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We investigate the recently found stationary vortex cluster states in dilute atomic Bose-Einstein condensates
confined by a nonrotating trap, and also present a stationary three-vortex cluster. We find the stationary states
by minimizing directly an error norm for the stationary Gross-Pitaevskii equation, and study the dynamic and
energetic stability of the resulting states by solving the corresponding Bogoliubov equations for the elementary
excitations. The results are verified by integrating the time-dependent Gross-Pitaevskii equation. Contrary to
previously reported results, the stationary states were observed to be both energetically and dynamically
unstable. The dynamical decay rate of the clusters is typically very slow, but it should be experimentally
observable. The most promising circumstances to experimentally generate and observe these structures and
their dynamics is in weakly dissipative condensate systems, using phase-imprinting techniques.

DOI: 10.1103/PhysRevA.71.033626 PACS numberssd: 03.75.Lm, 03.75.Kk, 03.65.Ge

The quantum phase coherence of the alkali-metal atom
Bose-Einstein condensatessBECsd implies that they will
have superfluid properties when rotated. Since the conden-
sate flow is irrotational, these systems respond to external
rotation by creating vortex lines with quantized circulation.
Condensate states containing a single vortex line were first
created using Raman transition phase-imprinting methodsf1g
and by rotating the system with a laser spoonf2,3g. Later,
vortex lattices containing more than 100 vortices have been
created by the latter techniquef4,5g. Recently, also multi-
quantum vortices were created using topological phase engi-
neering methodsf6,7g. Based especially on the development
of phase-imprinting methodsf8–11g it is to be expected that
even more complicated vortex clusters can be created in the
future.

Atomic BECs are interacting systems, and their nonlinear-
ity implies the dynamics to be in general quite complicated.
Especially interesting is the dynamics of states containing
several vortex lines. Vortex dynamics is still under investiga-
tion even in noninteracting systems, in which the motion of
vortex lines is essentially determined by four factors: the
shape of the vortex line, the shape of the background con-
densate wave function, the interaction between vortex lines,
and possible external forcesf12g. In interacting systems, the
nonlinearity adds more to the complexity of the problem.
However, when all these factors balance each other in a spe-
cific way, it is possible to find stationary vortex cluster states.

Recently, it was shown that there exist a multitude of station-
ary clusters, so-calledH clusters for noninteracting trapped
wave fieldsf13g. One of these clusters, the quadrupole clus-
ter shown in Fig.1scd, was also shown to have a stationary
counterpart for interacting BECs, but in general there does
not exist a simple correspondence between stationary clus-
ters in the interacting and noninteracting cases. For example,
the recently found stationary vortex dipole state shown in
Fig. 1sad exists only in sufficiently strongly interacting sys-
tems and, hence, can be viewed as solitonic statef14g; see
also Ref.f15g. By observing the dynamics of the dipole and
quadrupole states after imposing initial perturbations on
them, it has been argued that these states are dynamically
stablef13,14g. Another important issue is the energetic sta-
bility of these states—at finite temperatures the thermal
cloud provides the condensate with a dissipative mechanism,
and the fate of stationary states is determined by energetics.

In this paper we study in detail the structure and both the
energetic and dynamic stability of the above-mentioned sta-
tionary dipole and quadrupole vortex clusters, and also
present a stationary cluster consisting of three vortices. We
search for stationary vortex cluster states using a gradient
method to directly minimize anL2 error norm for the Gross-
Pitaevskii equation. The advantage of our method compared
to energy-minimization methods is that it finds the nearest
stationary state even if it is not a local energy minimum, as
turns out to be the case for the vortex cluster states. In fact,

FIG. 1. Density profiles of a stationary vortex
dipole sad, tripole sbd, and quadrupolescd. The
separations of the outermost vortices are marked
by d2,d3, andd4 for the dipole, tripole, and quad-
rupole, respectively. The plus signs in the vortex
core denote vortices and minus signs antivortices.
The strength of the interactionsg̃ is 170 for the
vortex dipole and 160 for the tripole and
quadrupole.
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they are localmaximaof energy with respect to cluster size.
The local dynamic and energetic stability of the resulting
stationary vortex cluster states is investigated by solving the
Bogoliubov equations for them. Excitations with negative
energies but positive norm were found for all the clusters,
implying their local energetic instability. In addition, and
contrary to previously published resultsf13,14g stating that
the vortex dipole and quadrupole clusters are dynamically
stable, we find also excitations with imaginary frequencies
for all the cluster states. The existence of the imaginary
modes implies that infinitesimal perturbations may grow ex-
ponentially in time, e.g., in the case of a doubly quantized
vortex these excitations are responsible for the splitting of
the vortex state into two singly quantized vorticesf16,17g.
The dynamic instability of the vortex cluster states was con-
firmed by integrating the Gross-Pitaevskii equation in real
time for states in which a small amount of unstable excita-
tion was added to the stationary state wave function. In ad-
dition, we have used energy-minimization methods to inves-
tigate the total energy of cluster states as functions of their
size, and in this way cast light on their global energetic sta-
bility properties.

At sufficiently low temperatures, the thermal gas compo-
nent can be neglected and, hence, the dynamics of a har-
monically trapped dilute atomic BEC is determined by the
time-dependent Gross-PitaevskiisGPd equation

i"
]

]t
csr ,td = Ĥcsr ,td, s1d

where the nonlinear HamiltonianĤ=Ĥfcg containing the
condensate wave functioncsr ,td itself is given by

Ĥfcg = −
"2

2m
¹2 + Vtrsr d + gucsr ,tdu2. s2d

Above, the external potentialVtrsr d= 1
2msvx

2x2+vy
2y2+vz

2z2d
is used to trap the atoms having massm and the strength of
the interactions is governed by the parameterg=4p"2a/m
written in terms of thes-wave scattering lengtha. The con-
densate wave function is normalized according toeucu2dr
=N, whereN is the total number of atoms in the condensate.

In the following we are interested in the energy of various
vortex cluster states, and their stability. The total energy of
the condensate can be calculated as

Efcg =E Fc*sr dS−
"2

2m
¹2 + Vtrsr dDcsr d +

g

2
ucsr du4Gdr .

s3d

On the other hand, the local stability of the stationary solu-
tionscsr ,td=csr de−imt of the GP equation can be determined
from the quasiparticle spectrum given by the Bogoliubov
equations

Luqsr d + gc2sr dvqsr d = equqsr d,

Lvqsr d + gc*2sr duqsr d = − eqvqsr d, s4d

where L;−s"2/2md¹2+Vtrsr d−m+2gucsr du2, uqsr d and
vqsr d are the quasiparticle amplitudes, andeq is the energy of

the mode specified by quantum numbersq. If the spectrum
for a stationary state contains an anomalous excitation with
positive normefuuqsr du2− uvqsr du2gdr but negative energyeq

,0, the state is locally energetically unstable, and decays in
the presence of dissipation and quantum fluctuations. Vice
versa, if the positive-norm spectrum is strictly positive, the
state is locally energetically stable. Also dynamic stability
can be inferred from the Bogoliubov equations: If there ex-
ists an excitation for which the energyeq has nonvanishing
imaginary part, the state is dynamically unstable and small
initial perturbations begin to grow exponentially in time.

The Hamiltonians2d of the system is obtained by func-
tional differentiation of the energy functionals3d

Ĥfcgcsr ,td =
dEfcg
dc* , s5d

where the conjugatec* of the order parameter may be re-
garded as independent ofc. Thus, the local energy minima
may be found by minimizing the energy functional with the

steepest-descent method usingĤfcgcsr ,td as the gradient.
However, since the stationary vortex cluster states turn out to
be not local minima of the energy, this method cannot be
used to find them. Instead, we minimize a functional

Ffc ,mg=eusĤfcg−mdcsr du2dr , which clearly has global
minima only at the stationary solutions of the GP equation,
for which the functional vanishes. Thus, we searched for
stationary states using the gradient

dFfc,mg
dc* = „sĤfcg − md2 + 2g Rehc*sr dsĤfcg

− mdcsr dj…csr d. s6d

On the other hand, the chemical potential that minimizes the

functional is obtained asNm=ec*sr dĤfcgcsr ddr . As in the
case of the energy minimization, the total number of particles
N is to be held constant during the minimization procedure.

For simplicity and computational convenience, we con-
sider only the effectively two-dimensional pancake geometry
with vz@vrªvx=vy, such that thez dependence of the
condensate wave function and the lowest-energy quasiparti-
cle amplitudes can be taken to be of the simple factorized

form e−z2/s2az
2d, wherea=Î" /mvz. This simplifies the GP and

Bogoliubov equations and, actually, they become essentially
independent of the trapping frequencyvr. The resulting di-
mensionless GP equation is

i
]

] t̃
c̃sr̃, t̃ d =

1

2
F¹̃2 + r̃ 2 + g̃uc̃sr̃, t̃ du2 +

vz

vr
Gc̃sr̃, t̃ d, s7d

where the dimensionless quantities denoted by the tilde are
obtained from the original ones by scaling the length byar

=Î" / smvrd, the time byvr
−1, and the energy by"vr. Here

we choose the normalization conditioneuc̃sr̃du2dr̃=1, which
implies the strength of the interaction to beg̃=4Î2pNa/ar.
Equations7d shows that the only physical parameter we need
to fix is g̃, which we take to be 160 for the vortex tripole and
quadrupole and 170 for the vortex dipole, except for the
results presented in Fig. 2, where the value 160 is used for all
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the cases. These parameters correspond, for example, to a
BEC of N<900023Na atoms withs-wave scattering length
a=2.75 nm trapped using the frequencyvz=2p3200 Hz.

The vortex dipole shown in Fig. 1sad is a pair of a vortex
and an antivortex, whereas there is one vortex in the center
of the condensate and two antivortices next to it in the vortex
tripole fsee Fig. 1sbdg. As shown in Fig. 1scd, the vortex
quadrupole consists of two vortices and two antivortices op-
posite to each other. The total angular momentum and topo-
logical charge of the vortex dipole and quadrupole vanishes.
However, the vortex tripole holds, in general, a nonzero an-
gular momentum—even when stationary.

Let us now consider a minimal-energy vortex tripole con-
figuration with the cluster sized3 fsee Fig. 1sbdg. Due to
symmetry and energy conservation, the vortex separation
must remain constant in temporal evolution, and the three-
vortex chain can only rotate clockwise or counterclockwise
if it is not stationary. Ford3→0, the vortices coalesce into
one antivortex in the center, and the rotation of the chain
must be in the clockwise direction seen from the positivez
direction. On the other hand, for increasingd3 such that the
antivortices disappear in the boundary region of the conden-
sate, one is left with one vortex in the center, and counter-
clockwise rotation is expected. Between these extremes,
there should be a critical separationd3

c for which the tripole
cluster is stationary. This indeed turned out to be the case.

To find good initial values for the method of the steepest
descent for the functionalFfc ,mg, we first minimize the total
energy functional using as initialAnsätzewave functions in
which the vortex phases are printed by hand. In this initial
minimization process, we fix the condensate phase. The lo-
cations of the phase singularities, the vortices, are thus con-
served in the minimization process. The energies of the
BECs obtained by this method are shown as functions of the
cluster sizesd2,d3, and d4 in Fig. 2 for the vortex dipole,
tripole and quadrupole, respectively. From these energy
curves we can immediately make two important observa-
tions. First of all, we note that all the clusters have a critical
vortex separationdi

c for which the configuration energy is
stationary with respect to the vortex separation parameterdi.
Thus for all the clusters we have a candidateci

c for a station-
ary state. On the other hand, we see that all the energy curves
are essentially concave, with the stationary points corre-
sponding to maxima of the constrained energy. This suggests

that none of the possible stationary clusters is energetically
stable.

The stationary stateshci
sj are found by minimizing the

functional Ffc ,mg with the method of the steepest descent
by using hci

cj as initial wave functions. Relative errors
Ffcs,mg / sNm2d,10−21 were found for all the cluster con-
figurations, which justifies that the stateshci

sj are, in fact,
very accurate stationary states. The configurations shown in
Fig. 1 were obtained by this method.

To verify the stationarity and to investigate stability of the
vortex clusters, we solved the Bogoliubov equations for the
stateshci

sj. All the quasiparticle spectra contain a condensate
mode with energy having magnitude smaller than 10−6"vr,
confirming that the wave functions satisfy the stationary
Gross-Pitaevskii equation and thus that the clusters are sta-
tionary states. Furthermore, all the spectra contain at least
one negative-energy anomalous mode, implying the states to
be energetically unstable—note that this was already sug-
gested by the fact that the stationary clusters correspond to
local maxima of the constrained energy curves presented in
Fig. 2. Finally, the computations revealed that the Bogoliu-
bov equations had solutions with nonreal eigenvalues, sug-
gesting that all the clusters are dynamically unstable. The
computed Bogoliubov energies of the lowest modes are
shown in Table I.

The Bogoliubov equations yield the response of the sys-
tem to infinitesimal perturbations. Therefore, it is convenient
to test the dynamical stability of the system also in the re-
gime where the perturbations are allowed to grow to be mac-
roscopic, which is accomplished by adding a small perturba-
tion with imaginary energy to the stationary state and by
solving the dynamics from the time-dependent GP equation.
For all three different clusters, the vortices in the perturbed
states were first observed not to move noticeably in time
when the small perturbation had not yet grown to be macro-
scopic. After a time interval denoted asT, the vortex dipole
was observed to rotate clockwise or counterclockwise de-
pending on the initial perturbation. The intervalT was also
observed to be larger for smaller initial perturbations. For
example, the interval length for a vortex dipole in the present
calculations was about 200/vr when the population of the
excited mode was approximately ten particles. The small
imaginary part of the energy of the excitation was also ob-
served to yield a large time intervalT.

The vortex dipole with different types of random noise
was reported to be robust under temporal evolution in Ref.

FIG. 2. Energy of the vortex dipolesdashed lined, tripole ssolid
lined, and quadrupolesdash-dotted lined as functions of the dis-
tancesd2,d3, andd4, respectively. The strength of the interactions is
g̃=160 for all the configurations.

TABLE I. Energies of the lowest elementary excitations in units
of "vr for the vortex dipole, tripole, and quadrupole are denoted as
e2,e3, ande4, respectively. The strength of the interactionsg̃ is 160
for the vortex dipole and 170 for the tripole and quadrupole.

Rese2d Imse2d Rese3d Imse3d Rese4d Imse4d

−0.56 0 −0.69 0 −1.1 ±0.31

0 ±0.017 0 ±0.046 −0.48 0

1.0 0 0 ±0.60 −0.48 0

1.0 0 0.97 0 0 ±0.010

1.2 0 1.0 0 1.0 0
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f14g up to maximum times of the order of 1000/vr. How-
ever, it is not clear whether an asymmetric trap was used,
what was the particle number, and what was the exact form
of the perturbations. It is possible that the perturbations im-
posed did not excite the rotational mode or that the param-
eters of the system were such that the vortex dipole was,
indeed, dynamically stable. Our preliminary calculations
show that complex modes exist in a wide range of the total
particle number. However, the detailed study of the excita-
tion spectra as a function of particle number and trap asym-
metry is beyond the scope of the recent studies and is left for
future research.

From all three types of vortex clusters in question, only
the perturbed vortex dipole state preserves its shape in the
temporal evolution. The vortices in the quadrupole tend to
drift to the center of the condensate and annihilate each
other. Depending on the initial perturbation, one of the anti-
vortices in the vortex tripole drifts to the edge of the BEC
and a leftover vortex dipole remains in the condensate. These
inspections suggest that the vortex dipole is in some sense
the most stable structure of these configurations.

In conclusion, we have studied several stationary vortex
clusters in pancake-shaped nonrotating BECs. The stationary
states were found in very high precision using the method of

the steepest descent to directly minimize the GP error norm.
As far as the authors are aware this method has not been
previously used to search for stationary states of BECs. The
stability of the vortex dipole, tripole, and quadrupole was
studied in terms of the elementary excitations using the Bo-
goliubov equations and macroscopic perturbations using the
time-dependent GP equation. Both methods showed that the
cluster configurations are both energetically and dynamically
unstable. The detailed dependence of the stability of the sta-
tionary vortex clusters on the system parameters is left for
future research which could solve the apparent contradiction
of the results with the ones presented in Refs.f13,14g. It is
also an interesting question whether the recently discovered
f18g genuinely three-dimensional structures, namely, vortex
stars, parallel vortex rings, and perpendicular vortex rings,
have counterparts in interacting BECs.
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