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Molecule formation as a diagnostic tool for second-order correlations of ultracold gases
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We calculate the momentum distribution and the second-order correlation function in momentum space,
g@(p,p’,t) for molecular dimers that are coherently formed from an ultracold atomic gas by photoassociation
or a Feshbach resonance. We investigate using perturbation theory how the quantum statistics of the molecules
depend on the initial state of the atoms by considering three different initial states: a Bose-Einstein condensate
(BEC), a normal Fermi gas of ultracold atoms, and a BCS-type superfluid Fermi gas. The cases of strong and
weak coupling to the molecular field are discussed. It is found that BEC and BCS states give rise to an
essentially coherent molecular field with a momentum distribution determined by the zero-point motion in the
confining potential. On the other hand, a normal Fermi gas and the unpaired atoms in the BCS state give rise
to a molecular field with a broad momentum distribution and thermal number statistics. It is shown that the
first-order correlations of the molecules can be used to measure second-order correlations of the initial atomic
state.
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[. INTRODUCTION rect detection of Cooper pairing requires the measurement of
rsecond-order or higher atomic correlation functions. Several

The basis of some of the most exciting developments i hers h d and imol d sch hat al
ultracold atomic physics in recent years has been the use rqesearc ers have proposed and implemented schemes that al-

Feshbach resonanckis?] and photoassociatidis,4] to tune  |OW one to measure higher-order correlati¢ns,25-29 but
the strength of the interactions between atoms as well as {5/0S€ methods are still very difficult to realize experimen-
create ultracold diatomic molecules starting from an ultratally- _ . .
cold atomic gas of bosons or fermiofs5-10. The avail- Whlle_ the measurement of higher-order correlations is
ability of tunable interactions has made possible the study ofnallenging already for bosons, the theory of these correla-
many model systems of condensed-matter theory in a veryfons has been established a long time ago by Glauber for
controlled fashion[11-16. In particular, the BEC-BCS hotong 30-32. For fermions however, despite some efforts

crossover, which predicts a continuous transition from a BC$33] @ satisfactory coherendbeoryis still missing. .
superfluid of atomic fermions to a molecular BEC as the To circumvent these difficulties we suggested in an earlier
: ; publication [34], guided by the analogy with three-wave

mixing in classical optics, to make use of the nonlinear cou-
mentally and theoreticallj16—21] pling of atoms to a molecular field by means of a two-photon
A difficulty in the studies of tHe BEC-BCS crossover has Raman transition or a Feshbach resonance. The nonlinearity

been that they necessitate the measurement of higher-ord%frthe coupling links first-order correlations of the molecules

correlations of the atomic system. While the momentum dislo second-order correlations of the atoms. Furthermore, the
olecules are always Bosonic so that the well-known coher-

tribution of a gas of bosons provides a clear signature of th&" e -
presence of a Bose-Einstein condensate, the Cooper pairi;fglce theory for Bosonic fields can be used to characterize

between Fermionic atoms in a BCS state hardly changes t8€M- Considering a simplified model with only one molecu-
momentum distribution or spatial profile as compared to d&" mode, it was found that the molecules created that way
normal Fermi gas. This poses a significant experimentafan indeed be used as a diagnostic tool for second-order
Cha”enge’ since the primary techniques for probing the Statéorrelanons of the Or|g|na| atomic field. Natura”y, due to the
of an ultracold gas are either optical absorption or phaséestriction to a single mode, the information one can gain
contrast imaging, which directly measure the spatial densit@bout the atomic state is very limited.
or momentum distribution following ballistic expansion of  In this paper we extend the previous model to take into
the gas. In the strongly interacting regime very close to theaccount all modes of the molecular field, the hope being that
Feshbach resonance, evidence for Fermionic superfluiditin doing so, more detailed information about the atomic state
was obtained by projecting the atom pairs onto a moleculacan be obtained. Specifically, we calculate the momentum
state by a rapid sweep through the resondi@el9. More  distribution of the molecules and the normalized second-
direct evidence of the gap in the excitation spectra due torder correlation functiorg'® for different momentum states
pairing was obtained by rf spectroscof82] and by mea- of the molecules using perturbation theory. We consider the
surements of the collective excitation frequendi23,24. limiting cases of strong or weak atom molecule coupling as
Still, the detection of Fermionic superfluidity in the compared to the relevant atomic energies. The molecule for-
weakly interacting BCS regime remains a challenge. The dimation from a Bose-Einstein condenséBEC) serves as a

attracted a considerable amount of attention, both exper
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reference system. There we can rather easily study the coltere ¢, =k?/2M is the kinetic energy of an atom of malsk
tributions to the molecular signal from the condensed fracand momentunk and E,=¢,/2+v is the energy of a mol-
tion as well as from thermal and quantum fluctuations abovecule with momentunk and detuning parameter c,, and
the condensate. The cases of a normal Fermi gas and a B&S, are Fermionic annihilation and creation operators for
superfluid Fermi system are then compared with it. We Shomlain waves in quantization volumé with spin o. Uy(K)
that the mole(_:ule form_at|on from a_normal Fermi gas an L\-12f dxerik*U, (x) is the Fourier transform of the trap-
from the unpaired fraction of atoms in a BCS state has Verjing potentiall, (r) andU,=4ma/M is the background scat-

similar properties to thpse of the molecules formed from th ering strengthg is the effective coupling constant of the
noncondensed atoms in the BEC case. The state of the mgz ) -« +he molecules. and we use units kit 1 through-

lecular field formed_ fro_m _the pairing field _in the BCS state |+ \nve assume that the trapping potential and background
on the other hand is similar to that resulting from the CON-g.oyering are relevant only for the preparation of the initial
densed fraction in the BEC case. The qualitative mformatlorgtate before the coupling to the molecules is switched on at

gaingd by the analqgies with the BEC case _help us gain &g ang can be neglected in the calculation of the dynamics.
physical understanding of the molecule formation in the BCSl'his is justified ifgyN> Ugn, o wheren is the atomic den-
case where direct calculations are difficult and not nearly 38jty, N the number of atom's Ia . are the frequencies of

’ ’ |

tra?iparent. . ed as foll In Sec. II introd U(r) that is assumed to be harmonic. In experiments, the

the n:zggpﬁgﬁiﬁ?nﬁggissj t(()) g\(lav;éri?)e ?ﬁé C\éngpetéoaijocniipteraction between the atoms can effectively be switched off
.— by ramping the magnetic field to a position where the scat-

molecule system. In secs. llI-V we present the calculat|on§ering length is zero

of momentum distribution and second factorial moment of Regarding the st.rength of the coupling constgntwo

the molecular field for a BEC, a normal Fermi gas, and a N
9 cases are possiblgyN can be much larger or much smaller

BCS-type state, respectively, considering the cases of stror} an the characteristic kinetic energies involved. For fermi-

and weak coupling in each case. Details of the calculations .
) . . ons the terms broad and narrow resonance have been coined
are given in Appendixes A and B.

for the two cases, respectively, and we will use these for
II. MODEL bosons as well. Both situations can be realized experimen-
) o tally, and they give rise to different effects. We examine both
. The general_procedure 'that we have.m mind is t.h.e fo"°""1imiting cases and use the suggestive notafigp<gyN and
ing: The_ atomic sample |s_prepared in some initial sta_lteEkin>g\N for the two cases, wher,,, denotes the charac-
whose hlgher-_order correlations we S(_aek to analyze. At UMeristic kinetic energy of the atoms. It corresponds to zero
t=0 the coupling to a molecular field is switched on. While ot motion for condensate atoms, to the thermal energy,
the initial atomic state corresponds to a trapped gas, We ag° T for noncondensed thermal bosons, and to the Fermi en-
sume that the molecules can be treated as free particles. Thy qy for a degenerate Fermi gas.
is justified if the atomic trapping potential does not affect the °g, . anaiysis is based on the assumption that first-order
molecules, or if the interaction time between the atoms an%me-dependent perturbation theory is applicable. This re-
molecules is much less than the oscillation period in the trapquires that the state of the atoms does not change signifi-
Finally, the_ state of the_molecullar field is analyzed by Stan'cantly and consequently, only a small fraction of the atoms
dard technlques,he.gr.l, t|me-of-fl|ghrf mea;]surements. are converted into molecules. It is reasonable to assume that
We consider the three cases where the atoms are BosonGis i trye for short interaction times or weak enough cou-
and initially form a BEC, or consist of two species of ultra- pjing - Apart from making the system tractable by analytic
co!d fermions(labeled byo= T.’l)’ with or W'thOUt SUPEr-  methods there is also a deeper reason why the coupling
ﬂ.u'd component. In the followmg we descrl_be exphqtly the should be weak: Since we ultimately wish to get information
situation for fermions, the Bosonic case being obtained fromyy, ¢ the atomic state, it should not be modified too much by
it by omitting the spin indices and by replacing the Fermiy,e measurement itself, i.e., the coupling to the molecular
field operators by Bosonic field operators. field. Our treatment therefore follows the same spirit as
Since we are primarily interested in hpw much can _peGIauber’s original theory of photon detection, where it is
learned about the second-order correlations of the initialgqmed that the light-matter coupling is weak enough that

atomic cloud from the final molecular state, we "eeP theihe detector photocurrent can be calculated using Fermi’'s
physics of the atoms themselves as well as the coupling t

) ) ) olden rule.
the molecular field as simple as possible. The couple
fermion-molecule system can be described by the Hamil-
tonian[2,35,34 Il BEC
A At A ata 1/2 Iy . . o . .
H=2 e, bt 2 Eda +V " X Uk, We consider first the case where the initial atomic state is
ko K kikao a BEC in a spherically symmetric harmonic trap. We note
At oA Ug . At oA oA that all of our results can readily be extended to anisotropic
= KD)Ci,oCeyo * 2V, = Cr,+q1Ck -1 Oyl iy 1 traps by an appropriate rescaling of the coordinates in the
a.kyka direction of the trap axes. We assume that the temperature is
+ g(z éaeq/zméq/z—m + H.c.) (v  well below the BEC transition temperature and that the in-
q.k teractions between the atoms are not too strong. Then the
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atomic system is described by the field operator x 10°

R A R 10\ 1 10°

P(X) = xo(X)C + SY(X), (2 \ 9
where 8 )

o
15 x2 e :
XolX) = \/ J 1- o 3 g | .
SWR'?'F R'sz <4

is the condensate wave function in the Thomas-Fermi ap- » \
proximation anct is the annihilation operator for an atom in .
the condensat®r=(15Na/ a,)°ayscis the Thomas-Fermi 0 .

radius,N the number of atomsa is their scattering length, 0 0.05 p/(3n2ny)'® 01

and a,. is the oscillator length of the atoms in the trap. In

accordance with the assumption of low temperatures and FIG. 1. (Color onlin@ Momentum distribution of molecules
weak interactions we do not distinguish between the totaformed from a BEC(red dashed linewith a=0.1a,,, and T
number of atoms and the number of atoms in the condensate0.1T. and a BCS-type state witk-a=0.5 anda,s=5k:"(0) (blue

The fluctuationséfp(x) are small and those with wavelengths solid line), both forN=1C atoms. The BCS curve has been scaled
much less thaRre will be treated in the local-density ap- up by a factor of 20 for easier comparison. The inset shows the

proximation while those with wavelengths comparable tonoise contribution for BEQred dashedand BCS(blue) case. The
R can be neglectefB7—39 latter is simply the momentum distribution of molecules formed
TF —o4.

from a normal Fermi gas. The local-density approximation treat-
A. Broad resonance,Ey;, <gVN ment of the noise contribution in the BEC case is not valid for
) ) o momenta smaller thans2 ¢ (indicated by the red dotted line in the
We are interested in the momentum distribution of thejnsey. Note that the coherent contribution is larger than the noise
molecules contribution by five orders of magnitude in the BEC case and three
n(p.t) = <é.;(t)ép(t)> 4) orders of magnitude in the BCS case.

which for short timed can be calculated using perturbation (\s"ﬁgt)2<1 because for such times the initial atomic state
theory: We expanai(p,t) in a Taylor series arount=0 and  can be assumed to remain undepleted.

make use of the Heisenberg equations of motion, In the local-density approximation the expectation value
A (86T (x) 8¢, (x)) for the number of fluctuations with momen-
98,(t) . P P .
i P = gE Cor2+kCpr2—k» (5) tum p at x can be evaluated by assuming that at eacte
k

have a homogenous BEC with densitgx) and using the
and similarly for . Here we have neglected the kinetic Bogoliubov transformation to quasiparticle operatarigx).
energy term, a step that is legitimate for a broad resonancgne finds

since the interaction energgyN is much larger than the <5ég(x)56p(x)>:v§(x)+[u§(x)+v§(x)](&g(x)&p(x)>,
difference in the kinetic energies between the atoms and mol- 8
ecules. Consequently for short enough times,(gyN)™, (8
energy conservation can be violated in the formation of molwith Bogoliubov amplitudes
ecules in a fashion similar to the Raman-Nath regime of [ 5 T
atomic diffraction. P U,
To lowest nonvanishing order igt we find W2(x) _1lj2m +1 )
oAt A P2l H ’
Neecp(P.b) = (gH% X <C;/2—klC;/2+lep/2+kZCp/2—k2> ) P )
kqka 2
P
+0[(gH], (6) . alom? n(x)Uo
X)==| ——=——-1], 10
where the atomic operators are the initigE0) operators. U”( ) 2l &) ] (10

This expression can be evaluated by making use of the d%{nd uasiparticle eneraies
composition of the atomic field operat@) and the local- q P 9

density approximation for the part describing the fluctua- € (x) = \Je§+zepn(x)uo_ (11

tions. The details of this calculation are given in Appendix A. . . o

To first nonvanishing order in the fluctuations we find '(Ij'_he.gugsmartlcle distribution is given by a thermal Bose
istribution,

neecp(Pst) = (@)2N(N - DV[3(p)|?

1
i (@ (X)) = = (12)
+(gh?an J dvx<5e;<x>aep(x>>. (7) PO B = bonkaT

The momentum distributiort7) is illustrated in Fig. 1.
From this expression we see that our approach is justified iThe contribution from the condensate is a collective effect,
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as indicated by its quadratic scaling with the atom number. Ithan the atom-molecule interaction energy. This implies that
clearly dominates over the incoherent contribution from theeven for very short interaction timess (gyN)™%, the phase
fluctuations, which is proportional to the number of atoms.of the atoms and molecules can evolve significarfy,t

The momentum width of the contribution from the conden->1. Consequently, only transitions between atom pairs and
sate is roughly z/Rrr which is much narrower than the molecules that conserve energy can occur. In this case, it is
contribution from the fluctuations, whose momentum distri-convenient to go over to the interaction representation,
bution has a typical width of 1 where¢=(8man) 2 is the

healing length. Using the Thomas-Fermi wave function for Cp(t) — e“fptép(t), ay(t) — e“Eptép(t), (16)
the condensate, E(B), we can calculate the condensate con-
tribution in closed form as where for notational convenience, we will denote the inter-
_ 2 . action picture operators by the same symbols as the Heisen-
Neecy(P,t) = 22NN 1)6(90 (6 SmpRzTF _ 6.cospRre berg operators used in the previous subsection.
: 4(pRre) (PRrf) PRre The equations of motion in the interaction picture,
2
-2 sinpR ) + O(N). (13 Ja.(t _ R R
" i_a;t(’_) =02 &G oDy Eppy,  (17)
k

The terms of ordeN are corrections due to the noncon-

densgd part. L can be approximately integrated by treating the atomic op-
Using the same approximation scheme we can Calculatgrators as constants, leading to

the second-order correlation,

Oontiipaty = (@&} (t)a] ()8, (1), (1) » (0= 2 Ay~ Gz o Depalosc (19
vl P2ty = :
n(pl1tl)n(p21t2)
If we neglect fluctuations we find where we have introducéd
2 .
(2 . — M — E -2 ela)t _ 1
Isecp(Pti; P2 ty) = =1-—+0O(N™). Aot =ali . 19
(N=4)I'N! N (w,t) gleriw+n (19)
(15

The condition under which this step is justified is ana-
For N— < this is very close to 1, which is characteristic of a lyzed below. As in the broad resonance case we can insert
coherent state. This result implies that the number fluctuathis expression im(p,t). The calculation of the resulting
tions of the molecules are very nearly Poissonian. The flucintegrals over expectation values of the atomic state is, how-
tuations lead to a larger value g, making the molecular ever, considerably subtler than in the broad resonance case
field partially coherent, but their effect is only of order and is presented in detail in Appendix B. In the limatt>1

O(N™). we find
almost coherent is of course clear: The condensed fraction of VAME? | ([ —
doVo| 78(v— w)

the atomic field operator is dominant. In expectation values Neeca(P,) =N(N - 1)?%4
the operatorg and&' take on values/N-n, with a number

n<N depending on the position of the operator in the expec- 1 o 2 —
tation value. When dividing by the normalizing expectation +iP )f dZxo(Vp74 +Mw - pYMw2z)
valuesn(p,t), YN-n can be replaced byN with accuracy !
O(N™Y) and hence andé&t can be replaced byN indepen-

dent of their position in the expectation value. The field op-

erator can thus be replaced by @number field y(x) rve
—VNxq(x), the mean field, which explains the almost perfect +NS 5_39 MR,
factorization of the correlation functions. p2aMy g2
Another way to understand this is to consider the single- 4
mode BEC statd ¥ (0))=(&'¢")N'2]0)/yN!. The coupling to X f _X<5{;T(X)5ep(x)>_ (20)
the molecular field will transform this state intoP(t)) v
~ (aa'+Beteh)N2|0)/ VNI, where a< 1. This leads to a bi-
nomial distribution for the number of molecules. In the limit
thatN— o the Binomial distribution goes over to the Poisson
distribution. We denote the function in Eq19) by A because it has properties
similar to the usuab function. Confusion with the local gap param-
eter introduced below, which we also denote by cannot arise
For a narrow resonance, the typical kinetic energies asstecause the first always has energies as its argument while the latter
ciated with the atoms and moleculds,,, are much larger has positions as its argument.

The physical reason why the resulting molecular field is
0

V- w -

2

XF(O(V/pZM +Mo +pVMw2)

In the second term in Eq20) we have defined

B. Narrow resonance,Ej, >g\N
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FIG. 2. (Color onling In the narrow resonance case for mo- ki 3. (Color onling Momentum distribution of molecules
mentap much larger than the momentum width of the condensatg,rmed from a BEC ofN=1CP atoms with scattering lengtia
one atom is taken out of the condensate and the other atom is take—r0.0Jaosc at T=0.1T, for a narrow resonance.
from the noncondensed part and has momentum clopdrt@rder
for momentum conservation to be satisfied. Since the total energy of . .
the atoms has to match the total energy of the molecule, only mol- " the opposite casfp|>27/Rrr the coherent contribu-

ecules with momenta v can be formed for each detuning tion is essentially zero and we need only consider the inco-
herent contribution. Requiring that the number of molecules
Ay (L with momentump be much smaller than the number of non-
™ ~ ([ 2 2 onio condensed atoms with that same momentum leads to
%0 =\ 352 f dZxo(Vp?+p'? - 2pp'2)?
TFY -1 v 1
, t<N1l-— . 23
_ O(1), |p-p'|<27/Re 21) J gRF (M p)¥2 29
O, |p_p,|>27T/RT|:.

IV. NORMAL FERMI GAS

QS b.eforte,Tt:e.ctontrltl)L'Jtp[R f]rcpn: tthe gonE(zeg)sgte is clearly For a normal Fermi ga@NFG) we restrict ourselves to the
t_omlrflnﬂ.] € |n|_teg(;a f'n f ed_lrs erng n q)' 'Stﬁmp?[r' fcase of zero temperatur€=0. For temperature§ well be-
lonatto the artnpl u ed (;rtlr; Ig]g ?n atom paerW| CENEr Ol 15w the Fermi temperatur€g, the corrections to our results
mass momentunp and fotal Kin€elic energy. becaus€xo 56 of order(T/Tg)? or higher, and do not lead to any quali-
drops to zero on a scale ofi2R;r this amplitude is essen- tatively new effects

. . 2 .

t'al.llyhzegzc'foﬁ; tZeT;:n RT”F] Oé(ijzi))ﬂiﬁ?ﬂiﬁ;iés from molecules Again, we treat the gas in the local density approximation

ong where the atoms locally fill a Fermi sea

that are formed from an atom in the condensate and a non-

condensed atom. Since the atom momentenr/ Rrg in the INFe) = [ &ljo) (24)
condensate is very small compared to the momenjpjm Ik|<ke(x)

~1/¢ of a noncondensed atom, the molecular momentum is | . ) )
essentially due to the noncondensed atom. On the other han@fith local Fermi momentunkg(x) and|0) being the atomic
energy conservation implies that+p?/4M~p2/2M if p  vacuum. The Fermi momentum is related to the local chemi-
> 27/ Rrg. Consequently for a given detuning molecules ~ Cal potential
with momenta in a shell of ra}dlus\sB/IV and width 27/Rqg ioe¥) = o= Uy(X) (25)
are formed from one atom in the condensate and another
atom taken from the noncondensed part with a momenturRy means of
that lies in a sphere in momentum space argumdth radius K2(x)  [3mn(x)]22
27/Re. Momentum and energy conservation are illustrated Hioc(X) = S .

in Fig. 2. Figure 3 shows a typical example for the momen- 2M 2M
tum distribution.

, I he criterion for th Here, uo=(37ny)?%/(2M) is the chemical potential of the
E_quat_lt_)n (20) allows us to extract the criterion for the trapped gas, and, is the density at the center of the trap for
appllcabl_llty of our approximation scheme, i.e., of trealing gach of the spin states. The Hartree-Fock mean field has been
the atﬂ:mclst%te as be|ng_fund<ep2)|e}eRd. Th(; cfoher:ent ContrlbH’eglected because it gives rise only to minor corrections and
tion wi r:)ny ehnonzero I|p'|b\ TIRTE ag ortl esedmo— does not lead to a qualitatively new behavior. The density
menta the incoherent contribution can be neglected, as Wgsyription of the trapped gas is given by the Thomas-Fermi

have seen. Requiring that the number of molecules remai

r'l*%sult[40],

much smaller then the initial number of atoms leads to the

(26)

condition ) = ﬂﬁ{l _r_z]?”z @7
RE7*LT RE]
V“‘Ng< V. (22)  whereR:=(48N)Y%a,. is the Thomas-Fermi radius for fer-
Rre(Mv) mions.
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(a) numerically and is shown in the inset in Fig. 1.
Similarly, we can calculate the local value giP’ at posi-
tion x, from Eq.(14),

gl(gc):(plvtl;pbtz):{Fb(plyx)Fb(vax)_f dkn(p,/2

+Kk)n(p/2 =k)n(py - p/2 - k)

- f dkn(p, + K = p2/2)n(p,/2 +K)n(p4/2

-k)+ J dkn(p, — p1/2 +k)n(p4/2

—kpn(py/2 - kz)} / Fu(P1,X)Fp(p2,X).
FIG. 4. (a) lllustration of the number of atom pairs with center

of mass momenturg. Atoms in the intersection of the two shifted (30
Fermi spheres can be transformed into a molecule of momeqgtum

if energy conservation plays no rolg) Density of atom pairs with

center of mass momentui and total kinetic energy Wv. In  This result simplifies considerably far,=p,=p,

addition to lying in the intersection of the two Fermi spheres the

atoms also have to lie on a shell of radiugMev in order to satisfy

i 1
energy conservation. gf(fé(p,x,t) =g2(p,t;p,t,x) = 2(1 - ) (31
Fo(P.X)

loc

Using the same perturbation methods as described in the
previous section for bosons, we can calculate the mMomentuni. . the case of the BEC, the time dependence in

distribution of the molecules and their correlation functlong(z)(pyx,t) cancels at this level of approximation. However,

(2 i 3
igng i?]rea dz :103?'[(;/ a(t)r;dﬂ_f](;r (?er;ﬁrergvéazz%?;gieabgglsﬁ;o (rfrigu'atin contrast to the case of a BEC there is some dependence on

then integrating the result over the volume of the gas the momentum left . .
' The origin of the factor of two ig®@(p,x,t) is the fol-
lowing: The two molecules that are being detected in the

A. Broad resonanceEy;, <g\N measurement of® can be formed from four atoms in two
To deal with the case of fermions, we modify H6) by different ways and the two possibilities both give the same
reintroducing the spin of the atoms. The integral over thecontribution. Equatiort31) indicates that the statistics of the

relative momentum of the atom pairs can be carried out exMolecules are super-Poissonian, similarly to a thermal field.
By the following argument we can convince ourselves

actly to give _
ytog that not only the second-order correlations look thermal, but
(g)?Fy(p.x), |p| =< 2ke(x) that the entire counting statistics of each momentum mode is

Mnrep(PX,t) = 0 Ip| > 2ke(x) 8  thermal. Each molecular mode characterized by the momen-

tum p is coupled to a particular subset of atom pairs selected
where we have introduced the local density of atom pairdy momentum conservation. In the short-time limit, each
with center of mass momentum atom pair with center-of-mass momentgpnis converted into

3 3 a molecule in the corresponding molecular mode indepen-
Fb(p,x)=L(X)[16—1 lp| +<ﬂ> ] (29)  dently of all the other atom pairs and with uncorrelated
12 F(x) \ke(x) phases. Thus we expect the number statistics of each molecu-

lar mode to be similar to that of a light field in thermal
equilibrium with a reservoir with which there is an incoher-
ent exchange of energy.

Fu(p,x) can be visualized as the integral over the intersec
tion of two Fermi seas shifted hy relative to each other, as
depicted in Fig. 4.

The characteristic width of the momentum distribution of
the molecules i&g > ng'® which is typically much wider than B. Narrow resonance,E,;,>gy\N
the distribution found in the BEC case. From E88) the
number of molecules produced scales linearly with the num- In this case, the molecules formed have to satisfy energy
ber of atoms. This is because in contrast to the BEC case, ttend momentum conservation, as illustrated in Fidp).4We
molecule production is a noncollective effect. Each atom paiare then led to a calculation very similar to the one presented
is converted into a molecule independently of all the othersn Appendix B for the contribution from the noncondensed
and there is no collective enhancement. The integration dfraction of atoms for the BEC case. After integrating over the
these results over the volume of the cloud can easily be donelume of the cloud we find
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2

g
NP ) = Py M32y12

ke(x)® = p?4 =M
xfd3x max{O,min(Z, £ pL V)}
[p[\Mw

(32

The number of molecules produced is proportional to the
number of atom pairs that satisfy momentum and energy
conservation and hence scales linearly with the number of ]
atoms, indicating that molecule formation is not a collective Pke(0) 0 Vikg
effect. Figure 5 shows the momentum distribution for typical _ o
parameters. It is much wider than the momentum distribution F!G- 5. (Color onling Momentum distribution of molecules pro-
for the BEC case in both momentum space and in er]ergg}uced from a normal Fermi gas in the narrow resonance limit for
width. 9=107u.

We do not give the lengthy and complicated expression

for gl(gg(pl,tl,pz,tz) because its qualitative properties are theconservation. For the particular casepgf=p,=p, we obtain
same as those in the broad resonance case except that e expression with the exact same form as B4) except
integration is now over pairs of atoms that also satisfy energyhat F,(p,x) must be replaced witk,(p, »,x),

Nee, (P (@rb. units)

1.5

rMS/Z — N
47T2 V’V, \MVg kF(X)_p/Z

Fo(p,v,x) =9 ke(X)?=p%4 -Mv

il e v ke(x)—pl2= WMy < ke(X) + p/2 (33
ViViv
L0, VM = ke(X) + p/2

which depends o only in the intermediate region of de- the BCS wave function for a homogenous gas,
tuningske(xX) —p/2< VM S<kg(x) +p/2.

IBCS(r)) = 1;[ [uc(r) + (el (& o), (39

V. BCS STATE with Bogoliubov amplitudes
Let us now consider a system of fermions with attractive 1 &(r)
interactions,Uy<0, at temperatures well below the BCS uﬁ(r)=§(1 ﬁ) (35)
critical temperature. As is well known, for these temperatures VAS(r) + &((r)

the attractive interactions give rise to correlations between
pairs of atoms in time-reversed states known as Cooper pairs. 2 1 &(r)

. . . . (N =-|1-——==. (36)
We assume that the spherically symmetric trapping potential 2 VAZ(r) + g2(r)
is sufficiently slowly varying that the gas can be treated in k
the local-density approximation. More quantitatively, the Here&(r)=e.— (1) is the kinetic energy of an atom mea-
local-density approximation is valid if the size of the Coopersured from the local chemical potential defined as
pairs, given by the correlation length

Mioc(F) = po = U(r) = Uon(r). (37

ME) = we(n)/mA (), In contrast to the normal Fermi gas, we have included a
is much smaller than the oscillator length for the trap. HereHartree-Fock mean-field energy to the local chemical poten-
ue(r) is the velocity of atoms at the Fermi surface ad) is  tial since we can no longer ignore the effect of the two-body
the pairing field at distancefrom the origin, which we take interactions in the gas. To an excellent approximation we can
at the center of the trap. use the relation Eq26) between density and local chemical

Before turning to the coupled atom-molecule system wepotential. Then, for a given number of atoms Eq. (37) is
outline our treatment of the atomic system. We closely fol-an implicit equation foru, We solve it numerically and
low the approach of Houbierst al. [41]. We assume that hence determine the density profilé’) and the local chemi-
locally at eactr, the wave function can be approximated by cal potentialwe(r).
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The gap parameteA(r)=Uqy/2VZu.(r)u(r) is deter- being independent of when performing the integration over

mined by the gap equation r,
-7 ” 1 1 Bx
—= k‘S(O)f dkk2< , - ) Coioak 1Co2k 1= | —€PXC |Cori)x- (42
2k=(0)a MoKe . \s’gﬁ(r)+Az(r) &(r) p/2+k,| “pr2—k,1 v k,| b-k1/x

(39 The expectation value on the right-hand side is evaluated

. . using the local-density approximation at positkarinserting
where the ultraviolet divergence has been removed by renolr . esult into Eq(40) and making use of the gap equation
malizing the bare background scattering strength to the tWOWe find
body T-matrix using the Lippmann-Schwinger equati@ee
Ref.[41]). We solve the gap equation numerically using the J» " ixp<1 2aA)2A(x) 2
Xe -—
a UO

previously determined local chemicalq. Nacsp(P,t) = (gt){

A. Broad resonance,E,i, <gVN + nNFGVb(p,t)} . (43

We find the momentum distribution of the molecules from )
the BCS-type state by repeating the calculation done in thEollowing Ref.[41] we have replaced the bare background
case of a normal Fermi gas. For the BCS wave function, th€0upling strength by
relevant atomic expectation values factorize as 1
At At A A (44)
<Cp/2—k1,TCp/2+k1, 1Cpl2+k,,1Cpr2—k,, D

= <Cg/2—kl,1Cg/2+k1,l><Cp/2+k2,1Cp/2—k2,T> _ _
v @ & o & ) (39) where A is a momentum cutoff and is of the order of the
P2k, T-PI2+K [ /A =pl2+k | 212K T inverse of the range of the interatomic potential.
Using the numerically determined(x) we can readily
perform the remaining Fourier transform in E@3). The
2 result of such a calculation is shown in Fig. 1. Since the gap
parameter changes over distances of oRigrthe contribu-
At . ot . tion from the pairing field has a typical width of orderF#-.
+2> <Cp/z—k,TCp/2+k,1><Cp/2+k,1cp/2—kﬁ>} This is very similar to the BEC case. The background from
k the unpa7iTr2ed 3§0ms on the other hand has a typical width
~ (gt)2 o e M%+n 1. ke(0)=(37ng)~"* which is similar to the width of the noise
(9 ’%< iz p2 k'T>‘ e (.Y contribution in the BEC case, see the inset in Fig. 1. This
(40) similarity can be understood by recalling that for a weakly
interacting condensateg *a=8< 1, which when substituted
In going from the first to the second line we have assumedhto the definition of the healing length gives &/
that the interactions are weak enough so that the momentue(8=8)2n{/®. For typical 8~0.1, this is comparable to
distribution of the atoms is essentially that of a two-k-(0) for equal densities.
component Fermi gas. This is justified because the Cooper Because of the collective nature of the coherent contribu-
pairing only affects the momentum distribution in a smalltion it will dominate over the backgrounaleg, for strong
shell of thickness I¥(r) <kg(r) around the Fermi surface.  enough interactions and large enough particle numbers. The
The first term involves the square of the pairing field. It isnarrow width and the collective enhancement of the mol-
proportional to the square of the number of paired atomscule production are the reasons why the momentum distri-
which, below the critical temperature, is a finite fraction of bution of the molecules is such an excellent indicator of the
the total number of atoms. This quadratic dependence indbresence of a superfluid component and the off-diagonal
cates that it is the result of a collective effect. This term canong-range order accompanying it.
be related to the two-point correlation function in position  For weak interactions such that the coherent contribution

and the momentum distribution of the molecules becomes

Ngcsp(P,t) = (gt)z[ ’ Ek‘, (Cora+k, Cpro—k.1)

sSpace as is small compared to the incoherent contribution, the second-
dexr order correlations are close to those of a normal Fermi gas

<ep/2+k,16p/2-m>:f =Xk (x = 112) gy (X given by Eq.(31), g (p,x,t)=2. However, in the strongly

\4 interacting regimekg|al ~ 1, and largeN, the coherent con-
+1/2)), (41)  tribution from the paired atoms dominates over the incoher-

R ent contribution from unpaired atoms. In this limit one finds
wherey; | are the atomic field operators in position space. Inthat the second-order correlation is close to that of the BEC,
the local-density approximation, the correlation function var-g?(p,x,t)=1. The physical reason for this is that at the
ies with x on a length scal&Rr. On the other hand, the level of even-order correlations the pairing field behaves just
expectation value in the integral falls off to zero for like the mean field of the condensate. This is clear from the
>\ (r) and we can therefore treat the correlation function adactorization property of the atomic correlation functions,
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nBCS,n(p) (g.l’b. units)
3

oo

3

k/k:(0) 0.4 1

v/u0

- 30 50 . .
l'/k.:1(0) FIG. 7. (Color onliné Momentum distribution of molecules

formed from a strong couplingkca=0.5 BCS system in the nar-
FIG. 6. (Color onling Pairing field(&, -k ;)=Ux across the  row resonance regime as a function of detuningfor a
trap for kra=0.5 andags=5k:'(0). The black solid line indicates =5k:(0). Well below »=24 the figure is a bit noisy because the
the local Fermi momenturke(r). Fourier transform in Eq(46) gets its main contribution from a very
narrow region in space where the solution of the gap equation is

Eq. (39), in terms of the normal component of the density numerically challenging.
and the anomalous density contribution due to the meal
field. In this case, the leading-order termsNrare given by

10

.DL/RTF. It is known that in the strongly interacting limit, the
; o= size of the Cooper pairs becomes comparable to the interpar-
the a_nomalous averag?s. In _the”strongly interacting I!mlt,_th%de spacingA(r) ~ 1/k-(r). The Cooper pairs are no longer
contribution from the _unpa|red atoms is .very.3|m|lar N delocalized across the extent of the cloud but now approach
nature to the contribution from the fluctuations in the BECiha |imit of localized Bosonic “quasimolecules.” Thus it is
case. not surprising that the momentum distribution of molecules
formed from a BCS-type state approaches the one we found
in the BEC case.

On the other hand, if the interactions between the atoms
A calculation similar to the one presented in Appendix Bare weak the pairing field is a very narrow function of mo-

B. Narrow resonance,Ei, =>gVN

for the BEC case leads to mentum and hence, for fixed momentum, also of position as
) can be seen from Fig. 6. Then the integral in E€p) has
Necsp(P,t) = > A(v- k2/M)<ép,2+k,lép,2_kyT> contributions from a rather narrow region in space only and
k the momentum distribution will accordingly become wider
+Nuren(P.b), (45) and smaller.

Probing the BCS system in the narrow resonance regime
where we have assumed again that the gas is weakly integlso yields spatial information about the atomic state. By
acting. Inserting Eq(19) for A in the limit st—o and per-  tuning v=2u,.(r) the molecular signal is most sensitive to
forming similar manipulations as in the broad resonance casge pairing field near and less sensitive to other regions in

leads to the trap.
2| = A qualitative difference between the BCS and BEC cases
Nacsn(Pyt) = 92_2 f dw\;< w8(v - ) +iP ) becomes apparent if one looks at the number of molecules as
TP | Jo V- a function of the detuning. While we find that there is only a

2 very narrow distribution of detunings with width
~(27/Rrp)?/2M that leads to molecule formation in the
BEC case, molecules are being formed for detunings well
(46) below v~2u,. The nonhomogeneity of the trapped atom
system manifests itself in a completely different way in the
where again the pairing fiel€, ;€ ;)| =uc(r)u(r) can be two cases. In the BEC case, the total energy of a particle in
evaluated using the local-density approximation. Figure @&he condensate is just the chemical potential while the kinetic
shows an example of the pairing field across the trap. Twenergy of a particle is very small compared to the mean-field
qualitatively different cases have to be distinguished dependznergy in the Thomas Fermi limit. Upon release, the atoms in
ing on the strength of the interactions. the condensate all have a spread in kinetic energies that is of
If the interactions are fairly strong so that the pairing the order(27/Rr)?/2M due entirely to zero-point motion.
field, u(r)ud(r), is nonzero in a rather wide region around On the other hand, in the BCS case the superfluid forms at
ke(r), the pairing field will be a slowly varying function each position near the local Fermi momentum. Hence atoms
across the atomic cloud. Then the remaining integral in Eqgin the BCS state have a large energy spread that is of the
(46) can be easily evaluated numerically and we find a moorder ~ uy with the kinetic energies of the paired atoms be-
mentum distribution of the molecules which is similar to theing centered aroung,(r) with a width A(r).
BEC case. This limit is illustrated in Fig. 7. The width of the  For the second-order momewt?(p,x,t), the same gen-
momentum distribution of the molecules is again of ordereral arguments that were put forward in the discussion of the

* NnFeps

Rre _ ) R
X f drr sin(pr) <C\m,lc-\m,1>|r
0
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broad resonance also apply to the narrow resonance. In the
strongly interacting limit, the molecular field is again ap-
proximately coherent with a noise contribution from the un-
paired fermions.

i@
Xo(z)é

A;(z)

VI. SUMMARY

Vi@ | Vi@ | Vin(@  ®

We examined the momentum distribution and momentum . o o
correlations of molecules formed by a Feshbach resonance or F'C: 8- lllustration of the partitioning of quantization volume
by photoassociation from a quantum degenerate atomic ga&1d atomic field operator. Also indicated is the functigy().

Our study elucidated the effect of the atomic trapping poten-

tial as well as the strength of the atom-molecule couplingdS Army Research Office, and by the National Aeronautics
relative to the characteristic energies of the atoms on th&nd Space Administration.

molecular momentum distribution.

Molecules produced from an atomic BEC show a rather
narrow momentum distribution that is comparable to the
zero-point momentum width of the atomic BEC from which  In this appendix we show how the decomposition of the
they are formed. In the case of a narrow resonance, energtomic field operator into condensed and noncondensed frac-
conservation limits the molecules to only a narrow energytion together with the local-density approximation for the
range. The molecule production is a collective effect withnoncondensed part can be used to calculate the momentum
contributions from all atom pairs adding up constructively, asdistribution of the molecules for the case of an initial BEC of
indicated by the quadratic scaling of the number of mol-atoms. More details on the properties of fluctuations at non-
ecules with the number of atoms. Each mode of the resultingero temperatures and the use of the local-density approxi-
molecular field is to a very good approximation cohefeit ~ mation for their description can be found in Re€f37-39.
to terms of orde®(1/N)]. The effects of noise, both due to The starting point of our calculation is E¢6) for the
finite temperatures and to vacuum fluctuations, are of relativenomentum distribution of the molecules. It reduces the prob-
order O(1/N). They slightly increase thg® and cause the lem to evaluating an integral over expectation values in the
molecular field in each momentum state to be only partiallyundisturbed atomic field at=0. The relevant expectation
coherent. values are most transparently calculated by partitioning the

In contrast, the momentum distribution of moleculesquantization volumeV into smaller volumesv; that are
formed from a normal Fermi gas is much broader with alarger than the coherence leng¢h Partitioning the atomic
typical width given by the Fermi momentum of the initial field operator accordingly, we get
atomic cloud. The molecule production is not collective as - R -
the number of molecules only scales like the number of at- ¥x) = E Aj(X) xo(x)C + E i), (A1)
oms rather than the square. In this case, the second-order J !
correlations of the molecules exhibit super-Poissonian flucwhere we have introduced functiomg(x) that are one in

tuations, and it was argued that the molecules are well Cha(/'olumevj and zero otherwise anﬁ[bl(j)(x):Aj(x) 5471(x) The
R . ! oc :
acterized by a thermal field. Lgartitioning of the field operator is illustrated in Fig. 8. We

APPENDIX A: CALCULATION OF n(p) FOR g Ey,
FOR A BEC

Thg case whgre molecules are produced fro_m paired ao over to the Fourier transform
oms in a BCS-like state shares many properties with th ,
BEC case: The molecule formation rate is collective, their . a’x .~ - Vi
momentum distribution is very narrow in comparison to the Cp =f We PHPx) =Xo(PIC+ ? \/;56}30 (A2)
normal Fermi gas, and the molecular field is essentially co- !
herent. The noncollective contribution from unpaired atomswvheres¢!)(p) is the annihilation operator for a fluctuation of
has a momentum distribution very similar to that of the qua-momentump in volumeV;. In the local-density approxima-
siparticle fluctuations in the BEC case. tion, fluctuations in different celly; are uncorrelated and we

In a future publication we will use the Bogoliubov—de have
Gennes equations to describe the BCS-type state which is i) () i) el
again probed with a molecular field. Thus we will be able to <56k1 56@ = 5|,j5k1,k2<5ek1 56|<1>- (A3)
go beyond the local-density approximation and we can stud
the BEC-BCS crossover regime. Also, this will allow us to
study the validity of the local-density approximation more

Ynserting in Eq.(6), keeping only terms of first order in the
fluctuations and making use of relatigA3) we find

carefully. Neecs(P.1) = (GY*N(N = 1) 3 Xo(p/2 ~kp)Xo(p/2
k1,ko
ACKNOWLEDGMENTS *+ko)Xo(P/2 =ka)xo(p/2 +ko)
This work was supported in part by the US Office of +4(gt) >N, m|}0(p—k)|z<6fj”é(kj)>. (A4)
Naval Research, by the National Science Foundation, by the kj Vv
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The coherent term is readily brought to the form given in Eq.Let us first consider the coherent pag,(p,t). Going over
(7). In the incoherent term we notice th@b(p)|2 is @ much  from the summation to an integral in the usual way, making
narrower function thaic! '8y, the former having a typical the substitutionw=k?*/M and introducing polar coordinates
width of ~1/Rre while the latter has a typical width of Wwe find
~1/& Hence, to a good approximatio(‘é,i‘”éﬂ”) can be 312 [ w

. . [~
treated as a constant for the momentum range for which ng(p,t) = ﬁf de(v—w,t)f dd sin 9Wwyg
[Xo(p)|? is nonzero and we obtain 0 0

X ( V/p2/4 +Mao +|p| WMo cosd)xo

\V2 S
AgHPNY Hxolp - k)& ) —

Y X (V%4 +Ma - [p|\Mw cos®). (B2)
Vi fGivta( ~ In the limit t , A(v—w) becomeg42
= 4(@YNS, (1SS lp k) T Alvme) becomed sz

j 1
v IimA(v—w,t)=g<775(v—w)—iPT>, (B3)
= Ag°NZ THel D), (A5) o rme
J where, as usuaR means that the integral has to be taken in

where we have made use of the normalizationgk) in the the sense of the C_auchy-principal value. The real part can be
last step. Sinc& <Ry the volumesV; can be made small evaluated by making use of tligfunction and for the imagi-

and the sum can be approximated by an integral, leading t8ary part we have to rely on numerical methods to calculate
Eq. (7). the principal value integral.

Making similar manipulations of the sums over momenta

APPENDIX B: CALCULATION OF n(p) FOR g<E, for the incoherent part leads to

FOR A BEC M32 fw

The calculation goes along similar lines as in the broad Mincar(P. 1) = 4N 8712;\/‘
resonance case but the evaluation of the integrals is more
complicated. Repeating the calculation of the broad reso- ngodw\@m(y_w t)|2‘")20
nance case that led to E@\4) with &, now replaced accord- '
ing to Eq.(18) we find, again to first order in the fluctuations,

Ngecn(P,t) =N(N - 1)

ddsind
0

X (VP4 +Ma - [p[\Mw cos9) (el
2 A(Ep ~ €prawk ~ €pra Xo(P/2 .
k

Using the delta function

lim|A(y - )2 = mg2ts(v — w) (B5)

t—o

~ 2 %
KRop12 K|+ N JIAE =
Kij

- 27 (n — k)2 arOTAG)
€prz—k )| Txo(P ~ K)I%ETES) to perform the integral in the limit asgoes to inifinity we

= Neor(P, 1) + Nincor(P, 1) - (B1) arrive at Eq.(20).
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