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All Bloch states of the mean field of a Bose-Einstein condensate in the presence of a one-dimensional lattice
are presented in closed analytic form. The band structure is investigated by analyzing the stationary states of
the nonlinear Schrödinger, or Gross-Pitaevskii, equation for both repulsive and attractive condensates. The
appearance of swallowtails in the bands is examined and interpreted in terms of the condensates superfluid
properties. The nonlinear stability properties of the Bloch states are described and the stable regions of the
bands and swallowtails are mapped out. We find that the Kronig-Penney potential has the same properties as a
sinusoidal potential. Bose-Einstein condensates are trapped in sinusoidal optical lattices. The Kronig-Penney
potential has the advantage of being analytically tractable, unlike the sinusoidal potential, and, therefore, serves
as a good model for understanding experimental phenomena.
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I. INTRODUCTION

Periodic potentials are ubiquitous in physics, appearing in
electron transport in metalsf1g, Josephson junction arrays
f2g, nonlinear photonic crystals and waveguide arraysf3g,
and Bose-Einstein condensatessBEC’sd f4g. With the realiza-
tion of BEC’s of alkali-metal atoms in a sinusoidal optical
lattice, there has been an explosion in studies of BEC’s in
periodic potentials, both experimentally and theoretically
f5–10g. BEC’s in periodic potentials have been used to study
phase coherence of atom lasersf11,12g and matter-wave dif-
fraction f13g. Therefore, in the context of the BEC, the study
of periodic potentials provides an excellent connection be-
tween condensed matter physics and atomic physics. In con-
trast to other physical contexts, the lattice geometry and
strength, as well as the interatomic interactionsf14,15g, are
all tunable parameters for the BEC. We show that the mean-
field Bloch states of a BEC in a Kronig-Penney potential,
i.e., a lattice ofd functions, exhibit the same band structure
and stability properties as the experimental case of a sinu-
soidal potential. Unlike in the case of the sinusoidal poten-
tial, Bloch state solutions to the Kronig-Penney potential can
be described by straightforward analytic expressions. The
Kronig-Penney potential, therefore, has distinct advantages
as a model of BEC’s trapped in periodic potentials.

Specifically, we consider the steady-state response of the
mean field of a BEC to a Kronig-Penney potential using the
Bloch ansatz. The mean field is modeled by the nonlinear
Schrödinger equationsNLSd, which appears in numerous ar-
eas of physics; in the context of the BEC, it is often called
the Gross-Pitaevskii equationf16,17g. We have previously
obtained the full set of stationary solutions for a singled
function analyticallyf18–21g. Using these results, we are
able to rigorously describe the band structure. We find that
above a critical nonlinearity, swallowtails, or loops, form in
the bandsf22,23g. These swallowtails are related to super-
fluid properties of the BECf24g, as we shall explain. Stabil-
ity properties are studied numerically by time evolution of

perturbed stationary-state solutions to the NLS. It is found
that stable, as well as unstable, regimes exist for both repul-
sive and attractive BEC’s.

Experimentally, in order to create a BEC in a lattice,
alkali-metal atoms are first cooled to a quantum degenerate
regime by laser cooling and evaporation in harmonic electro-
magnetic trapsf25,26g. A sinusoidal optical lattice is then
made by the interference of two counter-propagating laser
beams, which creates an effective sinusoidal potential pro-
portional to the intensity of the beamsf5g. The potential is
due to the ac Stark shift induced by the dipole interaction
with the electromagnetic field on the atoms’ center of mass
f27g. For large detuning of the optical field from the atomic
transition, dissipative processes, such as spontaneous emis-
sion, can be minimized and the potential becomes conserva-
tive. Nonzero quasimomentum can be examined by slightly
detuning the two lasers relative to each other by a frequency
dn f10g. The resulting interference pattern is then a traveling
wave moving at the velocityv=sl /2ddn, where l is the
wavelength of the first beam. This produces a system with
quasimomentumq=mv /", wherem is the atomic mass. Af-
ter a given evolution time, the traps are switched off. The
BEC is allowed to expand and the density is then imaged.

The case of a BEC trapped in a sinusoidal potential has
been studied theoretically in great detail by a number of re-
searchersf22–24,28–44g. In addition, a subset of the solu-
tions to the Kronig-Penney potential has been foundf45–49g.
Recently, for example, Li and Smerzif49g investigated gen-
eralized Bloch states for constant phase and zero current. In
contrast, we present the full set of Bloch-wave stationary
solutions for both repulsive and attractive BEC’s. An impor-
tant point is that the sinusoidal optical lattice potential is
composed of a single Fourier component. If more counter-
propagating laser beams of different frequencies are added as
is experimentally possible, more Fourier components are in-
troduced, and the potential becomes a lattice of well sepa-
rated peaks. In the limit that the width of the these peaks
becomes much smaller than the healing length of the BEC,
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the potential effectively becomes a Kronig-Penney lattice.
However, we show that the Kronig-Penney potential serves
as a good model even for experiments with a single Fourier
component.

The article is organized as follows. In Sec. II, the Bloch-
wave solutions to the stationary NLS with a Kronig-Penney
potential are presented. The energy bands are detailed for
repulsive and attractive condensates in both the weakly and
strongly interacting regimes in Sec. III. In Sec. IV, the
changes in the density profile of the condensate are examined
as the quasimomentum changes. The stable and unstable re-
gimes of the bands are studied in detail for both repulsive
and attractive condensates in Sec. V. Finally, concluding re-
marks are made in Sec. VI.

II. NONLINEAR SCHRÖDINGER EQUATION AND
BLOCH WAVES

We consider the mean-field model of a quasi-one-
dimensionalsquasi-1Dd BEC in the presence of a Kronig-
Penney potential,

Vsxd = V0 o
j=−`

+`

dsx − jd, s1d

where length has been rescaled by the lattice spacingd and
V0 is the strength of the potential. When the transverse di-
mensions of the BEC are on the order of its healing length
and its longitudinal dimension is much longer than its trans-
verse ones, the 1D NLSf50,51g which describes the station-
ary states of the mean field of a BEC is given by

−
1

2
Cxx + guCu2C + VsxdC = mC. s2d

Here m is the eigenvalue,g characterizes the short-range
pairwise interaction, andVsxd is an external potentialf52g. In
the case where the harmonic oscillator length approaches the
s-wave scattering lengthas~g, the 1D NLS no longer mod-
els the system and a one-dimensional field theory with the
appropriate effective coupling constant must be considered
insteadf52g. Sinceas is on the scale of hundreds of ang-
stroms for typical BEC’s, this regime is not relevant to the
present study.

In Eqs. s1d and s2d, the length is scaled according to the
lattice spacingd, and the energy has been rescaled by
p2/ s2E0d, where

E0 ;
"2p2

2md2 s3d

is the kinetic energy of a particle with a wave vector equal to
that at the boundary of the first Brillouin zone, wherem is
the atomic mass. The variables in Eq.s2d are defined by

x =
1

d
x8, s4d

m =
p2

2E0
m8, s5d

g =
p2

2E0
g8, s6d

Vsxd =
p2

2E0
V8sx8/dd, s7d

where the primed variables contain the physical units of the
system. The renormalized 1D coupling isg;asvmd/",
where a harmonic oscillator confinement in the transverse
directions has been assumed with frequencyv. Both attrac-
tive and repulsive atomic interactions, i.e.,g.0 andg,0
shall be considered. The wave function or order parameter
Csx,td has the physical meaning

Csx,td = Îrsx,td expf− imt + ifsx,tdg, s8d

wherersx,td is the line density and the local superfluid ve-
locity is given byvsx,td=]fsx,td /]x.

In addition to the NLS, Eq.s2d, the normalization of the
wave function is given by

n =E
0

1

rsxddx, s9d

wheren is the number of atoms per lattice site. The boundary
conditions induced by the Kronig-Penney potential cause a
discontinuity in the derivative of the wave function across
eachd function,

lim
e→0

f]xrs j + ed − ]xrs j − edg = 4V0rs0d, s10d

where j is an integer.
A brief review is now given of the general solution to Eq.

s2d with no external potential. We have previously presented
a proof that this represents the full set of solutions for a
constant potentialf18g. Therefore, by using this complete set
of stationary state solutions to the constant potential case, we
can calculate the full set of Bloch solutions for a lattice.

The densityr and the phasef, which solve Eq.s2d for a
constant potential, are

rsxd = B +
k2b2

g
sn2sbx+ x0,kd, s11d

fsxd = aE
0

x 1

rsxd
dx, s12d

where sn is a Jacobi elliptic functionf53,54g. The density
offset B, the horizontal scalingb, the translational offsetx0,
and the elliptic parameterk are free variables. The Jacobi
elliptic functions are generalized periodic functions charac-
terized by an additional parameterkP f0,1g. In the limit that
k→0 andk→1 the Jacobi elliptic functions become circular
and hyperbolic trigonometric functions, respectively. The pe-
riod of the square of the Jacobi elliptic functions is given by
Kskdefp ,`d, where 2Kskd is a complete elliptic integral of
the first kindf53,54g.

Substituting Eqs.s11d ands12d into Eqs.s8d ands2d, with
Vsxd=0, one finds that the eigenvaluem and phase prefactor
a are given by
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m =
1

2
sb2s1 + k2d + 3Bgd, s13d

a2 = Bsk2b2/g + Bdsb2 + Bgd. s14d

The boundary conditions are used to determine the appropri-
ate values of the free variablesB, b, x0, andk.

In this article, we use the methods from our previous pa-
per f18g and apply them to a situation in which a lattice ofd
functions is present. We seek Bloch-wave solutions of the
form

Csxd = eiqxfqsxd, s15d

whereq is the wave number,"q is the quasimomentum, and
fqsxd has the same period as the lattice,fqsxd= fqsx+1d. By
substituting Eq.s15d into Eq.s8d, one finds that the densityr
must also have the same period as the lattice and that the
wave number and energy per particle can be determined
from the density profile by

q =E
0

1 a

rsxd
dx, s16d

EfCg
n

=
1

n
E

0

1

dxS1

2
uCxu2 +

g

2
uCu4 + V0dsxduCu2D . s17d

The quasimomentum is simply the phase jump across each
lattice site and corresponds to the momentum proportional to
the average superfluid velocity of the system,

q = kvsxdl = k]fsxd/]xl. s18d

We examine the quasimomentum-energy bands. The
problem, therefore, reduces to one in which the density is
symmetric around the middle of the lattice sites,x= j +0.5,
where j is an integer. Due to this symmetry, there are only
two possible values for the translational offsetx0,

x0 P H−
b

2
,Kskd −

b

2
J , s19d

whereKskd is the half period of the density. The offset forces
the density in the center of each site to be either a minimum
or a maximum of the site, depending on the sign of the
interaction.

Since it is computationally intensive to include the inte-
gral in the wave number equations16d with a root-finding
algorithm, one of the parametersb, k, or B is varied while the
other two are determined from the number equations9d and
boundary condition, Eq.s10d. The offset is then choosen de-
pending on which energy band is being examined. The wave
number and energy are evaluated from these parameters and
can then be plotted parametrically. In the following section,
we discuss the energy bands for repulsive and attractive in-
teratomic interactions.

III. NONLINEAR BAND STRUCTURE

The structure of the energy bands is strongly dependent
on the strength and sign of the atom-atom interactions,g. In

this section, the band structure is examined in all four param-
eter regimes: weakly repulsive, strongly repulsive, weakly
attractive, and strongly attractive. Note that in this paper, a
weakly interacting system is defined bygn/V0ø1 and a
strongly interacting system is defined bygn/V0@1

In Figs. 1 and 2, the energy bands for specific cases of
weak and strong repulsive interactions are presented,gn
=E0 and gn=10E0, respectively. The condensates are as-
sumed to be in a repulsive lattice,V0=E0. In Fig. 1, the
interaction strength is small and deviations from the linear
band structure are small as well. The bands are vertically
shifted higher as compared to a linear system due to the
repulsive interactions, which increase the energy of the sys-
tem. When the interaction strength is further increased the
band structure becomes quite different.Swallowtailsf30g, or
loops structures, appear in the bands, as in Fig. 2. The swal-
lowtails appear at the edge of the Brillouin zones in the odd
bands and at the center in the even bands. The width of these
swallowtails grows as the interaction strength is increased.
Swallowtails are a general feature of a nonlinear system in a
periodic potentialf29g and appear for both repulsive and at-
tractive interactions.

The presence of swallowtails is due to the hysteric behav-
ior of the superfluid condensate. A thorough discussion of

FIG. 1. Energy per particle as a function of the quasimomentum
for the first three bands of a weakly repulsive condensatesgn
=E0d in a repulsive latticesV0=E0d. The noninteracting, linear band
structure is given by the dashed curves.

FIG. 2. Energy per particle as a function of the quasimomentum
for the first three bands of a strongly repulsive condensatesgn
=10E0d in a repulsive latticesV0=E0d. Note the appearance of swal-
lowtails at the edge of the Brillouin zone in the odd bands and at the
center of the even bands.
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this topic is given by Muellerf24g ssee also references
thereind. For a completely free, noninteracting system, the
energy has a quadratic dependence on the momentum, shown
as the dashed parabolic curves in Fig. 3. Since a wave num-
ber of 2p leaves the system unchanged, the quadratic depen-
dence is repeated centered around integer multiples of 2p.
When a periodic potential is added to the system, bands in
the energy are formed, shown as the dot-dashed sinusoidal
curve in Fig. 3. These bands may be found by solving the
linear Schrödinger equation. An interacting condensate, how-
ever, is a superfluid and can therefore screen out the periodic
potential f39g. The energy band will then appear similar to
that of a free particle, shown as a solid swallowtail curve in
Fig. 3, until a critical point. At the critical momentum, deter-
mined by the average condensate sound speed, the energy
band terminates. If this velocity allows the wave number to
pass the edge of the Brillouin zone, there are then two sepa-
rate energy minima. This demands that there be a saddle
point separating them and hence the three stationary states.

For interacting systems in periodic potentials, there is a
minimum interaction strength for which the swallowtails in
the energy bands can existf24g. This can, in general, be
dependent on both the strength of the potential as well as the
band that is being discussed. For a sinusoidal lattice it was
shown that the onset of the swallowtail for the lowest band
of a repulsive condensate occurs when the interaction
strength and the potential are equal. For higher bands the
relationship no longer becomes analyticf23g. For the
Kronig-Penney lattice potential, the critical value for the on-
set of the swallowtails is not dependent on the band under
consideration or the sign of the interaction. Numerically, we
are able to determine that the onset occurs whengn=2V0.
This holds true in all cases except for the lowest band of an
attractive condensate, as will be explained later in this sec-
tion.

The energy bands are slightly different when the conden-
sate is in an attractive potential, i.e.,V0,0. At the Brillouin
zone boundary, the energy gap between bands is proportional
to V0 for a weakly interacting system. The second band then
can cross the first band. In contrast, the bands are separated
by an energyrs0dV0 for a repulsive potential. As the inter-

action strength increases, the effects of the potential become
less noticeable and the bands are no longer degenerate. Note
that repulsive and attractive sinusoidal potentials create the
same band structure. The difference in the current system
arises since there are two length scales associated with a
Kronig-Penney potential: the lattice spacing andd function
“width.”

The energy bands for an attractive condensate in a repul-
sive potential,V0=E0, with a small interaction strength,gn
=−E0, have a qualitatively similar form as for a weakly re-
pulsive condensate; see Fig. 4. Note that the attractive bands
are, however, lower in energy than the repulsive bands due to
the attractive interaction strength. A strongly attractive con-
densate, however, has several qualitative differences com-
pared to a strongly repulsive condensate.

In Fig. 5, the band structure for a large attractive interac-
tion, gn=−10E0, in a repulsive potential,V0=E0, is illus-
trated. The swallowtails in the bands are now on the upper
band at the band gaps as opposed to the lower bands at the
band gaps as they were for the repulsive case in Fig. 2. The
first energy band never has a swallowtail because the swal-

FIG. 3. Energy per particle as a function of the quasimomentum
wave number for a noninteracting system with no potentialsdashed
curved, a periodic potential and small or no interactionsdot-dashed
curved, and a periodic potential with a large interactionssolid
curved.

FIG. 4. Energy per particle as a function of the quasimomentum
wave number for the first three bands of a weakly attractive con-
densatesgn=−E0d in a repulsive latticesV0=E0d. The noninteract-
ing linear band structure is given by the dashed curves.

FIG. 5. Energy per particle as a function of the quasimomentum
wave number for the first three bands of a strongly attractive con-
densatesgn=−10E0d in a repulsive latticesV0=E0d. The first band
does not have a swallowtail. However, the second and third bands
do have swallowtails. The swallowtail in the second band appears
as a loop with an unattached curve since an attractive condensate
has a maximum width for the swallowtails, which in the case of the
second band is a width ofp.
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lowtail must be on the lower portion of the band and below
the center of the band there is no quadratic energy depen-
dence for the swallowtail to follow; see Fig. 3.

The higher bands of a strongly interacting attractive con-
densate can look quite different than those of a strongly in-
teracting repulsive condensate. For an attractive condensate,
after the initial critical value of the interaction strength is
reached, a swallowtail in the band starts to form, as in the
third band of Fig. 5. As the interaction strength increases,
another critical value is reached where the width of the swal-
lowtail in q reachesp and runs into the band edge. Eventu-
ally, the wave number that should be less than zero becomes
imaginary due to the form ofa. This represents a nonphysi-
cal solution and is contrary to the assumption that the phase
is real in Eq.s8d. Therefore, the band appears as two separate
curves: a loop and a separate line. These are both marked as
band 2 in Fig. 5. It takes on this appearance since the swal-
lowtail cannot extend lower than the minimum in the adja-
cent quadratic energy dependence. In general, thenth band
will develop this two-part structure when the swallowtail
reaches a width ofsn−1dp since the swallowtail will then
have reached the minimum of the corresponding free particle
energy. Note that this phenomenon does not occur for a re-
pulsive interaction since there is no extremum to limit the
growth of the swallowtail.

IV. DENSITY PROFILES

As density is the primary experimental observable for
BEC’s, the change in the density profile as the wave number
is varied is important. The case of weak interactions creates
similar changes in the density profile and energy band struc-
ture independent of the sign of the interaction. This is be-
cause the interaction energies are less than or of the same
magnitude as the potential. For strong interactions, the den-
sity is in general more sharply peaked for an attractive con-
densate and flatter for a repulsive condensate. However, the
general way in which the density changes is qualitatively
similar.

The density changes in the first band of the weakly attrac-
tive condensate are shown for three different quasimomenta
in Fig. 6. The solid curve, dashed curve, and dotted curve
represent the density profile forq=0, q=p /2, andq=p, re-
spectively. To understand the energy bands in terms of the
density profile, the three terms of the energy in Eq.s17d
should be discussed. The kinetic, interaction, and potential
energies per particle are given by the first, second, and third
terms of Eq.s17d. Notice that the density at the origin mono-
tonically decreases as the wave number is increased. There-
fore the potential energy will also monotonically decrease
due to thed function atx= j , where j is an integer. Because
the condensate is attractive, the interaction energy decreases
monotonically as the wave number is increased since the
density becomes more peaked. The kinetic energy monotoni-
cally increases as the wave number increases since the varia-
tions in the density become larger.

The case of the density variations associated with the first
band of a strongly interacting repulsive condensate is shown
in Fig. 7 and is qualitatively similar to that of the weakly

attractive case. The solid curve represents the density profile
for q=0. The dot-dashed curve represents the density when

FIG. 6. Changes in the density of a weakly attractive,gn=−E0,
condensate associated with different positions on the first band. The
solid curve represents the density whenq=0. The dashed curve
represents the density whenq=p /2. The dotted curve represents the
density whenq=p. The lower plot shows the corresponding posi-
tions on the first energy band.

FIG. 7. Changes in the density of a strongly repulsive conden-
sate,gn=10E0, associated with different positions on the first band.
The solid curve represents the density whenq=0. The dot-dashed
curve represents the density whenq=p at the bottom of the swal-
lowtail. The dashed curve represents the density whenq=0.46p at
the end of the swallowtail. The dotted curve represents the density
whenq=p at the top of the swallowtail. The lower plot shows the
corresponding positions on the first energy band.
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q=p at the bottom of the swallowtail. The dashed curve
represents the density whenq=0.46p at the end of the swal-
lowtail. The dotted curve represents the density whenq=p at
the top of the swallowtail. The density at the origin again
monotonically decreases as the wave number increases and
therefore the potential energy also increases monotonically.
The interaction energy increases monotonically as the band
is traversed since the density becomes more peaked. The
kinetic energy follows the same qualitative path as the total
energy. Of the three, it is therefore the kinetic energy that has
the greatest influence on the energy bands.

V. STABILITY

We proceed to study the stability of the Bloch states and
to determine the stable regions of the bands. In addition to
stable solutions, solutions that have instability times much
longer than experimental time scales can be observed in ex-
periments. Recent studies of the stability of condensates in a
periodic potential have focused on linear energetic and dy-
namic stability, also called Landau stabilityf10,23,31,47,55g.
In contrast, we consider the full response of the condensate
to stochastic perturbations. In order to numerically simulate
the NLS with a periodic potential, a ring geometry was used
with a quantized phase such thatNq=2p j , whereq is the
wave number,N is the number of sites, andj is an integer. To
ensure that the phase quantization did not effect the stability
properties, enough lattice sites were used to allow for many
rotations of the phase. The outcome of the stability analysis
was independent of the number of sites for sufficiently large
number of sites. In most cases,j =4 was found to be ad-
equate to extract the correct stability properties.

Thed functions were simulated by single-point distortions
in the potential grid. They were also implemented by using
boxes of different widths with their area normalized to create
the appropriate potential strength. The size of the boxes did
not influence the stability properties until the width became
approximately 10% of the healing length

j ; 1/Î2gn, s20d

where the length is scaled by the lattice spacingd.
The NLS was evolved using a variable-step fourth-order

Runge-Kutta algorithm in time and a filtered pseudospectral
method in space. The noise introduced into the simulations
comes from double precision round-off error. To ensure that
the form of the noise from the round-off error did not affect
the stability properties of the system, initial stochastic white
noise of various levels was introduced into the Fourier spec-
trum. For levels significantly greater than the round-off
noise, the stability times approached those from the round-
off noise. The introduction of white noise at the level in the
8th significant digit produced the same instability times as
the round-off noise, which effects the 16th significant digit.
All simulations were performed over time scales longer than
experimental lifetimes of the BEC, which are typically
1–100 seconds.

The time at which the onset of instability occurs is deter-
mined by the effective variance in the Fourier spectrum,

sstd ;Îo ffsp,td − fsp,0dg2

2o ffsp,0dg2
, s21d

where fsp,td is the Fourier component of the wave function
at momentump and timet and the sum is over the momen-
tum grid. This quantity determines how different the Fourier
spectrum is compared to the original stationary state. It van-
ishes when the two spectra are identical and approaches
unity when there are no Fourier components in common.
Whensstd reaches 0.5, i.e., when 50% of the Fourier spec-
trum is different than the original, we consider the system is
have become unstable.

Unless otherwise noted, for the stability analysis the lat-
tice spacing is given byd=1 mm, the approximate length
scale with which current optical lattices are created. In addi-
tion, all instability time scales will be given for87Rb.

A. Attractive atomic interactions

With an attractive interaction ofgn=−E0 in a repulsive
potential ofV0=E0 ssee Fig. 4d, the lowest-energy solution,
zero quasimomentum in the lowest band, has a lifetime
greater than experimental time scales. However, when even a
slight harmonic perturbation to the potential is added to the
initial time step the condensate becomes rapidly unstable.
For instance, with a harmonic frequency of 120 Hz, which is
approximately the experimental trapping frequencyf56g,
simulations show an instability at 1.5 ms. This is short com-
pared to the lifetime of a BECf56g, but still observable.

When the quasimomentum of the first band is increased,
the stability of the system becomes dependent on the effec-
tive mass. The effective massm* is defined asf57g,

m* ;
1

]2E/]q2 . s22d

The physical meaning of the effective mass is the mass that
the particle would appear to have if the potential was not
being consideredf1g. The sign of the effective mass can be
transferred to the interaction strength, changing an attractive
interaction to an effective repulsive interaction. Therefore,
when the quasimomentum increases and the energy band be-
comes concave down,m* ,0, the system enters a regime of
stability. The system remains stable even in the presence of
the harmonic perturbation.

For zero quasimomentum in the second band, the system
immediately develops temporally periodic variations in the
phase and density. There is an additional instability, occur-
ring on the order of 5 ms, that destroys the periodicity of the
system. One might expect that this part of the band be stable
since there is a negative effective mass but the oscillations
due to the two density peaks per lattice site cause the system
to be unstable. The oscillations, although periodic in time,
create a larger underlying instability.

The stability properties of a strongly attractive condensate
are similar to those of a weakly attractive condensate. The
stability of the first band is determined by the effective mass
while higher bands always go unstable. Therefore, for an
attractive condensate, the system of Bloch waves is stable

SEAMAN, CARR, AND HOLLAND PHYSICAL REVIEW A 71, 033622s2005d

033622-6



only if there is one density peak per lattice site and the ef-
fective mass is negative.

B. Repulsive atomic interactions

Like an attractive condensate, a repulsive condensate only
has stable regions on the first band. For a weakly interacting
repulsive condensate,gn=E0 andV0=E0, the effective mass
in the first band is positive betweenq=0 andq=p /2. The
effective mass becomes negative for larger quasimomentum,
since the energy becomes concave down. Hence the system
becomes unstable. For a wave number ofq=9p /16 the in-
stability time is 10 ms. This decreases to 2 ms forq=p. In
this regime, with negative effective mass, the actual ground
state is an envelope soliton that can spread over many lattice
sites. These types of states are called gap solitons
f9,28,37,58g and only occur in interacting systems. A gap
soliton cannot be described by the Bloch ansatz. Figure 8
presents the unstable evolution of the weakly repulsive con-
densate in the first band with a wave number ofq=p in
Fourier space. Notice that the instabilities arise from pertur-
bations around the primary Fourier components of the wave
function. In Fig. 9, the effective variances is plotted as a
function of evolution time. The system becomes unstable

around 2 ms. The second band becomes unstable in 0.5 ms
for q=0 and in 6 ms forq=p. Therefore, the system is stable
in the first band with positive effective mass and unstable
elsewhere. This is consistent with the effects that the effec-
tive mass has on stability in systems described by the lowest
band DNLS. In a work by Fallaniet al. f10g, the instability
time of a condensate in a lattice was measured by using an rf
shield to remove the hottest atoms produced by the heating
created in the sample by instability. The loss rate, equal to
the inverse of the lifetime, should then be qualitatively simi-
lar to the instability time. Our calculations are consistent
with these experimentally observed loss rates of a BEC in an
optical latticef10g.

Due to the presence of the swallowtails, the strongly in-
teracting system provides different stability regimes. For a
repulsive condensate withgn=10E0, in a repulsive lattice
with V0=E0, the main section of the first band, as well as the
lower portion of the swallowtail, has positive effective mass
and remains stable. The upper portion of the swallowtail, as
discussed in Sec. III, is an energy maximum and is not ex-
pected to remain stable. Our simulations find that the insta-
bility time of the upper portion of the swallowtail is approxi-
mately 0.2 ms, independent of the actual quasimomentum.

The size of the lattice spacing can influence the time
scales for which the system becomes unstable. In Fig. 10, the
instability time is presented as a function of the lattice spac-
ing for a repulsive condensate,gn=Ea, in a repulsive lattice,
V0=Ea, with a wave number of q=p, where Ea
;"2p2/2ms1 mmd2.

There is a minimum instability time as the lattice spacing
varies that occurs when the lattice spacing is approximately
twice the healing lengthj. The instability time is given by
half of the interaction strength time,gn/". When the lattice
spacing is much larger than the healing length, the density
becomes extremely flat except at thed functions, where the
density deformations take the form of pinned dark solitons.
Since the lattice spacing is large, the dark solitons are far
apart and are effectively noninteracting pinned solitons. Dark
solitons are known to be robustly stablef32,59g. Therefore,
for a lattice spacing much larger than the healing length the
system becomes stable. For lattice spacing smaller than
about twice the healing length, the condensate does not dis-

FIG. 8. Logarithm of the Fourier spectrum during the time evo-
lution. Time is in units of" /E0 and distance in units of the lattice
spacing.

FIG. 9. The time evolution of the effective variance of the mo-
mentum density,s. Time is in units of" /E0.

FIG. 10. The instability time as the lattice spacing is varied.
Time is in units of" /gn and distance in units of the healing length,
j=d/Î2gn. Diamonds represent results of numerical simulations
while the curve is a guide to the eye.
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tinguish between the separated functions and sees closer to a
constant potential. In this regime, the kinetic energy becomes
much greater than the interaction energy and potential energy
since variations in the density occur on the length scale of
d/2, which is less than the healing length. The system be-
comes effectively free and noninteracting and, therefore, ap-
proaches stability.

VI. DISCUSSION AND CONCLUSIONS

The full set of Bloch wave stationary states of a Bose-
Einstein condensate in a Kronig-Penney lattice potential,
with period commensurate with the lattice, has been pre-
sented analytically for both repulsive and attractive interac-
tions. The quasimomentum energy bands were found to ex-
hibit a cusp at the critical interaction strengthgn=2V0, where
g is the interatomic interaction strength,n is the number of
atoms per well, andV0 is the lattice potential strength. For
larger interaction strengths, swallowtails form in the bands.
These swallowtails have the same qualitative form as for a
sinusoidal potental and exhibit the same stability properties.

Both attractive and repulsive condensates were found to
be dynamically stable only in the first band and when the
effective interaction, sgnsm*dg, was positive. Also, even in
the first band, the upper edges of the swallowtails were al-
ways unstable. Therefore, for an attractive condensate, the
only stable Bloch states exist in the first band between the
quasimomentum wherem* becomes negative andq=p. A
repulsive condensate is only stable in the first band fromq
=0 to the quasimomentum wherem* becomes negative.
Higher bands are always unstable, for both attractive and
repulsive condensates. When solutions became unstable, our
numerical studies consistently observed that the instabilities
originated around the primary Fourier components of the
wave function. This is in agreement with the formal proof of
the instability of constant-phase Bloch-wave solutions by
Bronski et al. f32g. The instability time was found to be a
function of the lattice constant. If thed functions are spaced
either much smaller than or much larger than the healing
length of the condensate, the solutions had instability times
longer than the lifetime of the BEC. Thus experiments could
access formally unstable sections of the energy bands and, by
controlling the ratio of the healing length to the lattice con-
stant, directly observe the dynamics of instability. The results
of our stability analysis are consistent with the experimental
work performed by Fallaniet al. f10g, in which the loss rate,
the inverse of the lifetime, was determined by removing the
hottest atoms with an rf shield.

An interesting phenomenon to note is that for a repulsive
condensate when a swallowtail is present, the entire energy
band is concave up and, hence, the effective mass is always
positive. This is in contrast to a weakly repulsive condensate,
when the concavity of the energy band changes, creating a
region of negative effective mass. Therefore, there is a maxi-
mum interaction strength for which gap solitons
f3,9,28,37,58g can be formed since they require a negative
effective mass. For the Kronig-Penney potential the maxi-
mum interaction energy is given bygn=2V0, the strength at
which swallowtails appear.

It should be noted that the solutions given in the paper
map onto both the linear Schrödinger equation and discrete
nonlinear SchrödingersDNLSd equation limits if the proper
procedure is followed. In the limit that

lim
g,k→0

k2/g → A/b2, s23d

the linear dispersion relation for the linear Schrödinger equa-
tion is recovered. In the limit that

V0

gn
@ 1, s24d

one obtains the DNLS equation

i]tc j = e jc j + Jjsc j+1 + c j−1d + Ujuc ju2c j , s25d

wheree j, Jj, andUj are obtained via the Wannier formalism
f41g.

Stationary solutions to the NLS with a Kronig-Penney
potential need not take the form of Bloch states. Solutions
with a period which is an integer multiple of the lattice pe-
riod have been shown to exist for the sinusoidal potential
f55g and are expected also to be present for the Kronig-
Penney potential. Envelope solutions, such as gap solitons,
also play an important role in other systems modelled by the
NLS and have been observed in BEC’sf9g. The analytic
methods which we have described here are equally appli-
cable to these solution types and will form the subject of
future studyf60g.
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