom.

From the explicit expressions for the collective fluores-
cence spectra of both V- andL-type samples one can ob-

serve that due to the presence of the cross-damping terms the
relative intensities of the spectral components emitted at fre-

quencieshv0± Ṽj vanish forDf=2np andũ=p /4, while the
intensities corresponding to the spectral components gener-

ated at hv0,v0±2Ṽj are always zero forDf=s2n+1dp,
hn[0,1,2,…j. These properties are valid for any number of
atoms in the sample.

Figure 10 shows the dependence of the steady-state col-

lective intensities of the spectral lines located at ±Ṽ sleft

columnd andh0, ±2Ṽj sright columnd for the V- andL- type
sample, respectively, as a function of the ratioC.

From the main properties of the spectral lines discussed

above, for a large V system one hasI
±Ṽ

sVd
=0 only for C

.1sXV.1d. For C,1sXV,1d, or for Df=p, one finds

I
0,±2Ṽ

sVd
=0. If ũ=p /4 andDf=p, then this intensity vanishes

for any N since thenV+
2=0.

FIG. 8. Steady-state fluorescence spectra for V-type atoms. The
left column corresponds toN=10, the right toN=100. The upper
row displays the caseC=0.5, the lower is forC=4. The solid lines
show Df=p /2, the dashed lines are drawn forX=1, i.e., Df

=psDf=cos−1 3/4d for C=0.5sC=4d. The other parameters areṼ

=10Ng0, h=1, ũ=p /4, Fsrd=1.

FIG. 9. The same as Fig. 8, but for theL sample,Df=0 for the
solid lines, Df=psDf=cos−1 3/4d for the dashed lines, andC
=0.5sC=4d.

FIG. 10. The variance of the steady-state collective intensities of
the spectral bands against the ratioC. The upper row is for V-type
systems, the lower forL-type samples. The left column corresponds

to the sidebands located atv0± Ṽ and the right one to the spectral

lines emitted athv0,v0±2Ṽj. All figures are forDf=p /2. The
dash-dotted, dashed, and solid curves correspond toN=10, 100, and
300, respectively.
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For a largeL-type system bothI
±Ṽ

sLd
andI

0,±2Ṽ

sLd
are equal to

zero forC.1sXL,1d. Also, for ũ=p /4 andDf=p, one has

V+
2=0 and thusI

0,±2Ṽ

sLd
=0 for any number of atoms.

The total steady-state intensityIVsLd of the collective fluo-
rescence light emitted spontaneously on both transitions
u2l↔ u1l and u3l↔ u1l may be evaluated from Eq.s41d to
give

IV =
V−

2

2Ṽ2
fNskRls + 2d − kR2ls − 2kRlsg +

V+
2

4Ṽ2
kR+ls,

IL =
V−

2

2Ṽ2
fsN + 1dkRls − kR2lsg +

V+
2

4Ṽ2
kR+ls, s52d

with kR+ls=2fkR2ls+2kRlsg /3. First, we investigate the case

h=1, ũ=p /4 with C=0.5 or 4. Figures 3scd and 3sdd show
the collective steady-state fluorescence intensity per emitted
atom IV/N2 for a V system. Minima occur aroundDf=pn
for n[ h0,1,2,…j. A comparison with Figs. 3sad and 3sbd
shows that the minima occurring foreven nsXV=0d are due
to the trapping of the population in the collective dressed
stateuC1l, i.e., in the collective upper bare statesu2l and u3l.
In Fig. 3scd, the fluorescence intensity also tends to zero for
N@1 at phase differences corresponding toodd n. However,
the population is not trapped inuC1l at these phase differ-
ences, but distributes equally over the two other dressed
states. Thus 0.5 of the atomic population is in the ground
bare stateu1l, while 0.25 of the population is in each of the
upper bare statesu2l and u3l. Because there is no inhibition
of fluorescence for a single atom, these minima may be in-
terpreted as arising from subradiant states: One-half of the
population is in the excited state, and any emission from the
excited state is absorbed by the other half of the population
in the ground state. In Fig. 3sdd, for smaller values ofC, the
dark states at oddn do not occur, and even the local minima
at the corresponding phase differences eventually disappear
with sufficiently intense repumping forC,0.5 sor XV,1d.
In this case the radiation intensity scales linearly withN, as it
does for an ensemble of independent emitters.

In a large L sample sN@1d, the fluorescence may be
suppressed forDf=ps2n+1d with n[ h0,1,2,…j if the de-
cay dominates over the repumping as shown in Fig. 4scd.
This inhibition is due to the trapping of the population in the
collective dressed stateuC1l as already found for evenn in
the V system, though here only for largeN. For Df
=2pnsXL→`d, the collective steady-state intensity is maxi-
mal and proportional to the squared number of atoms
N2fIL=Ns2+Nd /3g. Then, 0.5 of the population is in the up-
per bare stateu1l, and 0.25 of the population in each ground
bare stateu2l and u3l. Thus this setting can be interpreted as
a superradiant state. This superradiant state is analogous to
the intense-field limit of collective resonance fluorescence
from a system of two-level emittersf15g, where the superra-
diant behavior is due to the quantum fluctuations of the
vacuum. With increased pumpingfsee Fig. 4sdd with C=0.5g,
no trapping can be observed and the maxima atDf=ps2n
+1d eventually vanish as the intensity is proportional toN for

C,0.5 sor XL.1d. Here, for evenn, the N dependence is
quadratic while it is linear for oddn.

Figures s5d and s6d ssecond rowd show the steady-state
collective intensities emitted on both transitionsu2l↔ u1l and
u3l↔ u1l in V and L atoms, but withh=0 and 1, respec-
tively. In Fig. 5, three cases forC can be distinguished. For
C,1 and largeN, one findsIV=N andIL=NsN+5d /6. Thus,

for V atoms, only the spectral lines emitted atv0± Ṽ con-
tribute to the fluorescence intensity, while for theL radiators
the contribution comes from all five spectral bands. IfC=1,
then IV= IL=NsN+3d /6 and all five spectral lines contribute
to the collective intensity for both system types. IfC.1,
then IV=NsN+2d /6, but IL=0. Here, the spectral bands at

frequenciesv0, v0±2Ṽ contribute to the spectral intensity of
the V-type atoms. Thus forh=0 andN@1, the suppression
of the collective fluorescence intensity may only be observed
for the L system. For the phase-dependent scheme with
Df=p ssee Fig. 6d, inhibition of the collective resonance
fluorescence occurs for large V-type samples forXV.1 and
for largeL-type samples whenXL,1 sor C.0.5d. Thus the
emission properties of the V-type atomic sample depend
strongly on the relative phase between the applied external
coherent fields. In particular, the inhibition of the total fluo-
rescence light emitted by such a V sample occurs only for
the phase-dependent scheme.

B. Magnetic and thermal influences
on the collective spectral features

If the emitters are surrounded by a thermal bath rather
than the usual vacuum, the resonance fluorescence spectrum
has the same form as Eq.s41d, but with modified parameters.
For the nondegenerate atomic samples, withuÞ0, the col-
lective spectral widths of the spectral components emitted at
frequencieshv0±V ,v0±2V ,v0j are given by

GVsLd = gVsLd 7 g0 sin2 ufN − 2kR11lsg,

G̃VsLd = g̃VsLd ± 2g0 sin2 ukR11ls,

GVsLd = gVsLd ± 2g0 sin2 ukR11ls, s53d

where the corresponding single-atom spectral widths are
given by

gV = g0s1 + n + 2n sin2 ud, s54d

g̃V = g0s1 + nds2 + cos2 ud, s55d

gV = 2g0s1 + nd, s56d

and

gL = g0s1 + nd + g0s1 + 2ndsin2 u, s57d

g̃L = 2g0n sin2 u + 3g0s1 + ndcos2 u, s58d

gL = 2g0sn + cos2 ud. s59d

The peak intensities of the spectral lines are given by
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I±V
sVd = sin2 ukR21R12ls, s60d

I±2V,0
sVd =

1

2
cos2 ukR23R32ls, s61d

I±V
sLd = sin2 ukR12R21ls, s62d

I±2V,0
sLd =

1

2
cos2 ukR32R23ls. s63d

For the degenerate atomic systems, withũÞp /4, the cor-
responding results are

GVsLd = gVsLd ±
g0

2
f1 − sin 2ũgfN − 2kR11lsg,

G̃VsLd = g̃VsLd 7 g0f1 − sin 2ũgkR11ls,

GVsLd = gVsLd 7 g0f1 − sin 2ũgkR11ls, s64d

with

gV = g0s1 + 2nd +
g0

2
s1 + nds1 − sin 2ũd, s65d

g̃V = g0ns1 − sin 2ũd +
3

2
g0s1 + 2nds1 + sin 2ũd, s66d

gV = g0ns1 − sin 2ũd + g0s1 + 2nds1 + sin 2ũd, s67d

gL = g0s1 + 2nd +
g0

2
ns1 − sin 2ũd, s68d

g̃L = g0s1 + nds1 − sin 2ũd +
3

2
g0s1 + 2nds1 + sin 2ũd,

s69d

gL = g0s1 + nds1 − sin 2ũd + g0s1 + 2nds1 + sin 2ũd,

s70d

and

I
±Ṽ

sVd
=

1

2
f1 − sin 2ũgkR12R21ls, s71d

I
±2Ṽ,0

sVd
=

1

4
f1 + sin 2ũgkR32R23ls, s72d

I
±Ṽ

sLd
=

1

2
f1 − sin 2ũgkR21R12ls, s73d

I
±2Ṽ,0

sLd
=

1

4
f1 + sin 2ũgkR23R32ls. s74d

Note that the exact strong-field single-atom expressions for
the emission spectra can be obtained from Eq.s41d by drop-

ping the collective contributions in the spectral widths which
are then broadened only by the thermal reservoir.

For a large VsLd samplesN@1d with nondegenerate up-
per bare statessdegenerate lower bare statesd and bath tem-
peratures withXV,1sXL,1d the collective intensities of all

spectral lines are zero, i.e.,I±V
sVd = I±2V,0

sVd =0sI
±Ṽ

sLd
= I

±2Ṽ,0

sLd
=0d

fsee Figs. 11sad, 11sbd, 12sad, and 12sbdg. The inhibition of
the collective resonance fluorescence in this case is due to
trapping of all population in the dressed stateuC11l ssee Fig.
7d, i.e.,kR11ls→N while bothkRls andkR2ls tend to zero. For
a large VsLd sample with degenerate upper bare statessnon-
degenerate lower bare statesd and low temperatures the peak

intensities of the spectral bands generated atv0± Ṽsv0±Vd
vanish identically, i.e.,I

±Ṽ

sVd
=0sI±V

sLd=0d fsee Figs. 11sad, 11sbd,

12sad, and 12sbdg. Then the peak intensitiesI
±2Ṽ,0

sVd
sI±2V,0

sLd d

FIG. 11. The steady-state fluorescence spectrum as a function of
the detuningD. The left plots belong to a V system, the right ones
to aL sample.sad, sdd correspond toV2=V3 andv23Þ0, while sbd,
scd correspond tov23=0 andV2ÞV3 sindependent of the precise
valuesd. Here, N=25; solid line,n=1; dashed line,n=0.4; sin2 u

=sin2 ũ=0.1; andV=Ṽ=10Ng0.

FIG. 12. The steady-state dependence of the spectral peak inten-
sities as a function of the number of atomsN, generated atsad
v0±Vsv0± Ṽd with subindices x=2, y=1; sbd v0±2V,

v0sv0±2V ,v0d with x=2, y=3; scd v0± Ṽsv0±Vd with x=1, y

=2; sdd v0±2Ṽ, v0sv0±2V ,v0d with x=3, y=2, corresponding to
V- sL-dtype samples, respectively. Further the dashed, dash-dotted,
and solid lines are plotted forn=0.1, 1, and 3, respectively.
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emitted atv0±2̃V ,v0sv0±2V ,v0d are proportional to the
squared number of atomsfsee Figs. 11sad, 11sbd, 12sad, and
12sbdg. The widths of all three spectral lines are the same as
for a single atom, because forn!1 one hasXV,XL@1 and
thereforekR11ls→0, kRls→N but kR2ls→N2.

For a degenerate V-type systemsnondegenerateL-type
systemd, the spectral peak intensities generated at

hv0±2Ṽ ,v0jsv0±2V ,v0d exhibit a minimum that is more
pronounced with increasingn fsee Fig. 12sddg. To explain its
origin we represent the intensities of these lines via the
dressed-state atomic correlators

I
±2Ṽ,0

sVd
~ I±2V,0

sLd ~ kR23R32ls = kR32R23ls = kRls/3 + kR2ls/6

s75d

with XVsv23=0d=XLsv23Þ0d=1+1/n. For a weak thermal

bath, i.e.,n!1, one hasX@1 and thusI
±2Ṽ,0

sVd
sI±2V,0

sLd d=N/3

+N2/6, while for an intense thermal bath withn@1, one has

X<1 and I
±2Ṽ,0

sVd
sI±2V,0

sLd d=N/4+N2/12. Thus in the second

caseswith X<1d the collective emitted EMF is weaker. Note
that Figs. 11sdd and 12sdd are plotted for intermediate values,
i.e., for values ofX betweenX<1 andX@1. Figure 7slower
lined further shows the dependence of the total fluorescence
intensity on both the thermal photon numbern and the split-
ting frequency between the closely spaced bare states. Just as
for the populations, changing the system from degenerate to
nondegenerate or vice versa corresponds to jumps between
the branches in Fig. 7, demonstrating the large changes in the
sample properties induced by small changes in the external
parameters.

Thus, we have shown various ways to modify the collec-
tive resonance fluorescence in driven three-level samples. By
suitably choosing the configuration of the external param-
eters, it is possible to suppress the total fluorescence intensity
or the intensity of some of the spectral peaks of the fluores-
cence spectrum. As with the steady-state population distribu-
tion, this again is an advantage over corresponding schemes
involving ensembles of two-level atomsf15g, where for ex-
ample an inhibition of the fluorescence is difficult to achieve.

VI. THE COLLECTIVE ABSORPTION SPECTRUM

Next we discuss the absorption properties of the atomic
samples. We suppose that an additional weak probe field of
frequencyn drives both transitionsu2l↔ u1l and u3l↔ u1l of
the V- sLd-type atomic system. According to the linear-
response theory, the absorption spectrum of the weak field
can be calculated by the following relationf15g:

Wasnd ~ ReH lim
t→`
E

0

t

dt eisv0−ndtWast + t,tdJ s76d

whereWast+t ,td=kfS−st+td ,S+stdgl with

SV
− = d2S12e

if2 + d3S13e
if3 s77d

for the V system,

SL
− = d2S21e

if2 + d3S31e
if3 s78d

for the L sample, andS+=fS−g†.

A. Phase manipulation of the absorption properties

In the following we investigate the possibility of control-
ling the absorption properties of the degenerate three-level
samples using the relative phase between the applied strong
coherent fields. Introducing Eq.s11d in Eq. s76d, and making
use of the secular approximation, for a V sample we obtain
the following expression for the absorption spectrum:

Wa
sVdsnd = ReE

0

`

dt eisv0−ndtF V−
2

2V2hkfR21std,R12gl

+ kfR31std,R13glj +
V+

2

4V2hkfR23std,R32gl

+ kfRzstd,Rzgl + kfR32std,R23gljG . s79d

By inserting Eq.s33d in Eq. s79d, one can arrive at the fol-
lowing expression for the absorption spectrum of a weak
probe field:

Wa
sidsnd = aiF Gi

Gi
2 + sDp + Ṽd2

+
Gi

Gi
2 + sDp − Ṽd2G s80d

where i [ hV,Lj, Dp=v0−n, and aVsLd=sV−
2 /2Ṽ2d

3f±kRls/27 kR11lsg. Because the steady-state populations in
the dressed statesuC2l and uC3l are equal, the last term in
Eq. s79d, which is proportional toV+

2, does not contribute.
From Eq.s80d it can be seen that for the particular case of

identical Rabi frequencies, i.e.,ũ=p /4 and Df=2np
sn=0,1,2,…d, the absorption of both V andL samples van-
ishes. The exact strong-field single-atom absorption spectra
can be obtained from Eq.s80d by dropping the collective
contributions in the absorption linewidths. Figures 13 and 14
depict the steady-state dependence of the collective absorp-
tion amplitude of an additional weak coherent field that
drives one or both atomic transitions in a V orL sample,
respectively, versus the relative phase between the strong
external lasers. The interpretation of these results is straight-
forward if one considers Figs. 3 and 4. For a V-type sample

with C=0.5, ũ=p /4, andDf=2pn almost all of the popula-
tion will be in the collective dressed stateuC1l for evenn.
This means that all the atoms are equally distributed among
the degenerate upper bare states and, thus, an additional
weak coherent field probing one of the transitions will be

amplified. For oddn and C=0.5, ũ=p /4 the bare atomic
states are approximately identically populated so that the ab-
sorption will be zerossee top left figure in Fig. 13d. A similar
explanation also holds if the additional probing field drives

both transitions. For example, forC=2, ũ=p /4, and oddn
the probing field is absorbed as in this case there are more
atoms in the ground state than in each of the upper states. In
case of evenn the probing field remains unmodified when it
is coupled to both transitions, asV−

2=0. The degenerateL
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samplessee Fig. 14d may be interpreted along the same lines.
Thus, by adjusting external parameters such as the phaseDf
we can conveniently manipulate the absorption properties of
a degenerate three-level V orL atomic sample.

B. Magnetic and thermal influences on the absorption processes

In this section we discuss the influences of a thermal bath
on the absorption properties of our three-level samples. In-
troducing Eqs.s11d and s20d in Eq. s76d and utilizing the
same procedure as we did for the collective resonance fluo-
rescence spectra one can show that the expression for the
absorption spectrum, in this case, has the same form as Eq.
s80d, but with

aVsLd = sin2 uf±kR11ls 7 kRls/2g s81d

for the nondegenerate atoms, and

aVsLd =
V−

2

2Ṽ2
f±kRls/2 7 kR11lsg s82d

for degenerate atoms withuÞ0 and ũÞp /4, respectively.
Note that the widthGVsGLd is different for nondegenerate
and degenerate schemesssee the corresponding expression
for the emission spectrad. From the absorption amplitudesai
one may see that the absorption characteristics can be ma-
nipulated by the environmental temperature. In particular, for
an intense thermal bath withn@1, the absorption coeffi-
cients of both V andL samples vanish because the dressed
states are equally populated in this case. However, these re-
sults are obtained in the secular approximation, that is, the
generalized Rabi frequency must be larger than any other
decay rates in the system. In other words, on heating the
bath, one should also increase the Rabi frequency. This sug-
gests that a small atomic sample is preferable in order to
obtain zero absorption or, in the opposite case, very intense
external coherent sources have to be usedssee Fig. 15d.

VII. SUMMARY

Concluding, we have investigated analytically the steady-
state behavior of a collection of strongly driven V- orL-type
atoms depending on external parameters such as the relative
phase between two applied strong driving laser fields, the
ratio of spontaneous decay and incoherent pumping rates, the
splitting frequency between closely spaced atomic states, or
a surrounding thermal bath. It was shown that the interplay
of decay and pumping processes in degenerate three-level
atomic samples allows for a rapid coherent phase control of
collective population dynamics along with the feasibility of
transferring the atoms conveniently into sub- or superradiant
ensembles. It should be noted that the discussed phase con-
trol depends crucially on the presence of incoherent pumping
as a counterpart to the phase-dependent dressed decay rates.

FIG. 13. The steady-state dependence of the collective absorp-
tion amplitude of an additional weak coherent fieldfwhich drives
the transitionsu1l↔ u2l sleft columnd or simultaneously both tran-
sitionssright columnd in a degenerate V sampleg versus the relative
phase between the strong applied lasers. The upper line stands for

C=0.5, while the lower one representsC=2 and ũ=p /4. Dash-
dotted, dashed, and solid curves are plotted forN=10, 100, and 300,
respectively.

FIG. 14. The same as Fig. 13, but for theL sample.

FIG. 15. The dependence of the steady-state absorption peak
amplitudes a=kR11ls−kRls/2 and b=kRls/2−kR11ls versus the
mean thermal photon numbern. The left plots belong to the V
system, and the right ones to theL sample.sad, sdd correspond to
the nondegenerate schemes, andsbd, scd to the degenerate ones.
Here, the dashed, dash-dotted, and solid curves are plotted forN
=1, 10, and 50, respectively.
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We have further discussed the case where the three-level
emitters are surrounded by a thermal bath. Increasing the
temperature of the environment generally decreases the
maximum population that can be transferred into or out of
the discussed dressed state. This effect, however, is less pro-
nounced in larger samples. In this setup, the steady state of
the system is also strongly dependent on the frequency dif-
ference between the two closely spaced upperslowerd levels
in the VsLd configuration. Thus by slightly varying this split-
ting via an external magnetic field and by changing the in-
tensities of the driving fields, the direction of the dressed
spontaneous decay can be reversed which accounts for large
changes in the steady-state population distribution.

Together with the steady state of the populations, also the
collective steady-state radiation and absorption properties are
changeable over wide ranges by varying these control param-
eters. We have found configurations where the total fluores-
cence intensity is suppressed, or where some of the emission
peaks in the spectrum vanish, thus changing the spectral

composition of the emitted light. All of these features can be
explained in terms of the discussed steady-state solutions for
the populations, allowing for a clear separation of effects
which are present only in collective systems. The same holds
for the absorption properties, where both positive and nega-
tive gain for the probe beam can be achieved by varying the
above control parameters.

Finally, we have discussed the time evolution of the
dressed populations to show that the presented schemes fea-
ture a rapid transfer into the respective steady states, thus
allowing for possible applications such as fast optical switch-
ing devices.
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