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Nonlinear band structure in Bose-Einstein condensates: Nonlinear Schrédinger equation
with a Kronig-Penney potential
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All Bloch states of the mean field of a Bose-Einstein condensate in the presence of a one-dimensional lattice
are presented in closed analytic form. The band structure is investigated by analyzing the stationary states of
the nonlinear Schrédinger, or Gross-Pitaevskii, equation for both repulsive and attractive condensates. The
appearance of swallowtails in the bands is examined and interpreted in terms of the condensates superfluid
properties. The nonlinear stability properties of the Bloch states are described and the stable regions of the
bands and swallowtails are mapped out. We find that the Kronig-Penney potential has the same properties as a
sinusoidal potential. Bose-Einstein condensates are trapped in sinusoidal optical lattices. The Kronig-Penney
potential has the advantage of being analytically tractable, unlike the sinusoidal potential, and, therefore, serves
as a good model for understanding experimental phenomena.
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[. INTRODUCTION perturbed stationary-state solutions to the NLS. It is found
that stable, as well as unstable, regimes exist for both repul-
Periodic potentials are ubiquitous in physics, appearing irsive and attractive BEC's.
electron transport in metalsl], Josephson junction arrays Experimentally, in order to create a BEC in a lattice,
[2], nonlinear photonic crystals and waveguide arrf8k  alkali-metal atoms are first cooled to a quantum degenerate
and Bose-Einstein condensate&C's) [4]. With the realiza- regime by laser cooling and evaporation in harmonic electro-
tion of BEC'’s of alkali-metal atoms in a sinusoidal optical magnetic trapg25,2¢. A sinusoidal optical lattice is then
lattice, there has been an explosion in studies of BEC's inmade by the interference of two counter-propagating laser
periodic potentials, both experimentally and theoreticallypbeams, which creates an effective sinusoidal potential pro-
[5-10. BEC's in periodic potentials have been used to studyportional to the intensity of the beani§]. The potential is
phase coherence of atom lasgt%,12 and matter-wave dif- due to the ac Stark shift induced by the dipole interaction
fraction[13]. Therefore, in the context of the BEC, the study with the electromagnetic field on the atoms’ center of mass
of periodic potentials provides an excellent connection bef27]. For large detuning of the optical field from the atomic
tween condensed matter physics and atomic physics. In coransition, dissipative processes, such as spontaneous emis-
trast to other physical contexts, the lattice geometry andgion, can be minimized and the potential becomes conserva-
strength, as well as the interatomic interactiph4,15, are  tive. Nonzero quasimomentum can be examined by slightly
all tunable parameters for the BEC. We show that the meardetuning the two lasers relative to each other by a frequency
field Bloch states of a BEC in a Kronig-Penney potential, sv [10]. The resulting interference pattern is then a traveling
i.e., a lattice ofé functions, exhibit the same band structure wave moving at the velocity =(\/2)dv, where \ is the
and stability properties as the experimental case of a sinuvavelength of the first beam. This produces a system with
soidal potential. Unlike in the case of the sinusoidal potenquasimomentung=muv/#, wherem is the atomic mass. Af-
tial, Bloch state solutions to the Kronig-Penney potential carter a given evolution time, the traps are switched off. The
be described by straightforward analytic expressions. Th8EC is allowed to expand and the density is then imaged.
Kronig-Penney potential, therefore, has distinct advantages The case of a BEC trapped in a sinusoidal potential has
as a model of BEC's trapped in periodic potentials. been studied theoretically in great detail by a number of re-
Specifically, we consider the steady-state response of theearcher§22-24,28—44 In addition, a subset of the solu-
mean field of a BEC to a Kronig-Penney potential using thetions to the Kronig-Penney potential has been foutts-49.
Bloch ansatz. The mean field is modeled by the nonlineaRecently, for example, Li and Smef#9] investigated gen-
Schrédinger equatiofNLS), which appears in numerous ar- eralized Bloch states for constant phase and zero current. In
eas of physics; in the context of the BEC, it is often calledcontrast, we present the full set of Bloch-wave stationary
the Gross-Pitaevskii equatidii6,17. We have previously solutions for both repulsive and attractive BEC’s. An impor-
obtained the full set of stationary solutions for a sindgle tant point is that the sinusoidal optical lattice potential is
function analytically[18-21. Using these results, we are composed of a single Fourier component. If more counter-
able to rigorously describe the band structure. We find thapropagating laser beams of different frequencies are added as
above a critical nonlinearity, swallowtails, or loops, form in is experimentally possible, more Fourier components are in-
the bandg22,23. These swallowtails are related to super-troduced, and the potential becomes a lattice of well sepa-
fluid properties of the BEC24], as we shall explain. Stabil- rated peaks. In the limit that the width of the these peaks
ity properties are studied numerically by time evolution of becomes much smaller than the healing length of the BEC,
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the potential effectively becomes a Kronig-Penney lattice. e )
However, we show that the Kronig-Penney potential serves g= Eg ; (6)
as a good model even for experiments with a single Fourier 0
component. 2

The article is organized as follows. In Sec. I, the Bloch- V(x) = =—V'(x'/d), (7)
wave solutions to the stationary NLS with a Kronig-Penney 2By

potential are presented. The energy bands are detailed :‘%{/

) . , here the primed variables contain the physical units of the
repulsive and attractive condensates in both the weakly and stem. The renormalized 1D coupling &s=a.wmd/%

strongly interacting regimes in Sec. lll. In Sec. IV, the \ynare 5 harmonic oscillator confinement in the transverse
changes in the density profile of the condensate are examingfh o tions has been assumed with frequemcyBoth attrac-

as the quasimomentum changes. The stable and unstable Re and repulsive atomic interactions, i.g3>0 andg<0

gimes of the bands are studied in detail for both repulsiveyn,) he considered. The wave function or order parameter
and attractive condensates in Sec. V. Finally, concluding "y (x,t) has the physical meaning

marks are made in Sec. VI.

W(x,t) = Vp(x,t) exd—iut +ig(x,1)], (8
Il. NONLINEAR SCHRODINGER EQUATION AND wherep(x,t) is the line density and the local superfluid ve-

BLOCH WAVES locity is given byv(x,t)=add(x,t)/ ox.

We consider the mean-field model of a quasi_one_ In addition to the NLS, EQ(Z), the normalization of the
dimensional(quasi-10 BEC in the presence of a Kronig- wave function is given by
Penney potential, 1

nzj p(x)dx, (9

V() =V X 8(x-J), (1) °

j=— wheren is the number of atoms per lattice site. The boundary

where length has been rescaled by the lattice spatiand cpnditio_ns_ inc_iuced by t_he _Kronig-Penney potent_ial cause a
.discontinuity in the derivative of the wave function across

V, is the strength of the potential. When the transverse di- .

mensions of the BEC are on the order of its healing IengtﬁeaChMunCt'on’

and its longitudinal dimension is much longer than its trans- lim[dyp(j + €) — dyp(j — €)1 = 4Vgp(0), (10)
verse ones, the 1D NL0,51 which describes the station- e—0

ary states of the mean field of a BEC is given by wherej is an integer.

1 A brief review is now given of the general solution to Eq.
- Eq,xx"' g2V + V(X)W = uW. (2 (2) with no external potential. We have previously presented
a proof that this represents the full set of solutions for a
Here u is the eigenvalueg characterizes the short-range constant potentidl18]. Therefore, by using this complete set
pairwise interaction, and(x) is an external potentigb2]. In of stationary state solutions to the constant potential case, we
the case where the harmonic oscillator length approaches ti&n calculate the full set of Bloch solutions for a lattice.
s-wave scattering lengthsg, the 1D NLS no longer mod- ~ The densityp and the phase, which solve Eq(2) for a
els the system and a one-dimensional field theory with th€onstant potential, are
appropriate effective coupling constant must be considered K2h?
instead[52]. Sincea, is on the scale of hundreds of ang- p(X) = B+ ——srf(bx+ Xo,k), (11
stroms for typical BEC's, this regime is not relevant to the 9
present study. .
In Egs. (1) and(2), the length is scaled according to the B(X) = af idx (12
lattice spacingd, and the energy has been rescaled by X)

o p(
21 (2E,), where ) o . .
wheresn is a Jacobi elliptic functio53,54]. The density

_ h2m? offset B, the horizontal scalindp, the translational offset,,

" omd and the elliptic parametek are free variables. The Jacobi
) o ) ) elliptic functions are generalized periodic functions charac-
is the kinetic energy of a partl_cle Wlt_h awave vector eq_ual toterized by an additional parametee [0, 1]. In the limit that
that at the boundary of the first Brillouin zone, whetels . o andk— 1 the Jacobi elliptic functions become circular

Eo )

the atomic mass. The variables in Eg) are defined by and hyperbolic trigonometric functions, respectively. The pe-
1 riod of the square of the Jacobi elliptic functions is given by
X= ax’, (4) K(k) e[ 7,2), where K(k) is a complete elliptic integral of

the first kind[53,54.
Substituting Eqs(11) and(12) into Egs.(8) and(2), with

- 7’2 / (5) V(x)=0, one finds that the eigenvalyeand phase prefactor
2E, « are given by
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w= %(bz(l +k?) + 3Bg), (13)

o?=B(k?b?/g + B)(b? + Bg). (14)

The boundary conditions are used to determine the appropri-
ate values of the free variabl& b, x,, andk.

In this article, we use the methods from our previous pa-
per[18] and apply them to a situation in which a lattice ®f
functions is present. We seek Bloch-wave solutions of the

-1 0.5 0 0.5 1
form q (units of 7/d)

E/n (units of EO)

W(x) = €¥Fy(x), (15 _ . .

) ) . FIG. 1. Energy per particle as a function of the quasimomentum
whereq is the wave number,q is the quasimomentum, and for the first three bands of a weakly repulsive condensgre
fy(x) has the same period as the lattigx)=f,(x+1). By = =E) in a repulsive lattic§Vy=E). The noninteracting, linear band
substituting Eq(15) into Eq.(8), one finds that the densify  structure is given by the dashed curves.
must also have the same period as the lattice and that the . . ) )
wave number and energy per partide can be determine&]ls section, the band structure is examined in all four param-

from the density profile by eter regimes: weakly repulsive, strongly repulsive, weakly
L attractive, and strongly attractive. Note that in this paper, a
:J 2 ix (16) weakly interacting system is defined lgn/Vo<1 and a
o p(X) strongly interacting system is defined gg/Vy>1

In Figs. 1 and 2, the energy bands for specific cases of
1 weak and strong repulsive interactions are presenged,
@:lf dx(}|llix|2+9|l[/|4+vo§(x)|\1r|2>_ (179  =Eo and gn=10E,, respectively. The condensates are as-
n NJo 2 2 sumed to be in a repulsive lattic¥y=E,. In Fig. 1, the
interaction strength is small and deviations from the linear
nd structure are small as well. The bands are vertically
ifted higher as compared to a linear system due to the
repulsive interactions, which increase the energy of the sys-
q={(v(X) =(Ip(X)/xX). (18)  tem. When the interaction strength is further increased the
band structure becomes quite differe®ivallowtails[30], or
We examine the quasimomentum-energy bands. Thgops structures, appear in the bands, as in Fig. 2. The swal-
problem, therefore, reduces to one in which the density isowtails appear at the edge of the Brillouin zones in the odd
symmetric around the middle of the lattice sites;j+0.5,  pands and at the center in the even bands. The width of these
wherej is an integer. Due to this symmetry, there are onlyswallowtails grows as the interaction strength is increased.
two possible values for the translational offsgt Swallowtails are a general feature of a nonlinear system in a

b b periodic potentia[29] and appear for both repulsive and at-
Xo € E’K(k) 5[

The quasimomentum is simply the phase jump across eal
lattice site and corresponds to the momentum proportional tQ,
the average superfluid velocity of the system,

(19) tractive interactions.
The presence of swallowtails is due to the hysteric behav-
whereK(K) is the half period of the density. The offset forces 10 of the superfluid condensate. A thorough discussion of
the density in the center of each site to be either a minimum

. . . . 20 T T T
or a maximum of the site, depending on the sign of the
interaction.
Since it is computationally intensive to include the inte- 5

gral in the wave number equatidii6) with a root-finding
algorithm, one of the parametdsgk, or B is varied while the
other two are determined from the number equat@nand

boundary condition, Eq.10). The offset is then choosen de- _X
pending on which energy band is being examined. The wave

number and energy are evaluated from these parameters and Q
can then be plotted parametrically. In the following section, : '

5 1
! : ~HOT] -1 0.5 0 0.5 1
we discuss the energy bands for repulsive and attractive in- q (units of 7/d)
teratomic interactions.

E/n (units of Eo)

—_
<o

FIG. 2. Energy per particle as a function of the quasimomentum
Il. NONLINEAR BAND STRUCTURE for the first three bands of a strongly repulsive condenggte
=10Ep) in a repulsive latticéVo=E,). Note the appearance of swal-
The structure of the energy bands is strongly dependenbéwtails at the edge of the Brillouin zone in the odd bands and at the
on the strength and sign of the atom-atom interactign$)  center of the even bands.
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FIG. 3. Energy per particle as a function of the quasimomentum FIG. 4. Energy per particle as a function of the quasimomentum
wave number for a noninteracting system with no poteritlashed  wave number for the first three bands of a weakly attractive con-
curve, a periodic potential and small or no interacti@ot-dashed densategn=-E,) in a repulsive latticdVy=Ep). The noninteract-
curve, and a periodic potential with a large interactiésolid ing linear band structure is given by the dashed curves.
curve.

action strength increases, the effects of the potential become
this topic is given by Muellef24] (see also references less noticeable and the bands are no longer degenerate. Note
therein. For a completely free, noninteracting system, thethat repulsive and attractive sinusoidal potentials create the
energy has a quadratic dependence on the momentum, showame band structure. The difference in the current system
as the dashed parabolic curves in Fig. 3. Since a wave nunafises since there are two length scales associated with a
ber of 2rr leaves the system unchanged, the quadratic deper&ronig-Penney potential: the lattice spacing aféunction
dence is repeated centered around integer multiplesrof 2 “width.”
When a periodic potential is added to the system, bands in The energy bands for an attractive condensate in a repul-
the energy are formed, shown as the dot-dashed sinusoidsive potential Vo=E,, with a small interaction strengtlyn
curve in Fig. 3. These bands may be found by solving thee—E,, have a qualitatively similar form as for a weakly re-
linear Schrodinger equation. An interacting condensate, howpulsive condensate; see Fig. 4. Note that the attractive bands
ever, is a superfluid and can therefore screen out the periodare, however, lower in energy than the repulsive bands due to
potential[39]. The energy band will then appear similar to the attractive interaction strength. A strongly attractive con-
that of a free particle, shown as a solid swallowtail curve indensate, however, has several qualitative differences com-
Fig. 3, until a critical point. At the critical momentum, deter- pared to a strongly repulsive condensate.
mined by the average condensate sound speed, the energyln Fig. 5, the band structure for a large attractive interac-
band terminates. If this velocity allows the wave number totion, gn=-10E,, in a repulsive potentialVy=E,, is illus-
pass the edge of the Brillouin zone, there are then two sepdrated. The swallowtails in the bands are now on the upper
rate energy minima. This demands that there be a saddleand at the band gaps as opposed to the lower bands at the
point separating them and hence the three stationary stateband gaps as they were for the repulsive case in Fig. 2. The

For interacting systems in periodic potentials, there is dirst energy band never has a swallowtail because the swal-
minimum interaction strength for which the swallowtails in

the energy bands can exig24]. This can, in general, be 5 ' ' "Band 3
dependent on both the strength of the potential as well as the ></__
band that is being discussed. For a sinusoidal lattice it was ~

shown that the onset of the swallowtail for the lowest band £ 5

of a repulsive condensate occurs when the interaction ; >Band2
strength and the potential are equal. For higher bands the s

relationship no longer becomes analytie3]. For the £ -15F 1
Kronig-Penney lattice potential, the critical value for the on- ™ Band 1

set of the swallowtails is not dependent on the band under

consideration or the sign of the interaction. Numerically, we -25_1 _0'5 (') 0'5 ]

are able to determine that the onset occurs when2V,,.
This holds true in all cases except for the lowest band of an
attractive condensate, as will be explained later in this sec-

tion. _ _ wave number for the first three bands of a strongly attractive con-

The energy bands are slightly different when the condengensateggn=-10€,) in a repulsive latticeVy=E,). The first band
sate is in an attractive potential, i.%,<0. At the Brillouin  does not have a swallowtail. However, the second and third bands
zone boundary, the energy gap between bands is proportion@ have swallowtails. The swallowtail in the second band appears
to V, for a weakly interacting system. The second band thefas a loop with an unattached curve since an attractive condensate
can cross the first band. In contrast, the bands are separateas a maximum width for the swallowtails, which in the case of the
by an energyp(0)V, for a repulsive potential. As the inter- second band is a width af.

q (units of t/d)

FIG. 5. Energy per particle as a function of the quasimomentum
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lowtail must be on the lower portion of the band and below 3 y T
the center of the band there is no quadratic energy depen-
dence for the swallowtail to follow; see Fig. 3.

The higher bands of a strongly interacting attractive con-
densate can look quite different than those of a strongly in-
teracting repulsive condensate. For an attractive condensate,
after the initial critical value of the interaction strength is
reached, a swallowtall in the band starts to form, as in the
third band of Fig. 5. As the interaction strength increases,
another critical value is reached where the width of the swal- ! -
lowtail in q reachesr and runs into the band edge. Eventu- 0 0.5 1
ally, the wave number that should be less than zero becomes x (units of d)
imaginary due to the form a&. This represents a nonphysi- 0.3 . . .
cal solution and is contrary to the assumption that the phase
is real in Eq.(8). Therefore, the band appears as two separate
curves: a loop and a separate line. These are both marked as
band 2 in Fig. 5. It takes on this appearance since the swal- 0 ()
lowtail cannot extend lower than the minimum in the adja- 0.1 ! !
cent quadratic energy dependence. In generalnptheband -1 0.5 0 0.5
will develop this two-part structure when the swallowtall () q (units of 7/d)
reaches a width ofn—1)7 since the swallowtail will then
have reached the minimum of the corresponding free particlg |
energy. Note that this phenomenon does not occur for a reg,
pulsive interaction since there is no extremum to limit the
growth of the swallowtail.

Density (units of 1/d)

=

E/n (units of EO)
o
Casl

FIG. 6. Changes in the density of a weakly attractiyes—E,,
ndensate associated with different positions on the first band. The
lid curve represents the density whenO. The dashed curve
represents the density whgr 7/2. The dotted curve represents the
density whenq=. The lower plot shows the corresponding posi-
tions on the first energy band.

IV. DENSITY PROFILES
attractive case. The solid curve represents the density profile

As density is the primary experimental observable forfor g=0. The dot-dashed curve represents the density when
BEC's, the change in the density profile as the wave number

is varied is important. The case of weak interactions creates 2
similar changes in the density profile and energy band struc-
ture independent of the sign of the interaction. This is be-
cause the interaction energies are less than or of the same
magnitude as the potential. For strong interactions, the den-
sity is in general more sharply peaked for an attractive con-
densate and flatter for a repulsive condensate. However, the
general way in which the density changes is qualitatively
similar.

The density changes in the first band of the weakly attrac- :
tive condensate are shown for three different quasimomenta 0~ ' '
in Fig. 6. The solid curve, dashed curve, and dotted curve
represent the density profile fg=0, q==/2, andq=, re-
spectively. To understand the energy bands in terms of the
density profile, the three terms of the energy in E&j7)
should be discussed. The kinetic, interaction, and potential
energies per particle are given by the first, second, and third
terms of Eq(17). Notice that the density at the origin mono-
tonically decreases as the wave number is increased. There-
fore the potential energy will also monotonically decrease
due to thes function atx=j, wherej is an integer. Because
the condensate is attractive, the interaction energy decreasesg g 7. Changes in the density of a strongly repulsive conden-

monotonically as the wave number is increased since thgye 4n=10g,, associated with different positions on the first band.
density becomes more peaked. The kinetic energy monotonihe sojig curve represents the density wigrd. The dot-dashed
cally increases as the wave number increases since the vari@pye represents the density when r at the bottom of the swal-
tions in the density become larger. lowtail. The dashed curve represents the density wived.46r at

The case of the density variations associated with the firshe end of the swallowtail. The dotted curve represents the density
band of a strongly interacting repulsive condensate is showiyhenq= at the top of the swallowtail. The lower plot shows the
in Fig. 7 and is qualitatively similar to that of the weakly corresponding positions on the first energy band.

Density (units of 1/d)

E/n (units of EO)
w1 O

1
-0.5 0 0.5 1
q (units of ©/d)

'
—_
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g=m at the bottom of the swallowtail. The dashed curve S [f(p.t) - f(p,0)]2
represents the density wher0.46m at the end of the swal- o(t) = i i (21
lowtail. The dotted curve represents the density wiyenr at 2> [f(p,0)]?

the top of the swallowtail. The density at the origin again _
monotonically decreases as the wave number increases andieref(p,t) is the Fourier component of the wave function
therefore the potential energy also increases monotonicallgt momentunp and timet and the sum is over the momen-
The interaction energy increases monotonically as the ban@m grid. This quantity determines how different the Fourier
is traversed since the density becomes more peaked. TK®ectrum is compared to the original stationary state. It van-
kinetic energy follows the same qualitative path as the totalshes when the two spectra are identical and approaches

energy. Of the three, it is therefore the kinetic energy that hagnity when there are no Fourier components in common.
the greatest influence on the energy bands. When U(t) reaches 0.5, i.e., when 50% of the Fourier spec-

trum is different than the original, we consider the system is
have become unstable.
Unless otherwise noted, for the stability analysis the lat-
We proceed to study the stability of the Bloch states andice spacing is given byl=1 um, the approximate length
stable solutions, solutions that have instability times mucHion, all instability time scales will be given féfRb.
longer than experimental time scales can be observed in ex-

V. STABILITY

periments. Recent studies of the stapility of condensates ina A. Attractive atomic interactions
periodic potential have focused on linear energetic and dy- o . _ . Isi
namic stability, also called Landau stabilft}0,23,31,47,5p With an attractive interaction ofn=-E, in a repulsive

In contrast, we consider the full response of the condensafitential ofVo=E, (see Fig. 4, the lowest-energy solution,

to stochastic perturbations. In order to numerically simulat¢€"© duasimomentum in the lowest band, has a lifetime
the NLS with a periodic potential, a ring geometry was use reater than experimental time scales. However, when even a

with a quantized phase such tHat=27j, whereq is the slight harmonic perturbation to the potential is added to the
wave number is the number of sites arj’ds an integer. To initial time step the condensate becomes rapidly unstable.
ensure that the phase quantization did not effect the stabilitffO" Instance, with a harmonic frequency of 120 Hz, which is
properties, enough lattice sites were used to allow for manfPProximately the experimental trapping frequer{&g,

rotations of the phase. The outcome of the stability analysisimulations show an instability at 1.5 ms. This is short com-

was independent of the number of sites for sufficiently largd®@red to the lifetime of a BEC56], but still observable.
number of sites. In most casess4 was found to be ad- When the quasimomentum of the first band is increased,

equate to extract the correct stability properties. the stability of the system becomes dependent on the effec-

The 5 functions were simulated by single-point distortions fivé mass. The effective mass is defined a$57],
in the potential grid. They were also implemented by using X 1
boxes of different widths with their area normalized to create m = eI (22)
the appropriate potential strength. The size of the boxes did q

not influence the stability properties until the width becameThe physical meaning of the effective mass is the mass that

approximately 10% of the healing length the particle would appear to have if the potential was not
— being considere@il]. The sign of the effective mass can be
&= 1/2gn, (20) transferred to the interaction strength, changing an attractive
interaction to an effective repulsive interaction. Therefore,
where the length is scaled by the lattice spaaing when the quasimomentum increases and the energy band be-

The NLS was evolved using a variable-step fourth-ordercomes concave dowm’ <0, the system enters a regime of
Runge-Kutta algorithm in time and a filtered pseudospectrastability. The system remains stable even in the presence of
method in space. The noise introduced into the simulationthe harmonic perturbation.
comes from double precision round-off error. To ensure that For zero quasimomentum in the second band, the system
the form of the noise from the round-off error did not affect immediately develops temporally periodic variations in the
the stability properties of the system, initial stochastic whitephase and density. There is an additional instability, occur-
noise of various levels was introduced into the Fourier specring on the order of 5 ms, that destroys the periodicity of the
trum. For levels significantly greater than the round-off system. One might expect that this part of the band be stable
noise, the stability times approached those from the roundsince there is a negative effective mass but the oscillations
off noise. The introduction of white noise at the level in the due to the two density peaks per lattice site cause the system
8th significant digit produced the same instability times aso be unstable. The oscillations, although periodic in time,
the round-off noise, which effects the 16th significant digit.create a larger underlying instability.

All simulations were performed over time scales longer than The stability properties of a strongly attractive condensate
experimental lifetimes of the BEC, which are typically are similar to those of a weakly attractive condensate. The
1-100 seconds. stability of the first band is determined by the effective mass

The time at which the onset of instability occurs is deter-while higher bands always go unstable. Therefore, for an

mined by the effective variance in the Fourier spectrum, attractive condensate, the system of Bloch waves is stable
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q (units of 21t/d) pacing ( 3
ithm of th . ing the fi FIG. 10. The instability time as the lattice spacing is varied.

.FIG' 8 ng?m mo the Fourier _spectrum dur_lng the time EVO" Time is in units off/gn and distance in units of the healing length,
lution. Time is in units ofi/Ey and distance in units of the lattice §:d/\s“2—gn. Diamonds represent results of numerical simulations

spacing. while the curve is a guide to the eye.

only if there is one density peak per lattice site and the efaround 2 ms. The second band becomes unstable in 0.5 ms
fective mass is negative. for =0 and in 6 ms foq=1. Therefore, the system is stable
in the first band with positive effective mass and unstable
elsewhere. This is consistent with the effects that the effec-
B. Repulsive atomic interactions tive mass has on stability in systems described by the lowest

Like an attractive condensate, a repulsive condensate ong@nd DNLS. In a work by Fallaret al.[10], the instability
has stable regions on the first band. For a weakly interactingme of a condensate in a lattice was measured by using an rf
repulsive condensatgn=E, andV,=E,, the effective mass shield to remove the hottest atoms produced by the heating
in the first band is positive betwearr0 andq==/2. The created in the sample by instability. The loss rate, equal to
effective mass becomes negative for larger quasimomenturﬁhe inverse of the lifetime, should then be qualitatively simi-
since the energy becomes concave down. Hence the Systéﬁ{ to the |nStab||Ity time. Our calculations are consistent
becomes unstable. For a wave numbquigﬂ-/ 16 the in- with these experimentally observed loss rates of a BEC in an
stability time is 10 ms. This decreases to 2 msders. In  Optical lattice[10].
this regime, with negative effective mass, the actual ground Due to the presence of the swallowtails, the strongly in-
state is an envelope soliton that can spread over many lattideracting system provides different stability regimes. For a
sites. These types of states are called gap solitonkpulsive condensate withn=10E,, in a repulsive lattice
[9,28,37,58 and 0n|y occur in interacting systems. A gap with VOZEo, the main section of the first band, as well as the
soliton cannot be described by the Bloch ansatz. Figure #wer portion of the swallowtail, has positive effective mass
presents the unstable evolution of the weakly repulsive conand remains stable. The upper portion of the swallowtail, as
densate in the first band with a wave numbergef= in  discussed in Sec. lll, is an energy maximum and is not ex-
Fourier space. Notice that the instabilities arise from perturpected to remain stable. Our simulations find that the insta-
bations around the primary Fourier components of the wav@lility time of the upper portion of the swallowtail is approxi-
function. In Fig. 9, the effective variance is plotted as a Mately 0.2 ms, independent of the actual quasimomentum.
function of evolution time. The system becomes unstable The size of the lattice spacing can influence the time

scales for which the system becomes unstable. In Fig. 10, the
1 . . instability time is presented as a function of the lattice spac-
ing for a repulsive condensatgn=E,, in a repulsive lattice,
Vo=E, with a wave number ofqg=m, where E,
=#27212m(1 wm)?2.

There is a minimum instability time as the lattice spacing
varies that occurs when the lattice spacing is approximately
twice the healing lengtly. The instability time is given by
half of the interaction strength timgn/#. When the lattice
spacing is much larger than the healing length, the density
becomes extremely flat except at thdunctions, where the
density deformations take the form of pinned dark solitons.
Since the lattice spacing is large, the dark solitons are far

0 0 1 > 3 apart and are effectively noninteracting pinned solitons. Dark
t (units of md?/F) solitons are known to be robustly stah@2,59. Therefore,
for a lattice spacing much larger than the healing length the

FIG. 9. The time evolution of the effective variance of the mo- system becomes stable. For lattice spacing smaller than

mentum densityg. Time is in units offi/E,. about twice the healing length, the condensate does not dis-

Variance ¢
o
(9]
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tinguish between the separatéunctions and sees closerto a  An interesting phenomenon to note is that for a repulsive

constant potential. In this regime, the kinetic energy becomesondensate when a swallowtail is present, the entire energy

much greater than the interaction energy and potential enerdyand is concave up and, hence, the effective mass is always

since variations in the density occur on the length scale opositive. This is in contrast to a weakly repulsive condensate,

d/2, which is less than the healing length. The system bewhen the concavity of the energy band changes, creating a

comes effectively free and noninteracting and, therefore, apregion of negative effective mass. Therefore, there is a maxi-

proaches stability. mum interaction strength for which gap solitons
[3,9,28,37,58 can be formed since they require a negative
effective mass. For the Kronig-Penney potential the maxi-

VI. DISCUSSION AND CONCLUSIONS mum interaction energy is given lgn=2V,, the strength at
. which swallowtails appear.
The full set of Bloch wave stationary states of a Bose- It should be noted that the solutions given in the paper

Einstein condensate in a Kronig-Penney lattice potential . o . !
with period commensurate with the lattice, has been premaﬁ. onto bort_]h"th.e linear Schrodm_ger I(.quau.?nhand discrete
sented analytically for both repulsive and attractive interact Oninear S.C rodingefDNLS) gqgatlon Imits it the proper
tions. The quasimomentum energy bands were found to e)grocedure is followed. In the fimit that
hibit a cusp at the critical interaction strenggh=2V,, where lim k%g— AIb?, (23
g is the interatomic interaction strength,is the number of gk=0
atoms per well, and/ is the lattice potential strength. For 4 jinear dispersion relation for the linear Schrodinger equa-
larger mteractlon' strengths, swallowtalls_ form in the bandsyig is recovered. In the limit that
These swallowtails have the same qualitative form as for a
sinusoidal potental and exhibit the same stability properties. Vo > 1 (24)
Both attractive and repulsive condensates were found to gn ’
be dynamically stable only in the first band and when the ) .
effective interaction, sgmv)g, was positive. Also, even in One obtains the DNLS equation
the first band, the upper edges of the swallowtails were al- iy = € + I (en + di-0) + Uy |52, (25)
ways unstable. Therefore, for an attractive condensate, the
only stable Bloch states exist in the first band between th&heree;, J;, andU; are obtained via the Wannier formalism
quasimomentum wheren becomes negative ang=w. A
repulsive condensate is only stable in the first band fppm ~ Stationary solutions to the NLS with a Kronig-Penney
=0 to the quasimomentum whema becomes negative. Potential need not take the form of Bloch states. Solutions
Higher bands are always unstable, for both attractive an@ith a period which is an integer multiple of the lattice pe-
repulsive condensates. When solutions became unstable, di@d have been shown to exist for the sinusoidal potential
numerical studies consistently observed that the instabilitieE>5] and are expected also to be present for the Kronig-
originated around the primary Fourier components of thé®€nney potential. Envelope solutions, such as gap solitons,
wave function. This is in agreement with the formal proof of @lso play an important role in other systems modelled by the
the instability of constant-phase Bloch-wave solutions byNLS and have been observed in BEQY]. The analytic
Bronski et al. [32]. The instability time was found to be a methods which we have described here are equally appli-
function of the lattice constant. If théfunctions are spaced cable to these solution types and will form the subject of
either much smaller than or much larger than the healinduture study{60].
length of the condensate, the solutions had instability times
longer than the lifetime of the BEC. Thus experiments could
access formally unstable sections of the energy bands and, by We acknowledge helpful discussions with John Cooper,
controlling the ratio of the healing length to the lattice con-Chris Pethick, Ana Maria Rey, Augusto Smerzi, and Eugene
stant, directly observe the dynamics of instability. The resultZaremba. Support is acknowledged for B.T.S. from the Na-
of our stability analysis are consistent with the experimentational Science Foundation and for L.D.C. and M.J.H. from
work performed by Fallangt al.[10], in which the loss rate, the U.S. Department of Energy , Office of Basic Energy Sci-
the inverse of the lifetime, was determined by removing theences via the Chemical Sciences, Geosciences and Bio-
hottest atoms with an rf shield. sciences Division.
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