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The properties of all-optical phase-coherent frequency division by 2, based on a self-phase-locked
continuous-wavescwd optical parametric oscillatorsOPOd, are investigated theoretically. The coupled field
equations of an OPO with intracavity quarter-wave plate are solved analytically in steady-state, yielding a
condition for self-phase-locked operation. In the self-phase-locked state, two different values for the pump
power at threshold are obtained. By using a linear stability analysis, it is proven that only the lower threshold
value is stable, whereas the higher threshold value is unstable. The analytical investigations of the steady-state
field values further reveal a twofold symmetry in phase space. The theoretical consideration is completed by a
numerical analysis based on the integration of the envelopes of the three OPO fields, which allows for studying
the temporal evolution of different initial values. The numerical investigation of the OPO subharmonic phases
shows that the two-phase eigenstates are equivalent with respect to experimental parameters and are assumed
by the self-phase-locked OPO in dependence of the initial phases of the subharmonic fields, dividing phase
space into two symmetric basins of attraction.
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I. INTRODUCTION

The precise measurement of time via a measurement of
optical frequencies is of mayor importance in science and
engineering. Modern telecommunication and navigation sys-
tems depend on a precise measurement of frequency and the
accurate control of corresponding oscillators. Also, the mea-
surement of fundamental physical constants as well as basic
research in geophysics or astrophysics are based on tech-
niques involving the precise measurement of optical frequen-
cies.

A prerequisite for the precise measurement of any un-
known frequency is the presence of a frequency standard in
close vicinity to the frequency to be measured. Today, in the
UV, visible and near infrared spectral range optical fre-
quency standards are emerging with a potential precision in
the range of 10−18 f1g. Especially, the visible and near infra-
red spectral range from 250 to 750 THz is covered by
octave-spanning frequency combsf2g. However, frequency
standards lying further in the infrared are scarce, and to mea-
sure any frequency in the mid or far infrared, subsequent
steps of phase-coherent frequency division are required.

Lately, all-optical self-phase-lockedsSPLd optical para-
metric oscillatorssOPOsd have come into interest as phase-
coherent frequency dividersf3–5g. These frequency dividers
are capable of dividing any frequency and thereby offer the
possibility to extend the range accessible for high-precision
frequency metrology to the mid and far infrared. However, in
order to judge the full potential of such dividers, and for their
successful experimental realization, a thorough theoretical
understanding of the basic processes of self-phase locking is
indispensable.

The current work aims at the theoretical description of an
actual experiment, to enable a detailed understanding and a

comparison with the experiment. We present an analysis of
the steady states and also off-steady-statesdynamicald behav-
ior of an all-optical, self-phase-locked divide-by-2 OPO as
sketched in Fig. 1. Recently, Adamyan and Kryuchkyan stud-
ied squeezing effects based on a steady-state analysis in a
more idealized caseswith perfect signal-idler symmetryd, and
when the pump field is adiabatically eliminatedf6g. Our ap-
proach follows an earlier theoretical description of such a
system by Fabre and colleaguesf7g. However, the theoretical
description presented in the following sections is carried
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FIG. 1. sad Schematic setup of an OPO with intracavity quarter-
wave platesQWPd for division of the pump frequency by 2; M1,
M2: cavity mirrors,np, ne, no: frequencies of the pump, the e- and
the o-wave, respectively.sbd, scd Frequency diagram of the self-
phase-locking process.
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several steps further. For the first time, a stability analysis is
applied to the solutions. The analysis is supported by a nu-
merical evaluation of the coupled field equations, which, un-
like the steady-state analysis, enables the study of phase-
locking dynamics and the dependence on initial values. In
parallel to the theoretical results presented here, we have
realized such a divider OPO experimentally. A large mea-
sured locking range of 160 MHz with a low fractional fre-
quency instability of better than 5310−14 has been reported
f8g. The experimental results have been improved by a direct
measurement of the subharmonic phase stability to yield a
fractional frequency instability of 8310−18 f9g.

This paper is organized as follows. Section II describes
the basic concept and working principle of the divide-by-2
OPO. To model the self-phase-locked divide-by-2 OPO, we
have started from the coupled wave equations of a triply
resonant OPOsSec. IIId. The divider’s steady-state properties
are described analytically in Sec. IV. A stability analysis is
applied to the solutions, as described in Sec. V. Finally, Sec.
VI introduces the phase eigenstates the OPO can assume in
the self-phase-locked regime and reveals a twofold symme-
try in phase space. Throughout the paper, the analysis of the
self-phase-locked divide-by-2 OPO is supported by a nu-
merical evaluation of the coupled field equations to enable
the demonstration of phase-locking dynamics and the depen-
dence on initial values.

II. CONCEPT AND WORKING PRINCIPLE

The basic concept for optical self-phase locking is phase
locking of the two OPO subharmonic waves via mutual in-
jection f10g. Here we consider optically self-phase-locked
division by 2 in a nearly degenerate type-II OPO, such that
the subharmonic waves possess crossed polarizations. For
the purpose of mutual injection of these waves, an intracav-
ity quarter-wave plate is used that projects an adjustable frac-
tion of the subharmonic waves onto each other. The sche-
matic setup of the experiment is shown in the upper partsad
of Fig. 1.

The OPO setup we consider here is chosen to enable a
straight-forward comparison with ongoing experimentsf8,9g.
The OPO consists of a nonlinear crystal in a linear two-
mirror cavity, which is resonant for the pump wave and for
both OPO subharmonic wavesstriply resonantd. The crystal
is birefringent and provides type-II phase matching of the
OPO process, so that it converts the ordinary polarized pump
wave with frequencynp into two subharmonic waves, each
with approximately half the pump frequency but with or-
thogonal linear polarizations. In the further text, we refer to
the first subharmonic wave as o-wave, as it possesses ordi-
nary polarization parallel to the pump wave. We will refer to
the other subharmonic wave as the e-wave, as it is polarized
in the extraordinary direction, perpendicular to the pump and
the o-wave. A quarter-wave plate introduces a polarization
rotation leading to a mutual injection of the two subharmonic
waves into each other.

The diagrams in the lower part of Fig. 1 illustrate the
working principle of self-phase locking. Here, the amplitudes

of the two subharmonic waves are displayed as a function of
frequency. For clarity, the amplitudes of the e- and the
o-wave are plotted above each other, on separate axes. Via
the quarter-wave plate, a small amount of each wave is trans-
ferred srotated and projectedd to the other polarization state,
which enables mutual injection. We define the difference be-
tween the two light frequencies asdn=ne−no fFig. 1sbdg.

If the frequency differencedn is adjusted by tuning the
phase-matching wavelengths and the cavity length of the
OPO, such thatdn becomes smaller than a characteristic fre-
quency differencednlock, i.e., udnu= une−nouødnlock, one ex-
pects injection locking of the e-wave by the o-wave and vice
versa.

In contrast to common injection locking of lasers, in the
considered OPO-injection locking both waves are generated
by the same process, namely optical parametric oscillation.
This situation can thus be termed self-injection locking. The
e- and the o-wave should then oscillate with the exact fre-
quency ratio of 2:1:1. This situation is depicted in Fig. 1scd,
where the e- and the o-wave frequencies equal each other
and come to lie at exactly one-half of the pump frequency:
ne=no= 1

2np fsee Fig. 1scdg.
In the following section, we introduce a theoretical model

that is used to derive the steady-state solutions of such a
self-phase-locked divide-by-2 OPO. We will start from the
coupled wave equations of an OPO with intracavity quarter-
wave plate, and use the support of numerical methods to
visualize the effect of phase locking.

III. THEORETICAL MODELING

A. Coupled field equations

The nonlinear wave mixing processes in the OPO can be
described, in the mean-field, plane-wave approximation, by
three coupled equations for the OPO internal electric field
qstd=qpstdeiVpt+qestdeiVet+qostdeiVot. The carrier frequencies
Vp, Ve, andVo are chosen to be the frequencies of an exact
divider, i.e.,Ve=Vo=Vp/2. If the OPO frequencies are close
to these carrier frequencies, the complex amplitudesqp, qe,
andqo are slowly varying with time. In case that the ampli-
tude variations are of oscillatory nature, their oscillation fre-
quencies are the frequency deviations of the OPO fields from
the frequencies that correspond to an exact division by 2. We
chooseVp;2pnp, where np is the given frequency of an
external pump laser driving the OPO, such that also the car-
rier frequenciesVe andVo are determined by the pump laser
frequency. The coupled equations for the intracavity field
amplitudes can then be written as followsf11g:

d

dt
qp = −

1

2
kpqp + iDqeqo + F, s1ad

d

dt
qe = −

1

2
ske − iDedqe + iDqo

*qp + gqo, s1bd

d

dt
qo = −

1

2
sko − iDodqo + iDqpqe

* − g*qe. s1cd
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This approach follows the earlier investigation of such a
system by Fabre and colleaguesf7g and our study of a
divide-by-3 OPO, where similar coupled field equations
were introduced to describe self-phase-locked frequency-
by-3 division f3g.

The field amplitudesqx are normalized such that the
squares of their absolute values give the intracavity photon
numbersNx= uqxu2 f11g, where the indicesx=p,e,o designate
the pump wave, the e- and the o-wave, respectively.

The first terms on the right-hand sidesRHSd of Eqs.
s1ad–s1cd describe the decay of the field amplitudes due to
resonator losses, with the cavity decay rateskx.

The last term in Eq.s1ad, F, describes the pumping of the
OPO with the external laser that is to be frequency divided.
F is a field pump rate, which is proportional to the square
root of the pump laser powerPp times the pump input trans-
mission of the cavity mirror M1.

The terms containing the nonlinear coupling coefficientD
give the strength of nonlinear interaction of the pump wave,
the e-, and the o-wave. The value ofD depends on construc-
tion parameters of the OPO and the involved light frequen-
cies.

The values ofDe andDo give the detunings of the OPO’s
cold cavity modes from exact division by 2. Note that, in an
experiment, the detunings can be changed via changing the
optical cavity length. Further, we assumed a zero detuning of
the pump cavity from the pump frequency, i.e.,Dp=0. This
assumption is well-justified, because usually for continuous
operation of a triply resonant OPO, the pump cavity length is
electronically locked to the pump laser wavelength. In the
theoretical model, we consider only subharmonic oscillation
in those cavity modes that are closest to frequency degen-
eracy, which experimentally can be guaranteed due to an
appropriate tuning strategy.

To better illustrate the definition of the cavity detunings,
they are depicted schematically in Fig. 2. The cold cavity
modes are shown as Lorentzian-like curves as a function of
frequency. For later convenience, the e-wave frequency axis
is chosen such that the frequency increases to the rightsup-
per partd, while the o-wave frequency increases to the left
slower partd. Due to the crystal’s birefringence, the optical
resonator length and thus also the detuning of the cold cavity
modes from exact division by 2 are different for the e-wave
and the o-wave. Further, the two axes are positioned relative
to each other such that at any arbitrary vertical line the sum
of the two frequencies found at the intersection points gives
the pump frequency. Thus, any two optical frequencies that
can be generated by the OPO need to lie precisely above
each other in order to fulfill energy conservationne+no=np
ssee, e.g., line Ad. In self-injection-lockedsor self-phase-
lockedd oscillation, however, the e-wave and the o-wave fre-
quencies assume the identical valuessee line Bd and are thus
locked to exactly half of the pump frequency.

Note, that the non-phase-lockedsfree-runningd operation
of the OPO is a completely different mode of oscillation, and
one has to clearly distinguish between that state and the
phase-locked state. In the free-running case, the OPO will
adjust its frequencies to minimize the cavity losses, such as
for line A in Fig. 2 f11g.

The last terms on the RHS of Eqs.s1bd ands1cd describe
the mutual injection of the two OPO subharmonic fields in-
troduced by the intracavity quarter-wave plate. The param-
eterg is a measure for the injectionscouplingd strength and
increases with the experimentally adjustable angle of the
QWP’s fast axisssee Sec. III Bd.

B. Parameters used for the evaluation

For an analytical and numerical investigation, we follow
the approach of Fabreet al. f7g and separate the complex
field amplitudesqx into real positive amplitudesbx and real
phaseswx by settingqx=bxe

iwx. The same way, the pump rate
F is separated into a real, positive amplitudef and a real
phaseb, F= feib, as well as the complex coupling parameter
g, g=g0e

iu. The coupling strength is proportional to the part
of the e-wave and the o-wave, which is transferred to the
other polarization state, and is given byf7g

g = sins2qQWPdÎkekoe
iu, s2d

in which qQWP is the rotation angle of the QWP. The factor 2
occurs because in the considered standing-wave cavity the
QWP is passed twice per round trip. The phaseu takes into
account a propagational phase shift that the waves acquire
while traveling through the quarter-wave plate.

With the described notation the coupled field equations
s1ad–s1cd can be separated into six equations that describe
the temporal changes of the real amplitudesbx and the real
phaseswx of the OPO fields.

These not explicitly shown expressions forsd/dtdbx and
sd/dtdwx are the basis for the numerical integration of the
coupled field equations, which is introduced in the subse-
quent Sec. III C, and are used to analytically derive the
steady-state solutions of the self-phase-locked divide-by-2
OPO in Sec. IV.

FIG. 2. Definition of the cavity detuningsDe and Do of the
phase-locked OPO. The line shape of the cavity modes and the light
frequencies of the e-wavesupper axisd and of the o-waveslower
axisd are plotted as a function of frequency: from left to right, the
e-wave frequency increases, while the o-wave frequency decreases.
The cavity detuningsDe andDo are given by the distances between
half the pump frequency and the nearest cavity modes.
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In summary, studying the dynamical behavior of the OPO
with self-injection locking comprises of finding the time de-
pendence of six variablesQ=hbp,be,bo,wp,we,woj, taking
into account a set of ten external parametersP
=hkp,ke,ko,De,Do, f ,b ,g0,u ,Dj. The variables can either
be calculated by numerical integrationsstarting with some
initial values Qs0d=hbp

s0d ,be
s0d ,bo

s0d ,wp
s0d ,we

s0d ,wo
s0djd, such as

shown in Sec. III C. The steady-state values can also be cal-
culated analytically, as is described in Sec. IV. For both cal-
culations we assume that a part of the external parameters is
constant, which are the cavity losseskp, ke, andko and the
nonlinear coupling coefficientD. The values used for this
work are determined from our actual experimental setup and
are summarized in Table Istheir derivation is analogous to
the description in Ref.f12gd. The remaining experimental
parameters are not constant but can be slowly varied during
operation of the OPO, such as the detuningsDe andDo svia
changing the cavity lengthd, the pump parametersf and b
svia the pump laserd, and the self-injection parametersg0 and
u svia a rotation of the QWPd.

It shows that, depending on the choice and variation of
the latter parameters, the behavior of the system falls in one
of two different regimes. First, there is a regime where the
parameter choice leads to operation of the OPO in a non-
phase-locked orfree-runningregime. In this case, the solu-
tions for the field envelopes in Eqs.s1ad–s1cd will show
some oscillatory behavior. In this case, the total electric field,
Ae,ostd=qe,ostde2pisnp/2dt, contains optical side bands, indicat-
ing that the phases of the OPO subharmonic waves change
with respect to each other and the pump wave.

In the second regime, by choosing the external system
parameters to lie within a certain range, the solutions of Eqs.
s1ad–s1cd will become time independent, constant field am-
plitudes. The subharmonic OPO light fields then attain the

form Ae,ostd=Ae,o
0 e2pisnp/2dt+we,o

0
. In this case, the e- and the

o-waves will be oscillating with constant relative phases or
phase-locked, and the OPO works as a phase-coherent fre-
quency divider.

C. Numerical evaluation

To illustrate the dynamical behavior in these two distinct
regimes we present here two typical examples of the tempo-
ral evolution of the OPO fields.

For this purpose we numerically integrate the coupled
field equations using a fourth-order Runge-Kutta method
f13g with small initial values for the e- and o-field ampli-
tudes.

For the first example, shown in Fig. 3, we usedsfixedd
external parameters of our experimental setupssee Table Id.
As the variable external parameters we used a quarter-wave

plate rotation angle ofqQWP=6°, and a pump rate off
=1.2231013 Hz scorresponding to an external pump power
of 300 mWd. Further we used cavity detunings ofDe=
+32 MHz andDo= +8 MHz, i.e., the e- and o-wave cavities
are detuned by rather different values.

Figure 3sad shows the resulting amplitudes, and Fig. 3sbd
the phases of the resonator-internal pump wave, the e-wave
and the o-wave as a function of time. The pump wave data
are displayed as a solid black curve, the e-wave as a solid
gray curve and the o-wave as the dashed black curve. For a
better illustration of the effect of mutual injection of the e-
and the o-wave, the self-injection terms are only after some
delay of 1ms fi.e., g=0 in Eqs. s1ad–s1cd for t,1 msg
turned to a constant value which, in the case of Fig. 3, is
g0=sins236°dÎkeko=0.21Îkeko.

It can be seen that, upon turn-on of the pump term att
=0 the intracavity pump field rises, followed by an onset of
parametric oscillation. After about 0.5ms, all amplitudes
reach steady state. However, the phases of the e- and the
o-wave maintain to diverge linearly as a function of time,
with equal slope of opposite sign. The absolute values of the
slopes correspond to the sum of the chosen cavity detunings,
which is 40 MHz in our example. The opposite sign of the
diverging phases shows that the sum of the e- and the
o-phases remains constant with respect to the resonator-
internal pump phase, which is one of the main characteristics
of OPOsf14g. Note that the resonator-internal pump phase is
displayed with respect to the phase of the external pump
laser field, and that the internal phase follows the external
phase with only small deviations.

From Fig. 3sad for t.1 ms one can see that after the
injection coupling term is “switched on,” the formerly steady
subharmonic amplitudes start oscillating. At the same time,
their phases continue to diverge, with only a weak oscillation
superimposed.

TABLE I. Parameters for the cavity losses and the nonlinear
coupling coefficient as used for the calculations.

kp ke ko D

336 MHz 114 MHz 117 MHz 1050 Hz

FIG. 3. Time evolution ofsad the amplitudes andsbd the phases
of the OPO fields for cavity detunings ofDe=32 MHz and Do

=8 MHz. scd Results summarized in a polar coordinate system with
amplitudes as radius and phases as angle. Solid black curve: pump
wave; solid gray curve: e-wave; dashed black curve: o-wave.
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The temporal dynamics of graphs 3sad and 3sbd are sum-
marized in Fig. 3scd as a polar diagram. Here the complex
amplitude of the three fields is displayed as radius and a
corresponding phase angle, which results in three traces in
Fig. 3scd. Upon startup of the OPO, the pump trace, the e-,
and the o-wave traces emerge out of the origin. Thereafter,
the e- and the o-wave fields rotate about the origin, initially
on a circle with a constant angular velocity given by the sum
of the chosen cavity detunings. Turning on the self-injection
termsssee the arrows pointing tot=1 msd alters the circular
traces into traces resembling anelliptic shape. The direction
of the e- and o-rotation is maintained, as well as their aver-
age angular velocity given by the number of revolutions per
time.

From the continuing divergence of the e- and o-waves’
phases displayed in Fig. 3sbd, one can clearly see that a phase
locking does not occur, in spite of a mutual injection locking.
The main consequence of our particular choice of parameters
is an oscillation. The latter modulation indicates that the mu-
tual e- and o-wave injection gives rise to optical side bands
on the pump, the e- and the o-field.

As a second example, we consider an OPO with the iden-
tical parameters as before, but now we choose symmetrical
cavity detunings ofDe=Do=60 MHz. The results of the nu-
merical integration are shown in Fig. 4.

Again, the amplitudes reach a steady state after about
0.5 ms fFig. 4sadg, while the phases diverge continuously
fFig. 4sbdg, now with a rate of 2360 MHz 2p. However,
after the injection terms are activated at 1ms, the divergence
of the phases is first accelerated before the phase divergence
stops. Attaining constant e- and o-wave phases takes about
0.25ms. Thereafter the e- and o-fields oscillate in phase with
the pump field, which is a clear evidence of self-phase lock-
ing. Note that also the pump phase inside the OPO cavity,
which has been adjusted to −73 mrad with respect to the
external pump phase for the case of the free running OPO

si.e., before the injection terms are activatedd, now is ad-
justed to a slightly different value, namely to −24 mrad. One
can see in Fig. 4sad that, upon self-injection locking, also the
absolute field amplitudes attain new values. Specifically, the
amplitudes of the e- and o-waves are significantly higher
than without self-phase locking in the free-running steady-
state OPO. The latter indicates that self-phase locking lowers
the pump power at threshold.

In summary, the presented examples of numerical integra-
tion have shown that mutual self-injection of the OPO sub-
harmonic waves can lead to self-phase locking and phase-
coherent frequency division, accompanied by a lower
threshold and increased output, but that this strongly depends
on the parameters of operation, such as the cavity detunings.

IV. STEADY-STATE SOLUTION

A. Locking condition

To generalize the findings from the numerical integration,
the coupled field equations are solved analytically in the
steady-state regime. The goal is to find the conditions for
self-phase-locked oscillation and to derive corresponding ex-
pressions for the phase eigenstates of the locked fields.

As a first step, we consider the two coupled field equa-
tionss1bd ands1cd applying steady-state conditions, i.e., zero
time derivatives on the LHS. One then obtains four linear
coupled equations forqe andqo, and for their complex con-
jugatesqe

* andqo
* , which can be expressed in matrix form:

d

dt1
qe

qo

qe
*

qo
*
2 = 0 =A 31

qe

qo

qe
*

qo
*
2 s3d

with the 434 matrix

FIG. 4. Time evolution ofsad the amplitudes andsbd the phases
of the OPO fields for cavity detunings ofDe=Do=60 MHz. In scd
the results are plotted together in a polar coordinate system with
amplitudes as radius and phases as angle. Solid black curve: pump
wave; solid gray curve: e-wave; dashed black curve: o-wave.

FIG. 5. Parameter plane spanned by the cavity detunings. The
gray area gives the theoretically calculated sets of cavity detunings
sDe,Dod, for which the OPO is self-phase-locked. The locking area
is calculated with the experimental parameterske andko and with a
QWP angle of 6°.
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A =1
− 1

2ske − iDed g 0 iDqp

− g* − 1
2sko − iDod iDqp 0

0 − iDqp
* − 1

2ske + iDed g*

− iDqp
* 0 − g − 1

2sko + iDod
2 . s4d

This equation has nonzero electric field solutions only if
the determinant ofA is zero. With the separation of the com-
plex field amplitudesbx, the pump rateF, and the coupling
coefficientg into real amplitudes and phases, the determinant
is calculated to yield the following expression:

D2bp
2 = g0

2 +
1

4
keko +

1

4
DeDo ±

1

4
Îa, s5d

where the abbreviationa is defined as

a = 16g0
2DeDo − sDeko − Doked2. s6d

Except for the expression fora, all terms of Eq.s5d are
real; the termbp

2 on the LHS of the equation is even a di-
rectly measurable quantity, as it is equal to the intracavity
pump photon number. Therefore the complete RHS of Eq.
s5d must be real, which means thatÎa must be real as well.
From asDe,Dodù0 one obtains the following condition for
an OPO operating in a steady self-injection-locked state:

16g0
2DeDo ù sDeko − Doked2. s7d

Note that if the QWP is set to a neutral positionsqQWP

=0d, such thatg0=0, condition s7d reduces toDeko−Doke

=0, which is the standard condition for unlocked, free-
running OPO operationf11g.

In contrast to this, for a nonzero quarter-wave plate rota-
tion angle, locking can occur only for those pairs of cavity
detunings,De and Do, which satisfy Eq.s7d, such thata in
Eq. s6d is real and positive. For example, using the specific
experimental parameterske=114 MHz andko=117 MHz of
the OPO that are present in our experimentsscompare Table
I in Sec. III Bd, and assuming a QWP angleqQWP=6°, which
is the largest angle that could be realized experimentally, we
obtain from Eq.s7d that locking can occur if the ratio of the
detunings,De/Do, lies between 0.43 and 2.19.

This range of locked steady-state operation is depicted
schematically in Fig. 5, in a plane spanned by the cavity
detunings. Locking can occur only for detuningsDe andDo
that fall into the gray area bound by the two linesDe/Do
=0.43 andDe/Do=2.19. It is thus appropriate to speak of a
locking area rather than a locking range. According to Eq.
s7d, the angle between the two diagonals widens with in-
creasing coupling strengthg0 and thus with increasing
quarter-wave plate rotation angleqQWP. Note, however, that
the diagonals approach the horizontal or vertical axis only
asymptotically and that there is no locking observable for
any QWP angle, if the OPO is operated with detunings of
opposite sign,DeDo,0.

B. Intracavity pump photon number

Besides the locking condition of Eq.s7d, the solution of
the determinant of Eq.s3d also yields information about the
intracavity pump field,bp, and the pump photon number,
Np=bp

2, once the cavity detunings are givenfsee Eqs.s5d and
s6dg:

Np,± = bp,±
2 =

1

D2Sg0
2 +

1

4
keko +

1

4
DeDo ± ÎaD . s8d

From Eq.s8d, one finds, independent of the external pump
rateF, two different solutions for the intracavity pump field
bp, because of the two possible signs ofÎa. As, above
threshold, the intracavity pump photon numberNp is
clamped to its threshold valuef15g, these two solutions be-
long to two different pump powers at thresholdNth,±=Np,±
=bp,±

2 . Here and in Eq.s8d, the upper of the signs6 desig-
nates the high-threshold solutionbp,+, and the lower one the
low-threshold solution,bp,−. According to Eq.s6d, the differ-
ence between the two threshold values increases with in-
creasingg0 symmetrically about the free-running threshold
and is a function of the detuningsDe and Do. In particular
this means that with increasing rotation angle of the intrac-
avity QWP, the lower threshold of the locked OPO can be
brought considerably below the threshold of the free-running
OPO.

The described threshold splitting was first predicted by
Fabre and colleaguesf7g, inspired by Mason’s experiment
f5g, where a divide-by-two OPO with an intracavity quarter-
wave plate showed two different polarization states. As one
polarization state has been observed more often than the
other, this was taken as evidence of the OPO operating pref-
erably in the lower-threshold state. However, we claim that
their addressing of the two polarization states to the two
threshold states is not possible, but that their findings rather
show that there exist two distinct phase states for each
threshold state. This will be proven in detail via a stability
analysis in Sec. V.

Finally, in order to complete the information of the shape
of the dividers locking area, one has to consider that any
divider is pumped with a finite pump power. This means that
increasing the product of the detunings,DeDo in Eq. s5d,
increases the intracavity pump photon numberNp=bp

2, which
corresponds to a rising threshold pump power. IfDeDo is
chosen too large, such thatNp exceeds the value that can be
provided by the external pump laser, the OPO will not oscil-
late even if, formally, the detunings fulfill the locking condi-
tion of Eq.s7d. The resulting restriction of the area of locked
oscillation is depicted in Fig. 6, for both the low-threshold
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casesad, and for the high-threshold casesbd. The locking area
is shown calculated for a particular combination of the QWP
angle and pump powers6° and 300 mW, respectivelyd, but
analogue calculations show that increasing the pump power
increases the extension of both locking areas radially. In-
creasing the QWP angle leads to an angular widening of both
areassad and sbd, and to a radial increase insad and a radial
decrease insbd.

C. Phase states and output wave powers

Of special interest are the steady-state values of the sub-
harmonic waves’ phasessphase eigenvaluesd and their de-
pendence on the external OPO parametersssuch asDe, Do, or
the phase of the external pump wave, because this deter-
mines the phase and frequency fidelity of the divide-by-2
OPO. In this section, we derive the divider’s phase eigen-
states via the photon numbers of the subharmonic waves.

Using linear combination of the coupled field Eqs.
s1ad–s1cd in steady state, i.e.,sd/dtdbx=0, sd/dtdwx=0, we
obtain expressions containing the sum and difference phases:

sinswe + wo − wpd =
1

4Dbp
SkeÎDo

De
+ koÎDe

Do
D , s9d

cosswe − wo − ud = ±
1

4g0
SkeÎDo

De
− koÎDe

Do
D , s10d

where the6 sign in Eq. s10d depends on the sign of the
detuningsDe andDo.

Equationss9d and s10d show that, for a given set of ex-
perimental parameters, the phases of the OPO subharmonic

fields assume fixed values with respect to the phase of the
cavity internal pump field,wp. Below we will also derive an
expression for the cavity internal pump phase with respect to
the external pump phase.

Note that, for the free-running OPOsqQWP=0° and hence
g0=0d, only the sum of the subharmonic phaseswe+wo as-
sumes a defined value,swe+wod, which follows the pump
phase according to Eq.s9d. In contrast, the difference phase
swe−wod is to change versus timef14g, such that the indi-
vidual subharmonic phases undergo a synchronized phase-
diffusion process.

Only if the OPO is self-phase-locked through choosing a
nonzero QWP rotation angle, the phase-diffusion process is
suppressed. Actually, the phase difference is locked to a con-
stant value given by Eq.s10d. In this case the phases of the e-
and the o-wave assume the constant valueswe andwo.

On closer inspection of Eqs.s9d ands10d, where the phase
arguments on the LHS are defined only modulo 2p, we find
that the subharmonic phases can assume one of two possible
values, namelyswe,1,wo,1d or swe,2,wo,2d=swe,1+p ,wo,1+pd.
The existence of two-phase eigenstates for a divide-by-2
OPO agrees with an earlier prediction, according to which an
all-optical divider byn should possessn phase eigenstates
f16g.

Using linear combination of Eqs.s1ad–s1cd, one can de-
rive the intracavity photon numbers of the e- and the o-wave:

Ne = be
2 =

4fbp cosswp − bd − 2kpbp
2

ke + ko
De

Do

, s11d

No = bo
2 =

4fbp cosswp − bd − 2kpbp
2

ko + ke
Do

De

. s12d

Per roundtrip, a certain percentage of the photons is
coupled out through the cavity mirror; therefore the output
power of the according wave is a proportional measure of the
intracavity photon number.

Finally, the phase of the cavity internal pump field,wp,
can be determined to be

cosswp − bd =
1

fkpbp
F f2 +

1

4
kp

2bp
2

− SÎf2 −
1

4
kp

2bp
2
„1 − sin2swe + wo − wpd…

+
1

2
kpbp sinswe + wo − wpdD2G , s13d

where sinswe+wo−wpd is given by Eq.s9d.
Summarizing this section, analytical expressions for the

amplitudes and phases of the coupled fields of the self-phase-
locked OPO have been derived. With these expressions, the

set of variablesQ̄=hbp,be,bo,wp,we,woj assumed by the
divide-by-2 OPO in steady state can be determined from the
experimental parameters. In the self-phase-locked state, we
obtained two different values for the pump power at thresh-

FIG. 6. Intracavity pump photon numbersad for the lower pump
power threshold value andsbd for the higher value as two-parameter
plots of the cavity detuningsDe and Do, calculated with a QWP
angle of qQWP=6°. The intracavity pump photon numbers are
coded using gray scales.
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old, and for each of the two threshold states, two possible
sets of subharmonic phases are revealed.

From the considerations of this section, the question
arises what one could expect to measure in the experiment. Is
it possible to observe two distinct pump powers at threshold
as suggested by Eq.s8d and reported by Masonf5g? And
further, would there be phase states observable, two for ei-
ther one of the two threshold states? What would be the
stability of these phase states with respect to small phase
perturbations? These questions are of elemental importance
to predict the behavior of the frequency divider regarding its
suitability for high precision metrology. If the self-phase-
locked OPO reacted to external disturbances, e.g., by hop-
ping from one stable state to another one, this would limit its
use as a frequency divider.

V. LINEAR STABILITY ANALYSIS

A. Triply resonant case

To determine which of the above derived possible steady-
state solutions are stable, a linear stability analysis is applied
to the nonlinear dynamical system described by Eqs.
s1ad–s1cd. A similar stability analysis has been applied by
Zondy and colleagues to the steady-state solutions of a
divide-by-3 OPO, which also reveals two threshold states. In
the case of a doubly resonant divide-by-3 OPO, where both
subharmonic waves are enhanced in a resonator, the low-
threshold state was found to be stable, while the high-
threshold state was found to be unstablef17g. In the case of
a pump-enhanced, singly resonant divide-by-3 OPO, on the
other hand, both states have been found to be stablef18g.

To study the stability of an equilibrium point of the
6-dimensional nonlinear system, we perform a linear ap-
proximation of the temporal evaluation of the complex field
amplitudesqp, qe, qo and their complex conjugatesqp

* , qe
* ,

andqo
* , which are implicitly contained in Eqs.s1ad–s1cd. Ac-

cording to Poincaré, the characteristics of a system’s stability
can be determined by performing a stability analysis to such
a linearized systemswith one exception, namely a center, for
which the higher order terms become decisived f19,20g. The
linear approximation is obtained by expressing these six
equations as Taylor series in the neighborhood of the singular
point Q̄=hqp,qe,qo,qp

* ,qe
* ,qo

*j and neglecting second- and
higher-order terms. We defineqxstd=qx+Dqxstd and qx

*std
=qx

* +Dqx
*std, whereqx andqx

* are the steady-state values, and
where the small fluctuations are expressed byDqx
=oleltdqx andDqx

* =oleltdqx
* .

The linearization aroundQ̄ yields an equation of motion
for the fluctuations depending on the eigenvaluesl:

o
l

lelt1
dqp

dqe

dqo

dqp
*

dqe
*

dqo
*

2 = A ·o
l

elt1
dqp

dqe

dqo

dqp
*

dqe
*

dqo
*

2 , s14d

with A being a linear matrix.
The eigenvalues of the system are found by calculating

the determinant ofA −l ·I , whereI is the unity matrix. For
the self-phase-locked divide-by-2 OPO described by Eqs.
s1ad–s1cd this determinant reads

*
− 1

2kp − l iDqo iDqe 0 0 0

iDqo
* − 1

2ske − iDed − l g 0 0 iDqp

iDqe
* − g* − 1

2sko − iDod − l 0 iDqp 0

0 0 0 − 1
2kp − l − iDqo

* − iDqe
*

0 0 − iDqp
* − iDqo − 1

2ske + iDed − l g*

0 − iDqp
* 0 − iDqe − g − 1

2sko + iDod − l

* = 0. s15d

The eigenvaluesl are the solutions of the sixth-order char-
acteristic equations15d, which can be abbreviated as

l6 + j5l5 + j4l4 + j3l3 + j2l2 + j1l + j0 = 0, s16d

where all five coefficients are real. The explicit form of the
coefficientsjk with k ranging from 5 to 0 is given in Appen-
dix A.

It shows that the coefficients are functions of the OPO’s
construction parameterskp, ke, ko, De, Do, D, and g0, but
also of the steady-state solutionsbp, be, bo, wp, we, andwo,
and thus of the pump ratef and the pump phaseb. Note that

as the steady-state values are different for the low- and the
high-threshold solution, this leads to two different character-
istic equations for these cases. However, the coefficients and
hence the characteristic equation remain the same for both
phase eigenstates belonging to the same threshold state. The
subharmonic phases enter the coefficients only via sinswe
−wo−ud fcompare Eqs.sA5d, sA7d, andsA10dg, which attains
the same value for both eigenstates.

To illustrate relevant examples of stability, the eigenval-
ues have been calculated for the experimental parameters
summarized in Table I for the cavity detuningsDe
=50 MHz andDo=45 MHz, for a quarter-wave plate rotation
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angle of qQWP=6°, and for a pump rate off =1.22
31013 Hz, corresponding to an external pump power of
300 mW. In this case, the eigenvalues of the low-threshold
solution are four real values and one pair of complex conju-
gates. As the real parts of all eigenvalues are negative, the
low threshold solution is a stable focus or a fixed-point so-
lution.

By inserting the corresponding high-threshold solution the
same calculation yields a different set of eigenvalues, namely
four real values and one pair of complex conjugates. How-
ever, one of the real eigenvalues is positive, which means
that the high-threshold solution is a saddle point and thus
unstable.

To obtain a broader overview on the divide-by-2 OPO
stability, we have calculated the eigenvalues throughout the
plane defined by the detuningsDe andDo. We have found the
eigenvalues of either one of the high- and the low-threshold
solution to be symmetric for positive and negative detunings,
i.e., the solution for a certain set of detuningssDe,Dod yields
the same eigenvalues as the corresponding set of negative
detuningss−De,−Dod.

Figure 7 shows the different kinds of equilibria of the
low-threshold solution, depicted by different gray tones as a
function of the positive cavity detunings, which is equivalent
to the case of negative detunings. For the whole locking area
we find that the self-injection locking is stable. The case that
was chosen in the example abovesDe=50 MHz, Do
=45 MHzd is depicted in Fig. 7 by the cross symbol.

When calculating the eigenvalues of the high-threshold
solutions throughout the locking area, one finds that in most
cases, the solution is an unstable saddle point. In the area of
small detuningssDe,Do,35 MHzd and at the edges of the
locking area, however, one can find single points, where the
real parts of all eigenvalues are negative and where the so-
lution thus is a stable solution. In this region, the absolute
value of the real part of one eigenvalue is very smalls<10−16

as compared to the other eigenvaluesd, and small changes of

De, Do, or f have a strong effect on the eigenvalue, causing
frequent changes of the sign of the real part. As a result, the
high-threshold solution changes from a stable to an unstable
equilibrium upon minimal changes of the detunings or the
pump rate.

In order to check the analytical results and also to yield
unambiguous results for those detunings with one eigenvalue
of the high-threshold solution close to zero, the nonlinear
coupled field equations were numerically integrated for a
number of cavity detuningsDe andDo, as it was described in
Sec. III C. A specific example with cavity detunings ofDe
=32 MHz andDo=36 MHz swhich corresponds to a point
yielding a stable high-threshold equilibriumd is shown in Fig.
8. The pump, the signal, and the idler amplitude are dis-
played as a function of time, once for the case that the
coupled field equations are integrated with the low-threshold
steady-state values as the initial valuesfFig. 8sadg, and a
second time with the high-threshold steady-state values in-
serted as initial valuesfFig. 8sbdg. As one can see from Fig.
8sad, the amplitudes of the three OPO fields remain at their
initial values, which demonstrates the stability of the low-
threshold solution. In contrast, when starting the integration
from the high-threshold solutions, the amplitudes quickly
swithin the cavity lifetime of 0.2msd leave the high-
threshold values and attain the low-threshold values, in
agreement with the prediction of the stability analysis. Also
the phases of the three fields attain the steady-state values of
the low-threshold solutionsnot shownd.

FIG. 7. Different kinds of equilibria calculated for the low-
threshold solution with a quarter-wave plate angle of 6° and a pump
rate of 1.2231013 Hz, displayed as a function of the cavity detun-
ingsDe andDo. The low-threshold solutions are always found to be
stable.

FIG. 8. Time evolution of the amplitudes of the OPO fields for
a pump rate of 1.2231013 Hz, a quarter-wave plate rotation angle
of qQWP=6°, and cavity detunings ofDe=32 MHz and Do

=36 MHz: the pump wave as solid black curve, the e-wave as solid
gray curve, and the o-wave as dashed black curve.sad Time evolu-
tion with the low-threshold steady-state values, andsbd with the
high-threshold steady-state values as initial values for the numerical
integration.
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For further numerical tests, the coupled field equations
have been integrated for detunings throughout the entire
locking area, which always, without a single exception,
yielded the lower-threshold solution as the steady state. Also
in the cases where, using the linear stability analysis, the
high-threshold solution has been found to be stable, during
the numerical evaluation the three OPO fields always assume
the low-threshold steady-state values. From this we con-
clude, that despite the fact that the calculation of the eigen-
values yielded stable high-threshold solutions for few situa-
tions, the low-threshold solution for the triply-resonant
divide-by-two OPO is the only stable solution of this system.

In the previous paragraphs, the dependence of the eigen-
values of the cavity detunings was discussed. However, as
can be seen from Eqs.sA2d, sA3d, sA5d, sA7d, andsA10d, the
eigenvalues via the e- and the o-wave amplitudes also de-
pend on the external pump ratef. As f is a parameter that can
be changed in the course of an experiment, it should be stud-
ied, if the stableslow-thresholdd branch is stable for any
pump rate, or if there is a critical value off, where a stability
bifurcation occurs.

The eigenvalues of the low-threshold solution have been
calculated in the described manner throughout the locking
area for pump rates of up to 2.231016 Hz, corresponding to
an external pump power of 1 MW. Note that an increased
pump rate also results in an increased locking area, as it
becomes possible to operate the OPO above threshold with
larger detunings. Above a pump rate of about 231014 Hz,
two areas evolve within the locking area, within which the
low-threshold solutions are unstable. The unstable areas in-
crease with increasing pump rate, continually covering a
larger portion of the locking area. As an example, Fig. 9
shows the stable and unstable areas within the locking area
for a pump rate of 2.231014 Hz. For each set of detunings
De,Do, there is a critical pump ratefH, where a Hopf bifur-
cation occurs. At pump rates. fH, the solution is a limit
cycle. To demonstrate this behavior, the coupled field equa-
tions have been integrated for parameters that fall within the
unstable area of Fig. 9sad ssee cross symbold. The result is
shown in Fig. 9sbd. The traces of the e- and the o-wave are
displayed in a polar diagram, amplitudes as radius, and
phases as angle. One can clearly see that both waves do not
assume steady-state values, but keep oscillating around the
solutions on limit cycles. We note that the pump wavesnot
shownd performs an analog oscillation around its steady-state
solution.

The high-threshold solutions, on the other hand, remain
unstable when increasing the pump rate. For pump rates up
to 2.231016, the behavior throughout the locking range is
the same as was observed before.

In summary, the eigenvalues have been investigated as a
function of the cavity detuningsDe and Do spanning the
range of 1.231013 to 2.231016 Hz. For low pump rates, the
low-threshold solution for any set of detuningssDe,Dod was
found to be always stable, while the high-threshold solution
was found to be unstable. At a critical pump ratefHsDe,Dod,
a Hopf bifurcation occurs at the low-threshold branch, and
the stable solution changes to a limit cycle solution forf
. fH.

B. Doubly resonant case

From a practical point of view, the stability of a doubly
resonant OPOsDROd is of some importance. Such a DRO
could be realized by only enhancing the two subharmonic
waves in a cavity, while the cavity is not resonant for the
pump wave. The disadvantage of an enhanced threshold on
one hand, a DRO could, on the other hand, provide easier
handling due to the redundant electronic stabilization of the
cavity length to the pump wavelength.

The DRO can be described by substituting the cavity in-
ternal pump field Eq.s1ad within the coupled field equations
by a time independent traveling wave:

qp = qin, s17ad

1

2
ske − iDedqe = iDqo

*qp + gqo, s17bd

1

2
sko − iDodqo = iDqpqe

* − g*qe. s17cd

From Eqs.s17bd ands17cd, one obtains the same locking
condition Eq.s7d as for the triply resonant OPO. From Eqs.
s17ad–s17cd a linearized system of six equations can be de-
rived, analogous to the triply resonant case described above.
However, due to Eq.s17ad not occurring in the interdepen-
dent system, the linear matrix reduces to a 434 matrix, the
determinant of which satisfies

FIG. 9. sad Stable and unstable low-threshold solutions found
within the locking area at a pump rate of 2.231014 Hz. sbd Time
evolution of the e-wavesgray curved and the o-wavesblack curved
displayed in a polar coordinate system with amplitude as radius,
and phases as angle. Parameters for the calculation areDe

=3.1 GHz, Do=2.0 GHz, qQWP=6°, and f =2.231014 Hz fcorre-
sponding to location depicted by cross symbol insadg.
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*
− 1

2ske − iDed − l g 0 iDqp

− g* − 1
2sko − iDod − l iDqp 0

0 − iDqp
* − 1

2ske + iDed − l g*

− iDqp
* 0 − g − 1

2sko + iDod − l
* = 0. s18d

The eigenvaluesl are solutions of the quartic characteristic
equation

l4 + j3l3 + j2l2 + j1l + j0 = 0, s19d

where the coefficientsji are all real. The explicit form of the
coefficients is given in Appendix B.

In the DRO case, the eigenvalues depend only on the
cavity loss parameterske,ko, the cavity detuningsDe,Do,
and on the coupling parameterg0. Independent of the pump
rate, the eigenvalues and therefore the stability of the system
can be determined directly for a given set of external cavity
parameters. The eigenvalues have been calculated for differ-
ent coupling strengths and for different cavity detuningsDe
andDo, and as a result, the low-threshold solution is always
found to be stable, while the high-threshold solution is al-
ways unstable.

In conclusion, a linear stability analysis of the triply reso-
nant case as well as of the doubly resonant case has been
carried out. It has been shown that the divide-by-2 OPO has
only a single stable threshold equilibrium. Of the two equi-
libria with different pump power at threshold obtained by the
analytical steady-state solution, only the lower-threshold
equilibrium is stable, while the higher-threshold is an un-
stable equilibrium. At the low-threshold branch of the triply
resonant OPO, a Hopf bifurcation occurs at a critical pump
rate. Upon exceeding that pump rate, the stable low-
threshold solutions turn into limit cycles, where the three
OPO waves oscillate around the steady-state solutions.

VI. PHASE EIGENSTATES

As a result of the analytical investigations it was also
found that, for each of the two threshold solutions, the OPO
can assume one of two phase eigenstates. These two eigen-
states have been found to be equivalent in their steady-state
properties and stability, because the eigenvalues do not de-
pend on absolute phase values, but only on the phase differ-
enceswe−wo−ud fsee Eqs.sA5d, sA7d, andsA10dg.

The numerical evaluation of the OPO field amplitudes and
phases, however, offers the possibility to investigate the dy-
namics of individual phase eigenstates. In this section, we
investigate how the assumed eigenstate depends on the initial
values by numerically integrating the coupled field equations
for various values of the OPO’s external parameters.

As a result, we find that indeed either one of two different
phase states appears as steady state value. As expected from
the analytical calculations, none of the external parameters,
but only the initial values of the subharmonic phases proved
to have an influence on which of the two phase states is
assumed in steady state.

In Fig. 10, two examples are shown that demonstrate the
influence of the initial phase. In both cases, the self-injection
term is “switched on” after 0.5ms, to make the effect of
self-injection visible. Both numerical integrations are per-
formed with the same external parameters, in particular the
same cavity detunings ofDe=30 MHz andDo=69 MHz and
the same initial conditionssabsolute values of the subhar-
monic fieldsd. Only different initial phaseswe and wo are
used, namelywe

0=−0.7 and wo
0=0.7 for the upper graph

f10sadg andwe
0=−0.8 andwo

0=0.8 for the lower graphf10sbdg.
This variation results in the phases assuming different
steady-state values that are separated byp. We note that the
different phase states assumed have no influence on the ab-
solute values of amplitudes, i.e., on the output power on the
subharmonic waves.

For a full overview on the phase development towards
steady state, the integration was repeated as described; how-
ever, the initial phaseswe and wo were both varied in equi-

FIG. 10. Time evolution of the phases of the OPO fields for a
pump rate off =1.2231013 Hz, a quarter-wave plate rotation angle
of qQWP=6°, and cavity detunings ofDe=30 MHz and Do

=69 MHz: the pump wave as solid black curve, the e-wave as solid
gray curve, and the o-wave as dashed black curve.sad With initial
phases ofwe

0=−0.7 andwo
0=0.7, the phases of the coupled field

equations assume steady-state valueswe,1=−4.53 andwo,1=6.38,
andsbd with the same parameters, but with changed initial phases of
we

0=−0.8 andwo
0=0.8 the phases assume steady-state valueswe,2=

−7.67=we,1−p andwo,2=9.52=wo,1+p.
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distant steps of 2p /100. The calculations have been carried
out for a pump rate off =1.2231013 Hz, a quarter-wave
plate rotation angle ofqQWP=6° and cavity detuningsDe
=30 MHz andDo=69 MHz. The result is shown in Fig. 11,
where only the traces of the e-wave are plotted using polar
coordinates, i.e., the amplitudebe as radius and the phasewe
as angle. Traces which end in the first phase statewe,1
=1.75 are plotted on black, those assuming the second state
we,2=6.38 are gray. In Fig. 11, one can see that all of the
traces assume either one or the other of the two steady states,
thereby dividing thes6-dimensionald phase space into a
black and a gray region, i.e., into two perfectly symmetric
basins of attraction. This clearly proves the twofold symme-
try we were expecting to see.

From Fig. 11, one can also see that the traces describe a
wide, curved arc, ending in the respective phase eigenstate,
and that there is a strong preference for clockwise rotation of
the traces in phase space. We found that this direction of
rotation occurs only with asymmetric cavity detunings, and if
De,Do. When we chose the cavity detunings as equal, the
phase states were assumed on a direct path, while withDe
.Do, the traces performed a counterclockwise rotation be-
fore reaching steady state.

Regarding our numerical studies of stability of the divide-
by-two OPO, we note that we did not observe any hopping
between the two-phase eigenstates. Even the application of
external disturbancesslike a stepwise variation of the pump
phased led only to strongly damped relaxation oscillations of
the three fields around the steady-state values. We noticed
that a change of the cavity detuningsas would be caused by
changing the cavity lengthd caused the steady-state values to
relocate in phase space; however, the OPO fields quickly
followed that relocation while remaining self-phase-locked.

In conclusion, from the described investigations it is evi-
dent that the phase state assumed by a self-phase-locked di-
vider solely depends on the initial phases of the subharmonic
waves. The two phase eigenstates are two equivalent attrac-
tors of the nonlinear system, dividing the phase-space into
two symmetric basins of attraction. Upon applying distur-

bances not exceeding the cavity lifetimesi.e., within the va-
lidity of the slowly varying envelope approximationd, we
could observe that the OPO fields remain locked and follow
the relocating steady-state solutions. This behavior is evi-
dence of the OPO divider’s high stability and its large lock-
ing range of several tens of MHz.

VII. SUMMARY

Phase-coherent division of an optical frequency by 2
based on a self-phase-locked cw OPO is investigated theo-
retically. By analytically solving the coupled field equations
in steady state, the condition for occurrence of self-phase
locking is derived. The dependence of the steady-state am-
plitudes and phases of the OPO fields is studied as a function
of the detuning of the cavity modes from the subharmonic
light field, the pump rate, and the quarter-wave plate rotation
angle, with values being typical for a corresponding experi-
ment.

Previously it has been shown that in the self-phase-locked
case there are two formal steady-state solutions of the
coupled field equations, which correspond to two different
values for the OPO pump power at threshold. Our stability
analysis, however, applied to these solutions for the triply
resonant as well as the doubly resonant OPO, shows that
only the solution corresponding to the lower threshold state
is stable. The higher threshold solutions are unstable, which
is in contrast to previous expectations. The stability analysis
is completed by numerical integration of the coupled field
equations, which for any set of parameters leads only to a
single, stable threshold state, which is that of the lower
threshold.

Furthermore, the analytical solution reveals the existence
of two phase-eigenstates, which show to be equivalent and
indistinguishable in steady state. Via numerical integration of
the coupled field equations that allow also a study of the
temporal development of any initial state off equilibrium, we
find that self-phase-locked divide-by-2 OPOs indeed possess
two sets of phase eigenstates, which are separated from each
other byp. The initial phases of the two subharmonic fields
determine which eigenstate is assumed, independent of any
experimental parameter. The two phase eigenstates form two
equivalent attractors of the nonlinear system, dividing phase
space into two symmetric basins of attraction.

In conclusion, we have presented a comprehensive theo-
retical description of the self-phase-locked divide-by-2 OPO
that significantly improves the physical understanding of
self-phase-locked OPOs employed as all-optical frequency
divider. The present work may thus be helpful for further
improvement in design and operation of dividers to aid high-
precision metrology in the mid and far infrared.
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FIG. 11. Traces of the e-wave for different initial values of the
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Parameters for the calculation aref =1.2231013 Hz, qQWP=6°,
De=30 MHz, andDo=69 MHz
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continuous discussions on the working principle of fre-
quency dividers.

APPENDIX A: THE COEFFICIENTS OF THE
CHARACTERISTIC EQUATION: TRO CASE

In the following, the coefficientsj5 to j0 of the character-
istic Eq. s16d are derived from the determinant of Eq.s15d.

The coefficientsj5, j4 andj3 are easily found to be real:

j5 = kp + ke + ko, sA1d

j4 =
1

4
skp

2 + ke
2 + ko

2 + De
2 + Do

2d + kpke + kpko + keko

− 2D2sbp
2 − be

2 − bo
2d + 2g0

2, sA2d

j3 = sg0
2 − D2bp

2ds2kp + ke + kod + D2be
2skp + 2ke + kod

+ D2bo
2skp + ke + 2kod +

1

4
ske

2 + De
2dskp + kod

+
1

4
sko

2 + Do
2dskp + ked +

1

4
kp

2ske + kod + kpkeko.

sA3d

The coefficientj2 includes four imaginary terms, which
are two pairs of complex conjugate terms and can be sum-
marized, such that one yields a purely real expression as it is
described in the following:

iD2Degqe
*qo − iD2Deg

*qeqo
* + iD2Dogqe

*qo − iD2Dog*qeqo
*

= D2sDe + Dodsigqe
*qo − ig*qeqo

*d

= D2sDe + Dodg0bebosieisu+wo−wed + c.c.d

= 2D2sDe + Dodg0bebo sinswe − wo − ud. sA4d

With the imaginary parts summarized as shown in expression
sA4d, the real coefficientj2 reads as follows:

j2 = D4sbe
2 + bo

2 − bp
2d2 + 2D2g0

2sbe
2 + bo

2 − bp
2d + g0

2Sg0
2 +

1

2
kp

2 + kpke + kpko +
1

2
keko −

1

2
DeDoD

− D2bp
2S1

2
kp

2 + kpke + kpko +
1

2
keko +

1

2
DeDoD + D2be

2S1

2
ke

2 +
1

2
De

2 + kpke + keko +
1

2
kpkoD

+ D2bo
2S1

2
ko

2 +
1

2
Do

2 + kpko + keko +
1

2
kpkeD +

1

4
kpkekoskp + ke + kod +

1

16
ske

2 + De
2dsko

2 + Do
2d +

1

16
kp

2ske
2 + ko

2 + De
2 + Do

2d

+
1

4
kpkeDo

2 +
1

4
kpDe

2ko + 2D2sDe + Dodg0bebosinswe − wo − ud. sA5d

Calculating the coefficientj1, one finds eight complex terms, which are four pairs of complex conjugate numbers and can
be rewritten and summarized analogously:

1

2
iD2kpDogqe

*qo −
1

2
iD2kpDog*qeqo

* +
1

2
iD2kpDegqe

*qo −
1

2
iD2kpDeg

*qeqo
* +

1

2
iD2keDogqe

*qo −
1

2
iD2keDog*qeqo

*

+
1

2
iD2koDegqe

*qo −
1

2
iD2koDeg

*qeqo
* =

1

2
D2fDeskp + kod + Doskp + kedgsigqe

*qo + c.c.d

= D2g0bebo sinswe − wo − udfDeskp + kod + Doskp + kedg. sA6d

The real coefficientj1 is then given by

j1 = D4sbp
2kp − be

2ke − bo
2kodsbp

2 − be
2 − bo

2d − D2bp
2F2g0

2kp +
1

2
kpDeDo +

1

4
kp

2ske + kodG
+ D2be

2Fg0
2skp + ked +

1

4
skp + kodske

2 + De
2dG + D2bo

2Fg0
2skp + kod +

1

4
skp + kedsko

2 + Do
2dG

+ g0
2Fg0

2kp +
1

4
kp

2ske + kod −
1

2
kpDeDoG +

1

2
kpkekofg0

2 + D2sbe
2 + bo

2 − bp
2dg +

1

16
kp

2kekoske + kod +
1

16
kp

2skeDo
2 + De

2kod

+
1

16
kpsDe

2 + ke
2dsDo

2 + ko
2d + D2g0bebo sinswe − wo − udfDeskp + kod + Doskp + kedg. sA7d

The last coefficient contains eight complex terms, which can be rewritten analogously,
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iD4bo
2Dogqe

*qo − iD4bo
2Dog*qeqo

* + iD4be
2Degqe

*qo − iD4be
2Deg

*qeqo
* + i

1

4
D2kpkeDogqe

*qo − i
1

4
D2kpkeDog*qeqo

*

+ i
1

4
D2kpDekogqe

*qo − i
1

4
D2kpDekog*qeqo

*

= F2D4sbo
2Do + be

2Ded +
1

2
D2kpskeDo + DekodGgobebo sinswe − wo − ud sA8d

and in addition one finds two terms which contain the quadratic complex steady state values:

− D4g2qe
*2qo

2 − D4g*2qe
2qo

*2 = − D4g0
2be

2bo
2seis2we−2wo−2ud + c.c.d

= − 2D4g0
2be

2bo
2 coss2we − 2wo − 2ud

= − 2D4g0
2be

2bo
2f1 − 2 sin2swe − wo − udg. sA9d

With these two real terms, the real coefficientj0 can be written as follows:

j0 = − 4D6bp
2be

2bo
2 + 2D4g0

2be
2bo

2 +
1

4
D4fbp

4kp
2 + be

4ske
2 + De

2d + bo
4sko

2 + Do
2dg +

1

2
D4be

2bo
2skeko + DeDod −

1

2
D4sbp

2be
2kpke + bp

2bo
2kpkod

− D2bp
2S1

8
kp

2keko +
1

8
kp

2DeDo +
1

2
g0

2kp
2D + D2be

2S1

2
g0

2kpke +
1

8
kpDe

2ko +
1

8
kpke

2koD
+ D2bo

2S1

2
g0

2kpko +
1

8
kpkeDo

2 +
1

8
kpkeko

2D + g0
2kp

2S1

4
g0

2 +
1

8
keko −

1

8
DeDoD +

1

64
kp

2ske
2 + De

2dsko
2 + Do

2d

+ gobebo sinswe − wo − udF2D4sbo
2Do + be

2Ded +
1

2
D2kpskeDo + DekodG − 2D4g0

2be
2bo

2f1 − 2 sin2swe − wo − udg. sA10d

APPENDIX B: THE COEFFICIENTS OF THE CHARACTERISTIC EQUATION: DRO CASE

In this paragraph, the coefficientsj3 to j0 of the characteristic Eq.s19d of the doubly resonant OPO are given:

j3 = ke + ko, sB1ad

j2 = keko +
1

4
ke

2 +
1

4
ko

2 +
1

4
De

2 +
1

4
Do

2 − 2sD2bp
2 − g0

2d, sB1bd

j1 =
1

4
De

2ko +
1

4
Do

2ke +
1

4
ke

2ko +
1

4
ko

2ke − ske + kodsD2bp
2 − g0

2d, sB1cd

j0 =
1

16
De

2Do
2 +

1

16
ke

2ko
2 +

1

16
De

2ko
2 +

1

16
Do

2ke
2 + sD2bp

2 − go
2d2 −

1

2
kekosD2bp

2 − g2d −
1

2
DeDosD2bp

2 − g2d − DeDog0
2. sB1dd

After inserting the pump wave amplitude given by Eq.s8d, the eigenvalues can be simplified to read

j3 = ke + ko, sB2ad

j2 = S1

2
ke +

1

2
koD2

+ S1

2
De −

1

2
DoD2

7 2Îa, sB2bd

j1 = sDe − DodS1

4
Deko −

1

4
DokeD 7 sko + kedÎa, sB2cd

j0 = 15g0
2DeDo −

15

16
sDeko − Doked2. sB2dd

In the above Eqs.sB2ad–sB2dd, the upper sign of7 belongs to the high-threshold solution, whereas the lower one belongs to
the low-threshold solution, witha being defined as in Eq.s6d.
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