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Bragg spectroscopy of an accelerating condensate with solitary-wave behavior
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We present a theoretical treatment of Bragg spectroscopy of an accelerating condensate in a solitary-wave
state. Our treatment is based on the Gross-Pitaevskii equation with an optical potential representing the Bragg
pulse and an additional external time-dependent potential generating the solitary-wave behavior. By transform-
ing to a frame translating with the condensate, we derive an approximate set of equations that can be readily
solved to generate approximate Bragg spectra. Our analytic method is accurate within a well-defined parameter
regime and provides physical insight into the structure of the spectra. We illustrate our formalism using the
example of Bragg spectroscopy of a condensate in a time-averaged orbiting potential trap.
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I. INTRODUCTION in a time-averaged orbiting potential trap. We demonstrate

i the utility of our approximate solutions by comparing them

_ Bragg spectroscopy has proved to be a precise and versgiih Bragg spectra calculated by simulating the Gross-
tile technique for measuring a variety of properties of apjtaeyskii equation. Bragg spectroscopy in a time-averaged
Bose-Einstein condensate, including the momentum distribUs piting potential trap has been investigated experimentally
tion [1] and coherence functiorj€]. A theoretical proposal 6] and our treatment provides quantitative agreement with

has been made to use Bragg spectroscopy to provide a sifj| theoretical calculations and qualitative agreement with
nature of a vortex state in a condensi@k and recently the 1o experimental resulfg].

technique has been suggested as a means for characterizing
superfluid pairing in fermionic systeni4].

The theoretical description of Bragg spectroscopy of a !l BRAGG SPECTROSCOPY OF A SOLITARY WAVE
condensate is well established and Blagteal. [5], for ex- Our theoretical treatment is based on solving the Gross-

ample, have shown that a mean-field treatment using thgiiaeyskii equation for a condensate with wave function

Gross-Pitaevskii e_quation is an appropriate formalism. pn-w(r 1), in the presence of a time-dependent external trapping
fortunately, numerically calculating a Bragg spectrum ”S'ngpotential and a Bragg pulse, i.e

the Gross-Pitaevskii equation is highly computationally in-

tensive and may not readily yield a physical interpretation of 5

the system. ialﬁ(f,t) =[= V24 V(r,t) + Vopdr,t) + Clydr, ) P1er 1).
In this paper we present a treatment of Bragg spectros-

copy of a condensate which is accelerating in the form of a (1)

solitary wave due to the influence of an external time-

dependent trapping potential. Solitary-wave behavior occur

only for a certain class of potentials, but is not uncommon. A

simple example is the dipole oscillation of a condensate in - 4 ] ;

harr?mnic trag. Our metr?od is based on transforming to th A1) and the position scale 'xo:vﬁ/z_m‘”x (Whefem IS

frame of reference where the condensate is stationary, aIIovx5he mass of an ato)nTh_e external trapping po tentigr, )

ing us to establish a relatively simple set of equations that@n beé decomposed without loss of generality as

can be readily solved to give approximate Bragg spectra. We _

also obtain an analytic approximation to the spectrum, which vir,y =V + G(r.v), 2

provides physical insight into its structure. and the optical potential generated by the Bragg pulse is
The paper is organized as follows. In Sec. Il we describe

our theoretical formalism, introducing solitary-wave solu-

tions of the Gross-Pitaevskii equation and transforming the VopdT:t) = EUO codq - r - ot), ©)

equation to the translating frame. We outline a simple two-

state momentum-space formalism which can be used to gemvhereq and w are, respectively, the wave-vector difference

erate approximate Bragg spectra for a general solitary wavend the frequency difference between the two laser beams

and we determine the validity regime in which such spectrdorming the Bragg puls€8]. The dimensionless nonlinearity

are accurate. In Sec. lll we use the methods of Sec. Il to treatoefficientC is defined in terms of the number of condensed

Bragg spectroscopy of a condensate undergoing micromotioatomsN and thes-wave scattering length, i.e.,

g\/e have chosen to present our discussion in terms of dimen-
ionless units where the time scale is given by the inverse of
characteristic trap frequeney, (e.g., as defined in Sec.

C= 47haN
= 5
*Electronic address: kchallis@physics.otago.ac.nz Maw, Xy

(4)
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A. Solitary-wave solutions G(r,t) = gq(t) -r +gylt), (12

Solitary-wave solutions to the Gross-Pitaevskii equation h q bi ; ) of
in the absence of the optical potentj&q. (1) with Ug=0] W ere_gl(t) andg(t) are arbitrary tunctions of.
exist for particular forms of the external potentidlr ,t) of Solitary-wave behavior is not uncommon in condensates
confined by a harmonic trap. Some examples include the

; Bi}pole oscillation g,(t) =0], the motion resulting from trans-

[9-11] and have the form lations _of the trap dt_Je to thg effect of noigg(t) ;to_], anq
o the solitary-wave micromotion of a condensate in a time-
Ysw(r 1) = E(r =T (1)) #Hsry. (5)  averaged orbiting potential trao be discussed in Sec. )l

Bragg spectroscopy is a highly velocity-sensitive technique

and while the Bragg spectrum of a solitary-wave solution

with constant velocity is relatively straightforward to predict,

; the Bragg spectrum of an accelerating solitary-wave conden-

M 1€, sate[with dr(t)/dt a function oft] can be complicated and it
wé(r) =[- V2+V(r) + Cl&r)|F]&r). (6) Is the latter case that is the focus of this paper.

where the envelope wave functig(r) is an eigenstate of the
time-independent Gross-Pitaevskii equation with the time
independent trapping potenti®(r) and chemical potential

The position offset in the envelope wave function is B. Translating frame

e « | o~ We begin our treatment of Bragg spectroscopy in a time-
r _J Ysnlr O frswlr D f ¢ (nrerydr. (@) dependent external trapping potential by transforming to the

) ) o ) frame translating such that the condensate center-of-mass is
The phaseS(r ,t) is determined by substituting the solitary- stationary in that frame. While numerical solutions of the
wave solution(5) into the time-dependent Gross-Pitaevskii Gross-Pitaevskii equation can be calculated in the laboratory
equation. We restrict our discussion to solutions where th¢rame, the description of the system in the translating frame,
velocity of the envelopé(r -r(t)), equal to the center-of- \yhere the condensate is at rest, allows simple approximate
mass velocitydr (t)/dt, is proportional to the gradient of methods and a physical interpretation to be developed since
S(r,1) [in our units VS(r,t)]. (For further details regarding the only time dependence for the system in the translating
the derivation ofS(r ,t) see Refs[9,11].) We find that frame appears via an effective optical potential.
. ) A general quantum-mechanical transformation to an ac-
Srot) = Er @ + lf |:r1(7_) _ (dﬁﬁ) }dr, (8) celerating translating frame has been given eafliét. For
2 dat 4/, dr the particular case we are interested in, of solitary-wave mo-

) . tion, the translation in coordinate space is defined by setting
wheret, is chosen for convenience such that any constanihe coordinates of the new frame to be

(i.e., globa) phase inggy(r ,t) is set to zero. The center-of-

mass motion of the solitary-wave solutions can be shown to R=r-Tr(t), (13)
obey a form of Ehrenfest's theorem,
where we denote the componentshfto be (X,Y,Z). The
}dzﬂt) = - VF(r,1), (9) momentum in the translating frame is derived by differenti-
2 dt? ating Eq.(13) yielding
where 1dr(t)
P=p--——-, (19
F(r,t) =V(r,t) = V(r —r(t)). (10 2 dt

For solitary-wave solutions to exist the functi&r ,t) must  where we have used the fact that in our dimensionless units

yield a solution to Eq.(9) and, therefore, can be at most p=v/2. The wave function in the translating frame is
linear inr.

lﬁ‘t(R,t) - e(—l/Z)iR-dr(t)/dt'/j(r ,t), (15)
1. Harmonic trap
cilitating the momentum translation of Eq14). The
ross-Pitaevskii equation in the translating frame can now
be derived by transforming Eql) using Eqs(13) and(15)
to yield

In Bose-condensed systems it is most common that th
time-independent trapping potentM(r) is harmonic, i.e.,

VH(r):%(x2+y2+)\222), (11

ith f inth | in S uni . YUnlike the derivation in Ref[11] we do not assume that
with frequencye, in thex-y plane(in Sl units, aspect ratio T(t)-dr(t)/dt=0. However, in the case where the unitary operators

A, and wherer =(x,y,2). In the absence of the Bragg pulSe i, generate the position and momentum translations of &as.
(Up=0), the Gross-Pitaevskii equatidft) has solitary-wave  and(14) do not commute, the additional factor in the unitary trans-
solutions provided thaG(r ,t) has the particular form such formation to an accelerating translating frame is a time-dependent
that Eq.(9) is satisfied, i.e., phase which can be removed in an interaction picture.
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0 ) . within a given parameter regime, are in quantitative agree-
'EQH(RJ) =[~ VA+W(R,D + Vi (R,1) ment with full calculations of the Gross-Pitaevskii equation.
Here we extend that model to describe Bragg spectroscopy
+ ClRDP]HR D). (16)  of condensates moving with solitary-wave behavior.

Following broadly the approach of Blakiet al. [8] we

In Eq. (16) we have denoted place three restrictions on the system. First, mean-field ef-

a a 9 fects are neglected by takirig=0. Our treatment of the non-
R= <<9_X(9_Y(9_Z> (17)  linear term is detailed in Sec. IID. Second, the time-
independent trapping potentia¥/(r) is neglected while
and the optical potential in the translating frame is retaining the time-dependei@(r,t). This means that the
1 condensate center-of-mass motion is still governed by Eq.
Vtopt(th) = 5Uocog{q ‘R+q-T(t) - wt]. (18) (9) but the condensate is no longer confined about its center

of mass. When neglecting atomic interactions, removing the
The potential denoted(R,t) is the sum of the external trap V(r) does not alter the momentum distribution of the
trapping potential in the translating frame and additionaltnscattered condensate, yvhereas the condensate part scat-

tered by the Bragg pulse is no longer decelerated. Provided

that the Bragg pulse length is short compared to the oscilla-
dr(t) \? tion period of atoms confined by(r), the effect of the con-
dt /- fining potential on the Bragg spectrum is negligible. In some
(19) experimental systems it may be possible to apgly) and

G(r,t) independently so that(r) can be turned off when the
By taking the gradient of Eq19) and making a comparison Bragg pulse is applied. Third, for simplicity, we choose the
with Eq. (9) we find that wave vectorg of the optical potential to lie along theaxis
such thatg-R=gX and the optical potentidll8) becomes

terms due to the momentum translation, i.e.,

WA(R,t) = V(R +T(t),t) + %R . &) }<

VeRWA(R,1) = VRV(R) (20
1 _
and, therefore, Vop(X,0) = 2 Up cogaX-+ 1) - wt]. (25)
WH(R,t) = V(R) + A1), (21
whereA(t) is a function only of time. Defining an interaction This can be done without loss of generality for the case
picture by whereV(r) is turned off. Finally then, within these restric-
tions, the wave functions’(R,t) is separable and denoting
SR = zﬁ(R,t)exp(i fA(t)dt), (22)  the product wave function iX by ¢'(X,1) it is possible to
reduce the analysis of the system to one dimension without

loss of generality 8].

We begin by transforming the one-dimensional equivalent
of Eq. (23), with C=0 andV(R)=0, into momentum space
using the Fourier integral

the Gross-Pitaevskii equation becomes
J
iadfT(R,t) =[-VA+V(R) +V (R,

+Cly"(RYP]T(R,Y), (23)

which shows that in the translating frame all the explicit time
dependence of the system is contained within the optical
potential tern{see Eq(18)]. When the Bragg pulse is turned to give
off, stationary solutions of Eq23) are of the form

qST(K,t):% f JT(X 1) e XdX, (26)
\N LT

yaw(R.1) = ER)E™, (24) i%d)T(K,t) = K2pT(K,t) + %uo[e—‘[wt—ﬂ%T(K -q,b)

which are solitary-wave solutions in the laboratory frame T
with center-of-mass motion governed by E8). +eleteWlgT(K +q,1)]. (27)

Next, we partition momentum space into bins of width

centered around the Bragg ordétsng, wheren is integer.
A theoretical formalism for describing Bragg spectros-That is achieved by expressing the wave funcgdiiK ,t) as

copy of a stationary condensate has been developed ba}/ set of wave function§/>T(R t), each defined only within

Blakie et al.[8]. Those authors derived an analytic treatmentb.  th itioned nt t )

of Bragg scattering, for the case wheBe=0, using an ap- O " OF (€ parttioned momentum space, 1.€.,

proximate two-state momentum-space model to consider .

condensates released from a harmonic trap at the instant that Hr (KD =g (K, 1), (28)

the Bragg pulse is applied. Their treatment provides a simple

approximate method for generating Bragg spectra whichwhere

C. Simple momentum formalism
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R'(n—}> <K< (n+}>

: > q > g.
The description of the system is simplified by definirg
=K-nqg and writing

(29)

Br(x,t) = (K, pygnlet-av], (30)

where « varies from -§/2 to q/2, for every bin. The

momentum-space Schrédinger equation can then be writte]
as an infinite set of equations coupling wave functions of

consecutive bins,

1
i%tf)l(/(,t) = wn(k,) (k1) + ZU0[¢I_1(K,t) + (D)1,
(3D

where

dx(t)
dt

wn(k,1) = (k+ N2 - nw+ng——. (32

Equation(31) is identical to that derived by Blakiet al.[8]

PHYSICAL REVIEW A 71, 033620(2009

iil g<K,t>]:[wo<K) Vo “%(K,t)}
at| ¢ly(k,t) iUo  @o(k) +Ag_sa(r,t) || dla(s,t) |
(36)

where wo(k)=«? and

dx(t
Ao ai(k) =P +2kq— w + qd_(t)'
guation(36) can be solved easily by numerical means and
S solution accurately describes the system wher0, +1
populations are negligible. The validity conditions for Eq.
(36) are now derived.

(37

1. Validity of the two-state model

The two-state model is valid when only time=0 and +1
bins are significantly populated. Accounting for two-photon
transitions only(which couple consecutive bipthe detuning

for the transition from bim to bin mis defined by
An~>m(K!t) = wm(Klt) - wn(Klt)Y (38)

where|m-n|=1. We define a transition to be on resonance
when the magnitude of the detuning is less thii2 (de-

for a stationary untrapped condensate, with the exception dermined by the power-broadened wid8]). Thus, the first-

an additional time dependence appearingijfx,t). The ad-

order Bragg transitiofbetween th&@=0 and +1 binswill be

ditional termngdxt)/dt is due to the momentum of the con- feésonant for some part of the initial condensate momentum

densate in the laboratory frarheee Eq(14)] and has previ-

ously been referred to as the Doppler tdiéh

To determine the Bragg spectrum of an accelerating con-
densate we calculate the population in the first Bragg order

(n=+1 bin) as a function of the frequency differenagin

the optical potential. In the translating frame this is given by

q/2
Pi(w,t) = | pia(x,0)[?dxc, (33
-q/2
corresponding in the laboratory frame to
[3g+dx(t)/dt]/2
Pi(w,t) = |p(k,B)[?dk, (34)
[o+dx(t)/dt]/2
where ¢(k,t) is defined by
1 -ik
dkt) =— | p(x,t)e"¥dx (35)
N2

in terms of the wave function in the laboratory framiex,t),

and the limits of integration in Eq(34) account for the

solitary-wave center-of-mass motion of the condensate.
Solving Eq.(31), in order to calculatepl,(,t), is no

distribution over the frequency range

dx(t) 1
Sg+q —2 —ga- =
w=>(Qq +(q dt | aq 2Uo (39
and
dx(t 1
0<g’+q dx(®) +0q+=U,, (40
t max 2

whereo is the full momentum width of the condensate. We
have chosen to use thed¢ondensate momentum width and
the extreme values afx(t)/dt in order to yield the largest
possible transition width and, therefore, the strictest condi-
tion for the two-state validity. Within the frequency range
defined by Eqgs(39) and(40) we require that the transitions
to neighboring bingn=-1 and +2 are not resonant, i.e.,
|A_1_o(k,t)|>Uo/2 and|A,;_.,o(k,t)|>Uy/2. Those condi-
tions are satisfied when

Up<2q(q-0o-4p), (41

where 25,= dx(t)/dt|pmay— dX(t)/dt| . Note that Eq(41) re-
quireso< g, which also ensures that momentum wave func-
tions of consecutive bins do not overlap.

The discussion leading to E¢41) does not account for
higher-order processes. It is possible fan-ghoton pro-

more straightforward than solving the full Schrodinger equa<esses to transfer population from the0 to then=m bin,

tion. Again following the treatment of Blakiet al. [8] the  without intermediate bins accumulating significant popula-
problem becomes readily tractable if we assume that in thdon. However, provided the Rabi period for such processes
region of interest, where first-order Bragg scattering isis significantly longer than the Bragg pulse length, the popu-
strong, only then=0 and +1 momentum wave functions are lation transfer is negligible and will not affect the two-state
substantially populated. In this “two-state model” Eg§1) dynamics between the=0 and +1 bins. Of the higher-order
reduces to processes, the four-photon processes are the most likely to
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affect the two-state validity. In the case of no center-of-massnension by Eq(25), which can be expanded as
motion[x(t)=0 for allt], the Rabi frequency at the resonance

. o 1 _
of then=0 to +2 transition i 12] Vgpt(x,t) = 5UO{(;og(qx— wt)codgx(t)]
R
R Blwg(0) — win(0)] 87

Complete population transfeffor «=0) would occur for
QRabio—+2t=m, yielding the additional condition

(42 — sin(gX - wt)singx(t) ]} (49)

In many cases cpgx(t)] and simgx(t)] will be periodic
functions of time and can thus be replaced by their respective
Fourier series. After some algebraic manipulation E®)

87?2 can then be expressed as a linear sum of simple Bragg po-
t< 02 (43 tentials with the form considered by Blakét al. [8], i.e.,
0
o . . 1
The condition derived equivalently on time=—1 to +1 tran- Vf)pt(x,t) = 5; c coggX - (w+ w)t+ ¢]. (50

sition is more lenient and therefore, provided that E¢4)
and (43) are satisfied, all other transitions can be neglecte

and the two-state approach is valid., dI'he strength, relative phase, and resonance position for each

term in the sum can be determined orgee, and w, are

known. If the two Fourier series required for the expansion

2. Simplified treatment of the two-state model: Main features  are not exact, or cannot be found analytically, numerical
of the Bragg spectrum Fourier transform methods can be used.

The two-state model provides approximate Bragg spectra_ | the optical potential25) can be expanded in the form
for a condensate with solitary-wave behavior and require§f Ed- (50 then the Bragg spectrum of the solitary-wave
much less computational resources than calculations of thgPndensate will have a discrete number of resonance peaks
full Gross-Pitaevskii equation. We will demonstrate the suc-du€ to the multiple Bragg terms in the linear sum. When the
cess of the two-state solutions to Eg6) in Sec. Il C. How- individual Bragg spectra due to consecut_lve terms in fre-_
ever, the dominant features of the Bragg spectrum can b@Uency space overlap, the effect due to simultaneous appli-
readily obtained from a particular simplification of the two- cation of the Bragg fields can be complicated. However,
state model, which we outline in this section. there are particular regimes where each Bragg response la-

Blakie et al. [8] have shown that if the optical potential P€l€d byl can be considered as if it were acting indepen-
(18) has the simple formb cogq-R-wt)/2, then for the case dently of the others, and then Eqé¢4)—(48) can be applied
V(R)=0 andC=0, the detuning in the two-state model is to each resonance, and it is straightforward to construct a

complete approximate spectrum by summing the Bragg spec-
tra due to each individual term. We refer to this method of
Ao +1(K) =%+ 2k0 - w. (449 calculating approximate spectra as thmlependent reso-
nance approachThe most important case where this ap-
proach applies is when the positions of consecutive reso-

time-independent, i.e.,

In that case, the analytic solution to E§6) yields the Bragg

spectrum nances are separated by more than the widths of those
42 p2 E resonances, i.e.,
P.i(w,t) = M[l = COSQRapi K)t]dk,
-q/2 80 Rapf ©) 0,(C11) + 0,,(C)
L (51)
(45) 2
where the Rabi frequency is Other particular cases arise; for example, in the perturbative

limit ¢t/4<1, the independent resonance approach is accu-

b\?2 rate for Bra ulse lengths such that all resonances labeled
Qa0 = 3 /(§> +A2 (). (48 | opey T g

The frequency width of the first-order Bragg transition is 1
q y gg CO{E((HV - (D|)t - (E|r - €|) =0 (52)
2
N I T
0,=\/ b7+ ( t ) ' (47) for all other resonances.
where contributions from power broadening and temporal D. Nonlinear effects
broadening are included. In the linit/4<1 the total scat- ) ) ) ] )
tered population across the single Bragg resonance is _ Calculating numerlcal_solutlo_r_ws to the t_hree-d|men_3|0nal
time-dependent Gross-Pitaevskii equation is computationally
s P oo = bt 4 intensive. Blakieet al. [8] demonstrated that within a well-
» n(o,hdw = g (48) defined parameter regime the analytic results derived for the

case whereC=0 provide a good representation of the main
For the more general case we are considering here, theehavior observed in the many-body system. For the systems
optical potential in the translating frame is given in one di-we are considering, where the condensate has solitary-wave
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behavior in the absence of the Bragg pulse, the center-otution. The experimental investigation of Bragg spectra in a
mass motion of the condensate is independent of the nonlinfFOP trap[6] shows qualitative agreement between the ex-
ear strength of the system and, therefore, in the translatingerimental data and calculations made using the one-
frame the validity regime definitions derived by Blaléeal. = dimensional Schrddinger equation. Our theoretical methods
[8] apply. provide the framework for a detailed understanding of the

There are three dominant many-body effects on Braggoncepts introduced previously in relation to Bragg spectros-
scattering. The first is that atomic interactions within the con-copy in a TOP traj6,16].
densate cause the momentum distribution to broaden during
free expansion. The time scale for this has been derived to be
t=7y3/4u [8] and provided that the Bragg pulse length is
shorter than this time scale, the effect of expansion is negli- The TOP trap potential can be well approximated by
gible. The second many-body effect is a shift in the reso- _ :
nance condition of the first Bragg order due to the mean- V1orll, 1) = Viy(r) + ro(CosQ1,sin Q1,0 -1, (53
field. For condensates confined in a three-dimensionalvherer is the so-called “circle of death” radius afis the
harmonic trap the resonant frequency is higher by approxibias field rotation frequencj11]. Equation(53) is of the
mately 4u/7 [8] and this shift can be neglected when form required for solitary-wave solutions to existee Eq.
<Up/2. In addition to these effects, harmonically trapped(12)] and in fact condensation occurs into the system ground
condensates with a higher chemical potential have a nastate, which is a solitary-wave solution of the Gross-
rower momentum distribution. This arises due to the form ofPitaevskii equation with circular center-of-mass motion
&(R), defined by Eq(6): a broader spatial distribution leads given by
to a narrower momentum distribution. The Bragg spectra for — )
trapped condensates with a higher chemical potential exhibit r(t) = y(cosQlt,sinQt,0), (54)
narrower spectral features and increased peak scatteringhere y=2r,/(Q2-1) [14].

These effects were also observed by Bladdel. [8].

In the case whereC=0 a description of the three-
dimensional system can often be simplified to one dimension
without loss of generality, as described in Sec. IIC. The The solitary-wave description of condensate micromotion
Gross-Pitaevskii equation, while it is not separable, can alsallows Bragg spectroscopy in a TOP trap to be described
be reduced to a one-dimensional fofeng.,[13-15). Bragg  using the theory presented in Sec. Il. In the translating frame
spectra calculated using a one-dimensional treatment alongie optical potential of the Bragg pulse becomes, in one di-
the axis of the Bragg pulse also generate reasonably accuraigension,
results for a nonlinear condensate, as we will see for a par-

i i 1
ticular example in Sec. Il D. Vgpt(X,t) - éuocos(qX+ qycosQt— wt). (55)

A. Theoretical description of the TOP trap

B. Effective optical potential

I1. TIME-AVERAGED ORBITING POTENTIAL TRAP The optical potential of the Bragg pulse, in the moving frame

of the condensate, has been identified previously as being a

In this _section we palculate Bragg spectra of a condensatﬁ quency-modulated potentif,16]. Our discussion in the
acqeleratmg asa solltary wave. The '_spectra are calpulated 9§ns|ating frame provides a theoretical validation of that
various levels of approximatior(i) using the approximate identification

methods described in Sec. Il C(i) using the full S . .

g i ; " . L In anticipation of interpreting Bragg spectra of a conden-
chzgd)lng(.er e?huat(gofGrolist- P'tai\./.Sk” eqtyatpn t\)N ':E'_O)’ ate in a TOP trap we decompose the optical potential in the
and{in) using the &ross-Fitaévskii equation n both one an ranslating frame in the form of E@50). For the frequency-

two dimensions. . modulated potential of Eq55) such an expansion is well
There are a number of examples of solitary-wave behavknown ie

ior of condensates confined by a harmonic t{ape Sec.
I[A1). Solitary-wave solutions with constant velocity ex- 1 *

hibit Bragg spectra with the same shape as the spectra of ther)pt(X,t) = EUO Jo(ya)codgX — wt) = >, (= 1)'Jp.1(10)
equivalent stationary condensate but simply translated in fre- 1=0

guency space bydxt)/dt, as can be seen from E(®5) or -

(37). Solitary-wave solutions which accelerate can produce X[COS(qX— wt=(2+1)Ot - E)

more elaborate Bragg spectra and for this reason we have

chosen to use the example of solitary-wave micromotion of a T

condensate in a time-averaged orbiting poter(f@P) trap * cos(qx— wt+ (21 +1)0t - E)]

to illustrate our methods discussed in Sec. Il. In a TOP trap .

the condensate accelerates in a circular trajectory following |

the bias field that removes the discontinuity in the trapping * % (= DJ3a(ya)lcostaX - wt +2101)
potential([11] and references thergiriThe micromotion ve- h

locity is so high that the structure of the Bragg spectrum can

be measured experimentally with moderate frequency reso- +coggX - wt+20Q8)] 1, (56)

033620-6



BRAGG SPECTROSCOPY OF AN ACCELERATING PHYSICAL REVIEW A 71, 033620(2005

1 17T 1T 1T 17T 17 1T 1771 oz TTTTTTITTTTTTTTITT T TTTITTT]
0.3f
0.2f
3 oz 3
T ¥
=5 ~
01f
0.1t
0 L 1 Dar” S 0 1 1 1 1
0 500 1000 1500 0 500 1000 1500
w W

FIG. 1. Bragg spectrum of a condensate in a TOP trap calculated FIG. 2. Bragg spectrum of a condensate in a TOP trap calculated
using the full Schroédinger equatidr), the two-state modef--), using the full Schrédinger equatidr), the two-state model--),
and the independent resonance appro@eh The vertical lines and the independent resonance approaeh The vertical lines
along the top of the figure indicate the positions of the spectraplong the top of the figure indicate the positions of the spectral
resonances predicted by E&6). Parameters ard,=45,q=29,r,  resonances predited by E(6). Parameters artly=45,0=29.r
=1241 =153, andt=0.105r (1 TOP trap cycles =878,(1=76, andt=0.092r (3.5 TOP trap cycles

whereJ,(2) is the Bessel function of the first kind of order  order. The calculation using the independent resonance ap-
and with argument. In the translating frame, the condensateproach is indicated by the dotted line in Fig. 1 and is almost
is subjected to an optical field which is the sum of simpleidentical to the Bragg spectrum calculated using the two-
Bragg terms, separated in frequency by the TOP trap biastate approach. This is because each Bragg resonance within
field rotation frequency. Therefore, we expect that the Bragghe spectrum is well resolvedefer to Eq.(51)] and, further-
spectra of a condensate with micromotion will have multiplemore, the spectrum in Fig. 1 is for exactly eight TOP trap
resonances separated 8y cycles and we note that E¢G2) holds in that case for TOP
trap resonances which are consecutive in frequency space.
Figure 2 shows a Bragg spectrum for a condensate in a
TOP trap where the bias field rotation frequency is halved
The Bragg spectrum of a condensate in a TOP trap igompared with the case of Fig. 1, and the Bragg pulse length
presented in Fig. 1 for a parameter set which is experimens not an integer multiple of the rotation period. The spec-
tally accessiblg6]. The spectrum calculated using the full trum is again centered at=g? and the resonances are sepa-
Schrédinger equatiofi.e., C=0) is shown as a solid line. rated by the TOP trap rotation frequency, although a number
The Bragg spectrum is centered at the first-order Bragg res@f peaks appear missin@ncluding the central onebecause
nance[see Eqs(39) and(40)] and exhibits additional struc-  their weight is small in expansiof56). In contrast to Fig. 1,
ture compared to the single resonance peak=at® which  the Bragg spectrum of Fig. 2 is no longer symmetric about
would be expected from a single Bragg term. Equati®  the center of the first-order Bragg resonance, but favors the
correctly predicts the positions of the resonance peaks in thew-frequency resonances due to our initial conditions,
Bragg spectruntas indicated by the vertical lines in the fig- which yield a negative Doppler term for the first half of the
ure). TOP trap rotation. We observe that the two-state model does
We have also generated approximate Bragg spectra of @hibit the lack of symmetry present in the full Schrédinger
condensate in a TOP trap using the two-state mss Sec.  equation calculation, while the independent Bragg resonance
I1C), as well as the simplified version of the two-state approach does not. We also note that the two-state model
model, the independent resonance apprdael Sec. IICR2  more accurately approximates the full Schrodinger equation
Solving the two-state equatidi36) is two orders of magni- calculation than was the case in Fig. 1. The reason for this is
tude faster than solving the full Schrédinger equation. Prothat neglecting the harmonic trap has less effect at lower
vided that the validity conditions of Eq$41) and (43) are  scattered fractions.
satisfied, the results of the two-state model are reasonably
accurate, as demonstrated by the dashed line in Fig. 1 The
main discrepancy between the two-state method and the full
C=0 calculation is the underestimation of the two strongest In this section we present Bragg spectra for a nonlinear
resonance peaks. This occurs because the stationary haoendensate in a TOP trap calculated using the Gross-
monic trap in the translating frame has been neglected in thBitaevskii equation in one dimensi¢iie x direction and in
two-state approach. The effect of the harmonic trap is to shiftwo dimensiongneglecting thez dimension. In each casg
population toward zero momentum thus allowing more conds taken to be along thr axis and the trapping potential is
densate population to be scattered intortkret 1 momentum  the appropriate dimensional reduction of E8@). In general

C. Bragg spectra

D. Effect of condensate nonlinearity
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"7 7T 17T T 77T 1T 1771 # 0 spectra the effects discussed in Sec. Il D are observed:
the nonlinear Bragg spectra exhibit increased peak scattered
fractions, reduced resonance width, and a slight increase in
the resonant frequencies, with respect to the equivalent
=0 system. The increased resolution in the features of the
Bragg spectrum occurs due to the reduced momentum width
of the initial state, determined by the form &tR). It is
interesting to note that the two-state model can also exhibit
narrowed resonances if the initial state is taken to be the
same numerically calculated ground state as was used for the
full nonlinear Gross-Pitaevskii calculation.

0.6
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IV. CONCLUSION

“ We have presented methods for identifying the key fea-

FIG. 3. Bragg spectrum of a condensate in a TOP trap with thdures of the Bragg spectrum of a condensate that exhibits
parameters of Fig. 1 calculated using the Schrédinger equatiofolitary-wave behavior. In particular such an accelerating
(-), the one-dimensional Gross-Pitaevskii equation v@is=85  condensate becomes stationary in a translating frame and an
1=10.08(—-), and the two-dimensional Gross-Pitaevskii equationeffective optical potential contains the only explicit time de-
with C,5=600,4=9.85(--). The vertical lines along the top of the pendence of the system in that frame. We have generalized
figure indicate the positions of the spectral resonances predicted e two-state formalism introduced by Blaké¢ al. [8] and
Eq. (56). have defined the regime in which the approximate spectra

. . L enerated using that approach are in good agreement with
tmhi?]eG{ﬁzsé?;?g;ﬁIz(altleeﬂgﬁltilr?galrssr:?énsg?rﬁ)a}:]att)rlwee Srg dwuﬁe%e:jei_ﬂll_ calculations. Bragg spectra of_ particular accelerating
mensional system by arranging to have the same chemicﬁPl'tarﬁ'Wa\]ﬁedsomt'.onf exhibit erI:tIp|e hresonances and we h
potential (and Thomas-Fermi radiusas in the three- . ove' entified particuar cases where those resonances eac
dimensional description. act independently of the others, therepy revealing the main

nfeatures of the Bragg spectrum with minimal calculation.

Figure 3 illustrates the Bragg spectra for the same para ;
eters as in Fig. 1 but wittC#0. The nonlinear strength  1he Bragg spectrum of a condensate in a TOP trap has

corresponds to approximately>2L0* atoms in the Otago Peen used to illustrate the application of our theory. We have

TOP trap[6]. The results from the one-dimensional Gross-described the resonance structure in the spectra and in the
Pitaevskii equation agree well with the Bragg spectrum calValidity regime of our treatment have demonstrated excellent

culated in two dimensions, justifying our simplification of @greement between our approximate methods and full theo-
the problem to one dimension. Calculating the two-retical calculations.

dimensional Bragg spectra in Fig. 3 is computationally ex-

pensive, requiring approximately 10 CPU hoursa3 GHz ACKNOWLEDGMENTS
Pentium to calculate each poifwith 100 points required for
the full spectrum This work was supported by Marsden Fund Grant No.

We have also reproduced in Fig. 3 the result from the02-PVT-004 and the Foundation for Research Science and
linear case of Fig. 1, and comparing tl=0 and theC  Technology(TAD 884).
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