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We present a theoretical treatment of Bragg spectroscopy of an accelerating condensate in a solitary-wave
state. Our treatment is based on the Gross-Pitaevskii equation with an optical potential representing the Bragg
pulse and an additional external time-dependent potential generating the solitary-wave behavior. By transform-
ing to a frame translating with the condensate, we derive an approximate set of equations that can be readily
solved to generate approximate Bragg spectra. Our analytic method is accurate within a well-defined parameter
regime and provides physical insight into the structure of the spectra. We illustrate our formalism using the
example of Bragg spectroscopy of a condensate in a time-averaged orbiting potential trap.
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I. INTRODUCTION

Bragg spectroscopy has proved to be a precise and versa-
tile technique for measuring a variety of properties of a
Bose-Einstein condensate, including the momentum distribu-
tion f1g and coherence functionsf2g. A theoretical proposal
has been made to use Bragg spectroscopy to provide a sig-
nature of a vortex state in a condensatef3g, and recently the
technique has been suggested as a means for characterizing
superfluid pairing in fermionic systemsf4g.

The theoretical description of Bragg spectroscopy of a
condensate is well established and Blakieet al. f5g, for ex-
ample, have shown that a mean-field treatment using the
Gross-Pitaevskii equation is an appropriate formalism. Un-
fortunately, numerically calculating a Bragg spectrum using
the Gross-Pitaevskii equation is highly computationally in-
tensive and may not readily yield a physical interpretation of
the system.

In this paper we present a treatment of Bragg spectros-
copy of a condensate which is accelerating in the form of a
solitary wave due to the influence of an external time-
dependent trapping potential. Solitary-wave behavior occurs
only for a certain class of potentials, but is not uncommon. A
simple example is the dipole oscillation of a condensate in a
harmonic trap. Our method is based on transforming to the
frame of reference where the condensate is stationary, allow-
ing us to establish a relatively simple set of equations that
can be readily solved to give approximate Bragg spectra. We
also obtain an analytic approximation to the spectrum, which
provides physical insight into its structure.

The paper is organized as follows. In Sec. II we describe
our theoretical formalism, introducing solitary-wave solu-
tions of the Gross-Pitaevskii equation and transforming the
equation to the translating frame. We outline a simple two-
state momentum-space formalism which can be used to gen-
erate approximate Bragg spectra for a general solitary wave,
and we determine the validity regime in which such spectra
are accurate. In Sec. III we use the methods of Sec. II to treat
Bragg spectroscopy of a condensate undergoing micromotion

in a time-averaged orbiting potential trap. We demonstrate
the utility of our approximate solutions by comparing them
with Bragg spectra calculated by simulating the Gross-
Pitaevskii equation. Bragg spectroscopy in a time-averaged
orbiting potential trap has been investigated experimentally
f6g and our treatment provides quantitative agreement with
full theoretical calculations and qualitative agreement with
the experimental resultsf7g.

II. BRAGG SPECTROSCOPY OF A SOLITARY WAVE

Our theoretical treatment is based on solving the Gross-
Pitaevskii equation for a condensate with wave function
csr ,td, in the presence of a time-dependent external trapping
potential and a Bragg pulse, i.e.,

i
]

]t
csr ,td = f− ¹2 + Vsr ,td + Voptsr ,td + Cucsr ,tdu2gcsr ,td.

s1d

We have chosen to present our discussion in terms of dimen-
sionless units where the time scale is given by the inverse of
a characteristic trap frequencyvx se.g., as defined in Sec.
II A 1 d and the position scale isx0=Î" /2mvx swherem is
the mass of an atomd. The external trapping potentialVsr ,td
can be decomposed without loss of generality as

Vsr ,td = Vsr d + Gsr ,td, s2d

and the optical potential generated by the Bragg pulse is

Voptsr ,td =
1

2
U0 cossq · r − vtd, s3d

whereq andv are, respectively, the wave-vector difference
and the frequency difference between the two laser beams
forming the Bragg pulsef8g. The dimensionless nonlinearity
coefficientC is defined in terms of the number of condensed
atomsN and thes-wave scattering lengtha, i.e.,

C =
4p"aN

mvxx0
3 . s4d
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A. Solitary-wave solutions

Solitary-wave solutions to the Gross-Pitaevskii equation
in the absence of the optical potentialfEq. s1d with U0=0g
exist for particular forms of the external potentialVsr ,td of
Eq. s2d. Such solutions, which evolve in three dimensions
without changing shape, have been discussed previously
f9–11g and have the form

cSWsr ,td = j„r − r̄ std…e−imt+iSsr ,td, s5d

where the envelope wave functionjsr d is an eigenstate of the
time-independent Gross-Pitaevskii equation with the time-
independent trapping potentialVsr d and chemical potential
m, i.e.,

mjsr d = f− ¹2 + Vsr d + Cujsr du2gjsr d. s6d

The position offset in the envelope wave function is

r̄ std =E cSW
* sr ,tdrcSWsr ,tddr −E j*sr drjsr ddr . s7d

The phaseSsr ,td is determined by substituting the solitary-
wave solutions5d into the time-dependent Gross-Pitaevskii
equation. We restrict our discussion to solutions where the
velocity of the envelopej(r − r̄ std), equal to the center-of-
mass velocitydr̄ std /dt, is proportional to the gradient of
Ssr ,td fin our units 2=Ssr ,tdg. sFor further details regarding
the derivation ofSsr ,td see Refs.f9,11g.d We find that

Ssr ,td =
1

2
r ·

dr̄ std
dt

+
1

4
E

t0

t Fr̄ 2std − Sdr̄ std
dt

D2Gdt, s8d

where t0 is chosen for convenience such that any constant
si.e., globald phase incSWsr ,td is set to zero. The center-of-
mass motion of the solitary-wave solutions can be shown to
obey a form of Ehrenfest’s theorem,

1

2

d2r̄ std
dt2

= − = Fsr ,td, s9d

where

Fsr ,td = Vsr ,td − V„r − r̄ std…. s10d

For solitary-wave solutions to exist the functionFsr ,td must
yield a solution to Eq.s9d and, therefore, can be at most
linear in r .

1. Harmonic trap

In Bose-condensed systems it is most common that the
time-independent trapping potentialVsr d is harmonic, i.e.,

VHsr d =
1

4
sx2 + y2 + l2z2d, s11d

with frequencyvx in thex-y planesin SI unitsd, aspect ratio
l, and wherer =sx,y,zd. In the absence of the Bragg pulse
sU0=0d, the Gross-Pitaevskii equations1d has solitary-wave
solutions provided thatGsr ,td has the particular form such
that Eq.s9d is satisfied, i.e.,

Gsr ,td = g1std · r + g2std, s12d

whereg1std andg2std are arbitrary functions oft.
Solitary-wave behavior is not uncommon in condensates

confined by a harmonic trap. Some examples include the
dipole oscillationfg1std=0g, the motion resulting from trans-
lations of the trap due to the effect of noisefg1stdÞ0g, and
the solitary-wave micromotion of a condensate in a time-
averaged orbiting potential trapsto be discussed in Sec. IIId.
Bragg spectroscopy is a highly velocity-sensitive technique
and while the Bragg spectrum of a solitary-wave solution
with constant velocity is relatively straightforward to predict,
the Bragg spectrum of an accelerating solitary-wave conden-
satefwith dr̄ std /dt a function oftg can be complicated and it
is the latter case that is the focus of this paper.

B. Translating frame

We begin our treatment of Bragg spectroscopy in a time-
dependent external trapping potential by transforming to the
frame translating such that the condensate center-of-mass is
stationary in that frame. While numerical solutions of the
Gross-Pitaevskii equation can be calculated in the laboratory
frame, the description of the system in the translating frame,
where the condensate is at rest, allows simple approximate
methods and a physical interpretation to be developed since
the only time dependence for the system in the translating
frame appears via an effective optical potential.

A general quantum-mechanical transformation to an ac-
celerating translating frame has been given earlierf11g. For
the particular case we are interested in, of solitary-wave mo-
tion, the translation in coordinate space is defined by setting
the coordinates of the new frame to be

R = r − r̄ std, s13d

where we denote the components ofR to be sX,Y,Zd. The
momentum in the translating frame is derived by differenti-
ating Eq.s13d yielding

P = p −
1

2

dr̄ std
dt

, s14d

where we have used the fact that in our dimensionless units
p=v /2. The wave function in the translating frame is

ctsR,td = es−1/2diR·dr̄ std/dtcsr ,td, s15d

facilitating the momentum translation of Eq.s14d.1 The
Gross-Pitaevskii equation in the translating frame can now
be derived by transforming Eq.s1d using Eqs.s13d and s15d
to yield

1Unlike the derivation in Ref.f11g we do not assume that
r̄ std ·dr̄ std /dt=0. However, in the case where the unitary operators
that generate the position and momentum translations of Eqs.s13d
ands14d do not commute, the additional factor in the unitary trans-
formation to an accelerating translating frame is a time-dependent
phase which can be removed in an interaction picture.
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i
]

]t
ctsR,td = f− ¹R

2 + WtsR,td + Vopt
t sR,td

+ CuctsR,tdu2gctsR,td. s16d

In Eq. s16d we have denoted

=R = S ]

]X
,

]

]Y
,

]

]Z
D , s17d

and the optical potential in the translating frame is

Vopt
t sR,td =

1

2
U0cosfq ·R + q · r̄ std − vtg. s18d

The potential denotedWtsR ,td is the sum of the external
trapping potential in the translating frame and additional
terms due to the momentum translation, i.e.,

WtsR,td = VsR + r̄ std,t… +
1

2
R ·

d2r̄ std
dt2

−
1

4
Sdr̄ std

dt
D2

.

s19d

By taking the gradient of Eq.s19d and making a comparison
with Eq. s9d we find that

=RWtsR,td = =RVsRd s20d

and, therefore,

WtsR,td = VsRd + Astd, s21d

whereAstd is a function only of time. Defining an interaction
picture by

cTsR,td = ctsR,tdexpSi E AstddtD , s22d

the Gross-Pitaevskii equation becomes

i
]

]t
cTsR,td = f− ¹R

2 + VsRd + Vopt
t sR,td

+ CucTsR,tdu2gcTsR,td, s23d

which shows that in the translating frame all the explicit time
dependence of the system is contained within the optical
potential termfsee Eq.s18dg. When the Bragg pulse is turned
off, stationary solutions of Eq.s23d are of the form

cSW
T sR,td = jsRde−imt, s24d

which are solitary-wave solutions in the laboratory frame
with center-of-mass motion governed by Eq.s9d.

C. Simple momentum formalism

A theoretical formalism for describing Bragg spectros-
copy of a stationary condensate has been developed by
Blakie et al. f8g. Those authors derived an analytic treatment
of Bragg scattering, for the case whereC=0, using an ap-
proximate two-state momentum-space model to consider
condensates released from a harmonic trap at the instant that
the Bragg pulse is applied. Their treatment provides a simple
approximate method for generating Bragg spectra which,

within a given parameter regime, are in quantitative agree-
ment with full calculations of the Gross-Pitaevskii equation.
Here we extend that model to describe Bragg spectroscopy
of condensates moving with solitary-wave behavior.

Following broadly the approach of Blakieet al. f8g we
place three restrictions on the system. First, mean-field ef-
fects are neglected by takingC=0. Our treatment of the non-
linear term is detailed in Sec. II D. Second, the time-
independent trapping potentialVsr d is neglected while
retaining the time-dependentGsr ,td. This means that the
condensate center-of-mass motion is still governed by Eq.
s9d but the condensate is no longer confined about its center
of mass. When neglecting atomic interactions, removing the
trap Vsr d does not alter the momentum distribution of the
unscattered condensate, whereas the condensate part scat-
tered by the Bragg pulse is no longer decelerated. Provided
that the Bragg pulse length is short compared to the oscilla-
tion period of atoms confined byVsr d, the effect of the con-
fining potential on the Bragg spectrum is negligible. In some
experimental systems it may be possible to applyVsr d and
Gsr ,td independently so thatVsr d can be turned off when the
Bragg pulse is applied. Third, for simplicity, we choose the
wave vectorq of the optical potential to lie along thex axis
such thatq ·R=qX and the optical potentials18d becomes

Vopt
t sX,td =

1

2
U0 cosfqX+ qx̄std − vtg. s25d

This can be done without loss of generality for the case
whereVsr d is turned off. Finally then, within these restric-
tions, the wave functioncTsR ,td is separable and denoting
the product wave function inX by cTsX,td it is possible to
reduce the analysis of the system to one dimension without
loss of generalityf8g.

We begin by transforming the one-dimensional equivalent
of Eq. s23d, with C=0 andVsRd=0, into momentum space
using the Fourier integral

fTsK,td =
1

Î2p
E cTsX,tde−iKXdX, s26d

to give

i
]

]t
fTsK,td = K2fTsK,td +

1

4
U0fe−ifvt−qx̄stdgfTsK − q,td

+ eifvt−qx̄stdgfTsK + q,tdg. s27d

Next, we partition momentum space into bins of widthq,
centered around the Bragg ordersK=nq, wheren is integer.
That is achieved by expressing the wave functionfTsK ,td as

a set of wave functionsf̃n
TsK̃ ,td, each defined only within

bin n of the partitioned momentum space, i.e.,

f̃n
TsK̃,td = fTsK,td, s28d

where
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K̃:Sn −
1

2
Dq , K , Sn +

1

2
Dq. s29d

The description of the system is simplified by definingk

=K̃−nq and writing

fn
Tsk,td = f̃n

TsK̃,tdeinfvt−qx̄stdg, s30d

where k varies from −q/2 to q/2, for every bin. The
momentum-space Schrödinger equation can then be written
as an infinite set of equations coupling wave functions of
consecutive bins,

i
]

]t
fn

Tsk,td = vnsk,tdfn
Tsk,td +

1

4
U0ffn−1

T sk,td + fn+1
T sk,tdg,

s31d

where

vnsk,td = sk + nqd2 − nv + nq
dx̄std

dt
. s32d

Equations31d is identical to that derived by Blakieet al. f8g
for a stationary untrapped condensate, with the exception of
an additional time dependence appearing invnsk ,td. The ad-
ditional termnqdx̄std /dt is due to the momentum of the con-
densate in the laboratory framefsee Eq.s14dg and has previ-
ously been referred to as the Doppler termf6g.

To determine the Bragg spectrum of an accelerating con-
densate we calculate the population in the first Bragg order
sn= +1 bind as a function of the frequency differencev in
the optical potential. In the translating frame this is given by

P+1sv,td =E
−q/2

q/2

uf+1
T sk,tdu2dk, s33d

corresponding in the laboratory frame to

P+1sv,td =E
fq+dx̄std/dtg/2

f3q+dx̄std/dtg/2

ufsk,tdu2dk, s34d

wherefsk,td is defined by

fsk,td =
1

Î2p
E csx,tde−ikxdx s35d

in terms of the wave function in the laboratory framecsx,td,
and the limits of integration in Eq.s34d account for the
solitary-wave center-of-mass motion of the condensate.

Solving Eq. s31d, in order to calculatef+1
T sk ,td, is no

more straightforward than solving the full Schrodinger equa-
tion. Again following the treatment of Blakieet al. f8g the
problem becomes readily tractable if we assume that in the
region of interest, where first-order Bragg scattering is
strong, only then=0 and +1 momentum wave functions are
substantially populated. In this “two-state model” Eq.s31d
reduces to

i
]

]t
F f0

Tsk,td
f+1

T sk,td
G = Fv0skd 1

4U0
1
4U0 v0skd + D0→+1sk,td

GF f0
Tsk,td

f+1
T sk,td

G ,

s36d

wherev0skd=k2 and

D0→+1sk,td = q2 + 2kq − v + q
dx̄std

dt
. s37d

Equations36d can be solved easily by numerical means and
its solution accurately describes the system whennÞ0, +1
populations are negligible. The validity conditions for Eq.
s36d are now derived.

1. Validity of the two-state model

The two-state model is valid when only then=0 and +1
bins are significantly populated. Accounting for two-photon
transitions onlyswhich couple consecutive binsd the detuning
for the transition from binn to bin m is defined by

Dn→msk,td = vmsk,td − vnsk,td, s38d

where um−nu=1. We define a transition to be on resonance
when the magnitude of the detuning is less thanU0/2 sde-
termined by the power-broadened widthf8gd. Thus, the first-
order Bragg transitionsbetween then=0 and +1 binsd will be
resonant for some part of the initial condensate momentum
distribution over the frequency range

v . q2 + qUdx̄std
dt

U
min

− sq −
1

2
U0 s39d

and

v , q2 + qUdx̄std
dt

U
max

+ sq +
1

2
U0, s40d

wheres is the full momentum width of the condensate. We
have chosen to use the 1/e condensate momentum width and
the extreme values ofdx̄std /dt in order to yield the largest
possible transition width and, therefore, the strictest condi-
tion for the two-state validity. Within the frequency range
defined by Eqs.s39d and s40d we require that the transitions
to neighboring binssn=−1 and +2d are not resonant, i.e.,
uD−1→0sk ,tdu.U0/2 anduD+1→+2sk ,tdu.U0/2. Those condi-
tions are satisfied when

U0 , 2qsq − s − dpd, s41d

where 2dp= udx̄std /dtumax− udx̄std /dtumin. Note that Eq.s41d re-
quiress,q, which also ensures that momentum wave func-
tions of consecutive bins do not overlap.

The discussion leading to Eq.s41d does not account for
higher-order processes. It is possible for 2m-photon pro-
cesses to transfer population from then=0 to then=m bin,
without intermediate bins accumulating significant popula-
tion. However, provided the Rabi period for such processes
is significantly longer than the Bragg pulse length, the popu-
lation transfer is negligible and will not affect the two-state
dynamics between then=0 and +1 bins. Of the higher-order
processes, the four-photon processes are the most likely to
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affect the two-state validity. In the case of no center-of-mass
motionfx̄std=0 for all tg, the Rabi frequency at the resonance
of the n=0 to +2 transition isf12g

VRabis0→+2d =
U0

2

8fv0s0d − v+1s0dg
=

U0
2

8q2 . s42d

Complete population transfersfor k=0d would occur for
VRabis0→+2dt=p, yielding the additional condition

t !
8pq2

U0
2 . s43d

The condition derived equivalently on then=−1 to +1 tran-
sition is more lenient and therefore, provided that Eqs.s41d
and s43d are satisfied, all other transitions can be neglected
and the two-state approach is valid.

2. Simplified treatment of the two-state model: Main features
of the Bragg spectrum

The two-state model provides approximate Bragg spectra
for a condensate with solitary-wave behavior and requires
much less computational resources than calculations of the
full Gross-Pitaevskii equation. We will demonstrate the suc-
cess of the two-state solutions to Eq.s36d in Sec. III C. How-
ever, the dominant features of the Bragg spectrum can be
readily obtained from a particular simplification of the two-
state model, which we outline in this section.

Blakie et al. f8g have shown that if the optical potential
s18d has the simple formb cossq ·R−vtd /2, then for the case
VsRd=0 and C=0, the detuning in the two-state model is
time-independent, i.e.,

D0→+1skd = q2 + 2kq − v. s44d

In that case, the analytic solution to Eq.s36d yields the Bragg
spectrum

P+1sv,td =E
−q/2

q/2 b2uf0sk,0du2

8VRabi
2 skd

f1 − cosVRabiskdtgdk,

s45d

where the Rabi frequency is

VRabiskd =ÎSb

2
D2

+ D0→+1
2 skd. s46d

The frequency width of the first-order Bragg transition is

sv =Îb2 + Sp

t
D2

, s47d

where contributions from power broadening and temporal
broadening are included. In the limitbt/4!1 the total scat-
tered population across the single Bragg resonance is

E
−`

`

P+1sv,tddv =
pb2t

8
. s48d

For the more general case we are considering here, the
optical potential in the translating frame is given in one di-

mension by Eq.s25d, which can be expanded as

Vopt
t sX,td =

1

2
U0hcossqX− vtdcosfqx̄stdg

− sinsqX− vtdsinfqx̄stdgj . s49d

In many cases cosfqx̄stdg and sinfqx̄stdg will be periodic
functions of time and can thus be replaced by their respective
Fourier series. After some algebraic manipulation Eq.s49d
can then be expressed as a linear sum of simple Bragg po-
tentials with the form considered by Blakieet al. f8g, i.e.,

Vopt
t sX,td =

1

2o
l

cl cosfqX− sv + vldt + elg. s50d

The strength, relative phase, and resonance position for each
term in the sum can be determined oncecl, el, and vl are
known. If the two Fourier series required for the expansion
are not exact, or cannot be found analytically, numerical
Fourier transform methods can be used.

If the optical potentials25d can be expanded in the form
of Eq. s50d then the Bragg spectrum of the solitary-wave
condensate will have a discrete number of resonance peaks
due to the multiple Bragg terms in the linear sum. When the
individual Bragg spectra due to consecutive terms in fre-
quency space overlap, the effect due to simultaneous appli-
cation of the Bragg fields can be complicated. However,
there are particular regimes where each Bragg response la-
beled by l can be considered as if it were acting indepen-
dently of the others, and then Eqs.s44d–s48d can be applied
to each resonance, and it is straightforward to construct a
complete approximate spectrum by summing the Bragg spec-
tra due to each individual term. We refer to this method of
calculating approximate spectra as theindependent reso-
nance approach. The most important case where this ap-
proach applies is when the positions of consecutive reso-
nances are separated by more than the widths of those
resonances, i.e.,

vl+1 − vl .
svscl+1d + svscld

2
. s51d

Other particular cases arise; for example, in the perturbative
limit clt /4!1, the independent resonance approach is accu-
rate for Bragg pulse lengths such that all resonances labeled
l obey

cosF1

2
svl8 − vldt − sel8 − eldG = 0 s52d

for all other resonancesl8.

D. Nonlinear effects

Calculating numerical solutions to the three-dimensional
time-dependent Gross-Pitaevskii equation is computationally
intensive. Blakieet al. f8g demonstrated that within a well-
defined parameter regime the analytic results derived for the
case whereC=0 provide a good representation of the main
behavior observed in the many-body system. For the systems
we are considering, where the condensate has solitary-wave
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behavior in the absence of the Bragg pulse, the center-of-
mass motion of the condensate is independent of the nonlin-
ear strength of the system and, therefore, in the translating
frame the validity regime definitions derived by Blakieet al.
f8g apply.

There are three dominant many-body effects on Bragg
scattering. The first is that atomic interactions within the con-
densate cause the momentum distribution to broaden during
free expansion. The time scale for this has been derived to be
t=7Î3/4m f8g and provided that the Bragg pulse length is
shorter than this time scale, the effect of expansion is negli-
gible. The second many-body effect is a shift in the reso-
nance condition of the first Bragg order due to the mean-
field. For condensates confined in a three-dimensional
harmonic trap the resonant frequency is higher by approxi-
mately 4m /7 f8g and this shift can be neglected whenm
!U0/2. In addition to these effects, harmonically trapped
condensates with a higher chemical potential have a nar-
rower momentum distribution. This arises due to the form of
jsRd, defined by Eq.s6d: a broader spatial distribution leads
to a narrower momentum distribution. The Bragg spectra for
trapped condensates with a higher chemical potential exhibit
narrower spectral features and increased peak scattering.
These effects were also observed by Blakieet al. f8g.

In the case whereC=0 a description of the three-
dimensional system can often be simplified to one dimension
without loss of generality, as described in Sec. II C. The
Gross-Pitaevskii equation, while it is not separable, can also
be reduced to a one-dimensional formse.g.,f13–15gd. Bragg
spectra calculated using a one-dimensional treatment along
the axis of the Bragg pulse also generate reasonably accurate
results for a nonlinear condensate, as we will see for a par-
ticular example in Sec. III D.

III. TIME-AVERAGED ORBITING POTENTIAL TRAP

In this section we calculate Bragg spectra of a condensate
accelerating as a solitary wave. The spectra are calculated at
various levels of approximation:sid using the approximate
methods described in Sec. II C,sii d using the full
Schrödinger equationsGross-Pitaevskii equation withC=0d,
andsiii d using the Gross-Pitaevskii equation in both one and
two dimensions.

There are a number of examples of solitary-wave behav-
ior of condensates confined by a harmonic trapssee Sec.
II A 1 d. Solitary-wave solutions with constant velocity ex-
hibit Bragg spectra with the same shape as the spectra of the
equivalent stationary condensate but simply translated in fre-
quency space byqdx̄std /dt, as can be seen from Eq.s25d or
s37d. Solitary-wave solutions which accelerate can produce
more elaborate Bragg spectra and for this reason we have
chosen to use the example of solitary-wave micromotion of a
condensate in a time-averaged orbiting potentialsTOPd trap
to illustrate our methods discussed in Sec. II. In a TOP trap
the condensate accelerates in a circular trajectory following
the bias field that removes the discontinuity in the trapping
potentialsf11g and references thereind. The micromotion ve-
locity is so high that the structure of the Bragg spectrum can
be measured experimentally with moderate frequency reso-

lution. The experimental investigation of Bragg spectra in a
TOP trapf6g shows qualitative agreement between the ex-
perimental data and calculations made using the one-
dimensional Schrödinger equation. Our theoretical methods
provide the framework for a detailed understanding of the
concepts introduced previously in relation to Bragg spectros-
copy in a TOP trapf6,16g.

A. Theoretical description of the TOP trap

The TOP trap potential can be well approximated by

VTOPsr ,td = VHsr d + r0scosVt,sinVt,0d · r , s53d

wherer0 is the so-called “circle of death” radius andV is the
bias field rotation frequencyf11g. Equation s53d is of the
form required for solitary-wave solutions to existfsee Eq.
s12dg and in fact condensation occurs into the system ground
state, which is a solitary-wave solution of the Gross-
Pitaevskii equation with circular center-of-mass motion
given by

r̄ std = gscosVt,sinVt,0d, s54d

whereg=2r0/ sV2−1d f11g.

B. Effective optical potential

The solitary-wave description of condensate micromotion
allows Bragg spectroscopy in a TOP trap to be described
using the theory presented in Sec. II. In the translating frame
the optical potential of the Bragg pulse becomes, in one di-
mension,

Vopt
t sX,td =

1

2
U0cossqX+ qgtcosVt − vtd. s55d

The optical potential of the Bragg pulse, in the moving frame
of the condensate, has been identified previously as being a
frequency-modulated potentialf6,16g. Our discussion in the
translating frame provides a theoretical validation of that
identification.

In anticipation of interpreting Bragg spectra of a conden-
sate in a TOP trap we decompose the optical potential in the
translating frame in the form of Eq.s50d. For the frequency-
modulated potential of Eq.s55d such an expansion is well
known, i.e.,

Vopt
t sX,td =

1

2
U0HJ0sgqdcossqX− vtd − o

l=0

`

s− 1dlJ2l+1sgqd

3FcosSqX− vt − s2l + 1dVt −
p

2
D

+ cosSqX− vt + s2l + 1dVt −
p

2
DG

+ o
l=1

`

s− 1dlJ2lsgqdfcossqX− vt + 2lVtd

+ cossqX− vt + 2lVtdgJ , s56d
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whereJnszd is the Bessel function of the first kind of ordern
and with argumentz. In the translating frame, the condensate
is subjected to an optical field which is the sum of simple
Bragg terms, separated in frequency by the TOP trap bias
field rotation frequency. Therefore, we expect that the Bragg
spectra of a condensate with micromotion will have multiple
resonances separated byV.

C. Bragg spectra

The Bragg spectrum of a condensate in a TOP trap is
presented in Fig. 1 for a parameter set which is experimen-
tally accessiblef6g. The spectrum calculated using the full
Schrödinger equationsi.e., C=0d is shown as a solid line.
The Bragg spectrum is centered at the first-order Bragg reso-
nancefsee Eqs.s39d ands40dg and exhibits additional struc-
ture compared to the single resonance peak atv=q2 which
would be expected from a single Bragg term. Equations56d
correctly predicts the positions of the resonance peaks in the
Bragg spectrumsas indicated by the vertical lines in the fig-
ured.

We have also generated approximate Bragg spectra of a
condensate in a TOP trap using the two-state modelssee Sec.
II Cd, as well as the simplified version of the two-state
model, the independent resonance approachssee Sec. II C 2d.
Solving the two-state equations36d is two orders of magni-
tude faster than solving the full Schrödinger equation. Pro-
vided that the validity conditions of Eqs.s41d and s43d are
satisfied, the results of the two-state model are reasonably
accurate, as demonstrated by the dashed line in Fig. 1 The
main discrepancy between the two-state method and the full
C=0 calculation is the underestimation of the two strongest
resonance peaks. This occurs because the stationary har-
monic trap in the translating frame has been neglected in the
two-state approach. The effect of the harmonic trap is to shift
population toward zero momentum thus allowing more con-
densate population to be scattered into then= +1 momentum

order. The calculation using the independent resonance ap-
proach is indicated by the dotted line in Fig. 1 and is almost
identical to the Bragg spectrum calculated using the two-
state approach. This is because each Bragg resonance within
the spectrum is well resolvedfrefer to Eq.s51dg and, further-
more, the spectrum in Fig. 1 is for exactly eight TOP trap
cycles and we note that Eq.s52d holds in that case for TOP
trap resonances which are consecutive in frequency space.

Figure 2 shows a Bragg spectrum for a condensate in a
TOP trap where the bias field rotation frequency is halved
compared with the case of Fig. 1, and the Bragg pulse length
is not an integer multiple of the rotation period. The spec-
trum is again centered atv=q2 and the resonances are sepa-
rated by the TOP trap rotation frequency, although a number
of peaks appear missingsincluding the central oned because
their weight is small in expansions56d. In contrast to Fig. 1,
the Bragg spectrum of Fig. 2 is no longer symmetric about
the center of the first-order Bragg resonance, but favors the
low-frequency resonances due to our initial conditions,
which yield a negative Doppler term for the first half of the
TOP trap rotation. We observe that the two-state model does
exhibit the lack of symmetry present in the full Schrödinger
equation calculation, while the independent Bragg resonance
approach does not. We also note that the two-state model
more accurately approximates the full Schrödinger equation
calculation than was the case in Fig. 1. The reason for this is
that neglecting the harmonic trap has less effect at lower
scattered fractions.

D. Effect of condensate nonlinearity

In this section we present Bragg spectra for a nonlinear
condensate in a TOP trap calculated using the Gross-
Pitaevskii equation in one dimensionsthex directiond and in
two dimensionssneglecting thez dimensiond. In each caseq
is taken to be along thex axis and the trapping potential is
the appropriate dimensional reduction of Eq.s53d. In general

FIG. 1. Bragg spectrum of a condensate in a TOP trap calculated
using the full Schrödinger equations−d, the two-state models−−d,
and the independent resonance approachs··d. The vertical lines
along the top of the figure indicate the positions of the spectral
resonances predicted by Eq.s56d. Parameters areU0=45,q=29,r0

=1241,V=153, andt=0.105p s1 TOP trap cyclesd.

FIG. 2. Bragg spectrum of a condensate in a TOP trap calculated
using the full Schrödinger equations−d, the two-state models−−d,
and the independent resonance approachs··d. The vertical lines
along the top of the figure indicate the positions of the spectral
resonances predited by Eq.s56d. Parameters areU0=45,q=29,r0

=878,V=76, andt=0.092p s3.5 TOP trap cyclesd.
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the Gross-Pitaevskii equation is not separable so we deter-
mine the appropriate nonlinear strength in the reduced di-
mensional system by arranging to have the same chemical
potential sand Thomas-Fermi radiusd as in the three-
dimensional description.

Figure 3 illustrates the Bragg spectra for the same param-
eters as in Fig. 1 but withCÞ0. The nonlinear strength
corresponds to approximately 23104 atoms in the Otago
TOP trapf6g. The results from the one-dimensional Gross-
Pitaevskii equation agree well with the Bragg spectrum cal-
culated in two dimensions, justifying our simplification of
the problem to one dimension. Calculating the two-
dimensional Bragg spectra in Fig. 3 is computationally ex-
pensive, requiring approximately 10 CPU hours on a 3 GHz
Pentium to calculate each pointswith 100 points required for
the full spectrumd.

We have also reproduced in Fig. 3 the result from the
linear case of Fig. 1, and comparing theC=0 and theC

Þ0 spectra the effects discussed in Sec. II D are observed:
the nonlinear Bragg spectra exhibit increased peak scattered
fractions, reduced resonance width, and a slight increase in
the resonant frequencies, with respect to the equivalentC
=0 system. The increased resolution in the features of the
Bragg spectrum occurs due to the reduced momentum width
of the initial state, determined by the form ofjsRd. It is
interesting to note that the two-state model can also exhibit
narrowed resonances if the initial state is taken to be the
same numerically calculated ground state as was used for the
full nonlinear Gross-Pitaevskii calculation.

IV. CONCLUSION

We have presented methods for identifying the key fea-
tures of the Bragg spectrum of a condensate that exhibits
solitary-wave behavior. In particular such an accelerating
condensate becomes stationary in a translating frame and an
effective optical potential contains the only explicit time de-
pendence of the system in that frame. We have generalized
the two-state formalism introduced by Blakieet al. f8g and
have defined the regime in which the approximate spectra
generated using that approach are in good agreement with
full calculations. Bragg spectra of particular accelerating
solitary-wave solutions exhibit multiple resonances and we
have identified particular cases where those resonances each
act independently of the others, thereby revealing the main
features of the Bragg spectrum with minimal calculation.

The Bragg spectrum of a condensate in a TOP trap has
been used to illustrate the application of our theory. We have
described the resonance structure in the spectra and in the
validity regime of our treatment have demonstrated excellent
agreement between our approximate methods and full theo-
retical calculations.
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