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The entropy-temperature curves are calculated for noninteracting fermions in a three-dimensional optical
lattice. These curves facilitate understanding of how adiabatic changes in the lattice depth affect the tempera-
ture, and we demonstrate regimes in which the atomic sample can be significantly heated or cooled. When the
Fermi energy of the system is near the location of a band gap, the cooling regimes disappear for all tempera-
tures and the system can be heated by only lattice loading. For samples with greater than one fermion per site,
we find that lattice loading can lead to a large increase in the degeneracy of the system. We study the scaling
properties of the system in the degenerate regimes and assess the effects of nonadiabatic loading.
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I. INTRODUCTION

Tremendous progress has been made in the preparation,
control, and manipulation of Fermi gases in the degenerate
regimef1–7g. Such systems have many potential applications
in the controlled study of fermionic superfluidity and the
production of ultracold molecules. Another area of develop-
ing theoretical interest is in the physics of fermions in optical
latticesf8–11g, and initial experiments have already begun to
examine the properties of Fermi gasessprepared as boson-
fermion mixturesd in one-dimensional optical lattices
f12,13g. For Bose gases, optical lattices have been used to
demonstrate an impressive array of experiments, such as
quantum matter-wave engineeringf14,15g; the Mott-
insulator quantum-phase transitionf16g; quantum entangle-
ment f17g; and coherent molecule productionf18g. It seems
likely that a similar range of rich physics lies ahead for fer-
mions in optical lattices.

Many of the physical phenomena that are suitable to ex-
perimental investigation in optical lattices are sensitive to
temperature, and it is therefore of great interest to understand
how the temperature of a quantum degenerate gas changes
with lattice depth. Experimental results by Kastberget al.
f19g in 1995 showed that loading laser-cooled atoms into a
three-dimensionals3Dd optical lattice caused the atoms to
increase their temperaturef20g. Recently, one of us con-
ducted a detailed thermodynamic study of bosonic atoms in
optical latticesf21g. In that work we showed that for suffi-
ciently low initial temperatures, a new regime would be en-
tered in which adiabatically ramping up the lattice depth
would have the desirable effect of cooling the system. The
typical temperatures at which Bose-Einstein condensates are
produced lie well within this cooling regime, and thus benefit
from reduced thermal fluctuations when adiabatically loaded
into an optical lattice. In this paper we examine how degen-
erate fermions are affected by adiabatic loading into an op-
tical lattice. In Fermi gases, the lowest temperatures obtained
in experiments tend to be much higher than in Bose gas
experiments. It is therefore important to understand to what
extent the introduction of an optical lattice might affect the
temperature; in particular, to determine in what regimes ad-
ditional cooling can occur during lattice loading.

The quintessential difference in the properties of degener-
ate fermions and bosons is embodied by the Fermi energy:

the energy that marks the top of the Fermi sea of occupied
statessat T=0d. The Fermi energy sets a new energy scale
that has no analog in boson systems and plays a crucial role
in determining the effect that lattice loading has upon the
system. We find that as the Fermi energy approaches a band
gap, the cooling regime vanishes and the system can heat
only with increasing lattice depth. However, we also find that
when the Fermi energy lies in the second bandswhen the
average number of fermions per site is greater than 1d, a
cooling regime is re-established. This cooling regime for the
second band is accompanied by a large amplification of de-
generacy; i.e., adiabatically loading into the lattice causes
both T and the ratioT/TF to decrease.

The results we present in this paper are obtained from a
numerical study of the thermodynamic properties of an ideal
gas of fermions in a 3D cubic lattice. We work with the
grand canonical ensemble and use the exact single-particle
eigenstates of the lattice to determine the entropy-
temperature curves for the system for various lattice depths
and filling factors. We develop analytic expressions for the
plateaus that develop in the entropy-temperature curves and
characterize a scaling relationship that holds for low tem-
peratures and in deep lattices. Afast-loadingprocedure is
considered to ascertain how robust our results are to nona-
diabatic effects. The physics we explore here will be relevant
to current experiments, and many of the predictions we make
should be easily seen.

II. FORMALISM

A. Single-particle eigenstates

We consider a cubic 3D optical lattice made from three
independentsi.e., noninterferingd sets of counterpropagating
laser fields of wavelengthl, giving rise to a potential of the
form

VLattsr d =
V

2
fcoss2kxd + coss2kyd + coss2kzdg, s1d

wherek=2p /l is the single-photon wave vector, andV is the
lattice depth. We take the lattice to be of finite extent with a
total of Ns sites, consisting of an equal number of sites along

PHYSICAL REVIEW A 71, 033616s2005d

1050-2947/2005/71s3d/033616s6d/$23.00 ©2005 The American Physical Society033616-1



each of the spatial directions with periodic boundary condi-
tions. The single-particle energieseq are determined by solv-
ing the Schrödinger equation

eqcqsr d =
p2

2m
cqsr d + VLattsr dcqsr d, s2d

for the Bloch statesfcqsr dg of the lattice. For notational sim-
plicity, we choose to work in the extended zone scheme
whereq specifies both the quasimomentum and band index
of the state under considerationf22g. By using the single-
photon recoil energyER="2k2/2m as our unit of energy, the
energy states of the system are completely specified by the
lattice depthV and the number of lattice sitesNs si.e., in
recoil unitseq is independent ofkd.

For completeness, we briefly review some important fea-
tures of the band structure of Eq.s2d relevant to the thermo-
dynamic properties of the system. For sufficiently deep lat-
tices, an energy gapsegapd will separate the ground and first
excited bandsssee Fig. 1d. For the cubic lattice we consider
here, a finite gap appears at a lattice depth ofV<2ER f23g
smarked by the vertical asymptote of the dashed line in Fig.
1d. For lattice depths greater than this, the gap increases with
lattice depth. In forming the gap, higher-energy bands are
shifted upwards in energy, and the ground band becomes
compressed — a feature characteristic of the reduced tunnel-
ing between lattice sites. We refer to the energy range over
which the ground band extends as thesgroundd band width
eBW. As is apparent in Fig. 1, the ground band width de-
creases exponentially withV, causing the ground band to
have an extremely high density of states for deep lattices.

B. Equilibrium properties

Our primary interest lies in understanding the process of
adiabatically loading a system ofNp fermions into a lattice.
Under the assumption of adiabaticity, the entropy remains
constant throughout this process, and the most useful infor-
mation can be obtained from knowing how the entropy de-
pends on the other parameters of the system. In the thermo-
dynamic limit, whereNs→` and Np→` while the filling
factorn;Np/Ns remains constant, the entropy per particle is

completely specified by the intensive parameters
T, V, andn. The calculations we present in this paper are
for finite-sized systems that are sufficiently large to approxi-
mate the thermodynamic limit. We would like to emphasize
at this point the remarkable fact thatV is an adjustable pa-
rameter in optical lattice experiments, in contrast to solid
state systems in which the lattice parameters are immutable.

The entropy is determined as follows: The single-particle
spectrumheqj of the lattice is calculated for given values of
Ns andV. We then determine the thermodynamic properties
of the lattice withNp fermions in the grand canonical en-
semble, for which we calculate the partition functionZ as

log Z = o
q

logs1 + e−bseq−mdd, s3d

wherem is found by ensuring particle conservation. The en-
tropy of the system can then be expressed as

S= kBslog Z + bE − mbNpd, s4d

whereb=1/kBT, andE=−] ln Z /]b is the mean energy.

Multiple components

In most current experiments, mixtures of Fermi gases in
different internal states are studied. This is required because
s-wave elastic collisions, needed for re-equilibration, are pro-
hibited by the Pauli principle for spin-polarized samples
f24g. The theory we present here is for the spin-polarized
case, but is trivially extensible to multiple components if the
lattice potential is spin independent and the number of atoms
in each component is the same: in this case all extensive
parameters are doubledse.g., hE,Sjd and intensive param-
etersse.g., hT,mjd remain the same. The inclusion of inter-
action effects, which will be important in the multiple-
component case, is beyond the scope of this paper.

III. RESULTS

A. Effect of lattice loading on Fermi-gas temperature

In Fig. 2 we show entropy-temperature curves for various
lattice depths and filling factorsn. These curves have been
calculated for a lattice with 31 lattice sites along each spatial
dimension; i.e.,Ns<33104.

A general feature of these curves is the distinct separation
of regions where adiabatic loading causes the temperature of
the sample to increase or decrease, which we will refer to as
the regions of heating and cooling, respectively. These re-
gions are separated by a value of entropy at which the curves
plateau — a feature that is more prominent in the curves for
larger lattice depths. This plateau entropy is indicated by a
horizontal dashed line and is discussed below. For the case of
unit filling factor shown in Fig. 2scd, this plateau occurs at
S=0, and only a heating region is observed.

We now explicitly demonstrate the temperature changes
that occur during adiabatic loading using two possible adia-
batic processes labeledA andB, and marked as dotted lines
in Fig. 2sad. ProcessA begins with a gas of free particles in
a state with an entropy value lying above the plateau entropy.
As the gas is loaded into the lattice, the process line indicates

FIG. 1. The dependence of the energy gapsegap, dashed lined
and ground band widthseBW, solid lined on the lattice depthssee the
textd.
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that the temperature increases rapidly with the lattice depth.
Conversely, processB begins with a gas of free particles in a
state with entropy below the plateau. For this case, adiabatic
lattice loading causes a rapid decrease in temperature. This
behavior can be qualitatively understood in terms of the
modifications the lattice makes to the energy states of the
system. As is apparent in Fig. 1, the ground band rapidly
flattens for increasing lattice depth, causing the density of
states to be more densely compressed at lower energies.
Thus, in the lattice, all these states can be occupied at a much
lower temperature than for the free particle case. As we dis-
cuss below,S0 is the maximum entropy available from ac-
cessing states of only the lowest band. IfS,S0, the tempera-
ture of the system must decrease with increasing lattice depth
to remain at constant entropy. Alternatively, forS.S0, the
occupation of states in higher bands is important, and as the
lattice depth and henceegap increase, the temperature must
increase for these excited states to remain accessible.

B. Fermi-gas degeneracy

In addition to the effect that lattice loading has on the
temperature of a Fermi gas, it is of considerable interest to
understand how the ratio of temperature to the Fermi tem-
peraturesTFd f25g changes. Indeed, the ratioT/TF is the
standard figure of merit used to quantify the degeneracy of
dilute Fermi gases. In Fig. 3 we show howT/TF changes
with adiabatic lattice loading for the same parameters used in
Fig. 2. In Figs. 3sad and 3sbd the same general behavior is
seen: Below the entropy plateau where cooling is observed
fsee Figs. 2sad and 2sbdg, the ratio ofT/TF remains approxi-
mately constant, so that there is little change in the degen-

eracy of the gas. Above the entropy plateau where heating
was observed, the ratio ofT/TF rapidly increases, so that in
this regime the gas will rapidly become nondegenerate as it
is loaded into the lattice. For the unit filling casefFig. 3scdg,
there is no cooling regime, and heating is accompanied by a
rapid increase inT/TF for all initial conditions of the gas. In
Fig. 3sdd, where the filling factor isn=1.2, rather different
behavior is seen: In the cooling regime, the ratio ofT/TF is
rapidly suppressed as the temperature decreases; see, e.g., the
dotted line markedC in Fig. 3sdd. This most desirable be-
havior could be used, for example, to prepare a Fermi gas
into a highly degenerate state where the BCS transition
might be observable. We also note that for the same param-
eters, but in the heating regime, the ratioT/TF remains rela-
tively constant.

We can give a simple explanation for the behavior of
T/TF. For the three cases considered in Fig. 3sad–3scd, the
Fermi energy lies within or at the top of the first band of
energy states. As shown in Fig. 1, the width of the ground
bandseBWd decreases rapidly with lattice depth. Because the
number of states contained in each band is constantsgiven
by the number of lattice sitesd, both the Fermi energy andTF
scale identically toeBW, and thus will rapidly decrease with
lattice depth. In the cooling regime, the temperature scales in
the same manner aseBW ssee Sec. III D and Fig. 4d, and thus
the ratioT/TF remains approximately constant. In the heat-
ing regimeT increases slowly, while the ratioT/TF increases
rapidly with lattice depthsdue toTF becoming smalld.

For the case considered in Fig. 3sdd, the filling factor sat-
isfiesn.1 and the Fermi energy lies in the second band. As
the lattice depth increases, the Fermi energy andTF now
scale likeegap; i.e.. slowly increase with lattice depthssee
Fig. 1d. Thus, in the regime wherein the temperature de-
creases, the ratioT/TF must become smaller. We note that

FIG. 2. Entropy versus temperature curves for aNs<33104

site cubic lattice, at various depthsV=0 to 20ER swith a spacing of
2ER between each curved. Filling factors used aresad n=0.25, sbd
n=0.8,scd n=1.0, andsdd n=1.2. The entropy plateau is shown as a
dashed line. Dotted line markedA shows a path along which adia-
batic loading into the lattice causes the temperature to increase.
Dotted line markedB shows a path along which adiabatic loading
into the lattice causes the temperature to decrease.

FIG. 3. Entropy versus temperature over Fermi temperature
curves for the same cases considered in Fig. 2ssee that figure for
details of parameters usedd. The entropy plateau is shown as a
dashed line. The dotted line markedC shows a path along which
adiabatic loading into the lattice causes the ratio of the temperature
to the Fermi temperature to decrease.
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the temperature reduction occurs because the width of the
second band decreases with lattice depth.

C. Entropy plateau

In Figs. 2sad and 2sbd a horizontal plateausat the level
marked by the dashed linesd is common to the entropy-
temperature curves for larger lattice depthssV*8ERd. This
occurs because for these lattices, the energy range over
which the ground band extends is small compared to the
energy gap to the excited band, and there is a large tempera-
ture range over which states in the excited bands are inac-
cessible; yet all the ground band states are uniformly occu-
pied. The entropy value indicated by the dashed line in Figs.
2sad and 2sbd corresponds to the total number ofNp-particle
states in the ground band. Since the number of single-particle
energy states in the ground band is equal to the number of
lattice sites, the total number of availableNp-particle states
sV0d is given by V0=Ns! / fNp! sNs−Npd ! g svalid for Np

øNsd. The associated entropyS0=kB log V0, which we shall
refer to as the plateau entropy, can be evaluated using Ster-
ling’s approximation

S0 . kBfNp log Np + Ns log Ns − sNs − NpdlogsNs − Npdg;
s5d

the validity condition for this result is that 1!Ns!Np. An
important case for which the above approximation is invalid
is for Np=Ns; i.e., we have a filling factor ofn=1, where
S0=0. This case corresponds to the unit filling factor result
shown in Fig. 2scd where, as a result of the entropy plateau
occurring atS=0, only a heating region is observed.

Similar entropy plateaus are observed for greater than unit
filling sNp.Nsd; e.g., as is seen in Fig. 2sdd. For fermions
such high filling factors necessarily means that higher bands
are occupied, and in general the precise details of these
higher plateaus will depend on the particle band structure of
the lattice. For example, in the lattice we consider heres1d,

there are three degenerate first excited bands that contain a
total of 3Ns single-particle states. Because the first band is
fully occupied, onlyNp8=Np−Ns particles are available to
occupy the excited band, so that the total number of available
states is found according to the ground band results5d, but
with the substitutionsNs→3Ns andNp→Np−Ns. This result
is shown as the dashed horizontal in Fig. 2sdd labeled asS1.

The suppression of the plateaus at specific integer filling
factors se.g., n=1 for S0→0 and n=4 for S1→0d corre-
sponds to the Fermi energy of the system approaching a band
gap. Whenever this occurs it means that all the states below
the gap are occupied atT=0, and excitations in the system
require the promotion of particles into the excited band
sabove the gapd. As all band gaps increase in size with lattice
depth, the temperature of the system must increase for the
entropy to remain constant. Thus, in regimes wherein the
Fermi energy lies at a band gap, the system exhibits heating
only with increasing lattice depthfe.g., see Fig. 2scdg.

D. Scaling: Tight-binding limit at low temperatures and filling
factors

Here we give limiting results for the entropy-temperature
curves.

As discussed in Sec. III C, whenNp,Ns and the tempera-
ture is sufficiently low thatS,S0, then only single-particle
states within the ground band are accessible to the system. In
addition, when the tight-binding description is applicable for
the initial and final states of an adiabatic process, the initial
and final thermodynamic variables are related by a scaling
transformation.

In the tight-binding regime, which is a good approxima-
tion for V*4ER, the ground band dispersion relation takes
the form

eTBsqd = −
eBW

6 o
j=hx,y,zj

cossqjad, s6d

wherea=p /l is the lattice period, the ground band width
eBW has already been introducedse.g., see Fig. 1d, and the
wave vectorq is restricted to the first Brillouin zone. We
refer the reader to Refs.f26,27g for more details on the tight-
binding approximation.

To illustrate the scaling transformation, we consider an
initial system in equilibrium with entropyS,S0, in lattice of
depthVi sufficiently large enough for tight-binding expres-
sion s6d to provide an accurate description of the ground
band energy states. If an adiabatic process is used to take the
system to some final state at lattice depthVf salso in the
tight-binding regimed it is easily shown that the macroscopic
parameters of the initial and final states are related as

Xf = aXi , s7d

where X=hE, T, or mj, and the scaling parametera
=seBWd f / seBWdi is given by the ratio of the final and initial
band widths. The requirement that the initial and final states
are in the tight-binding regime is because the single-particle
states are then related asfeTBsqdg f =afeTBsqdgi, which is es-
sential fors7d to hold.

FIG. 4. Scaled temperature change during adiabatic lattice load-
ing. Ratio of temperature to bandwidth for various lattice depths
along adiabatic contours for several values of entropy. Initial tem-
peraturesat V=0d and ratio of entropy to the plateau entropy is
indicated for each curve. Results are indicated for the case of filling
factor n=0.25.
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This type of scaling suggests that the occupations of the
single-particle levels are unchanged during the change in lat-
tice: the productsbeTBsqd andbm are independent ofV, so
that the Fermi distributionfFsqd=hexpfbeTBsqd−bmg+1j−1

will also be independent ofV. This suggests that being adia-
batic in this regime will not require redistribution through
collisions, and may allow the lattice depth to be changed
more rapidly.

To confirm the scaling predictions, in Fig. 4 we plot the
ratio of the temperature to ground band width as a function
of lattice depth along contours of constant entropyfi.e., how
kBT/eBW varies along the process curves labeledA andB in
Fig. 2sadg. In regimes wherein the scaling relationships7d
holds true, the ratiokBT/eBW should be constantsindepen-
dent ofVd. In Fig. 4 this is clearly observed for initial entro-
pies less thanS0 and lattice depthsV*5ER. For S.S0,
single-particle states of higher bands necessarily play an im-
portant role in the thermodynamic state of the system, and
the scaling transformation clearly does not hold at any lattice
depth, as is seen in the dotted curve in Fig. 4. For this case,
as the lattice depth increases, the cooling effect of the ground
band compression is offset by thef particles in the excited
band that are lifted to larger energies as the gapsegapd grows
ssee Fig. 1d.

E. Adiabaticity

Finally, we note that interactions between particles are
essential for establishing equilibrium in the system, and un-
derstanding this in detail will be necessary to determine the
time scale for adiabatic loading. In general, this requirement
is difficult to assess, and in systems where there is an addi-
tional external potential, it seems that the adiabaticity re-
quirements will likely be dominated by the process of atom
transport within the lattice to keep the chemical potential
uniform, although recent proposals have suggested ways of
reducing this problemf28g for Bose systems. A study of the
effects of interactions or inhomogeneous potentials is beyond
the scope of this work; however, it is useful to assess the
degree to which nonadiabatic loading would cause heating in
the system. We consider lattice loading on a time scale to be
fast compared to the typical collision time between atoms,
yet slow enough to be quantum mechanically adiabatic with
respect to the single-particle states. This latter requirement
excludes changing the lattice so quickly that band excitations
are induced, and it has been shown that in practice this con-
dition can be satisfied on very short time scalesf29g. We will
refer to this type of loading as fast lattice loading, to distin-
guish it from the fully adiabatic loading we have been con-
sidering thus far.

To simulate the fast lattice loading, we take the system to
be initially in equilibrium at temperatureTi for zero lattice
depth. For the final lattice depth we fast-load into, we map
the initial single-particle distribution onto the equivalent
states in the final lattice, and calculate the total energy for
this final nonequilibrium configurationfi.e., we calculateE
=oq eq

sfdfFseq
sid ,Tid, whereeq

sid and eq
sfd are the single-particle

energies for the initial and final lattice depths, respectively,
and fF is the Fermi distribution functiong. This procedure

assumes that there has been no collisional redistribution to
allow the system to adjust to the lattice potential during the
period it is changed. To determine the thermodynamic state
the final distribution will relax to, we use the energy of the
nonequilibrium distribution as a constraint for finding the
equilibrium values of temperature and entropy. In general,
the final state properties will depend on the initial tempera-
ture, filling factor, and final depth of the lattice. To illustrate
typical behavior we show a set of fast-loading process curves
in Fig. 5 for two different values of the filling factor.

These curves show, as is expected from standard thermo-
dynamic arguments, that entropy increases for nonadiabatic
processes; i.e., all loading curves in Figs. 5sad and 5sbd bend
upwards with increasing lattice depth. For the results with
filling factor n=0.25 and for initial temperatures deep in the
cooling regimesi.e., initial states far below the entropy pla-
teaud a useful degree of temperature reduction can be
achieved with fast lattice loading up to certain maximum
depth. For example, the second-lowest fast-loading curve in
Fig. 5sad cools with increasing lattice depth up toV<15ER,
and then begins to heat for larger final lattice depths. Gener-
ally, for low filling factors sn,1d where the ground band
plays the dominant role in the system behavior at low tem-
peratures, the entropy increase is due mainly to the reshaping
of the single-particle energy states that occurs at low lattice
depthf30g. This effect can be reduced by taking, as the initial
condition for fast-loading, a system in equilibrium at a finite
lattice depth for which the dispersion relation is more tight-
binding-like. This situation was considered in Ref.f8g in
preparing a superfluid Fermi gas using in an optical lattice.
Their results, for the casen=0.5 and an initial lattice depth
of V<1ER, predicted a useful degree of cooling.

As was demonstrated in Fig. 2scd, for filling factor n=1,
adiabatic lattice loading causes the atoms to heat. This effect

FIG. 5. Fast lattice loading of aNs<33104 site cubic lattice,
with filling factors of sad n=0.25 andsbd n=1. Dark solid lines
indicate fast-loading curvesssee textd. The initial V=0 state for
each of this curves is indicated with a dot. The lattice depth on these
curves can be determined from their intercept with the equilibrium
entropy versus temperature curvessgray solid linesd, which are de-
scribed in Figs. 2sad and 2scd for n=0.25 andn=1, respectively.
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is exacerbated by nonadiabatic loading, as shown in Fig.
5sbd. This case also benefits from beginning in a lattice of
nonzero depth, since at fixed temperature but increasing lat-
tice depthshence largereBWd, a smaller number of particles
will be found in the excited bands.

IV. CONCLUSION

In this paper we have calculated the entropy-temperature
curves for fermions in a 3D optical lattice at various depths
and filling factors. We have identified general features of the
thermodynamic properties relevant to lattice loading, indi-
cated regimes wherein adiabatically changing the lattice
depth will cause heating or cooling of the atomic sample, and
have provided limiting results for the behavior of the entropy
curves. The results presented in this work suggest optimal

regimessfilling factors and temperaturesd that will facilitate
the suppression of thermal fluctuations in a fermionic gas by
lattice loading. These predictions should be easily verifiable
with current experiments. We have also shown that for a
sample of fermions with a filling factor greater than 1, the
cooling regime is accompanied by a significant reduction of
the temperature compared to the Fermi temperature. This
regime would clearly be desirable for experiments to inves-
tigate as an avenue for producing dilute Fermi gases with
T/TF!1. We have shown that many of our predictions are
robust to nonadiabatic effects.
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