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Stationary vortex clusters in nonrotating Bose-Einstein condensates
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We investigate the recently found stationary vortex cluster states in dilute atomic Bose-Einstein condensates
confined by a nonrotating trap, and also present a stationary three-vortex cluster. We find the stationary states
by minimizing directly an error norm for the stationary Gross-Pitaevskii equation, and study the dynamic and
energetic stability of the resulting states by solving the corresponding Bogoliubov equations for the elementary
excitations. The results are verified by integrating the time-dependent Gross-Pitaevskii equation. Contrary to
previously reported results, the stationary states were observed to be both energetically and dynamically
unstable. The dynamical decay rate of the clusters is typically very slow, but it should be experimentally
observable. The most promising circumstances to experimentally generate and observe these structures and
their dynamics is in weakly dissipative condensate systems, using phase-imprinting techniques.
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The quantum phase coherence of the alkali-metal atorRecently, it was shown that there exist a multitude of station-
Bose-Einstein condensatdBECS implies that they will ary clusters, so-calle#l clusters for noninteracting trapped
have superfluid properties when rotated. Since the condenvave fields[13]. One of these clusters, the quadrupole clus-
sate flow is irrotational, these systems respond to externaér shown in Fig.lc), was also shown to have a stationary
rotation by creating vortex lines with quantized circulation. counterpart for interacting BECs, but in general there does
Condensate states containing a single vortex line were firgtot exist a simple correspondence between stationary clus-
created using Raman transition phase-imprinting methbds ters in the interacting and noninteracting cases. For example,
and by rotating the system with a laser spd@8]. Later, the recently found stationary vortex dipole state shown in
vortex lattices containing more than 100 vortices have beefig. 1(a) exists only in sufficiently strongly interacting sys-
created by the latter techniqyd,5]. Recently, also multi- tems and, hence, can be viewed as solitonic $tkd¢ see
guantum vortices were created using topological phase engilso Ref[15]. By observing the dynamics of the dipole and
neering methodgs,7]. Based especially on the developmentquadrupole states after imposing initial perturbations on
of phase-imprinting method8-11] it is to be expected that them, it has been argued that these states are dynamically
even more complicated vortex clusters can be created in th&table[13,14. Another important issue is the energetic sta-
future. bility of these states—at finite temperatures the thermal

Atomic BECs are interacting systems, and their nonlinear€loud provides the condensate with a dissipative mechanism,
ity implies the dynamics to be in general quite complicatedand the fate of stationary states is determined by energetics.
Especially interesting is the dynamics of states containing In this paper we study in detail the structure and both the
several vortex lines. Vortex dynamics is still under investiga-energetic and dynamic stability of the above-mentioned sta-
tion even in noninteracting systems, in which the motion oftionary dipole and quadrupole vortex clusters, and also
vortex lines is essentially determined by four factors: thepresent a stationary cluster consisting of three vortices. We
shape of the vortex line, the shape of the background corsearch for stationary vortex cluster states using a gradient
densate wave function, the interaction between vortex linesnethod to directly minimize ah? error norm for the Gross-
and possible external forcé$2]. In interacting systems, the Pitaevskii equation. The advantage of our method compared
nonlinearity adds more to the complexity of the problem.to energy-minimization methods is that it finds the nearest
However, when all these factors balance each other in a spsetationary state even if it is not a local energy minimum, as
cific way, it is possible to find stationary vortex cluster statesturns out to be the case for the vortex cluster states. In fact,

FIG. 1. Density profiles of a stationary vortex
dipole (a), tripole (b), and quadrupoldc). The
separations of the outermost vortices are marked
by d,, ds, andd, for the dipole, tripole, and quad-
rupole, respectively. The plus signs in the vortex
core denote vortices and minus signs antivortices.
The strength of the interactioffsis 170 for the
vortex dipole and 160 for the tripole and
quadrupole.
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they are locamaximaof energy with respect to cluster size. the mode specified by quantum numbgrdf the spectrum
The local dynamic and energetic stability of the resultingfor a stationary state contains an anomalous excitation with
stationary vortex cluster states is investigated by solving th@ositive norm/[|ug(r)[?~[v,(r)[?ldr but negative energy,
Bogoliubov equations for them. Excitations with negative <0, the state is locally energetically unstable, and decays in
energies but positive norm were found for all the clustersthe presence of dissipation and quantum fluctuations. Vice
implying their local energetic instability. In addition, and versa, if the positive-norm spectrum is strictly positive, the
contrary to previously published resu(ts3,14 stating that  state is locally energetically stable. Also dynamic stability
the vortex dipole and quadrupole clusters are dynamicallgan be inferred from the Bogoliubov equations: If there ex-
stable, we find also excitations with imaginary frequenciessts an excitation for which the energy has nonvanishing
for all the cluster states. The existence of the imaginarimaginary part, the state is dynamically unstable and small
modes implies that infinitesimal perturbations may grow ex-nitial perturbations begin to grow exponentially in time.
ponentially in time, e.g., in the case of a doubly quantized The Hamiltonian(2) of the system is obtained by func-
vortex these excitations are responsible for the splitting otional differentiation of the energy functionés)
the vortex state into two singly quantized vortidd$,17.
The dynamic instability of the vortex cluster states was con- H ]y t) = EE[’;//] , (5)
firmed by integrating the Gross-Pitaevskii equation in real oY
lon was added to the Statonary state wave functon. In agliere (he conjugates of the order parameter may be re-
o LA " garded as independent ¢f Thus, the local energy minima
dition, we have used energy-minimization methods to inves:

tigate the total energy of cluster states as functions of theirrnay be found by minimizing the energy functional with the

size, and in this way cast light on their global energetic staSteepest-descent method usiH/¢(r,t) as the gradient.
bility properties. However, since the stationary vortex cluster states turn out to
At sufficiently low temperatures, the thermal gas compo-P€ not local minima of the energy, this method cannot be
nent can be neglected and’ hence, the dynamics of a hdrl.sed to f”:]\d them. |nstead, we minimize a functional
monically trapped dilute atomic BEC is determined by theF[, u]=[|(H[]-w)y(r)|?dr, which clearly has global

time-dependent Gross-PitaevsiBP) equation minima only at the stationary solutions of the GP equation,

P for which the functional vanishes. Thus, we searched for

ih—u(r,t) = I:hp(r,t), (1) stationary states using the gradient
at
A A 6]:[‘//!#] — 2 * ~

where the nonlinear Hamiltoniahkl=H[¢] containing the Sy = ((H[Y1 - )"+ 2g Refy (N (HLY]
condensate wave functiaf(r ,t) itself is given by

22 = ()N Y(r). (6)

I:|[¢] =- %V2+Vﬂ(r) +gly(r b2 (2 On the other hand, the chemical potential that minimizes the

functional is obtained ablu= [ (r)H[4]y(r)dr. As in the

Above, the external potential,(r)=3m(w?x?+w?y?+w’z?)  case of the energy minimization, the total number of particles
is used to trap the atoms having massnd the strength of N is to be held constant during the minimization procedure.
the interactions is governed by the paramejed#?a/m For simplicity and computational convenience, we con-
written in terms of thesswave scattering length. The con-  sider only the effectively two-dimensional pancake geometry
densate wave function is normalized according/tg{dr with w,> w;:= w,=w,, such that thez dependence of the
=N, whereN is the total number of atoms in the condensate condensate wave function and the lowest-energy quasiparti-

In the following we are interested in the energy of variouscle amplitudes can be taken to be of the simple factorized
vortex cluster states, and their stability. The total energy oform e 72 wherea= \V#i/mw,. This simplifies the GP and

the condensate can be calculated as Bogoliubov equations and, actually, they become essentially
X 52 g independent of the trapping frequeney. The resulting di-
E[¢] =f v (r)(— EnV2+Vtr(r)>w(r) + E|¢(r)|4 dr. mensionless GP equation is
O~ i A=y ) i~ ~
&) D) = | V2T GUEDR+ 2 [UrT),  (7)
ot 2 w;

On the other hand, the local stability of the stationary solu-
tions y(r ,t)=y(r)e'# of the GP equation can be determined where the dimensionless quantities denoted by the tilde are
from the quasiparticle spectrum given by the Bogoliubovobtained from the original ones by scaling the lengthaby

equations =%/ (me,), the time byw *, and the energy byiw,. Here
Lug(r) + gy (rug(r) = equg(r), we choose the normalization conditigifyAF)[2d¥=1, which
4 a - implies the strength of the interaction to Ge4\27Na/a,.

Log(r) + gw*z(r)uq(r) =~ vq(r) (4) Equation(7) shows that the only physical parameter we need

to fix is g, which we take to be 160 for the vortex tripole and
where L£=-(#2/2m)V2+V,(r) - u+2g|(r)|?, Ug(r) and quadrupole and 170 for the vortex dipole, except for the
vq(r) are the quasiparticle amplitudes, agds the energy of  results presented in Fig. 2, where the value 160 is used for all
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4.8F " T ' i TABLE I. Energies of the lowest elementary excitations in units
46t IS of Ziw, for the vortex dipole, tripole, and quadrupole are denoted as
a4l €, €3, and ey, respectively. The strength of the interacti@is 160
_ for the vortex dipole and 170 for the tripole and quadrupole.
g 4.2t
=
Qo 4r Re(e;)  Im(e)  Releg)  Im(ez)  Reley)  Im(ey)
38y -0.56 0 -0.69 0 ~11  £031
3.6 : ; s ] 0 +0.017 0 +0.046  —0.48 0
Ya 1.0 0 0 +0.60 -0.48 0
,
1.0 0 0.97 0 0 +0.010
FIG. 2. Energy of the vortex dipol@ashed ling tripole (solid 1.2 0 1.0 0 1.0 0

line), and quadrupolédash-dotted lineas functions of the dis-
tanced,, d3, andd,, respectively. The strength of the interactions is
‘9=160 for all the configurations.

that none of the possible stationary clusters is energetically
stable.
the cases. These parameters correspond, for example, to aThe stationary state§/} are found by minimizing the
BEC of N~9000%°Na atoms withs-wave scattering length functional F[, »] with the method of the steepest descent
a=2.75 nm trapped using the frequenoy=27>x200 Hz. by using {¢f} as initial wave functions. Relative errors
The vortex dipole shown in Fig.(4) is a pair of a vortex  F[4°, u]/(Nu?) <1072 were found for all the cluster con-
and an antivortex, whereas there is one vortex in the centdigurations, which justifies that the statég’} are, in fact,
of the condensate and two antivortices next to it in the vortexery accurate stationary states. The configurations shown in
tripole [see Fig. W)]. As shown in Fig. {c), the vortex Fig. 1 were obtained by this method.
guadrupole consists of two vortices and two antivortices op- To verify the stationarity and to investigate stability of the
posite to each other. The total angular momentum and toporortex clusters, we solved the Bogoliubov equations for the
logical charge of the vortex dipole and quadrupole vanishesstates(¢}. All the quasiparticle spectra contain a condensate
However, the vortex tripole holds, in general, a nonzero anmode with energy having magnitude smaller than®i@,,
gular momentum—even when stationary. confirming that the wave functions satisfy the stationary
Let us now consider a minimal-energy vortex tripole con-Gross-Pitaevskii equation and thus that the clusters are sta-
figuration with the cluster sizel; [see Fig. 1b)]. Due to tionary states. Furthermore, all the spectra contain at least
symmetry and energy conservation, the vortex separatiodne negative-energy anomalous mode, implying the states to
must remain constant in temporal evolution, and the threebe energetically unstable—note that this was already sug-
vortex chain can only rotate clockwise or counterclockwisegested by the fact that the stationary clusters correspond to
if it is not stationary. Ford;— 0O, the vortices coalesce into local maxima of the constrained energy curves presented in
one antivortex in the center, and the rotation of the chairFig. 2. Finally, the computations revealed that the Bogoliu-
must be in the clockwise direction seen from the positive bov equations had solutions with nonreal eigenvalues, sug-
direction. On the other hand, for increasidgsuch that the gesting that all the clusters are dynamically unstable. The
antivortices disappear in the boundary region of the conderecomputed Bogoliubov energies of the lowest modes are
sate, one is left with one vortex in the center, and countershown in Table |I.
clockwise rotation is expected. Between these extremes, The Bogoliubov equations yield the response of the sys-
there should be a critical separatidfyfor which the tripole  tem to infinitesimal perturbations. Therefore, it is convenient
cluster is stationary. This indeed turned out to be the case.to test the dynamical stability of the system also in the re-
To find good initial values for the method of the steepestgime where the perturbations are allowed to grow to be mac-
descent for the function&l[ ¢, ], we first minimize the total  roscopic, which is accomplished by adding a small perturba-
energy functional using as initisdnséatzewave functions in  tion with imaginary energy to the stationary state and by
which the vortex phases are printed by hand. In this initialsolving the dynamics from the time-dependent GP equation.
minimization process, we fix the condensate phase. The Id-or all three different clusters, the vortices in the perturbed
cations of the phase singularities, the vortices, are thus corstates were first observed not to move noticeably in time
served in the minimization process. The energies of thavhen the small perturbation had not yet grown to be macro-
BECs obtained by this method are shown as functions of thecopic. After a time interval denoted @s the vortex dipole
cluster sized,,d;, andd, in Fig. 2 for the vortex dipole, was observed to rotate clockwise or counterclockwise de-
tripole and quadrupole, respectively. From these energpending on the initial perturbation. The intervBlwas also
curves we can immediately make two important observaebserved to be larger for smaller initial perturbations. For
tions. First of all, we note that all the clusters have a criticalexample, the interval length for a vortex dipole in the present
vortex separatiord; for which the configuration energy is calculations was about 200/ when the population of the
stationary with respect to the vortex separation parantkter excited mode was approximately ten particles. The small
Thus for all the clusters we have a candidafdor a station- imaginary part of the energy of the excitation was also ob-
ary state. On the other hand, we see that all the energy curvesrved to yield a large time interval
are essentially concave, with the stationary points corre- The vortex dipole with different types of random noise
sponding to maxima of the constrained energy. This suggestsas reported to be robust under temporal evolution in Ref.
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[14] up to maximum times of the order of 1006/ How-  the steepest descent to directly minimize the GP error norm.
ever, it is not clear whether an asymmetric trap was usedas far as the authors are aware this method has not been
what was the particle number, and what was the exact formreviously used to search for stationary states of BECs. The
of the pgrturbation_s. Itis poss_ible that the perturbations imstability of the vortex dipole, tripole, and quadrupole was

posed did not excite the rotational mode or that the paramgy,gied in terms of the elementary excitations using the Bo-
eters of the system were such that the vortex dipole was, 10\ equations and macroscopic perturbations using the
indeed, dynamically stable. Our preliminary Calcwatlonspme-dependent GP equation. Both methods showed that the

show that complex modes exist in a wide range of the tota

particle number. However, the detailed study of the excitacluster configurations are both energetically and dynamically

tion spectra as a function of particle number and trap asymunstable. The detailed dependence of the stability of the sta-
metry is beyond the scope of the recent studies and is left fdfonary vortex clusters on the system parameters is left for
future research. future research which could solve the apparent contradiction
From all three types of vortex clusters in question, onlyof the results with the ones presented in R€18,14. It is
the perturbed vortex dipole state preserves its shape in theso an interesting question whether the recently discovered
temporal evolution. The vortices in the quadrupole tend td18] genuinely three-dimensional structures, namely, vortex
drift to the center of the condensate and annihilate eacbtars, parallel vortex rings, and perpendicular vortex rings,
other. Depending on the initial perturbation, one of the anti-have counterparts in interacting BECs.
vortices in the vortex tripole drifts to the edge of the BEC
and a leftover vortex dipole remains in the condensate. These The Academy of Finland is appreciated for financial sup-
inspections suggest that the vortex dipole is in some senggort through a Research Grant in Theoretical Materials Phys-
the most stable structure of these configurations. ics (No. 201710 and CSC-Scientific Computing LtdEs-
In conclusion, we have studied several stationary vortexpoo, Finland for computational resources. M.M.
clusters in pancake-shaped nonrotating BECs. The stationaacknowledges the Finnish Cultural Foundation and Jenny
states were found in very high precision using the method o&nd Antti Wihuri’s Foundation for financial support.
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