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Adiabatic cooling of fermions in an optical lattice
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The entropy-temperature curves are calculated for noninteracting fermions in a three-dimensional optical
lattice. These curves facilitate understanding of how adiabatic changes in the lattice depth affect the tempera-
ture, and we demonstrate regimes in which the atomic sample can be significantly heated or cooled. When the
Fermi energy of the system is near the location of a band gap, the cooling regimes disappear for all tempera-
tures and the system can be heated by only lattice loading. For samples with greater than one fermion per site,
we find that lattice loading can lead to a large increase in the degeneracy of the system. We study the scaling
properties of the system in the degenerate regimes and assess the effects of nonadiabatic loading.
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I. INTRODUCTION the energy that marks the top of the Fermi sea of occupied

Tremendous progress has been made in the preparatiopates(@t T=0). The Fermi energy sets a new energy scale
control, and manipulation of Fermi gases in the degeneratfat has no analog in boson systems and plays a crucial role
regime[1-7]. Such systems have many potential applicationdn determining the effect that lattice loading has upon the
in the controlled study of fermionic superfluidity and the System. We find that as the Fermi energy approaches a band
production of ultracold molecules. Another area of develop-gap, the cooling regime vanishes and the system can heat
ing theoretical interest is in the physics of fermions in opticalonly with increasing lattice depth. However, we also find that
lattices[8—11], and initial experiments have already begun towhen the Fermi energy lies in the second b&nthen the
examine the properties of Fermi gadgsepared as boson- average number of fermions per site is greater thanal
fermion mixture$ in one-dimensional optical lattices cooling regime is re-established. This cooling regime for the
[12,13. For Bose gases, optical lattices have been used tsecond band is accompanied by a large amplification of de-
demonstrate an impressive array of experiments, such afeneracy; i.e., adiabatically loading into the lattice causes
quantum matter-wave engineeringl4,18; the Mott-  poth T and the ratioT/ T to decrease.
insulator quantum-phase transitiph6]; quantum entangle-  The results we present in this paper are obtained from a
ment[17]; and coherent molecule productihg]. It seems  ymerical study of the thermodynamic properties of an ideal
likely that a similar range of rich physics lies ahead for fer'gas of fermions in a 3D cubic lattice. We work with the
mions in optical lattices. grand canonical ensemble and use the exact single-particle

Many of the physical phenomena that are suitable t0 exg;gonsiates of the lattice to determine the entropy-

perimental investigation in optical lattices are sensitive tot mperature curves for the system for various lattice depths

temperature, and it is therefore of great interest to understan d filling factors. We develop analytic expressions for the

how the temperature of a quantum degenerate gas Changpl%\teaus that develop in the entropy-temperature curves and

with lattice depth. Experimental results by Kastbetgal. . ; . :
[19] in 1995 showed that loading laser-cooled atoms into &aracterize a scaling relationship that holds for low tem-
peratures and in deep lattices.fast-loading procedure is

three-dimensiona(3D) optical lattice caused the atoms to - )
increase their temperatuf@0]. Recently, one of us con- considered to ascertain how robust our results are to nona-

ducted a detailed thermodynamic study of bosonic atoms ifliabatic effects.'The physics we explore here_wal be relevant
optical lattices[21]. In that work we showed that for suffi- O current experiments, and many of the predictions we make
ciently low initial temperatures, a new regime would be en-should be easily seen.
tered in which adiabatically ramping up the lattice depth
would have the desirable effect of cooling the system. The
typical temperatures at which Bose-Einstein condensates are
produced lie well within this cooling regime, and thus benefit A. Single-particle eigenstates
from reduced thermal fluctuations when adiabatically loaded We consider a cubic 3D optical lattice made from three
into an optical lattice. In this paper we examine how degen- . : op i
independenti.e., noninterfering sets of counterpropagating

erate fermions are affected by adiabatic loading into an Op?ser fields of wavelength, giving rise to a potential of the

Il. FORMALISM

tical lattice. In Fermi gases, the lowest temperatures obtaine,
in experiments tend to be much higher than in Bose ga:

experiments. It is therefore important to understand to what V

extent the introduction of an optical lattice might affect the Viau(r) = E[COE(ZkX) +cog2ky) +cog2kz)], (1)
temperature; in particular, to determine in what regimes ad-

ditional cooling can occur during lattice loading. wherek=27/\ is the single-photon wave vector, axds the

The quintessential difference in the properties of degenetattice depth. We take the lattice to be of finite extent with a
ate fermions and bosons is embodied by the Fermi energyotal of Ng sites, consisting of an equal number of sites along
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- — T completely specified by the intensive parameters
P € T, V, andn. The calculations we present in this paper are
’ for finite-sized systems that are sufficiently large to approxi-
mate the thermodynamic limit. We would like to emphasize
at this point the remarkable fact th¥tis an adjustable pa-
rameter in optical lattice experiments, in contrast to solid
BW ] state systems in which the lattice parameters are immutable.
The entropy is determined as follows: The single-particle
spectrum{e,} of the lattice is calculated for given values of
Ns andV. We then determine the thermodynamic properties
of the lattice withN,, fermions in the grand canonical en-
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FIG. 1. The dependence of the energy dap,, dashed ling q
and ground band widttegyy, solid line) on the lattice deptiisee the

texd where u is found by ensuring particle conservation. The en-

tropy of the system can then be expressed as

each of the spatial directions with periodic boundary condi- S=kg(log Z + BE - uBN,), (4)
tions. The single-particle energies are determined by solv-

ing the Schradinger equation where B=1/kgT, andE=-dIn Z/JB is the mean energy.

Multiple components

2

p
r)=—ugy(r)+V r r), 2 ) . . .
€aa(r) omYal”) LailF) (1) @ In most current experiments, mixtures of Fermi gases in

different internal states are studied. This is required because
qs{wave elastic collisions, needed for re-equilibration, are pro-
o ; . ibited by the Pauli principle for spin-polarized samples
whereq specifies both the quasimomentum and ba_nd InOIe>f24:|. The theory we present here is for the spin-polarized
of the state_under con_sn;lezratuﬁﬁz]. By using the single- case, but is trivially extensible to multiple components if the
photon recoil energi,=£%"/2m as our unit of energy, the lattice potential is spin independent and the number of atoms
energy states of the system are completely specified by thﬁ each component is the same: in this case all extensive
lattice depthV and the number of lattice sitds, (i.e., in parameters are double(@.g.,{E,S}:) and intensive param-

recoll unitseg is mdependen_t ok). . . eters(e.g.,{T,u}) remain the same. The inclusion of inter-
For completeness, we briefly review some important fea-

tures of the band structure of E@®) relevant to the thermo- action effetcts, Wh'cg wil dbf;] |mportantf tlfr: the multiple-
dynamic properties of the system. For sufficiently deep |atOMPONENt case, 1S beyond the Scope ot this paper.
tices, an energy gafe,,, will separate the ground and first
excited bandgsee Fig. 1 For the cubic lattice we consider ll. RESULTS

here, a finite gap appears at a lattice depth/evaER [2_3] . A. Effect of lattice loading on Fermi-gas temperature

(marked by the vertical asymptote of the dashed line in Fig. ] )

1). For lattice depths greater than this, the gap increases with In Fig. 2 we show entropy-temperature curves for various
lattice depth. In forming the gap, higher-energy bands ardattice depths and .fllllng.factorB. Thes_e curves have been
shifted upwards in energy, and the ground band becomé@_’llculat_ed f(_)ralatnce with 31 lattice sites along each spatial
compresseé — a feature characteristic of the reduced tunnel-dimension; i.e.Ns~3X 10% _ o _
which the ground band extends as tlgeound band width ~ Of regions whe_re adiabatic loading causes the temperature of
eaw. As is apparent in Fig. 1, the ground band width de-the sample to increase or decrea}se, which we will refer to as
creases exponentially with, causing the ground band to the regions of heating and cooling, respectively. These re-

have an extremely high density of states for deep lattices. 9ions are separated by a value of entropy at which the curves
platear — a feature that is more prominent in the curves for

larger lattice depths. This plateau entropy is indicated by a
horizontal dashed line and is discussed below. For the case of
Our primary interest lies in understanding the process ofinit filling factor shown in Fig. &), this plateau occurs at

adiabatically loading a system df; fermions into a lattice. ~S=0, and only a heating region is observed.

Under the assumption of adiabaticity, the entropy remains We now explicitly demonstrate the temperature changes
constant throughout this process, and the most useful infothat occur during adiabatic loading using two possible adia-
mation can be obtained from knowing how the entropy de-batic processes labeledand B, and marked as dotted lines
pends on the other parameters of the system. In the thermo? Fig. 2(a). ProcessA begins with a gas of free particles in
dynamic limit, whereNs— and N,— ¢ while the filling  a state with an entropy value lying above the plateau entropy.
factorn=N,/Ns remains constant, the entropy per particle isAs the gas is loaded into the lattice, the process line indicates

for the Bloch statebyy(r)] of the lattice. For notational sim-
plicity, we choose to work in the extended zone schem

B. Equilibrium properties
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FIG. 2. Entropy versus temperature curves foNg=3x 10 FIG. 3. Entropy versus temperature over Fermi temperature
site cubic lattice, at various depths=0 to 2(Er (with a spacing of  curves for the same cases considered in Fi¢se2 that figure for
2ER between each curyeFilling factors used aréa) n=0.25,(b)  details of parameters usedThe entropy plateau is shown as a
n=0.8,(c) n=1.0, and(d) n=1.2. The entropy plateau is shown as a dashed line. The dotted line mark&ishows a path along which
dashed line. Dotted line markeishows a path along which adia- adiabatic loading into the lattice causes the ratio of the temperature
batic loading into the lattice causes the temperature to increasgg the Fermi temperature to decrease.
Dotted line marked shows a path along which adiabatic loading

into the lattice causes the temperature to decrease. eracy of the gas. Above the entropy plateau where heating

was observed, the ratio df/ Tr rapidly increases, so that in
that the temperature increases rapidly with the lattice depthhijs regime the gas will rapidly become nondegenerate as it
Conversely, proces8 begins with a gas of free particles in a s Joaded into the lattice. For the unit filling cagég. 3(c)],
state with entropy below the plateau. For this case, adiabatigere is no cooling regime, and heating is accompanied by a
lattice loading causes a rapid decrease in temperature. Thigpid increase i/ T for all initial conditions of the gas. In
behavior can be qualitatively understood in terms of thq:ig_ 3(d), where the filling factor im=1.2, rather different
modifications the lattice makes to the energy states of thg@ehavior is seen: In the cooling regime, the ratioTéTr is
system. As is apparent in Fig. 1, the ground band rapidlyapidly suppressed as the temperature decreases; see, e.g., the
flattens for increasing lattice depth, causing the density ofotted line marked: in Fig. 3(d). This most desirable be-
states to be more densely compressed at lower energigsavior could be used, for example, to prepare a Fermi gas
Thus, in the lattice, all these states can be occupied at a mughio 2 highly degenerate state where the BCS transition
lower temperature than for the free particle case. As we diSmight be observable. We also note that for the same param-

cuss belowS, is the maximum entropy available from ac- eters, but in the heating regime, the rafibT- remains rela-
cessing states of only the lowest bandS# S, the tempera-  tjvely constant.

ture of the system must decrease with increasing lattice depth \we can give a simple explanation for the behavior of
to remain at constant entropy. Alternatively, 81>, the  T/T.. For the three cases considered in Fig)33(c), the
occupation of states in higher bands is important, and as theermj energy lies within or at the top of the first band of
lattice depth and hencey,, increase, the temperature must energy states. As shown in Fig. 1, the width of the ground
increase for these excited states to remain accessible. band(egy) decreases rapidly with lattice depth. Because the
number of states contained in each band is congnén
by the number of lattice sit¢sboth the Fermi energy arit:
scale identically toegy, and thus will rapidly decrease with
In addition to the effect that lattice loading has on thelattice depth. In the cooling regime, the temperature scales in
temperature of a Fermi gas, it is of considerable interest tehe same manner ag,, (see Sec. Il D and Fig.)4and thus
understand how the ratio of temperature to the Fermi temthe ratio T/ T remains approximately constant. In the heat-
perature(Tg) [25] changes. Indeed, the ratib/Te is the ing regimeT increases slowly, while the rati/ T increases
standard figure of merit used to quantify the degeneracy ofapidly with lattice deptHdue toTg becoming small
dilute Fermi gases. In Fig. 3 we show hoWTg changes For the case considered in FigdR the filling factor sat-
with adiabatic lattice loading for the same parameters used iisfiesn>1 and the Fermi energy lies in the second band. As
Fig. 2. In Figs. 8a) and 3b) the same general behavior is the lattice depth increases, the Fermi energy @ipchow
seen: Below the entropy plateau where cooling is observedcale like ey, i.€.. slowly increase with lattice deptlsee
[see Figs. @) and 2b)], the ratio of T/ T remains approxi- Fig. 1). Thus, in the regime wherein the temperature de-
mately constant, so that there is little change in the degercreases, the rati®/ T must become smaller. We note that

B. Fermi-gas degeneracy
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10° . . . there are three degenerate first excited bands that contain a
- total of 3\, single-particle states. Because the first band is
fully occupied, onlyN;=N,—Ns particles are available to
10 ¢ ] occupy the excited band, so that the total number of available
states is found according to the ground band re@ltbut

Ti=O.45, S/SO=1 A

5 10° T—O a5 SIS 067 with the substitutionss— 3Ns andN,— N, —N;. This result
Fa RO Bttt TS S is shown as the dashed horizontal in Fi¢d)2abeled asS;.
= .»-.')""'— T=02 S/S.—066 The suppression of the plateaus at specific integer filling
Tl St E R factors (e.g., n=1 for §—0 and n=4 for S;—0) corre-
4 T-005 S/S 20.19 sponds to the Fermi energy of the system approaching a band
L— ' 20 gap. Whenever this occurs it means that all the states below
107 : ' : the gap are occupied dt=0, and excitations in the system
0 5 10 15 20 ? ; : . :
V [Ep] require the promotion of particles into the excited band

(above the gapAs all band gaps increase in size with lattice

FIG. 4. Scaled temperature change during adiabatic lattice loaddePth, the temperature of the system must increase for the
ing. Ratio of temperature to bandwidth for various lattice depths€Ntropy to remain constant. Thus, in regimes wherein the
along adiabatic contours for several values of entropy. Initial temF€rmi energy lies at a band gap, the system exhibits heating
perature(at V=0) and ratio of entropy to the plateau entropy is only with increasing lattice deptfe.g., see Fig. @)].
indicated for each curve. Results are indicated for the case of filling

factorn=0.25.
D. Scaling: Tight-binding limit at low temperatures and filling

the temperature reduction occurs because the width of the factors
second band decreases with lattice depth. Here we give limiting results for the entropy-temperature
curves.
As discussed in Sec. Il C, whéy, <Ng and the tempera-
C. Entropy plateau ture is sufficiently low thalS<S,, then only single-particle

In Figs. 2a) and 2b) a horizontal plateagat the level ~ States within the gro_und b_ant_i are acc_es_sible_ to the_ system. In
marked by the dashed liness common to the entropy- add|.t|<.)p, when.the tight-binding de.scrlppon is apphcablg fqr
temperature curves for larger lattice depths=8Eg). This the |n_|t|al and final state_s of an adiabatic process, the mmal
occurs because for these lattices, the energy range ovapd final th_ermodynam|c variables are related by a scaling
which the ground band extends is small compared to th&ansformation. , o .
energy gap to the excited band, and there is a large tempera- [N the tight-binding regime, which is a good approxima-

ture range over which states in the excited bands are inadlon for V=4Eg, the ground band dispersion relation takes

cessible: yet all the ground band states are uniformly occuth® form

pied. The entropy value indicated by the dashed line in Figs. €sw
2(a) and 2b) corresponds to the total number N§-particle ep(q) =- ry > cogq;a), (6)
states in the ground band. Since the number of single-patrticle =xy.2

energy states in the ground band is equal to the number Qfhere a==/) is the lattice period, the ground band width
Iattlcg sites, the total number of avallaljﬂg-parpcle states ¢ has already been introducée.g., see Fig. )l and the
(Qo) is given by Qo=Ng!/[Np! (Ns=Ny)!] (valid for N, \yave vectorq is restricted to the first Brillouin zone. We
=<N,). The associated entroi§=kg log {2y, which we shall  refer the reader to Reff26,27 for more details on the tight-
r_efer to as th_e pl_ateau entropy, can be evaluated using St%inding approximation.
ling’s approximation To illustrate the scaling transformation, we consider an
_ (N _ . initial system in equilibrium with entrop$< S, in lattice of
So = KalNp 109 Ny + N5 10g Ny = (N5 = Np)log(Ns = Ny ) depthV; sufficiently large enough for tight-binding expres-
®) sion (6) to provide an accurate description of the ground
the validity condition for this result is that<tN,<N,. An band energy states. If an adiabatic process is used to take the
important case for which the above approximation is invaligSyStém to some final state at lattice dejpth(also in the
is for N,=Ng; i.e., we have a filling factor oh=1, where tight-binding reg|mj§a|_t is easny_ shown that the macroscopic
$,=0. This case corresponds to the unit filling factor resultP@rameters of the initial and final states are related as
shown in Fig. Zc) where, as a result of the entropy plateau X, = aX; 7)
occurring atS=0, only a heating region is observed. v
Similar entropy plateaus are observed for greater than uniwhere X={E, T, or u}, and the scaling parametew
filing (N,>Ny); e.g., as is seen in Fig(@. For fermions  =(esw)¢/(€aw)i is given by the ratio of the final and initial
such high filling factors necessarily means that higher bandband widths. The requirement that the initial and final states
are occupied, and in general the precise details of thesare in the tight-binding regime is because the single-particle
higher plateaus will depend on the particle band structure o$tates are then related psg(q)]i=al erg(a)];, which is es-
the lattice. For example, in the lattice we consider h@je  sential for(7) to hold.
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This type of scaling suggests that the occupations of the
single-particle levels are unchanged during the change in lat-
tice: the product®Berg(q) and Bu are independent of, so
that the Fermi distributiorfr(q)={exf Bers(q) - Bu]+1} 71
will also be independent df. This suggests that being adia-
batic in this regime will not require redistribution through
collisions, and may allow the lattice depth to be changed
more rapidly.

To confirm the scaling predictions, in Fig. 4 we plot the
ratio of the temperature to ground band width as a function
of lattice depth along contours of constant entrpipg., how 6
kgT/ egy Varies along the process curves labefedndB in
Fig. 2@]. In regimes wherein the scaling relationsHip)
holds true, the ratidkgT/egy Should be constanindepen-
dent ofV). In Fig. 4 this is clearly observed for initial entro-
pies less tharg, and lattice depths/=5Eg. For S>S,, 0
single-particle states of higher bands necessarily play an im-
portant role in the thermodynamic state of the system, and
the scaling transformation clearly does not hold at any lattice FIG. 5. Fast lattice loading of Blg~3x 10* site cubic lattice,
depth, as is seen in the dotted curve in Fig. 4. For this caseith filling factors of (a) n=0.25 and(b) n=1. Dark solid lines
as the lattice depth increases, the cooling effect of the grounidldicate fast-loading curvetsee text The initial V=0 state for
band compression is offset by ttieparticles in the excited each of this curves is indicated with a dot. The lattice depth on these
band that are lifted to larger energies as the @gg) grows  curves can be determined from their intercept with the equilibrium
(see Fig. 1L entropy versus temperature curgsay solid line$, which are de-

scribed in Figs. @) and 4c) for n=0.25 andn=1, respectively.

Entropy: S/k,

1 2
Temperature: }ET/ER
4
x 10

Entropy: S/k,

W
0

1 2
Temperature: }ET/ER

E. Adiabaticity assumes that there has been no collisional redistribution to
allow the system to adjust to the lattice potential during the

Flna_lly, we note th_at Interactions _between particles areperiod it is changed. To determine the thermodynamic state
essential for establishing equilibrium in the system, and UNthe final distribution will relax to, we use the energy of the

derstanding this in detail will be necessary to determine the,,neqyilibrium distribution as a constraint for finding the
time scale for adiabatic loading. In general, this requiremengqiliprium values of temperature and entropy. In general,
is difficult to assess, and in systems where there is an addjne final state properties will depend on the initial tempera-
tional external potential, it seems that the adiabaticity reyre, filling factor, and final depth of the lattice. To illustrate
quirements will likely be dominated by the process of atomtypical behavior we show a set of fast-loading process curves
transport within the lattice to keep the chemical potentialin Fig. 5 for two different values of the filling factor.
uniform, although recent proposals have suggested ways of These curves show, as is expected from standard thermo-
reducing this probleni28] for Bose systems. A study of the dynamic arguments, that entropy increases for nonadiabatic
effects of interactions or inhomogeneous potentials is beyon@rocesses; i.e., all loading curves in Figé)snd §b) bend
the scope of this work; however, it is useful to assess theipwards with increasing lattice depth. For the results with
degree to which nonadiabatic loading would cause heating ifilling factor n=0.25 and for initial temperatures deep in the
the system. We consider lattice loading on a time scale to bgooling regime(i.e., initial states far below the entropy pla-
fast compared to the typical collision time between atomsteay) a useful degree of temperature reduction can be
yet slow enough to be quantum mechanically adiabatic wittachieved with fast lattice loading up to certain maximum
respect to the single-particle states. This latter requiremeniepth. For example, the second-lowest fast-loading curve in
excludes changing the lattice so quickly that band excitationgig. 5a) cools with increasing lattice depth up Yo~ 15Eg,
are induced, and it has been shown that in practice this corand then begins to heat for larger final lattice depths. Gener-
dition can be satisfied on very short time sc4®g. We will  ally, for low filling factors (n<1) where the ground band
refer to this type of loading as fast lattice loading, to distin-plays the dominant role in the system behavior at low tem-
guish it from the fully adiabatic loading we have been con-peratures, the entropy increase is due mainly to the reshaping
sidering thus far. of the single-particle energy states that occurs at low lattice
To simulate the fast lattice loading, we take the system tQjepth[30]. This effect can be reduced by taking, as the initial
be initially in equilibrium at temperatur@; for zero lattice  condition for fast-loading, a system in equilibrium at a finite
depth. For the final lattice depth we fast-load into, we mapattice depth for which the dispersion relation is more tight-
the initial single-particle distribution onto the equivalent binding-like. This situation was considered in RE8] in
states in the final lattice, and calculate the total energy fopreparing a superfluid Fermi gas using in an optical lattice.
this final nonequilibrium configuratiofi.e., we calculateE  Their results, for the case=0.5 and an initial lattice depth
=3, egﬂf,:(efq'),Ti), where e and € are the single-particle of V=~ 1E, predicted a useful degree of cooling.
energies for the initial and final lattice depths, respectively, As was demonstrated in Fig(@, for filling factor n=1,
and fr is the Fermi distribution functidn This procedure adiabatic lattice loading causes the atoms to heat. This effect
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is exacerbated by nonadiabatic loading, as shown in Figiegimes(filling factors and temperaturgghat will facilitate

5(b). This case also benefits from beginning in a lattice ofthe suppression of thermal fluctuations in a fermionic gas by
nonzero depth, since at fixed temperature but increasing latattice loading. These predictions should be easily verifiable
tice depth(hence largekg,,), a smaller number of particles with current experiments. We have also shown that for a

will be found in the excited bands. sample of fermions with a filling factor greater than 1, the
cooling regime is accompanied by a significant reduction of
IV. CONCLUSION the temperature compared to the Fermi temperature. This

) regime would clearly be desirable for experiments to inves-

In this paper we have calculated the entropy-temperaturggate as an avenue for producing dilute Fermi gases with
curves for fermions in a 3D optical lattice at various depthst/T_<1. We have shown that many of our predictions are
and filling factors. We have identified general features of thgqpust to nonadiabatic effects.
thermodynamic properties relevant to lattice loading, indi-
cated regimes wherein adiabatically changing the lattice ACKNOWLEDGMENTS
depth will cause heating or cooling of the atomic sample, and
have provided limiting results for the behavior of the entropy P. B. B. would like to thank C. W. ClarkNIST) for sup-
curves. The results presented in this work suggest optimadort during the initial stages of this research.
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