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We calculate the momentum distribution and the second-order correlation function in momentum space,
gs2dsp ,p8 ,td for molecular dimers that are coherently formed from an ultracold atomic gas by photoassociation
or a Feshbach resonance. We investigate using perturbation theory how the quantum statistics of the molecules
depend on the initial state of the atoms by considering three different initial states: a Bose-Einstein condensate
sBECd, a normal Fermi gas of ultracold atoms, and a BCS-type superfluid Fermi gas. The cases of strong and
weak coupling to the molecular field are discussed. It is found that BEC and BCS states give rise to an
essentially coherent molecular field with a momentum distribution determined by the zero-point motion in the
confining potential. On the other hand, a normal Fermi gas and the unpaired atoms in the BCS state give rise
to a molecular field with a broad momentum distribution and thermal number statistics. It is shown that the
first-order correlations of the molecules can be used to measure second-order correlations of the initial atomic
state.
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I. INTRODUCTION

The basis of some of the most exciting developments in
ultracold atomic physics in recent years has been the use of
Feshbach resonancesf1,2g and photoassociationf3,4g to tune
the strength of the interactions between atoms as well as to
create ultracold diatomic molecules starting from an ultra-
cold atomic gas of bosons or fermionsf1,5–10g. The avail-
ability of tunable interactions has made possible the study of
many model systems of condensed-matter theory in a very
controlled fashionf11–16g. In particular, the BEC-BCS
crossover, which predicts a continuous transition from a BCS
superfluid of atomic fermions to a molecular BEC as the
interaction strength is varied from attractive to repulsive, has
attracted a considerable amount of attention, both experi-
mentally and theoreticallyf16–21g.

A difficulty in the studies of the BEC-BCS crossover has
been that they necessitate the measurement of higher-order
correlations of the atomic system. While the momentum dis-
tribution of a gas of bosons provides a clear signature of the
presence of a Bose-Einstein condensate, the Cooper pairing
between Fermionic atoms in a BCS state hardly changes the
momentum distribution or spatial profile as compared to a
normal Fermi gas. This poses a significant experimental
challenge, since the primary techniques for probing the state
of an ultracold gas are either optical absorption or phase
contrast imaging, which directly measure the spatial density
or momentum distribution following ballistic expansion of
the gas. In the strongly interacting regime very close to the
Feshbach resonance, evidence for Fermionic superfluidity
was obtained by projecting the atom pairs onto a molecular
state by a rapid sweep through the resonancef17,19g. More
direct evidence of the gap in the excitation spectra due to
pairing was obtained by rf spectroscopyf22g and by mea-
surements of the collective excitation frequenciesf23,24g.

Still, the detection of Fermionic superfluidity in the
weakly interacting BCS regime remains a challenge. The di-

rect detection of Cooper pairing requires the measurement of
second-order or higher atomic correlation functions. Several
researchers have proposed and implemented schemes that al-
low one to measure higher-order correlationsf17,25–29g but
those methods are still very difficult to realize experimen-
tally.

While the measurement of higher-order correlations is
challenging already for bosons, the theory of these correla-
tions has been established a long time ago by Glauber for
photonsf30–32g. For fermions however, despite some efforts
f33g a satisfactory coherencetheory is still missing.

To circumvent these difficulties we suggested in an earlier
publication f34g, guided by the analogy with three-wave
mixing in classical optics, to make use of the nonlinear cou-
pling of atoms to a molecular field by means of a two-photon
Raman transition or a Feshbach resonance. The nonlinearity
of the coupling links first-order correlations of the molecules
to second-order correlations of the atoms. Furthermore, the
molecules are always Bosonic so that the well-known coher-
ence theory for Bosonic fields can be used to characterize
them. Considering a simplified model with only one molecu-
lar mode, it was found that the molecules created that way
can indeed be used as a diagnostic tool for second-order
correlations of the original atomic field. Naturally, due to the
restriction to a single mode, the information one can gain
about the atomic state is very limited.

In this paper we extend the previous model to take into
account all modes of the molecular field, the hope being that
in doing so, more detailed information about the atomic state
can be obtained. Specifically, we calculate the momentum
distribution of the molecules and the normalized second-
order correlation function,gs2d for different momentum states
of the molecules using perturbation theory. We consider the
limiting cases of strong or weak atom molecule coupling as
compared to the relevant atomic energies. The molecule for-
mation from a Bose-Einstein condensatesBECd serves as a
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reference system. There we can rather easily study the con-
tributions to the molecular signal from the condensed frac-
tion as well as from thermal and quantum fluctuations above
the condensate. The cases of a normal Fermi gas and a BCS
superfluid Fermi system are then compared with it. We show
that the molecule formation from a normal Fermi gas and
from the unpaired fraction of atoms in a BCS state has very
similar properties to those of the molecules formed from the
noncondensed atoms in the BEC case. The state of the mo-
lecular field formed from the pairing field in the BCS state
on the other hand is similar to that resulting from the con-
densed fraction in the BEC case. The qualitative information
gained by the analogies with the BEC case help us gain a
physical understanding of the molecule formation in the BCS
case where direct calculations are difficult and not nearly as
transparent.

This paper is organized as follows: In Sec. II we introduce
the model Hamiltonian used to describe the coupled atom-
molecule system. In secs. III–V we present the calculations
of momentum distribution and second factorial moment of
the molecular field for a BEC, a normal Fermi gas, and a
BCS-type state, respectively, considering the cases of strong
and weak coupling in each case. Details of the calculations
are given in Appendixes A and B.

II. MODEL

The general procedure that we have in mind is the follow-
ing: The atomic sample is prepared in some initial state,
whose higher-order correlations we seek to analyze. At time
t=0 the coupling to a molecular field is switched on. While
the initial atomic state corresponds to a trapped gas, we as-
sume that the molecules can be treated as free particles. This
is justified if the atomic trapping potential does not affect the
molecules, or if the interaction time between the atoms and
molecules is much less than the oscillation period in the trap.
Finally, the state of the molecular field is analyzed by stan-
dard techniques, e.g., time-of-flight measurements.

We consider the three cases where the atoms are Bosonic
and initially form a BEC, or consist of two species of ultra-
cold fermionsslabeled bys= ↑ ,↓d, with or without super-
fluid component. In the following we describe explicitly the
situation for fermions, the Bosonic case being obtained from
it by omitting the spin indices and by replacing the Fermi
field operators by Bosonic field operators.

Since we are primarily interested in how much can be
learned about the second-order correlations of the initial
atomic cloud from the final molecular state, we keep the
physics of the atoms themselves as well as the coupling to
the molecular field as simple as possible. The coupled
fermion-molecule system can be described by the Hamil-
tonian f2,35,36g

Ĥ = o
k,s

ekĉks
† ĉks + o

k
Ekâk

†âk + V−1/2 o
k1,k2,s

Ũtrsk2

− k1dĉk2s
† ĉk1s +

U0

2V
o

q,k1,k2

ĉk1+q↑
† ĉk2−q↓

† ĉk2↓ĉk1↑

+ gSo
q,k

âq
†ĉq/2+k↓ĉq/2−k↑ + H.c.D s1d

Hereek =k2/2M is the kinetic energy of an atom of massM
and momentumk and Ek =ek /2+n is the energy of a mol-
ecule with momentumk and detuning parametern. cks and
cks

† are Fermionic annihilation and creation operators for

plain waves in quantization volumeV with spin s. Ũtrskd
=V−1/2eVd3xe−ik·xUtrsxd is the Fourier transform of the trap-
ping potentialUtrsr d andU0=4pa/M is the background scat-
tering strength,g is the effective coupling constant of the
atoms to the molecules, and we use units with";1 through-
out. We assume that the trapping potential and background
scattering are relevant only for the preparation of the initial
state before the coupling to the molecules is switched on at
t=0 and can be neglected in the calculation of the dynamics.
This is justified ifgÎN@U0n, vi wheren is the atomic den-
sity, N the number of atoms, andvi are the frequencies of
Utrsr d that is assumed to be harmonic. In experiments, the
interaction between the atoms can effectively be switched off
by ramping the magnetic field to a position where the scat-
tering length is zero.

Regarding the strength of the coupling constantg, two
cases are possible:gÎN can be much larger or much smaller
than the characteristic kinetic energies involved. For fermi-
ons the terms broad and narrow resonance have been coined
for the two cases, respectively, and we will use these for
bosons as well. Both situations can be realized experimen-
tally, and they give rise to different effects. We examine both
limiting cases and use the suggestive notationEkin!gÎN and
Ekin@gÎN for the two cases, whereEkin denotes the charac-
teristic kinetic energy of the atoms. It corresponds to zero
point motion for condensate atoms, to the thermal energy,
kBT for noncondensed thermal bosons, and to the Fermi en-
ergy for a degenerate Fermi gas.

Our analysis is based on the assumption that first-order
time-dependent perturbation theory is applicable. This re-
quires that the state of the atoms does not change signifi-
cantly and consequently, only a small fraction of the atoms
are converted into molecules. It is reasonable to assume that
this is true for short interaction times or weak enough cou-
pling. Apart from making the system tractable by analytic
methods there is also a deeper reason why the coupling
should be weak: Since we ultimately wish to get information
about the atomic state, it should not be modified too much by
the measurement itself, i.e., the coupling to the molecular
field. Our treatment therefore follows the same spirit as
Glauber’s original theory of photon detection, where it is
assumed that the light-matter coupling is weak enough that
the detector photocurrent can be calculated using Fermi’s
golden rule.

III. BEC

We consider first the case where the initial atomic state is
a BEC in a spherically symmetric harmonic trap. We note
that all of our results can readily be extended to anisotropic
traps by an appropriate rescaling of the coordinates in the
direction of the trap axes. We assume that the temperature is
well below the BEC transition temperature and that the in-
teractions between the atoms are not too strong. Then the
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atomic system is described by the field operator

ĉsxd = x0sxdĉ + dĉsxd, s2d

where

x0sxd =Î 15

8pRTF
3 Î1 −

x2

RTF
2 s3d

is the condensate wave function in the Thomas-Fermi ap-
proximation andĉ is the annihilation operator for an atom in
the condensate,RTF=s15Na/aoscd1/5aosc is the Thomas-Fermi
radius,N the number of atoms,a is their scattering length,
and aosc is the oscillator length of the atoms in the trap. In
accordance with the assumption of low temperatures and
weak interactions we do not distinguish between the total
number of atoms and the number of atoms in the condensate.

The fluctuationsdĉsxd are small and those with wavelengths
much less thanRTF will be treated in the local-density ap-
proximation while those with wavelengths comparable to
RTF can be neglectedf37–39g.

A. Broad resonance,Ekin™gÎN

We are interested in the momentum distribution of the
molecules

nsp,td = kâp
†stdâpstdl s4d

which for short timest can be calculated using perturbation
theory: We expandnsp ,td in a Taylor series aroundt=0 and
make use of the Heisenberg equations of motion,

i
]âpstd

]t
= go

k
ĉp/2+kĉp/2−k , s5d

and similarly for âp
†. Here we have neglected the kinetic

energy term, a step that is legitimate for a broad resonance
since the interaction energygÎN is much larger than the
difference in the kinetic energies between the atoms and mol-
ecules. Consequently for short enough times,t& sgÎNd−1,
energy conservation can be violated in the formation of mol-
ecules in a fashion similar to the Raman-Nath regime of
atomic diffraction.

To lowest nonvanishing order ingt we find

nBEC,bsp,td = sgtd2 o
k1,k2

kĉp/2−k1

† ĉp/2+k1

† ĉp/2+k2
ĉp/2−k2

l

+ Ofsgtd4g, s6d

where the atomic operators are the initialst=0d operators.
This expression can be evaluated by making use of the de-
composition of the atomic field operators2d and the local-
density approximation for the part describing the fluctua-
tions. The details of this calculation are given in Appendix A.
To first nonvanishing order in the fluctuations we find

nBEC,bsp,td = sgtd2NsN − 1dVux̃0
2spdu2

+ sgtd24NE d3x

V
kdĉp

†sxddĉpsxdl. s7d

From this expression we see that our approach is justified if

sÎNgtd2!1 because for such times the initial atomic state
can be assumed to remain undepleted.

In the local-density approximation the expectation value
kdĉp

†sxddĉpsxdl for the number of fluctuations with momen-
tum p at x can be evaluated by assuming that at eachx we
have a homogenous BEC with densitynsxd and using the
Bogoliubov transformation to quasiparticle operators,âksxd.
One finds

kdĉp
†sxddĉpsxdl = vp

2sxd + fup
2sxd + vp

2sxdgkâp
†sxdâpsxdl,

s8d

with Bogoliubov amplitudes

up
2sxd =

1

2
3 p2

2M
+ nsxdU0

ẽpsxd
+ 14 , s9d

vp
2sxd =

1

2
3 p2

2M
+ nsxdU0

ẽpsxd
− 14 , s10d

and quasiparticle energies

ẽpsxd = Îep
2 + 2epnsxdU0. s11d

The quasiparticle distribution is given by a thermal Bose
distribution,

kâp
†sxdâpsxdl =

1

eẽpsxd/kBT − 1
. s12d

The momentum distributions7d is illustrated in Fig. 1.
The contribution from the condensate is a collective effect,

FIG. 1. sColor onlined Momentum distribution of molecules
formed from a BEC sred dashed lined with a=0.1aosc and T
=0.1Tc and a BCS-type state withkFa=0.5 andaosc=5kF

−1s0d sblue
solid lined, both forN=105 atoms. The BCS curve has been scaled
up by a factor of 20 for easier comparison. The inset shows the
noise contribution for BECsred dashedd and BCSsblued case. The
latter is simply the momentum distribution of molecules formed
from a normal Fermi gas. The local-density approximation treat-
ment of the noise contribution in the BEC case is not valid for
momenta smaller than 2p /j sindicated by the red dotted line in the
insetd. Note that the coherent contribution is larger than the noise
contribution by five orders of magnitude in the BEC case and three
orders of magnitude in the BCS case.
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as indicated by its quadratic scaling with the atom number. It
clearly dominates over the incoherent contribution from the
fluctuations, which is proportional to the number of atoms.
The momentum width of the contribution from the conden-
sate is roughly 2p /RTF which is much narrower than the
contribution from the fluctuations, whose momentum distri-
bution has a typical width of 1/j, wherej=s8pand−1/2 is the
healing length. Using the Thomas-Fermi wave function for
the condensate, Eq.s3d, we can calculate the condensate con-
tribution in closed form as

nBEC,bsp,td =
225NsN − 1dsgtd2

4spRTFd6 S6 sinpRTF

spRTFd2 −
6 cospRTF

pRTF

− 2 sinpRTFD2

+ OsNd. s13d

The terms of orderN are corrections due to the noncon-
densed part.

Using the same approximation scheme we can calculate
the second-order correlation,

gs2dsp1,t1;p2,t2d =
kâp1

† st1dâp2

† st2dâp2
st2dâp1

st1d

nsp1,t1dnsp2,t2d
. s14d

If we neglect fluctuations we find

gBEC,b
s2d sp1,t1;p2,t2d =

sN − 2d!2

sN − 4d ! N!
= 1 −

6

N
+ OsN−2d.

s15d

For N→` this is very close to 1, which is characteristic of a
coherent state. This result implies that the number fluctua-
tions of the molecules are very nearly Poissonian. The fluc-
tuations lead to a larger value ofgs2d, making the molecular
field partially coherent, but their effect is only of order
OsN−1d.

The physical reason why the resulting molecular field is
almost coherent is of course clear: The condensed fraction of
the atomic field operator is dominant. In expectation values
the operatorsĉ and ĉ† take on valuesÎN−n, with a number
n!N depending on the position of the operator in the expec-
tation value. When dividing by the normalizing expectation
valuesnsp ,td , ÎN−n can be replaced byÎN with accuracy
OsN−1d and henceĉ and ĉ† can be replaced byÎN indepen-
dent of their position in the expectation value. The field op-

erator can thus be replaced by ac-number field ĉsxd
→ÎNx0sxd, the mean field, which explains the almost perfect
factorization of the correlation functions.

Another way to understand this is to consider the single-
mode BEC state,uCs0dl=sĉ†ĉ†dsN/2du0l /ÎN!. The coupling to
the molecular field will transform this state intouCstdl
<saâ†+bĉ†ĉ†dsN/2du0l /ÎN!, wherea!1. This leads to a bi-
nomial distribution for the number of molecules. In the limit
thatN→` the Binomial distribution goes over to the Poisson
distribution.

B. Narrow resonance,EkinšgÎN

For a narrow resonance, the typical kinetic energies asso-
ciated with the atoms and molecules,Ekin, are much larger

than the atom-molecule interaction energy. This implies that
even for very short interaction times,t& sgÎNd−1, the phase
of the atoms and molecules can evolve significantly,Ekint
@1. Consequently, only transitions between atom pairs and
molecules that conserve energy can occur. In this case, it is
convenient to go over to the interaction representation,

ĉpstd → e−ieptĉpstd, âpstd → e−iEptâpstd, s16d

where for notational convenience, we will denote the inter-
action picture operators by the same symbols as the Heisen-
berg operators used in the previous subsection.

The equations of motion in the interaction picture,

i
]âpstd

]t
= go

k
eisEp−ep/2+k−ep/2−kdtĉp/2+kĉp/2−k , s17d

can be approximately integrated by treating the atomic op-
erators as constants, leading to

âpstd = o
k

DsEp − ep/2+k − ep/2−k,tdĉp/2+kĉp/2−k , s18d

where we have introduced1

Dsv,td = g lim
h↓0

eivt − 1

iv + h
. s19d

The condition under which this step is justified is ana-
lyzed below. As in the broad resonance case we can insert
this expression innsp ,td. The calculation of the resulting
integrals over expectation values of the atomic state is, how-
ever, considerably subtler than in the broad resonance case
and is presented in detail in Appendix B. In the limitnt@1
we find

nBEC,nsp,td = NsN − 1d
V2M3g2

16p4 UE
0

`

dvÎvSpdsn − vd

+ iP
1

n − v
DE

−1

1

dzx̃0sÎp2/4 + Mv − pÎMvzd

3x̃0sÎp2/4 + Mv + pÎMvzdU2

+ Ndp/2,ÎMn

3g2tÎnM3RTF
3

8p2

3E d3x

V
kdĉp

†sxddĉpsxdl. s20d

In the second term in Eq.s20d we have defined

1We denote the function in Eq.s19d by D because it has properties
similar to the usuald function. Confusion with the local gap param-
eter introduced below, which we also denote byD, cannot arise
because the first always has energies as its argument while the latter
has positions as its argument.
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dp,p8 =Î 4pV

3RTF
3 E

−1

1

dzux̃0sÎp2 + p82 − 2pp8zdu2

= HOs1d, up − p8u , 2p/RTF

0, up − p8u . 2p/RTF.
J s21d

As before, the contribution from the condensate is clearly
dominant. The integral in the first term in Eq.s20d is propor-
tional to the amplitude for finding an atom pair with center of
mass momentump and total kinetic energyn. Becausex̃0
drops to zero on a scale of 2p /RTF this amplitude is essen-
tially zero if p.2p /RTF or n.p2/MRTF

2 .
The second term in Eq.s20d originates from molecules

that are formed from an atom in the condensate and a non-
condensed atom. Since the atom momentum&2p /RTF in the
condensate is very small compared to the momentumupu
,1/j of a noncondensed atom, the molecular momentum is
essentially due to the noncondensed atom. On the other hand,
energy conservation implies thatn+p2/4M <p2/2M if p
@2p /RTF. Consequently for a given detuningn, molecules
with momenta in a shell of radius 2ÎMn and width 2p /RTF
are formed from one atom in the condensate and another
atom taken from the noncondensed part with a momentum
that lies in a sphere in momentum space aroundp with radius
2p /RTF. Momentum and energy conservation are illustrated
in Fig. 2. Figure 3 shows a typical example for the momen-
tum distribution.

Equation s20d allows us to extract the criterion for the
applicability of our approximation scheme, i.e., of treating
the atomic state as being undepleted. The coherent contribu-
tion will only be nonzero ifupuø2p /RTF and for these mo-
menta the incoherent contribution can be neglected, as we
have seen. Requiring that the number of molecules remains
much smaller then the initial number of atoms leads to the
condition

ÎNg! n
1

RTF
3 sMnd3/2. s22d

In the opposite caseupu.2p /RTF the coherent contribu-
tion is essentially zero and we need only consider the inco-
herent contribution. Requiring that the number of molecules
with momentump be much smaller than the number of non-
condensed atoms with that same momentum leads to

gt ! N−1n

g

1

RTF
3 sMnd3/2. s23d

IV. NORMAL FERMI GAS

For a normal Fermi gassNFGd we restrict ourselves to the
case of zero temperature,T=0. For temperaturesT well be-
low the Fermi temperatureTF, the corrections to our results
are of ordersT/TFd2 or higher, and do not lead to any quali-
tatively new effects.

Again, we treat the gas in the local density approximation
where the atoms locally fill a Fermi sea

uNFGl = p
uk u,kFsxd

ĉk
†u0l s24d

with local Fermi momentumkFsxd and u0l being the atomic
vacuum. The Fermi momentum is related to the local chemi-
cal potential

mlocsxd = m0 − Utrsxd s25d

by means of

mlocsxd =
kF

2sxd
2M

=
f3p2nsxdg2/3

2M
. s26d

Here, m0=s3p2n0d2/3/ s2Md is the chemical potential of the
trapped gas, andn0 is the density at the center of the trap for
each of the spin states. The Hartree-Fock mean field has been
neglected because it gives rise only to minor corrections and
does not lead to a qualitatively new behavior. The density
distribution of the trapped gas is given by the Thomas-Fermi
result f40g,

nsxd =
N

RF
3

8

p2F1 −
r2

RF
2G3/2

, s27d

whereRF=s48Nd1/6aosc is the Thomas-Fermi radius for fer-
mions.

FIG. 2. sColor onlined In the narrow resonance case for mo-
mentap much larger than the momentum width of the condensate
one atom is taken out of the condensate and the other atom is taken
from the noncondensed part and has momentum close top in order
for momentum conservation to be satisfied. Since the total energy of
the atoms has to match the total energy of the molecule, only mol-
ecules with momenta 2ÎMn can be formed for each detuningn.

FIG. 3. sColor onlined Momentum distribution of molecules
formed from a BEC ofN=105 atoms with scattering lengtha
=0.01aosc at T=0.1Tc for a narrow resonance.
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Using the same perturbation methods as described in the
previous section for bosons, we can calculate the momentum
distribution of the molecules and their correlation function
gs2d for a broad and for a narrow resonance by first calculat-
ing the density of the desired quantity at a positionx and
then integrating the result over the volume of the gas.

A. Broad resonanceEkin™gÎN

To deal with the case of fermions, we modify Eq.s6d by
reintroducing the spin of the atoms. The integral over the
relative momentum of the atom pairs can be carried out ex-
actly to give

nNFG,bsp,x,td = Hsgtd2Fbsp,xd, upu ø 2kFsxd
0, upu . 2kFsxd,

J s28d

where we have introduced the local density of atom pairs
with center of mass momentump,

Fbsp,xd =
pkF

3sxd
12

F16 − 12
upu

kFsxd
+ S upu

kFsxd
D3G . s29d

Fbsp ,xd can be visualized as the integral over the intersec-
tion of two Fermi seas shifted byp relative to each other, as
depicted in Fig. 4sad.

The characteristic width of the momentum distribution of
the molecules iskF~n0

1/3 which is typically much wider than
the distribution found in the BEC case. From Eq.s28d the
number of molecules produced scales linearly with the num-
ber of atoms. This is because in contrast to the BEC case, the
molecule production is a noncollective effect. Each atom pair
is converted into a molecule independently of all the others
and there is no collective enhancement. The integration of
these results over the volume of the cloud can easily be done

numerically and is shown in the inset in Fig. 1.
Similarly, we can calculate the local value ofgs2d at posi-

tion x, from Eq. s14d,

gloc
s2dsp1,t1;p2,t2d = HFbsp1,xdFbsp2,xd −E dknsp2/2

+ kdnsp2/2 − kdnsp1 − p2/2 − kd

−E dknsp2 + k − p1/2dnsp1/2 + kdnsp1/2

− kd +E dknsp2 − p1/2 + kdnsp1/2

− k1dnsp2/2 − k2dJY Fbsp1,xdFbsp2,xd.

s30d

This result simplifies considerably forp1=p2=p,

gloc
s2dsp,x,td ; gloc

s2dsp,t;p,t,xd = 2S1 −
1

Fbsp,xdD . s31d

As in the case of the BEC, the time dependence in
gs2dsp ,x ,td cancels at this level of approximation. However,
in contrast to the case of a BEC there is some dependence on
the momentum left.

The origin of the factor of two ings2dsp ,x ,td is the fol-
lowing: The two molecules that are being detected in the
measurement ofgs2d can be formed from four atoms in two
different ways and the two possibilities both give the same
contribution. Equations31d indicates that the statistics of the
molecules are super-Poissonian, similarly to a thermal field.

By the following argument we can convince ourselves
that not only the second-order correlations look thermal, but
that the entire counting statistics of each momentum mode is
thermal. Each molecular mode characterized by the momen-
tum p is coupled to a particular subset of atom pairs selected
by momentum conservation. In the short-time limit, each
atom pair with center-of-mass momentump is converted into
a molecule in the corresponding molecular mode indepen-
dently of all the other atom pairs and with uncorrelated
phases. Thus we expect the number statistics of each molecu-
lar mode to be similar to that of a light field in thermal
equilibrium with a reservoir with which there is an incoher-
ent exchange of energy.

B. Narrow resonance,EkinšgÎN

In this case, the molecules formed have to satisfy energy
and momentum conservation, as illustrated in Fig. 4sbd. We
are then led to a calculation very similar to the one presented
in Appendix B for the contribution from the noncondensed
fraction of atoms for the BEC case. After integrating over the
volume of the cloud we find

FIG. 4. sad Illustration of the number of atom pairs with center
of mass momentumq. Atoms in the intersection of the two shifted
Fermi spheres can be transformed into a molecule of momentumq
if energy conservation plays no role.sbd Density of atom pairs with
center of mass momentumq and total kinetic energy 2ÎMn. In
addition to lying in the intersection of the two Fermi spheres the
atoms also have to lie on a shell of radius 2ÎMn in order to satisfy
energy conservation.
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nNFG,nsp,td =
g2t

8p
M3/2n1/2

3E d3x maxF0,minS2,
kFsxd2 − p2/4 − Mn

upuÎMn
DG .

s32d

The number of molecules produced is proportional to the
number of atom pairs that satisfy momentum and energy
conservation and hence scales linearly with the number of
atoms, indicating that molecule formation is not a collective
effect. Figure 5 shows the momentum distribution for typical
parameters. It is much wider than the momentum distribution
for the BEC case in both momentum space and in energy
width.

We do not give the lengthy and complicated expression
for gloc

s2dsp1,t1,p2,t2d because its qualitative properties are the
same as those in the broad resonance case except that the
integration is now over pairs of atoms that also satisfy energy

conservation. For the particular case ofp1=p2=p, we obtain
an expression with the exact same form as Eq.s31d except
that Fbsp ,xd must be replaced withFnsp ,n ,xd,

Fnsp,n,xd =5
M3/2

4p2
În, ÎMn ø kFsxd − p/2

kFsxd2 − p2/4 − Mn

upuÎMn
, kFsxd − p/2 ø ÎMn ø kFsxd + p/2

0, ÎMn ù kFsxd + p/2
6 s33d

which depends onp only in the intermediate region of de-
tuningskFsxd−p/2øÎMdøkFsxd+p/2.

V. BCS STATE

Let us now consider a system of fermions with attractive
interactions,U0,0, at temperatures well below the BCS
critical temperature. As is well known, for these temperatures
the attractive interactions give rise to correlations between
pairs of atoms in time-reversed states known as Cooper pairs.
We assume that the spherically symmetric trapping potential
is sufficiently slowly varying that the gas can be treated in
the local-density approximation. More quantitatively, the
local-density approximation is valid if the size of the Cooper
pairs, given by the correlation length

lsrd = yFsrd/pDsrd,

is much smaller than the oscillator length for the trap. Here,
yFsrd is the velocity of atoms at the Fermi surface andDsrd is
the pairing field at distancer from the origin, which we take
at the center of the trap.

Before turning to the coupled atom-molecule system we
outline our treatment of the atomic system. We closely fol-
low the approach of Houbierset al. f41g. We assume that
locally at eachr, the wave function can be approximated by

the BCS wave function for a homogenous gas,

uBCSsrdl = p
k

fuksrd + yksrdĉ−k,↑
† ĉk,↓

† gu0l, s34d

with Bogoliubov amplitudes

uk
2srd =

1

2S1 +
jksrd

ÎD2srd + jk
2srd

D , s35d

yk
2srd =

1

2S1 −
jksrd

ÎD2srd + jk
2srd

D . s36d

Herejksrd=ek −mlocsrd is the kinetic energy of an atom mea-
sured from the local chemical potential defined as

mlocsrd = m0 − Usrd − U0nsrd. s37d

In contrast to the normal Fermi gas, we have included a
Hartree-Fock mean-field energy to the local chemical poten-
tial since we can no longer ignore the effect of the two-body
interactions in the gas. To an excellent approximation we can
use the relation Eq.s26d between density and local chemical
potential. Then, for a given number of atomsN, Eq. s37d is
an implicit equation form0. We solve it numerically and
hence determine the density profilensrd and the local chemi-
cal potentialmlocsrd.

FIG. 5. sColor onlined Momentum distribution of molecules pro-
duced from a normal Fermi gas in the narrow resonance limit for
g=10−3 m.
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The gap parameterDsrd=U0/2Vokuksrdyksrd is deter-
mined by the gap equation

− p

2kFs0da
= m0kF

−3s0dE
0

`

dkk2S 1

Îjk
2srd + D2srd

−
1

jksrdD ,

s38d

where the ultraviolet divergence has been removed by renor-
malizing the bare background scattering strength to the two-
body T-matrix using the Lippmann-Schwinger equationssee
Ref. f41gd. We solve the gap equation numerically using the
previously determined local chemicalmloc.

A. Broad resonance,Ekin™gÎN

We find the momentum distribution of the molecules from
the BCS-type state by repeating the calculation done in the
case of a normal Fermi gas. For the BCS wave function, the
relevant atomic expectation values factorize as

kĉp/2−k1,↑
† ĉp/2+k1,↓

† ĉp/2+k2,↑ĉp/2−k2,↓l

= kĉp/2−k1,↑
† ĉp/2+k1,↓

† lkĉp/2+k2,↓ĉp/2−k2,↑l

+ kĉp/2−k1,↑
† ĉp/2+k2,↓lkĉp/2+k1,↓

† ĉp/2−k2,↑l s39d

and the momentum distribution of the molecules becomes

nBCS,bsp,td = sgtd2FUo
k

kĉp/2+k,↓ĉp/2−k,↑lU2

+ o
k

kĉp/2−k,↑
† ĉp/2+k,↓lkĉp/2+k,↓

† ĉp/2−k,↑lG
< sgtd2Uo

k

kĉp/2+k,↓ĉp/2−k,↑lU2
+ nNFG,bsp,td.

s40d

In going from the first to the second line we have assumed
that the interactions are weak enough so that the momentum
distribution of the atoms is essentially that of a two-
component Fermi gas. This is justified because the Cooper
pairing only affects the momentum distribution in a small
shell of thickness 1/lsrd!kFsrd around the Fermi surface.

The first term involves the square of the pairing field. It is
proportional to the square of the number of paired atoms
which, below the critical temperature, is a finite fraction of
the total number of atoms. This quadratic dependence indi-
cates that it is the result of a collective effect. This term can
be related to the two-point correlation function in position
space as

kĉp/2+k,↓ĉp/2−k,↑l =E d3xd3r

V
e−ip·x−ik·rkĉ↓sx − r /2dĉ↑sx

+ r /2dl, s41d

whereĉ↑,↓ are the atomic field operators in position space. In
the local-density approximation, the correlation function var-
ies with x on a length scaleRTF. On the other hand, the
expectation value in the integral falls off to zero forr
.lsrd and we can therefore treat the correlation function as

being independent ofx when performing the integration over
r ,

kĉp/2+k,↓ĉp/2−k,↑l =E d3x

V
e−ip·xkĉk,↓ĉ−k↑lx. s42d

The expectation value on the right-hand side is evaluated
using the local-density approximation at positionx. Inserting
the result into Eq.s40d and making use of the gap equation
we find

nBCS,bsp,td = sgtd2FUE d3xe−ix·pS1 −
2aL

p
D2Dsxd

U0
U2

+ nNFG,bsp,tdG . s43d

Following Ref. f41g we have replaced the bare background
coupling strength by

U0 = U0
1

1 −
2aL

p

, s44d

where L is a momentum cutoff and is of the order of the
inverse of the range of the interatomic potential.

Using the numerically determinedDsxd we can readily
perform the remaining Fourier transform in Eq.s43d. The
result of such a calculation is shown in Fig. 1. Since the gap
parameter changes over distances of orderRTF the contribu-
tion from the pairing field has a typical width of order 1/RTF.
This is very similar to the BEC case. The background from
the unpaired atoms on the other hand has a typical width
kFs0d=s3p2n0d1/3 which is similar to the width of the noise
contribution in the BEC case, see the inset in Fig. 1. This
similarity can be understood by recalling that for a weakly
interacting condensate,n0

1/3a=b!1, which when substituted
into the definition of the healing length gives 1/j
=s8pbd1/2n0

1/3. For typical b,0.1, this is comparable to
kFs0d for equal densities.

Because of the collective nature of the coherent contribu-
tion it will dominate over the backgroundnNFG,b for strong
enough interactions and large enough particle numbers. The
narrow width and the collective enhancement of the mol-
ecule production are the reasons why the momentum distri-
bution of the molecules is such an excellent indicator of the
presence of a superfluid component and the off-diagonal
long-range order accompanying it.

For weak interactions such that the coherent contribution
is small compared to the incoherent contribution, the second-
order correlations are close to those of a normal Fermi gas
given by Eq.s31d, gs2dsp ,x ,td<2. However, in the strongly
interacting regime,kFuau,1, and largeN, the coherent con-
tribution from the paired atoms dominates over the incoher-
ent contribution from unpaired atoms. In this limit one finds
that the second-order correlation is close to that of the BEC,
gs2dsp ,x ,td<1. The physical reason for this is that at the
level of even-order correlations the pairing field behaves just
like the mean field of the condensate. This is clear from the
factorization property of the atomic correlation functions,
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Eq. s39d, in terms of the normal component of the density
and the anomalous density contribution due to the mean
field. In this case, the leading-order terms inN are given by
the anomalous averages. In the strongly interacting limit, the
contribution from the “unpaired” atoms is very similar in
nature to the contribution from the fluctuations in the BEC
case.

B. Narrow resonance,EkinšgÎN

A calculation similar to the one presented in Appendix B
for the BEC case leads to

nBCS,nsp,td = Uo
k

Dsn − k2/Mdkĉp/2+k,↓ĉp/2−k,↑lU2

+ nNFG,nsp,td, s45d

where we have assumed again that the gas is weakly inter-
acting. Inserting Eq.s19d for D in the limit nt→` and per-
forming similar manipulations as in the broad resonance case
leads to

nBCS,nsp,td =
g2M3

p2p2 UE
0

`

dvÎvSpdsn − vd + iP
1

n − v
D

3 E
0

RTF

drr sinsprdukĉÎMv,↓ĉ−ÎMv,↑lurU2

+ nNFG,n,

s46d

where again the pairing fieldkĉk,↓ĉ−k,↑lur =uksrdyksrd can be
evaluated using the local-density approximation. Figure 6
shows an example of the pairing field across the trap. Two
qualitatively different cases have to be distinguished depend-
ing on the strength of the interactions.

If the interactions are fairly strong so that the pairing
field, uksrdyksrd, is nonzero in a rather wide region around
kFsrd, the pairing field will be a slowly varying function
across the atomic cloud. Then the remaining integral in Eq.
s46d can be easily evaluated numerically and we find a mo-
mentum distribution of the molecules which is similar to the
BEC case. This limit is illustrated in Fig. 7. The width of the
momentum distribution of the molecules is again of order

1/RTF. It is known that in the strongly interacting limit, the
size of the Cooper pairs becomes comparable to the interpar-
ticle spacing,lsrd,1/kFsrd. The Cooper pairs are no longer
delocalized across the extent of the cloud but now approach
the limit of localized Bosonic “quasimolecules.” Thus it is
not surprising that the momentum distribution of molecules
formed from a BCS-type state approaches the one we found
in the BEC case.

On the other hand, if the interactions between the atoms
are weak the pairing field is a very narrow function of mo-
mentum and hence, for fixed momentum, also of position as
can be seen from Fig. 6. Then the integral in Eq.s46d has
contributions from a rather narrow region in space only and
the momentum distribution will accordingly become wider
and smaller.

Probing the BCS system in the narrow resonance regime
also yields spatial information about the atomic state. By
tuning n=2mlocsrd the molecular signal is most sensitive to
the pairing field nearr and less sensitive to other regions in
the trap.

A qualitative difference between the BCS and BEC cases
becomes apparent if one looks at the number of molecules as
a function of the detuning. While we find that there is only a
very narrow distribution of detunings with width
,s2p /RTFd2/2M that leads to molecule formation in the
BEC case, molecules are being formed for detunings well
below n,2m0. The nonhomogeneity of the trapped atom
system manifests itself in a completely different way in the
two cases. In the BEC case, the total energy of a particle in
the condensate is just the chemical potential while the kinetic
energy of a particle is very small compared to the mean-field
energy in the Thomas Fermi limit. Upon release, the atoms in
the condensate all have a spread in kinetic energies that is of
the orders2p /RTFd2/2M due entirely to zero-point motion.
On the other hand, in the BCS case the superfluid forms at
each position near the local Fermi momentum. Hence atoms
in the BCS state have a large energy spread that is of the
order,m0 with the kinetic energies of the paired atoms be-
ing centered aroundmlocsrd with a width Dsrd.

For the second-order moment,gs2dsp ,x ,td, the same gen-
eral arguments that were put forward in the discussion of the

FIG. 6. sColor onlined Pairing fieldkĉk,↓ĉ−k,↑l=ukyk across the
trap for kFa=0.5 andaosc=5kF

−1s0d. The black solid line indicates
the local Fermi momentumkFsrd.

FIG. 7. sColor onlined Momentum distribution of molecules
formed from a strong couplingskFa=0.5d BCS system in the nar-
row resonance regime as a function of detuningn for aosc

=5kF
−1s0d. Well below n=2m the figure is a bit noisy because the

Fourier transform in Eq.s46d gets its main contribution from a very
narrow region in space where the solution of the gap equation is
numerically challenging.
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broad resonance also apply to the narrow resonance. In the
strongly interacting limit, the molecular field is again ap-
proximately coherent with a noise contribution from the un-
paired fermions.

VI. SUMMARY

We examined the momentum distribution and momentum
correlations of molecules formed by a Feshbach resonance or
by photoassociation from a quantum degenerate atomic gas.
Our study elucidated the effect of the atomic trapping poten-
tial as well as the strength of the atom-molecule coupling
relative to the characteristic energies of the atoms on the
molecular momentum distribution.

Molecules produced from an atomic BEC show a rather
narrow momentum distribution that is comparable to the
zero-point momentum width of the atomic BEC from which
they are formed. In the case of a narrow resonance, energy
conservation limits the molecules to only a narrow energy
range. The molecule production is a collective effect with
contributions from all atom pairs adding up constructively, as
indicated by the quadratic scaling of the number of mol-
ecules with the number of atoms. Each mode of the resulting
molecular field is to a very good approximation coherentfup
to terms of orderOs1/Ndg. The effects of noise, both due to
finite temperatures and to vacuum fluctuations, are of relative
orderOs1/Nd. They slightly increase thegs2d and cause the
molecular field in each momentum state to be only partially
coherent.

In contrast, the momentum distribution of molecules
formed from a normal Fermi gas is much broader with a
typical width given by the Fermi momentum of the initial
atomic cloud. The molecule production is not collective as
the number of molecules only scales like the number of at-
oms rather than the square. In this case, the second-order
correlations of the molecules exhibit super-Poissonian fluc-
tuations, and it was argued that the molecules are well char-
acterized by a thermal field.

The case where molecules are produced from paired at-
oms in a BCS-like state shares many properties with the
BEC case: The molecule formation rate is collective, their
momentum distribution is very narrow in comparison to the
normal Fermi gas, and the molecular field is essentially co-
herent. The noncollective contribution from unpaired atoms
has a momentum distribution very similar to that of the qua-
siparticle fluctuations in the BEC case.

In a future publication we will use the Bogoliubov–de
Gennes equations to describe the BCS-type state which is
again probed with a molecular field. Thus we will be able to
go beyond the local-density approximation and we can study
the BEC-BCS crossover regime. Also, this will allow us to
study the validity of the local-density approximation more
carefully.
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APPENDIX A: CALCULATION OF n„p… FOR gšEkin

FOR A BEC

In this appendix we show how the decomposition of the
atomic field operator into condensed and noncondensed frac-
tion together with the local-density approximation for the
noncondensed part can be used to calculate the momentum
distribution of the molecules for the case of an initial BEC of
atoms. More details on the properties of fluctuations at non-
zero temperatures and the use of the local-density approxi-
mation for their description can be found in Refs.f37–39g.

The starting point of our calculation is Eq.s6d for the
momentum distribution of the molecules. It reduces the prob-
lem to evaluating an integral over expectation values in the
undisturbed atomic field att=0. The relevant expectation
values are most transparently calculated by partitioning the
quantization volumeV into smaller volumesVj that are
larger than the coherence lengthj. Partitioning the atomic
field operator accordingly, we get

ĉsxd = o
j

Ajsxdx0sxdĉ + o
j

dĉloc
s jd sxd, sA1d

where we have introduced functionsAjsxd that are one in

volumeVj and zero otherwise, anddĉloc
s jd sxd=Ajsxddĉsxd. The

partitioning of the field operator is illustrated in Fig. 8. We
go over to the Fourier transform

ĉp =E d3x
ÎV

e−ip·xĉsxd = x̃0spdĉ + o
Vj

ÎVj

V
dĉp

s jd, sA2d

wheredĉs jdspd is the annihilation operator for a fluctuation of
momentump in volumeVj. In the local-density approxima-
tion, fluctuations in different cellsVj are uncorrelated and we
have

kdĉk1

sid†dĉk2

s jdl ; di,jdk1,k2
kdĉk1

sid†dĉk1

sidl. sA3d

Inserting in Eq.s6d, keeping only terms of first order in the
fluctuations and making use of relationsA3d we find

nBEC,bsp,td = sgtd2NsN − 1d o
k1,k2

x̃0
*sp/2 − k1dx̃0

*sp/2

+ k1dx̃0sp/2 − k2dx̃0sp/2 + k2d

+ 4sgtd2No
k,j

Vj

V
ux̃0sp − kdu2kĉk

s jd†ĉk
s jdl. sA4d

FIG. 8. Illustration of the partitioning of quantization volume
and atomic field operator. Also indicated is the functionAjsxd.
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The coherent term is readily brought to the form given in Eq.
s7d. In the incoherent term we notice thatux̃0spdu2 is a much
narrower function thankĉk

s jd†ĉk
s jdl, the former having a typical

width of ,1/RTF while the latter has a typical width of
,1/j. Hence, to a good approximation,kĉk

s jd†ĉk
s jdl can be

treated as a constant for the momentum range for which
ux̃0spdu2 is nonzero and we obtain

4sgtd2No
k,j

Vj

V
ux̃0sp − kdu2kĉk

s jd†ĉk
s jdl

< 4sgtd2No
j

Vj

V
kĉk

s jd†ĉk
s jdlo

k
ux̃0sp − kdu2

= 4sgtd2No
j

Vj

V
kĉk

s jd†ĉk
s jdl, sA5d

where we have made use of the normalization ofx0sxd in the
last step. Sincej!RTF the volumesVj can be made small
and the sum can be approximated by an integral, leading to
Eq. s7d.

APPENDIX B: CALCULATION OF n„p… FOR g™Ekin

FOR A BEC

The calculation goes along similar lines as in the broad
resonance case but the evaluation of the integrals is more
complicated. Repeating the calculation of the broad reso-
nance case that led to Eq.sA4d with âp now replaced accord-
ing to Eq.s18d we find, again to first order in the fluctuations,

nBEC,nsp,td = NsN − 1dUo
k

DsEp − ep/2+k − ep/2−k,tdx̃0sp/2

+ kdx̃0sp/2 − kdU2
+ 4No

k,j

Vj

V
uDsEp − ep/2+k

− ep/2−k,tdu2ux̃0sp − kdu2kĉk
s jd†ĉk

s jdl

; ncohsp,td + nincohsp,td. sB1d

Let us first consider the coherent partncohsp ,td. Going over
from the summation to an integral in the usual way, making
the substitutionv=k2/M and introducing polar coordinates
we find

ncohsp,td =
VM3/2

p223 E
0

`

dvDsn − v,tdE
0

p

dq sinqÎvx̃0

3sÎp2/4 + Mv + upuÎMv cosqdx̃0

3sÎp2/4 + Mv − upuÎMv cosqd. sB2d

In the limit t→` , Dsn−vd becomesf42g

lim
t→`

Dsn − v,td = gSpdsn − vd − iP
1

n − v
D , sB3d

where, as usual,P means that the integral has to be taken in
the sense of the Cauchy-principal value. The real part can be
evaluated by making use of thed function and for the imagi-
nary part we have to rely on numerical methods to calculate
the principal value integral.

Making similar manipulations of the sums over momenta
for the incoherent part leads to

nincohsp,td = 4N
M3/2

8p2 o
j

VjE
0

p

dq sinq

3E0
`dvÎvuDsn − v,tdu2ux̃0

3sÎp2/4 + Mv − upuÎMv cosqdu2kĉÎMv
s jd† ĉÎMv

s jd l.

sB4d

Using the delta function

lim
t→`

uDsn − vdu2 = pg2tdsn − vd sB5d

to perform the integral in the limit ast goes to inifinity we
arrive at Eq.s20d.
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