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Stability analysis of the self-phase-locked divide-by-2 optical parametric oscillator
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The properties of all-optical phase-coherent frequency division by 2, based on a self-phase-locked
continuous-wavecw) optical parametric oscillatofOPO), are investigated theoretically. The coupled field
equations of an OPO with intracavity quarter-wave plate are solved analytically in steady-state, yielding a
condition for self-phase-locked operation. In the self-phase-locked state, two different values for the pump
power at threshold are obtained. By using a linear stability analysis, it is proven that only the lower threshold
value is stable, whereas the higher threshold value is unstable. The analytical investigations of the steady-state
field values further reveal a twofold symmetry in phase space. The theoretical consideration is completed by a
numerical analysis based on the integration of the envelopes of the three OPO fields, which allows for studying
the temporal evolution of different initial values. The numerical investigation of the OPO subharmonic phases
shows that the two-phase eigenstates are equivalent with respect to experimental parameters and are assumed
by the self-phase-locked OPO in dependence of the initial phases of the subharmonic fields, dividing phase
space into two symmetric basins of attraction.
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I. INTRODUCTION comparison with the experiment. We present an analysis of
h , f i i the steady states and also off-steady-di@dgaamica) behav-
The precise measurement of time via a measurement Qb ¢ o ‘a|l-optical, self-phase-locked divide-by-2 OPO as

optical frequencies is of mayor importance in science an%ketched in Fig. 1. Recently, Adamyan and Kryuchkyan stud-
engineering. Modern telecommunication and navigation sys- '

tems depend on a precise measurement of frequency and tﬁaéj squeezing effects based on a steady-state analysis in a

accurate control of corresponding oscillators. Also, the mea. 0'€ idealized casewith perfect signal-idler symmetyyand

surement of fundamental physical constants as well as basY(\fhen the pump field |s_ad|abat|cqlly ehmmgt[a(ﬂ Our ap-
roach follows an earlier theoretical description of such a

research in geophysics or astrophysics are based on techl X
niques involving the precise measurement of optical frequenSyStém by Fabre and colleagy@s However, the theoretical
cies. description presented in the following sections is carried

A prerequisite for the precise measurement of any un-
known frequency is the presence of a frequency standard in
close vicinity to the frequency to be measured. Today, in the (a)
UV, visible and near infrared spectral range optical fre-
quency standards are emerging with a potential precision in

. . . crystal v
the range of 10 [1]. Especially, the visible and near infra- Vs Ha: ] e

nonlinear
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red spectral range from 250 to 750 THz is covered by
octave-spanning frequency comf#. However, frequency M
standards lying further in the infrared are scarce, and to mea-

sure any frequency in the mid or far infrared, subsequent (b) (C)
steps of phase-coherent frequency division are required. not phase-locked self-phase-locked

Lately, all-optical self-phase-locketSPL) optical para- Sv

metric oscillators OPO3 have come into interest as phase- :
coherent frequency dividef8-5|. These frequency dividers q %
are capable of dividing any frequency and thereby offer the
possibility to extend the range accessible for high-precision
frequency metrology to the mid and far infrared. However, in
order to judge the full potential of such dividers, and for their

| q | V.=V,

v ) I v

Y

i
. I Qwp 4 QWP
successful experimental realization, a thorough theoretical . ) ! Ed Z
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understanding of the basic processes of self-phase locking is 1 v 1 v
- Yav Yav
indispensable. P P

The current work aims at the theoretical description of an

: . ; FIG. 1. (a) Schematic setup of an OPO with intracavity quarter-
| experimen nabl il nderstanding an J
actual experiment, to enable a detailed understanding a dV\?ave plate(QWP) for division of the pump frequency by 2; M1,

M2: cavity mirrors, vy, ve, v, frequencies of the pump, the e- and
the o-wave, respectivelyb), (c) Frequency diagram of the self-
*Electronic address: p.gross@utwente.nl phase-locking process.
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several steps further. For the first time, a stability analysis i®f the two subharmonic waves are displayed as a function of
applied to the solutions. The analysis is supported by a nufrequency. For clarity, the amplitudes of the e- and the
merical evaluation of the coupled field equations, which, un-o-wave are plotted above each other, on separate axes. Via
like the steady-state analysis, enables the study of phas#ie quarter-wave plate, a small amount of each wave is trans-
locking dynamics and the dependence on initial values. Iferred(rotated and projectedo the other polarization state,
parallel to the theoretical results presented here, we hawshich enables mutual injection. We define the difference be-
realized such a divider OPO experimentally. A large meatween the two light frequencies @ =r,- v, [Fig. 1(b)].
sured locking range of 160 MHz with a low fractional fre-  If the frequency differenceSv is adjusted by tuning the
quency instability of better than>$107* has been reported phase-matching wavelengths and the cavity length of the
[8]. The experimental results have been improved by a diredDPO, such thabv becomes smaller than a characteristic fre-
measurement of the subharmonic phase stability to yield guency differencesvy i-€., |V =|ve=vo| < Vg ONE EX-
fractional frequency instability of 8 10718 [9]. pects injection locking of the e-wave by the o-wave and vice
This paper is organized as follows. Section Il describesersa.

the basic concept and working principle of the divide-by-2 In contrast to common injection locking of lasers, in the
OPO. To model the self-phase-locked divide-by-2 OPO, weconsidered OPO-injection locking both waves are generated
have started from the coupled wave equations of a triplypy the same process, namely optical parametric oscillation.
resonant OP@Sec. Il). The divider’s steady-state properties This situation can thus be termed self-injection locking. The
are described analytically in Sec. IV. A stability analysis ise- and the o-wave should then oscillate with the exact fre-
applied to the solutions, as described in Sec. V. Finally, Seajuency ratio of 2:1:1. This situation is depicted in Fig¢c)1
VI introduces the phase eigenstates the OPO can assumeviere the e- and the o-wave frequencies equal each other
the self-phase-locked regime and reveals a twofold symmeand come to lie at exactly one-half of the pump frequency:
try in phase space. Throughout the paper, the analysis of thg,= Vo:%”p [see Fig. lo)].
self-phase-locked divide-by-2 OPO is supported by a nu- In the following section, we introduce a theoretical model
merical evaluation of the coupled field equations to enablehat is used to derive the steady-state solutions of such a
the demonstration of phase-locking dynamics and the depeelf-phase-locked divide-by-2 OPO. We will start from the
dence on initial values. coupled wave equations of an OPO with intracavity quarter-

wave plate, and use the support of numerical methods to

visualize the effect of phase locking.

IIl. CONCEPT AND WORKING PRINCIPLE
IIl. THEORETICAL MODELING
The basic concept for optical self-phase locking is phase _ _

locking of the two OPO subharmonic waves via mutual in- A. Coupled field equations

jection [10]. Here we consider optically self-phase-locked  The nonlinear wave mixing processes in the OPO can be
division by 2 in a nearly degenerate type-1l OPO, such thajescribed, in the mean-field, plane-wave approximation, by
the subharmonic waves possess crossed polarizations. Fgiree coupled equations for the OPO internal electric field
the purpose of mutual injection of these waves, an mtracavq(t):qp(t)eiﬂpt+qe(t)ei0et+qo(t)eiﬂot_ The carrier frequencies
ity quarter-wave plate is used that projects an adjustable fracnp, Q,, and(), are chosen to be the frequencies of an exact
tion of the subharmonic waves onto each other. The scheyiger, i.e.,Q=0,=0Q,/2. If the OPO frequencies are close
mati_c setup of the experiment is shown in the upper (@rt iy these carrier frequencies, the complex amplitugles),,
of Fig. 1. _ ) andq, are slowly varying with time. In case that the ampli-
The OPO setup we consider here is chosen to enable @de variations are of oscillatory nature, their oscillation fre-
straight-forward comparison with ongoing experime®8].  guencies are the frequency deviations of the OPO fields from
The OPO consists of a nonlinear crystal in a linear two-he frequencies that correspond to an exact division by 2. We
mirror cavity, which is _resonant_ for the pump wave and forChOOSGQpEZ’JTVp, where v, is the given frequency of an
both OPO subharmonic wavésiply resonant The crystal  external pump laser driving the OPO, such that also the car-
is birefringent and provides type-ll phase matching of theyq, frequencie$), and(), are determined by the pump laser

OPO process, so that it converts the ordinary polarized pumBequency. The coupled equations for the intracavity field
wave with frequencyy, into two subharmonic waves, each amplitudes can then be written as follofa]:
with approximately half the pump frequency but with or-
thogonal linear polarizations. In the further text, we refer to d 1 )
the first subharmonic wave as o-wave, as it possesses ordi- TR iDgeg, + F, (1a
nary polarization parallel to the pump wave. We will refer to
the other subharmonic wave as the e-wave, as it is polarized
in the extraordinary direction, perpendicular to the pump and d _ o
the o-wave. A quarter-wave plate introduces a polarization gtle™ " E(Ke_ 1Ae)Ge +i1DAoGp + ¥0o, (1b)
rotation leading to a mutual injection of the two subharmonic
waves into each other.

The diagrams in the lower part of Fig. 1 illustrate the d =_}(K ZiA)q, +iDAG — ¥ (10)
working principle of self-phase locking. Here, the amplitudes dt o™ 7 27120 T D p0e 7Y G
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B A To better illustrate the definition of the cavity detunings,
they are depicted schematically in Fig. 2. The cold cavity
> modes are shown as Lorentzian-like curves as a function of
\ frequency. For later convenience, the e-wave frequency axis
is chosen such that the frequency increases to the (ight
e per parj, while the o-wave frequency increases to the left
(lower par}. Due to the crystal’s birefringence, the optical
Ji resonator length and thus also the detuning of the cold cavity
-, modes from exact division by 2 are different for the e-wave

and the o-wave. Further, the two axes are positioned relative
vV to each other such that at any arbitrary vertical line the sum
o
-
v

Ae

Vv

<Y

of the two frequencies found at the intersection points gives
the pump frequency. Thus, any two optical frequencies that
VAY, can be generated by the OPO need to lie precisely above

P each other in order to fulfill energy conservatiogtv,=v,

FIG. 2. Definition of the cavity detuningd. and A, of the (see, e.g.,_llng A In self-injection-locked(or self-phase-
phase-locked OPO. The line shape of the cavity modes and the Iigill‘PCkedﬂ oscillation, however, the e-wave and the o-wave fre-
frequencies of the e-waveipper axis and of the o-wavelower  duencies assume the identical valsee line B and are thus
axis) are plotted as a function of frequency: from left to right, the Iocked to exactly half of the pump frequency.
e-wave frequency increases, while the o-wave frequency decreases. Note, that the non-phase-lockéflee-running operation
The cavity detuningd, andA,, are given by the distances between Of the OPO is a completely different mode of oscillation, and
half the pump frequency and the nearest cavity modes. one has to clearly distinguish between that state and the

phase-locked state. In the free-running case, the OPO will
adjust its frequencies to minimize the cavity losses, such as

This approach follows the earlier investigation of such afor line Ain Fig. 2[11].
system by Fabre and colleagufg] and our study of a The last terms on the RHS of Eqd.b) and(1c) describe
divide_by_3 OPO, Where Sim”ar Coup|ed f|e|d equationsthe mutual injeCti-On of the two OPO subharmonic fields in-
were introduced to describe self-phase-locked frequencyfoduced by the intracavity quarter-wave plate. The param-
by-3 division[3]. etery is a measure for theT |nject|o(rmouplln@ strength and

The field amplitudesq, are normalized such that the INCreases with the experimentally adjustable angle of the

squares of their absolute values give the intracavity photof®@'VP's fast axissee Sec. il B.

numbersN,=|q,* [11], where the indices=p, e, o0 designate B. Parameters used for the evaluation

the pump wave, the e- and the o-wave, respectively.
The first terms on the right-hand sid®HS) of Egs.

For an analytical and numerical investigation, we follow
. ! . the approach of Fabret al. [7] and separate the complex
g:)c:r%?())rdlizgelgevt/?ti ?ﬁ:iﬁ\;’: tgi;;eldr arrjsplltudes due tofield amplitudesgy into real positive amplitudeb, and real
The last term i,n Eq(1a), F de);cribeg tha[etsa umping of the ph_a sesey by sett!ngqxsze"*’x. The_ Same we, the pump rate
_ aqla, F, , pumping ofth€ g separated into a real, positive amplitufland a real
OPO with the external laser that is to be frequency d'V'dedphaseﬁ, F=fé&®, as well as the complex coupling parameter
F is a field pump rate, which is proportional to the square,, ,=, &% The coupling strength is proportional to the part
root of the pump laser powét, times the pump input trans-  of the e-wave and the o-wave, which is transferred to the

mission of the cavity mirror M1. other polarization state, and is given E]
The terms containing the nonlinear coupling coefficient ) — i
give the strength of nonlinear interaction of the pump wave, ¥ = SiN(29qwp) VKeko€'”, (2)

the e-, and the o-wave. The valuedfdepends on construc- in which dqpis the rotation angle of the QWP. The factor 2
tion parameters of the OPO and the involved light frequenoccurs because in the considered standing-wave cavity the
cies. QWP is passed twice per round trip. The phasakes into

The values ofA, andA, give the detunings of the OPO’s account a propagational phase shift that the waves acquire
cold cavity modes from exact division by 2. Note that, in anwhile traveling through the quarter-wave plate.
experiment, the detunings can be changed via changing the With the described notation the coupled field equations
optical cavity length. Further, we assumed a zero detuning ofla—(1c) can be separated into six equations that describe
the pump cavity from the pump frequency, i.4,=0. This  the temporal changes of the real amplitutigsand the real
assumption is well-justified, because usually for continuoughasesp, of the OPO fields.
operation of a triply resonant OPO, the pump cavity length is These not explicitly shown expressions fal/ dt)b, and
electronically locked to the pump laser wavelength. In the(d/dt)¢, are the basis for the numerical integration of the
theoretical model, we consider only subharmonic oscillatiorcoupled field equations, which is introduced in the subse-
in those cavity modes that are closest to frequency degemuent Sec. Il C, and are used to analytically derive the
eracy, which experimentally can be guaranteed due to asteady-state solutions of the self-phase-locked divide-by-2
appropriate tuning strategy. OPO in Sec. IV.
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TABLE |. Parameters for the cavity losses and the nonlinear(a) (C)
coupling coefficient as used for the calculations. S injet::;;‘fem
/2 “switched on”
Kp Ke Ko D 3
E 40
336 MHz 114 MHz 117 MHz 1050 Hz g'

In summary, studying the dynamical behavior of the OPO (b)
with self-injection locking comprises of finding the time de-
pendence of six variable®={by,be,0,, ¢p, ¢e, o}, taking

a

44

[SIENE-N

=)
into account a set of ten external parametePs & 2 3n/2
={Kp, Kes Ko,Ae, Ao, T, B, 70,0,D}. The variables can either é-zn """""""""""""""""""""""""" pump wave
be calculated by numerical integratigstarting with some “6‘2 """"""""""""""" e-wave
initial values Q(O):{b(O)'bfam'bgO)"PéO)’90590)'(»05)0)}), such as 00 05 10 15 20 25 30 [T SREe
shown in Sec. lll C. The steady-state values can also be cal time (pis)

culated analytically, as is described in Sec. IV. For both cal-
culations we assume that a part of the external parameters ci)§
constant, which are the cavity losses ., and «, and the
nonlinear coupling coefficienD. The values used for this
work are determined from our actual experimental setup an
are summarized in Table (their derivation is analogous to
the description in Ref[12]). The remaining experimental
parameters are not constant but can be slowly varied durin
operation of the OPO, such as the detunidgsand A, (via
changing the cavity lengihthe pump parametersand 8
(via the pump lasey and the self-injection parameteygand
0 (via a rotation of the QWP

It shows that, depending on the choice and variation o

the latter parameters, the behavior of the system falls in on% )
the phases of the resonator-internal pump wave, the e-wave

of two different regimes. First, there is a regime where the X X
parameter choice leads to operation of the OPO in a nor@"d the o-wave as a function of time. The pump wave data

phase-locked ofree-runningregime. In this case, the solu- are displayed as a solid black curve, the e-wave as a solid
tions for the field envelopes in Eq¢la—(1c) will show  gray curve and the o-wave as the dashed black curve. For a
some oscillatory behavior. In this case, the total electric fieldetter illustration of the effect of mutual injection of the e-
Ae,o(t)=qe,0(t)e2”‘(Vp’2)‘, contains optical side bands, indicat- and the o-wave, the self-injection terms are only after some
ing that the phases of the OPO subharmonic waves changielay of 1us [ie., y=0 in Egs.(1a—(1c) for t<1 us]
with respect to each other and the pump wave. turned to a constant value which, in the case of Fig. 3, is
In the second regime, by choosing the external systeny,=sin(2X6°)ykeko=0.21\ keko.
parameters to lie within a certain range, the solutions of Egs. It can be seen that, upon turn-on of the pump term at
(1a—(1c) will become time independent, constant field am-=0 the intracavity pump field rises, followed by an onset of
plitudes. The subharmonic OPO light fields then attain theparametric oscillation. After about 0/%s, all amplitudes
form %,O(t):Agyoeh“vp’z)“@gvo. In this case, the e- and the reach steady state. However, the phases of the e- and the
o-waves will be oscillating with constant relative phases oro-wave maintain to diverge linearly as a function of time,
phase-lockedand the OPO works as a phase-coherent frewith equal slope of opposite sign. The absolute values of the
quency divider. slopes correspond to the sum of the chosen cavity detunings,
which is 40 MHz in our example. The opposite sign of the
diverging phases shows that the sum of the e- and the
o-phases remains constant with respect to the resonator-
To illustrate the dynamical behavior in these two distinctinternal pump phase, which is one of the main characteristics
regimes we present here two typical examples of the tempaef OPOs[14]. Note that the resonator-internal pump phase is
ral evolution of the OPO fields. displayed with respect to the phase of the external pump
For this purpose we numerically integrate the coupledaser field, and that the internal phase follows the external
field equations using a fourth-order Runge-Kutta methodphase with only small deviations.
[13] with small initial values for the e- and o-field ampli- From Fig. 3a) for t>1 us one can see that after the
tudes. injection coupling term is “switched on,” the formerly steady
For the first example, shown in Fig. 3, we uséiked) subharmonic amplitudes start oscillating. At the same time,
external parameters of our experimental s€igge Table)l  their phases continue to diverge, with only a weak oscillation
As the variable external parameters we used a quarter-wawgiperimposed.

FIG. 3. Time evolution ofa) the amplitudes an¢b) the phases

the OPO fields for cavity detunings &,=32 MHz and A,

=8 MHz. (c¢) Results summarized in a polar coordinate system with
mplitudes as radius and phases as angle. Solid black curve: pump
ave; solid gray curve: e-wave; dashed black curve: o-wave.

Hlate rotation angle ofdowp=6°, and a pump rate of
=1.22x 10" Hz (corresponding to an external pump power
of 300 mW). Further we used cavity detunings df.=
+32 MHz andA,=+8 MHz, i.e., the e- and o-wave cavities
pre detuned by rather different values.

Figure 3a) shows the resulting amplitudes, and Fig¢b)3

C. Numerical evaluation
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200

(a) (C) /2 b

80x10°

injection term
“switched on”

A (MH)

-200 y T ,
-200 -100 0 100 200

3n/2 A, (MHz)
P}‘v':‘alz“’a"e FIG. 5. Parameter plane spanned by the cavity detunings. The
O IR (e,_WavZ gray area gives the theoretically calculated sets of cavity detunings
00 05 10 15 20 25 30 (Ag,A,), for which the OPO is self-phase-locked. The locking area
time (ps) is calculated with the experimental parametersind «, and with a

QWP angle of 6°.
FIG. 4. Time evolution ofa) the amplitudes an¢b) the phases

of the OPO fields for cavity detunings af,=A,=60 MHz. In (c)

the rfesults are plgtted together in a polar coo_rdinate system witl@i_e_, before the injection terms are activatedow is ad-
amplltude_s as radius and phases as angle. Solid black curve: purﬂ?sted to a slightly different value, namely to —24 mrad. One
wave; solid gray curve: e-wave; dashed black curve: o-wave. can see in Fig. @) that, upon self-injection locking, also the
absolute field amplitudes attain new values. Specifically, the
amplitudes of the e- and o-waves are significantly higher
than without self-phase locking in the free-running steady-
tate OPO. The latter indicates that self-phase locking lowers
e pump power at threshold.

The temporal dynamics of graphga8and 3b) are sum-
marized in Fig. &) as a polar diagram. Here the complex
amplitude of the three fields is displayed as radius and

corresponding phase angle, which results in three traces i In summary, the presented examples of numerical integra
Fig. 3(c). U tartup of the OPO, th trace, the e-,. : AR i
'g. 3(c). Upon startup of the © pump trace, e e ion have shown that mutual self-injection of the OPO sub-

and the o-wave traces emerge out of the origin. ThereafteL, . lead t If-0h locki d oh
the e- and the o-wave fields rotate about the origin, initially 2 "oNIC Waves can lead to sell-phase locking and phase-
coherent frequency division, accompanied by a lower

on a circle with a constant angular velocity given by the sum

of the chosen cavity detunings. Turning on the seIf-injectionthreShOId and increased output, but that this strongly depends

terms(see the arrows pointing =1 us) alters the circular on the parameters of operation, such as the cavity detunings.
traces into traces resembling aliptic shape. The direction
of the e- and o-rotation is maintained, as well as their aver-
age angular velocity given by the number of revolutions per IV. STEADY-STATE SOLUTION
time. o . A. Locking condition
From the continuing divergence of the e- and o-waves’
phases displayed in Fig(l3, one can clearly see that a phase 1o generalize the findings from the numerical integration,
locking does not occur, in spite of a mutual injection locking. e coupled field equations are solved analytically in the

The main consequence of our particular choice of parametegteady_state regime. The goal is to find the conditions for

is an oscillation. The latter modulation indicates that the mu'self-phase-locked oscillation and to derive corresponding ex-

tual e- and o-wave injection gives rise to optical side b"’md?)ressions for the phase eigenstates of the locked fields.
on the pump, the e- and the o-field.

As a second example, we consider an OPO with the iden- As a first step, we consider the two coupled field equa-

tical parameters as before, but now we choose symmetrictilons(lb) and (1) applying steady-state conditions, i.e., zero
cavity detunings of\,=A _éo MHz. The results of the nu- tme derivatives on the LHS. One then obtains four linear
e~ =o0~ .

merical integration are shown in Fig. 4. coupled equations foge andd,, and for their complex con-
Again, the amplitudes reach a steady state after abodt9a€Sde andd, which can be expressed in matrix form:

0.5 us [Fig. 4@)], while the phases diverge continuously
[Fig. 4(b)], now with a rate of 260 MHz 27. However,

after the injection terms are activated au4, the divergence Qe Qe
of the phases is first accelerated before the phase divergence d| % %o
stops. Attaining constant e- and o-wave phases takes about atl o =0=AX| 3
0.25 us. Thereafter the e- and o-fields oscillate in phase with qf qf
the pump field, which is a clear evidence of self-phase lock- Yo Yo

ing. Note that also the pump phase inside the OPO cavity,
which has been adjusted to —73 mrad with respect to the
external pump phase for the case of the free running OP@ith the 4X 4 matrix
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— 2(Kke—1AQ) y 0 iDq,,
* 1 . -
- —S(kg—1A,) iD 0
A= Y 2 -o ) o . qp. ] . (4)
0 —iDg,  —3(ketile) y
-iDq,, 0 -y = 2ro+iAy)
[
This equation has nonzero electric field solutions only if B. Intracavity pump photon number

the determinant oA is zero. With the separation of the com-
plex field amplitudes,, the pump ratd-, and the coupling
coefficienty into real amplitudes and phases, the determinan
is calculated to yield the following expression:

Besides the locking condition of E¢7), the solution of
he determinant of Eq.3) also yields information about the
intracavity pump field,b,, and the pump photon number,
Np:bf), once the cavity detunings are givisee Eqgs(5) and
o2 } } } ”’_ (6)]
D bp—’}/g+4KeK0+4Aeri4\;a, (5)

1 1 1 I
S _ Np,i:bp,izﬁ Yo+ ZKeK0+ZAeAOi Va. (8)
where the abbreviatiow is defined as
_ ) From Eq.(8), one finds, independent of the external pump
ar = 16¥58eAo ~ (Aeko ~ Agke)”. (6)  rateF, two different solutions for the intracavity pump field

Except for the expression far, all terms of Eq.(5) are  Dp because of the two possible signs of. As, above
real; the termb? on the LHS of the equation is even a di- threshold, the intracavity pump photon numba, is
rectly measurable quantity, as it is equal to the intracavitclamped to its threshold valjé5], these two solutions be-
pump photon number. Therefore the complete RHS of Eglong to two different pump powers at threshdih, . =Ny
(5) must be real, which means that must be real as well. =DPj:- Here and in Eq(8), the upper of the signs- desig-
From a(Ae,A,)=0 one obtains the following condition for nates the high-threshold solutié ,, and the lower one the

an OPO operating in a steady self-injection-locked state: 10W-threshold solutionb;, . According to Eq(6), the differ-
ence between the two threshold values increases with in-

1673A9A02 (Agkty = Agko)?. ) creasingy, symmetrically about the free-running threshold
and is a function of the detunings, and A,. In particular

Note that if the QWP is set to a neutral positibfowe  this means that with increasing rotation angle of the intrac-
=0), such thaty,=0, condition(7) reduces toAgx,—Agke  avity QWP, the lower threshold of the locked OPO can be
=0, which is the standard condition for unlocked, free-brought considerably below the threshold of the free-running
running OPO operatiofl1]. OPO.

In contrast to this, for a nonzero quarter-wave plate rota- The described threshold splitting was first predicted by
tion angle, locking can occur only for those pairs of cavity Fabre and colleagud¥], inspired by Mason's experiment
detunings,A. and A,, which satisfy Eq.(7), such thata in [5], where a divide-by-two OPO with an intracavity quarter-
Eq. (6) is real and positive. For example, using the specificwave plate showed two different polarization states. As one
experimental parameterg=114 MHz and«,=117 MHz of  polarization state has been observed more often than the
the OPO that are present in our experimdiotsmpare Table other, this was taken as evidence of the OPO operating pref-
lin Sec. lll B), and assuming a QWP angl,yr=6°, which  erably in the lower-threshold state. However, we claim that
is the largest angle that could be realized experimentally, wéheir addressing of the two polarization states to the two
obtain from Eq.(7) that locking can occur if the ratio of the threshold states is not possible, but that their findings rather
detunings A./A,, lies between 0.43 and 2.19. show that there exist two distinct phase states for each

This range of locked steady-state operation is depictethreshold state. This will be proven in detail via a stability
schematically in Fig. 5, in a plane spanned by the cavityanalysis in Sec. V.
detunings. Locking can occur only for detuninys and A, Finally, in order to complete the information of the shape
that fall into the gray area bound by the two linas/A,  of the dividers locking area, one has to consider that any
=0.43 andA./A,=2.19. It is thus appropriate to speak of a divider is pumped with a finite pump power. This means that
locking area rather than a locking range. According to Eqincreasing the product of the detuning$,A, in Eq. (5),

(7), the angle between the two diagonals widens with in-increases the intracavity pump photon numllslgxzbﬁ, which
creasing coupling strengthy, and thus with increasing corresponds to a rising threshold pump powerAlf\, is
quarter-wave plate rotation angtk,,» Note, however, that chosen too large, such thif, exceeds the value that can be
the diagonals approach the horizontal or vertical axis onhprovided by the external pump laser, the OPO will not oscil-
asymptotically and that there is no locking observable forate even if, formally, the detunings fulfill the locking condi-
any QWP angle, if the OPO is operated with detunings oftion of Eq.(7). The resulting restriction of the area of locked
opposite sighAA,<O. oscillation is depicted in Fig. 6, for both the low-threshold
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fields assume fixed values with respect to the phase of the
cavity internal pump fieldp,. Below we will also derive an
expression for the cavity internal pump phase with respect to
the external pump phase.

Note that, for the free-running OP@q,s=0° and hence
v=0), only the sum of the subharmonic phasgs ¢, as-
sumes a defined valuégp.+¢,), which follows the pump
phase according to E9). In contrast, the difference phase
(pe—¢,) is to change versus timgl4], such that the indi-
vidual subharmonic phases undergo a synchronized phase-
diffusion process.

Only if the OPO is self-phase-locked through choosing a
nonzero QWP rotation angle, the phase-diffusion process is
suppressed. Actually, the phase difference is locked to a con-
stant value given by Eq10). In this case the phases of the e-
and the o-wave assume the constant valpeand ¢,

On closer inspection of Eq89) and(10), where the phase
arguments on the LHS are defined only modutg e find
that the subharmonic phases can assume one of two possible
values, namely(¢e 1, o,1) OF (Pe2; Po2) =(@e 1+ T, 9o 1+ ).

The existence of two-phase eigenstates for a divide-by-2
OPO agrees with an earlier prediction, according to which an
FIG. 6. Intracavity pump photon numbg) for the lower pump  all-optical divider byn should possess phase eigenstates

power threshold value ar®) for the higher value as two-parameter [16].
plots of the cavity detuningd, and A,, calculated with a QWP Using linear combination of Eqgla—(1c), one can de-

angle of 9qwp=6°. The intracavity pump photon numbers are rjve the intracavity photon numbers of the e- and the o-wave:
coded using gray scales.

2
N.= b2 = 4fb, cos g, — B) — 2k,by (1)
case(a), and for the high-threshold cad®. The locking area e e Ae '
is shown calculated for a particular combination of the QWP Ke+ KOAO

angle and pump powei6° and 300 mW, respectivelybut
analogue calculations show that increasing the pump power

,_ 4fbycody - B) - 2Kpb§.

increases the extension of both locking areas radially. In- No=b (12
creasing the QWP angle leads to an angular widening of both o+ K A,
areas(a) and(b), and to a radial increase i@ and a radial ° TPAL

decrease irb). . . :
) Per roundtrip, a certain percentage of the photons is

C. Phase states and output wave powers coupled out through the cavity mirror; therefore the output

Of special interest are the steady-state values of the subover O.f the according wave is a proportional measure of the
intracavity photon number.

harmonic waves’ phase@hase eigenvalugsand their de- . T :
pendence on the eiterneé?i)OPO pa%amdmih ash\e, A, or Finally, the _phase of the cavity internal pump fielg,
: can be determined to be

the phase of the external pump wave, because this deter-

mines the phase and frequency fidelity of the divide-by-2 1

OPO. In this section, we derive the divider’'s phase eigen- cospp = pB) :f b {

states via the photon numbers of the subharmonic waves. KpPp
Using linear combination of the coupled field Egs. > 1,5 )

(1a—(10) in steady state, i.e(d/dt)b,=0, (d/dt)p,=0, we B fe =~ ipbp(1 = sif(@e+ @0 = ¢p))

obtain expressions containing the sum and difference phases:

1 _ 2
. 1 [A [A + _Kpbp sin(pe + @, = @p)) :| ) (13
Sin(ge+ @ — ‘Pp) = _<Ke —+ Ko _e) ) 9 2
4Dby, A A, . L
where sifige+ ¢~ ¢p) is given by Eq.(9).
1 A A Summarizing this section, analytical expressions for the

cod@e— @, — 0) = * —<KeW [ =2 = ko /—e> , (100  amplitudes and phases of the coupled fields of the self-phase-

470 Ae A, locked OPO have been derived. With these expressions, the

1
2,5 22
f+4:<pbp

detuningsA. and A, divide-by-2 OPO in steady state can be determined from the
Equations(9) and (10) show that, for a given set of ex- experimental parameters. In the self-phase-locked state, we
perimental parameters, the phases of the OPO subharmorobtained two different values for the pump power at thresh-
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old, and for each of the two threshold states, two possible To study the stability of an equilibrium point of the

sets of subharmonic phases are revealed. 6-dimensional nonlinear system, we perform a linear ap-
From the considerations of this section, the questiorproximation of the temporal evaluation of the comglex*field

arises what one could expect to measure in the experiment. &mplitudesqy, de, d, and their complex conjugates, q,

it possible to observe two distinct pump powers at thresholdndd,, which are implicitly contained in Eq$1a—(1c). Ac-

as suggested by Eq8) and reported by Masof5]? And  cording to Poinparé, the charagteristics qf_a system’s stability

further, would there be phase states observable, two for efan be determined by performing a stability analysis to such

ther one of the two threshold states? What would be thé linearized systertwith one exception, namely a center, for

stability of these phase states with respect to small phagihich the higher order terms become decisiMe9,20. The

perturbations? These questions are of elemental importand@€2ar approximation is obtained by expressing these six

to predict the behavior of the frequency divider regarding itsequatignsisla)ior series in the neighborhood of the singular

suitability for high precision metrology. If the self-phase- POINt Q={0y,0e,Go,0p,Ge.Gor and neglecting second- and
locked OPO reacted to external disturbances, e.g., by hogtgher-order terms. We _defing,(t)=d.+Aq(t) and g,(t)
ping from one stable state to another one, this would limit its=dy*+Ad,(t), whereq, andg, are the steady-state values, and
use as a frequency divider. where the sma*ll fluctua}tions are expressed Ay,
=3,eMsq, and Ag, ==, Moy,

The linearization aroun@ yields an equation of motion
for the fluctuations depending on the eigenvalkes

V. LINEAR STABILITY ANALYSIS

A. Triply resonant case 5qp 5qp
To determine which of the above derived possible steady- e e
state solutions are stable, a linear stability analysis is applied Py Py
to the nonlinear dynamical system described by Egs. > aeM l=A e N , (14)
(1a—(1¢). A similar stability analysis has been applied by A &, )\ &,
Zondy and colleagues to the steady-state solutions of a 5q; 5q*e
divide-by-3 OPO, which also reveals two threshold states. In 5, P
[0] 0

the case of a doubly resonant divide-by-3 OPO, where both
subharmonic waves are enhanced in a resonator, the lowvith A being a linear matrix.

threshold state was found to be stable, while the high- The eigenvalues of the system are found by calculating
threshold state was found to be unstgdl€]. In the case of the determinant oA—X\-1, wherel is the unity matrix. For

a pump-enhanced, singly resonant divide-by-3 OPO, on ththe self-phase-locked divide-by-2 OPO described by Egs.
other hand, both states have been found to be sfaBle (1a—(1c) this determinant reads

—5Kp—\ iDQ, iDQe 0 0 0
iDgy,  —5(ke—iAg) —A y 0 0 iDq,
iDq, -y -L(ko-iA)-N O iDq, 0
de ACTIES ) % o =0. (19
0 0 0 —SKp~ A —-iDq, —-iDq,
0o -iDq —iD% - (ke +iAd =\ .
0 -iDg, 0 -iDge -y - (ko +iAg) —\

The eigenvaluea are the solutions of the sixth-order char- as the steady-state values are different for the low- and the
acteristic equatioril5), which can be abbreviated as high-threshold solution, this leads to two different character-
istic equations for these cases. However, the coefficients and
hence the characteristic equation remain the same for both
) o o phase eigenstates belonging to the same threshold state. The
where all five coefficients are real. The explicit form of the sypharmonic phases enter the coefficients only vidgsin
cpefficientsg,< with k ranging from 5 to O is given in Appen- - ¢,— ) [compare EqSA5), (A7), and(A10)], which attains

dix A. the same value for both eigenstates.

It shows that the coefficients are functions of the OPO'’s  To illustrate relevant examples of stability, the eigenval-
construction parameterg,, xe, Ko, Ae, Ao, D, @and yo, but  ues have been calculated for the experimental parameters
also of the steady-state solutiobg be, b,, @, ¢e and ¢, summarized in Table | for the cavity detuning4,
and thus of the pump rateand the pump phas@. Note that =50 MHz andA,=45 MHz, for a quarter-wave plate rotation

N HENTHEN +EN3+ EN2+HEN+£,=0, (16)
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FIG. 7. Different kinds of equilibria calculated for the low-
threshold solution with a quarter-wave plate angle of 6° and a pump
rate of 1.22< 1013 Hz, displayed as a function of the cavity detun-
ingsA. andA,. The low-threshold solutions are always found to be ) ,
stable. 0.0 0.5 1.0 1.5 2.0

amplitude
N W R LN

2
[¢)]

angle of dJoyp=6°, and for a pump rate off=1.22
X 10" Hz, corresponding to an external pump power of FIG. 8. Time evolution of the amplitudes of the OPO fields for
300 mW. In this case, the eigenvalues of the low-thresholc pump rate of 1.2% 103 Hz, a quarter-wave plate rotation angle
solution are four real values and one pair of complex conjuof dowp=6°, and cavity detunings ofA,=32 MHz and A,
gates. As the real parts of all eigenvalues are negative, the36 MHz: the pump wave as solid black curve, the e-wave as solid
low threshold solution is a stable focus or a fixed-point so-gray curve, and the o-wave as dashed black cugjelime evolu-
|ution. tion with the low-threshold steady-state values, dbdwith the

By inserting the corresponding high-threshold solution thé_ﬁigh-thr_eshold steady-state values as initial values for the numerical
same calculation yields a different set of eigenvalues, namel{itegration.
four real values and one pair of complex conjugates. Howy A or f have a strong effect on the eigenvalue, causing
ever, one of the real eigenvalues is positive, which meangeqyent changes of the sign of the real part. As a result, the
that the high-threshold solution is a saddle point and thugjgh-threshold solution changes from a stable to an unstable

unstable. . o equilibrium upon minimal changes of the detunings or the
To obtain a broader overview on the divide-by-2 OPOpump rate.

stability, we have calculated the eigenvalues throughout the |n order to check the analytical results and also to yield
plane defined by the detuninds andA,. We have found the  unambiguous results for those detunings with one eigenvalue
eigenvalues of either one of the high- and the low-thresholaf the high-threshold solution close to zero, the nonlinear
solution to be symmetric for positive and negative detuningscoupled field equations were numerically integrated for a
i.e., the solution for a certain set of detunir@ds, A,) yields  number of cavity detunings, andA,, as it was described in
the same eigenvalues as the corresponding set of negati®ec. 11l C. A specific example with cavity detunings &f
detunings(—Ag, —A,). =32 MHz andA,=36 MHz (which corresponds to a point

Figure 7 shows the different kinds of equilibria of the yielding a stable high-threshold equilibrigiis shown in Fig.
low-threshold solution, depicted by different gray tones as @. The pump, the signal, and the idler amplitude are dis-
function of the positive cavity detunings, which is equivalentplayed as a function of time, once for the case that the
to the case of negative detunings. For the whole locking areaoupled field equations are integrated with the low-threshold
we find that the self-injection locking is stable. The case thasteady-state values as the initial valésg. 8@)], and a
was chosen in the example abov&,=50 MHz, A, second time with the high-threshold steady-state values in-
=45 MHz) is depicted in Fig. 7 by the cross symbol. serted as initial valuelFig. 8(b)]. As one can see from Fig.

When calculating the eigenvalues of the high-threshold(a), the amplitudes of the three OPO fields remain at their
solutions throughout the locking area, one finds that in mosinitial values, which demonstrates the stability of the low-
cases, the solution is an unstable saddle point. In the area tifreshold solution. In contrast, when starting the integration
small detuninggA,A,<35 MH2z) and at the edges of the from the high-threshold solutions, the amplitudes quickly
locking area, however, one can find single points, where théwithin the cavity lifetime of 0.2us) leave the high-
real parts of all eigenvalues are negative and where the sthreshold values and attain the low-threshold values, in
lution thus is a stable solution. In this region, the absoluteagreement with the prediction of the stability analysis. Also
value of the real part of one eigenvalue is very srtall07®  the phases of the three fields attain the steady-state values of
as compared to the other eigenvalyemd small changes of the low-threshold solutionot shown.
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For further numerical tests, the coupled field equations
have been integrated for detunings throughout the entire (a)
locking area, which always, without a single exception,
yielded the lower-threshold solution as the steady state. Also
in the cases where, using the linear stability analysis, the
high-threshold solution has been found to be stable, during
the numerical evaluation the three OPO fields always assume
the low-threshold steady-state values. From this we con-
clude, that despite the fact that the calculation of the eigen-
values yielded stable high-threshold solutions for few situa-
tions, the low-threshold solution for the triply-resonant
divide-by-two OPO is the only stable solution of this system.

In the previous paragraphs, the dependence of the eigen-
values of the cavity detunings was discussed. However, as
can be seen from Eq6A2), (A3), (A5), (A7), and(Al10), the
eigenvalues via the e- and the o-wave amplitudes also de-
pend on the external pump rdteAs f is a parameter that can
be changed in the course of an experiment, it should be stud-
ied, if the stable(low-threshold branch is stable for any
pump rate, or if there is a critical value fwhere a stability
bifurcation occurs.

The eigenvalues of the low-threshold solution have been
calculated in the described manner throughout the_ locking FIG. 9. (a) Stable and unstable low-threshold solutions found
area for pump rates of up to 2:210'° Hz, corresponding 10 yithin the locking area at a pump rate of X40M Hz. (b) Time
an external pump power of 1 MW. Note that an increasedyolution of the e-wavégray curve and the o-waveblack curve
pump rate also results in an increased locking area, as fisplayed in a polar coordinate system with amplitude as radius,
becomes possible to operate the OPO above threshold withd phases as angle. Parameters for the calculation Agre
larger detunings. Above a pump rate of about P0'* Hz,  =3.1 GHz, A,=2.0 GHz, doup=6°, and f=2.2x 10" Hz [corre-
two areas evolve within the locking area, within which the sponding to location depicted by cross symbolaj.
low-threshold solutions are unstable. The unstable areas in-
crease with increasing pump rate, continually covering a B. Doubly resonant case
larger portion of the locking area. As an example, Fig. 9

shows the stable and unstable areas within the locking area From @ practical point of view, the stability of a doubly
for a pump rate of 2. 10* Hz. For each set of detunings €ésonant OPADRO) is of some importance. Such a DRO

Ay, A,, there is a critical pump rati,, where a Hopf bifur- could be realized by only enhancing the two subharmonic
cation occurs. At pump ratesf,, the solution is a limit Waves in a cavity, while the cavity is not resonant for the
cycle. To demonstrate this behavior, the coupled field equa?Ump wave. The disadvantage of an enhanced threshold on
tions have been integrated for parameters that fall within th©@"€ hand, a DRO could, on the other hand, provide easier
unstable area of Fig.(8) (see cross symbpl The result is han.dllng due to the redundant electronic stabilization of the
shown in Fig. 9b). The traces of the e- and the o-wave areCaVity length to the pump wavelength. o
displayed in a polar diagram, amplitudes as radius, and 1he DRO can be described by substituting the cavity in-
phases as angle. One can clearly see that both waves do rigfnal pump field Eq(1a within the coupled field equations
assume steady-state values, but keep oscillating around ti¥ @ time independent traveling wave:

solutions on limit cycles. We note that the pump wawet

R stable
:l unstable

(b)

shown) performs an analog oscillation around its steady-state Gp = Gin- (173
solution.

The high-threshold solutions, on the other hand, remain }(K ~iA)ge=iDg.a, + ¥ (17b)
unstable when increasing the pump rate. For pump rates up 2 ¢ T otp e

to 2.2x 106, the behavior throughout the locking range is
the same as was observed before. 1 ..

In summary, the eigenvalues have been investigated as a E(KO— iA0)do=1D0p0e — ¥ Qe (170
function of the cavity detuninga, and A, spanning the
range of 1.2< 10" to 2.2x 10" Hz. For low pump rates, the  From Egs.(17b and(17¢), one obtains the same locking
low-threshold solution for any set of detuning$.,A,) was  condition Eq.(7) as for the triply resonant OPO. From Egs.
found to be always stable, while the high-threshold solution178—(17¢) a linearized system of six equations can be de-
was found to be unstable. At a critical pump réggA., A,), rived, analogous to the triply resonant case described above.
a Hopf bifurcation occurs at the low-threshold branch, andHowever, due to Eq(173@ not occurring in the interdepen-
the stable solution changes to a limit cycle solution for dent system, the linear matrix reduces to a4 matrix, the
>fy. determinant of which satisfies
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— (ko= iAg) =\ y 0 iDq,
* 1 . e
- ~L(ko=iAg) = N iD 0
7 2o Do Lk * -0, (19)
0 —iDq, = 5(KketiAg =\ y
-iDg;, 0 -y ~ (ko +iAg) —\

The eigenvaluea are solutions of the quartic characteristic  In Fig. 10, two examples are shown that demonstrate the
equation influence of the initial phase. In both cases, the self-injection
term is “switched on” after 0.s, to make the effect of
MHEN+EN+EN+ =0, (19) self-injection visible. Both nun?erical integrations are per-
where the coefficients are all real. The explicit form of the formed with the same external parameters, in particular the
coefficients is given in Appendix B. same cavity detunings @&,=30 MHz andA,=69 MHz and
In the DRO case, the eigenvalues depend only on théhe same initial conditiongabsolute values of the subhar-
cavity loss parameters,, «,, the cavity detunings\,,A,, ~ Monic fieldg. Only different initial phasesp, and ¢, are
and on the coupling parametgg. Independent of the pump used, namelyed=-0.7 and ¢3=0.7 for the upper graph
rate, the eigenvalues and therefore the stability of the systefid0(@)] and¢3=-0.8 andg)=0.8 for the lower graphl0o(b)].
can be determined directly for a given set of external cavityThis variation results in the phases assuming different
parameters. The eigenvalues have been calculated for diffepteady-state values that are separatedrbWe note that the
ent coupling strengths and for different cavity detunidgs different phase states assumed have no influence on the ab-
andA,, and as a result, the low-threshold solution is alwayssolute values of amplitudes, i.e., on the output power on the
found to be stable, while the high-threshold solution is al-subharmonic waves.
ways unstable. For a full overview on the phase development towards
In conclusion, a linear stability analysis of the triply reso- steady state, the integration was repeated as described; how-
nant case as well as of the doubly resonant case has beéwer, the initial phaseg, and ¢, were both varied in equi-
carried out. It has been shown that the divide-by-2 OPO has

only a single stable threshold equilibrium. Of the two equi- 3 (a)
libria with different pump power at threshold obtained by the b SCREELELEEEEERTEEEEEEE
analytical steady-state solution, only the lower-threshold "§ al .
equilibrium is stable, while the higher-threshold is an un- =21
stable equilibrium. At the low-threshold branch of the triply % g
resonant OPO, a Hopf bifurcation occurs at a critical pump = T
rate. Upon exceeding that pump rate, the stable low- -2mr
threshold solutions turn into limit cycles, where the three 3l
OPO waves oscillate around the steady-state solutions.
VI. PHASE EIGENSTATES 3n_(b) ST
L L . P T [—pumpwave] |
As a result of the analytical investigations it was also =R e-wave
found that, for each of the two threshold solutions, the OPO =2 Trot owave
can assume one of two phase eigenstates. These two eigen- é 0
states have been found to be equivalent in their steady-state S
properties and stability, because the eigenvalues do not de- 2nf
pend on absolute phase values, but only on the phase differ- 3al

ence(p.— ¢y~ 0) [see Eqs(A5), (A7), and(A10)]. 68 05 10" 15 20 25 30
The numerical evaluation of the OPO field amplitudes and o

phases, however, offers the possibility to investigate the dy- a

hamics of individual phase elgenstates. In this sectlon,_ WE€ FIG. 10. Time evolution of the phases of the OPO fields for a

investigate how t_he as;umed 9|genstate depequ on the,'n't\ﬁﬂmp rate off =1.22x 103 Hz, a quarter-wave plate rotation angle

values by numerically integrating the coupled field equationg dowp=6°, and cavity detunings ofA;=30 MHz and A,

for various values of the OPO’s external parameters. =69 MHz: the pump wave as solid black curve, the e-wave as solid
As aresult, we find that indeed either one of two differentgray curve, and the o-wave as dashed black cumewith initial

phase states appears as steady state value. As expected frigiases of(Pg:—O] andgog=0.7, the phases of the coupled field

the analytical calculations, none of the external parametersquations assume steady-state valygg=-4.53 ande, 1=6.38,

but only the initial values of the subharmonic phases provednd (b) with the same parameters, but with changed initial phases of

to have an influence on which of the two phase states i$2=-0.8 and@2=0.8 the phases assume steady-state vajygs

assumed in steady state. ~7.67=pg1—m and ¢, ,=9.52=¢, ; + .
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bances not exceeding the cavity lifetirtiee., within the va-
lidity of the slowly varying envelope approximatignwe
could observe that the OPO fields remain locked and follow
the relocating steady-state solutions. This behavior is evi-
dence of the OPO divider’s high stability and its large lock-
ing range of several tens of MHz.

VIl. SUMMARY

Phase-coherent division of an optical frequency by 2
based on a self-phase-locked cw OPO is investigated theo-
0., 3TC/2 _retically. By analytically so_l\_/ing the coupled field equations

’ in steady state, the condition for occurrence of self-phase

FIG. 11. Traces of the e-wave for different initial values of the Iopklng is derived. The dependeljce O.f the s_teady-state am-
phase differencep,— ¢, with amplitudes as radius and phases asPlitudes and 'phases of the _OPO fields is studied as a functl_on
angle using polar coordinates. Traces ending in the first phase stafif the detuning of the cavity modes from the subharmonic
are plotted black; traces assuming the second phase state are gright field, the pump rate, and the quarter-wave plate rotation
Parameters for the calculation afe1.22x 10" Hz, 9qwp=6°, angle, with values being typical for a corresponding experi-
Ae=30 MHz, andA,=69 MHz ment.

Previously it has been shown that in the self-phase-locked
distant steps of 2/100. The calculations have been Carriedcase there are two formal Steady-sta‘[e solutions of the
out for a pump rate off=1.22x 10" Hz, a quarter-wave coupled field equations, which correspond to two different
plate rotation angle offoyp=6° and cavity detuning®e  yajyes for the OPO pump power at threshold. Our stability
=30 MHz andA,=69 MHz. The result is shown in Fig. 11, anaiysis, however, applied to these solutions for the triply
where only the traces of the e-wave are plotted using polafesonant as well as the doubly resonant OPO, shows that
coordinates, i.e., the a_mphtudbg as radlu_s and the phasgg only the solution corresponding to the lower threshold state
as angle. Traces which end in the first phase stale s stable. The higher threshold solutions are unstable, which
=1.75 are plotted on black, those assuming the second stgigin contrast to previous expectations. The stability analysis
¢e2=6.38 are gray. In Fig. 11, one can see that all of th&g completed by numerical integration of the coupled field
traces assume either one or the other of the two steady Stat%“‘quations, which for any set of parameters leads only to a
thereby dividing the(6-dimensional phase space into a gingle stable threshold state, which is that of the lower
black and a gray region, i.e., into two perfectly symmetricinreshold.
basins of attraction. This clearly proves the twofold symme- gy rthermore, the analytical solution reveals the existence
try we were expecting to see. _ of two phase-eigenstates, which show to be equivalent and

_From Fig. 11, one can also see that the traces describejggistinguishable in steady state. Via numerical integration of
wide, curved arc, ending in the respective phase eigenstatge coupled field equations that allow also a study of the
and that there is a strong preference for clockwise rotation ofamporal development of any initial state off equilibrium, we
the traces in phase space. We found that this direction Ofng that self-phase-locked divide-by-2 OPOs indeed possess
rotation occurs only with asymmetric cavity detunings, and ify,q sets of phase eigenstates, which are separated from each
Ae<A,. When we chose the cavity detunings as equal, theher by . The initial phases of the two subharmonic fields
phase states were assumed on a direct path, while Ayth getermine which eigenstate is assumed, independent of any
> A,, the traces performed a counterclockwise rotation begyperimental parameter. The two phase eigenstates form two

fore reaching steady state. _ N . equivalent attractors of the nonlinear system, dividing phase
Regarding our numerical studies of stability of the d'V'de‘space into two symmetric basins of attraction.

by-two OPO, we note that we did not observe any hopping ' |5 conclusion, we have presented a comprehensive theo-
between the two-phase eigenstates. Even the application pfiica| description of the self-phase-locked divide-by-2 OPO
external disturbancedike a stepwise variation of the pump ha; significantly improves the physical understanding of
phase led only to strongly damped relaxation oscillations of self-phase-locked OPOs employed as all-optical frequency
the three fields around Fhe stea(_jy—state values. We noticg§l\ider. The present work may thus be helpful for further
that a change of the cavity detunifgs would be caused by jmprovement in design and operation of dividers to aid high-
changing the cavity lengjitaused the steady-state values toprecision metrology in the mid and far infrared.
relocate in phase space; however, the OPO fields quickly
followed that relocation while remaining self-phase-locked.

In conclusion, from the described investigations it is evi-
dent that the phase state assumed by a self-phase-locked di- ACKNOWLEDGMENTS
vider solely depends on the initial phases of the subharmonic The authors acknowledge financial support by the Dutch
waves. The two phase eigenstates are two equivalent attraStichting Voor Fundamenteel Onderzoek der Matéfi@M).
tors of the nonlinear system, dividing the phase-space intdVe are grateful to Dr. J.-J. Zondy for fruitful discussions on
two symmetric basins of attraction. Upon applying distur-the linear stability analysis and to Dr. H. L. Offerhaus for
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continuous discussions on the working principle of fre-

quency dividers.
APPENDIX A: THE COEFFICIENTS OF THE
CHARACTERISTIC EQUATION: TRO CASE

In the following, the coefficientgs to &, of the character-
istic Eq. (16) are derived from the determinant of E4.5).

The coefficientsts, &, and &5 are easily found to be real:

PHYSICAL REVIEW A 71, 033801(2005

&= ('}/S Dzbz)(ZKp + Kot Ko) + Dzbe(Kp + 2K+ Ko)

+ Dzbg(Kp"' Ke+ 2Ko) + Z(K§+ Ag)(Kp"' Ko)

1 1
+ Z(Kg + Ag)(Kp +Ke) ¥ ZKlzj(Ke"' Ko) + KpKeKo-

(A3)

The coefficienté, includes four imaginary terms, which
are two pairs of complex conjugate terms and can be sum-

marized, such that one yields a purely real expression as it is
described in the following:

iD2A¢ Y00 ~ ID?Aey dely +iD?Ag Y000 ~
= D*(Ae+ Ao) (i y0elo ~ 17 dely)
=D%(Ag+ Ay) yobebo(ie!(#*¢07¢e) + c.c)
= 2D?(Ae + Ag) Yobebo SiN(ge = 0o = 6). (A4)

With the imaginary parts summarized as shown in expression
(A4), the real coefficient, reads as follows:

&= Kpt Ket Ko, (A1) iDony*Qeq;

1
T2 2, 2. A2 A2
&= 4(Kp+ Ko+ Ko+ Ag+ AQ) + KpKe + KpKo T Keko

~ 2D?(bj ~ b = bY) + 245, (A2)

1 1
3= DA(bE+ b2 b2 + 2D22(62 + b2 b + %(;ﬂo L gt —Aer>

—D2b2 K+KK+KK +1KK +1AeA +D2b2 1K2+}A2+KK+KK +}KK
pKe pio™ 5 Kefo 0 2™ 5% pie™ Kello ™, Kpho

1 1 1 1 1 1
+ D2b§(§K§ + §A§ + KpKo + KeKo + EKpKe) + ZKpKeKO(Kp + Kot Ko) + 1—6(K§ + A (k2 +AY) + 1_6K§(K§ + K2+ A2+ A2)

1 .
+= KpKer+ KpA2K0+ZDZ(AE+AO>yobebosm(<pe—%—a).

4 (A5)

Calculating the coefficienf;, one finds eight complex terms, which are four pairs of complex conjugate numbers and can
be rewritten and summarized analogously:

1 1 1 1 1 1
E'D Kp o'yquO |D Kp 07 qeqc 'D Kp e'}’quO |D Kp e'y Qeqo _|D Ker'}’qeqo__|D KeA07 Qeqo

1 1 s
E'DZKO e'yquO |D KoA e7 qeqo DZ[Ae(Kp + 1K) + Ao(Kp + k) (i Y0elo c.c)

=D? Yobebo SiN(@e = @0 = 0)[Ae(Kp +Ko) + Ao(Kp + ko). (A6)

The real coefficient; is then given by
1 1
& = D*(0%k, — ke — b3Ko) (b — b — b)) - Dzbg{Zyéxp S kphelot ng(xe+ Ko)}
1 1
+ Dzbg[ ’)/S(Kp + Ke) + Z(Kp + Ko)(K§ + Ai)} + Dzbcz,[ )/S(Kp + Ko) + Z(Kp + Ke)(Kg + Acz,)]
1 2(h2 4 12 _ 2 1 1, 2
+ 7/(2) 'yZKp+ K (Ke+ Ko) = KpAer + 2KpKeKo[')/2+ D(bg+b;-b )] + _6K KeKo(Ke Ko) + 1_6K (Ker +AgKo)

1 .
+ 1_6Kp(A§ + Kg)(AtZ) + K(Z)) + DZ?’Obebo Sin(¢e =~ @0~ 0)[Ae(’<p +Ko) + AO(Kp +Ko)]. (A7)

The last coefficient contains eight complex terms, which can be rewritten analogously,
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1 1
iD*b2A 0.0, — ID*b2A0Y 0ely + ID*b2A¥0L00 — ID*b2AcY qeq0+l D?kpkeloydelo ~ i 2P 2KpeloY Ul
1 2 * 1 2 * *
+ IzD KpAeKo’)’qeqo - |ZD KpAeK07 0o

1 )
= 2D4(b§Ao + bgAe) + EDZKp(Ker + Agko) | Yobebo SiN(pe = ¢ — 6) (A8)
and in addition one finds two terms which contain the quadratic complex steady state values:
_ D4y2q;2 qoz 7*2%2(1;2 D4,ygb(23bg(ei(2¢e—2<po—20) +c.c)
= — 2D*y3b2bZ cod2¢, — 2¢, — 26)
= — 2D%y3b207[1 - 2 siff(@e — o — 6)]. (A9)

With these two real terms, the real coeffici€gtcan be written as follows:
1 1 1
£y =— 4D°b3bZb} + 2D*y4b3b) + ZD“[bgK; +ba(KkZ+ A + b(r5+ AD)] + ED“bgbg(KeKo +AcA,) - ED“(bgngpxe + bAb5Kpko)
1 1 1 1 1 1
- Dzbrz)(gKSKeKo + gkﬁAer + E)/SKFZ,) + Dzbﬁ(iygxpxg gprgxo + éxpxgx(,)

1 1
Lado) + L 830+ D

1 1 1 1 1
+ Dzbg(EVSKpKo + gpreAg + éKpKng> + ’}%KS(Z’)/S + ghefo ™ g

1
+ beb, SiN( e = @0 = o)[zo“(bng +bZAe) + EDZKP(KEAO + AGKO)} - 2D*y2h2b2[1 - 2 sirf(pe — @0 — 0)]. (A10)

APPENDIX B: THE COEFFICIENTS OF THE CHARACTERISTIC EQUATION: DRO CASE

In this paragraph, the coefficiengs to &, of the characteristic Eq19) of the doubly resonant OPO are given:

£3= Ket Ko, (Bla
1 1 1 1
£y = Kol + ZK§+ ZK(2)+ ZAg + ZA‘Z’_ 2(D%5- 15, (B1b)
1 1 1 1
&= ZAgKO + ZA§Ke+ Zkgko + ZKgKe— (ket Ko)(DzbS -%), (Blo

1 1
50—16A§A§ 16K2K5+EA§K§+ A+ (D03 - f)Z——Kexo(Dzbz )= 586805~ 7)) - Acdo¥5. (B1d)

After inserting the pump wave amplitude given by E8), the eigenvalues can be simplified to read

&3= Ket Ko, (B23a)
1 1\ [1 1 )\?
1 1 _ —
&=(Ac—4y) ZAeKo - ZAOKe + (ko + KV, (B2¢)
15 2
&= 157%Aer - 1_6(Ae’<o = Agke)”. (B2d)

In the above Eqs(B2a)—(B2d), the upper sign ofr belongs to the high-threshold solution, whereas the lower one belongs to
the low-threshold solution, witlx being defined as in Ed6).
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