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Two-fluid model for a rotating trapped Fermi gas in the BCS phase
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We investigate the dynamical properties of a superfluid gas of trapped fermionic atoms in the BCS phase. As
a simple example we consider the reaction of the gas to a slow rotation of the trap. It is shown that the currents
generated by the rotation can be understood within a two-fluid model similar to the one used in the theory of
superconductors, but with a position-dependent ratio of normal and superfluid densities. The rather general
result of this paper is that already at very low temperatures, far below the critical one, an important normal-
fluid component appears in the outer regions of the gas. This renders the experimental observation of super-
fluidity effects more difficult and indicates that reliable theoretical predictions concerning other dynamical
properties, like the frequencies of collective modes, can only be made by taking into account temperature
effects.
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[. INTRODUCTION known effect that the system behaves like a mixture of nor-
mal and superfluid componerts0—12. Under rotation, the

In the last few months, experiments with trapped fermi-former behaves like a rigid body, while the latter can only
onic °Li atoms made great progress. The fact that by usindnave an irrotational velocity field.
the Feshbach resonance the Fermi gas can be transformedHowever, in the calculation of Ref9] the gapA(r) has
into a Bose-Einstein condensd®EC) of molecules, which  been replaced by a constaktcorresponding to the average
can be cooled by evaporative cooling and afterward transdiagonal matrix element ak(r) at the Fermi surface. While
formed back into a Fermi gas, allows one to reach extremelyhis averaging procedure seems to be justified in cases where
low temperatures of the order of 0M3[1], where T-  only one oscillator shell participates in the pairifigtrashell
=kger is the Fermi temperature. This allows, among otherpairing, A <#w), it is not well suited for the strong pairing
things, a detailed study of the BEC-BCS crossover. In parregime(A>7%w), where the properties of the system can be
ticular, a temperature of 0.03 should even be low enough described locally and depend owvia the spatial dependence
to realize the BCS phase which is characterized by the coref A(r) [13]. In particular, the normal and superfluid frac-
dition A <, whereA denotes the pairing gap. tions of the densityp,/p and ps/p, should depend on. To

However, at present it is not very clear how the transitionour knowledge this fact has not been taken into account in
to the BCS phase could be detected. While several obseryhe existing published literature. The author recently learned
ables related to collective oscillatiofes.g., breathing modgs  that ther dependence of, and p; has been considered by
of the system have been investigafdeP], the most unam-  Nygaard in Ref[14], but there the derivation follows a com-
biguous signatures of the superfluid BCS phase seem to Qletely different method and no numerical results are pre-
those that concern the rotational properties of the sy§8m sented.
For instance, the moment of inertia of a slowly rotating |n this article, we will concentrate on the— 0 limit, i.e.,
Fermi gas was proposed to be a suitable observable for thge will neglect the quantum effect which is responsible for
detection of the BCS transitio#]. It should be mentioned the rotational component of the velocity field at zero tem-
that at present most of the theoretical predictions concerningerature, Anyway, if the system is sufficiently large and if the
possible experimental signatures of the BCS ph@sg., temperature is not extremely low, this quantum effect be-
[3,5-8) neglect temperature effects as well as possible decomes much smaller than the effect resulting from the ther-
viations from hydrodynamic behavior due to the discretemally created normal component of the system. The impor-
level spectrum in the trap. tant point is that we will now take into account the

In a previous article[9] we calculated the moment of dependence of the gap. In addition, we will not rely on the

inertia of a superfluid atomic Fermi gas in a slowly rotating simplification made in our previous work that the full poten-
trap at finite temperature. There it turned out that the irrotatial (trap+mean fieltlis approximately harmonic.

tional flow, which is characteristic for superfluidity, is real-
ized only in the limit when the gap is very large compared
with the temperaturd and the level spacinfjw of the trap.
In all other cases, the velocity field has both rotational and In this section we will derive expressions for the normal
irrotational components. For example, if the level spacingand superfluid parts of the current density in a slowly rotat-
hw is comparable with\, the current has a strong rotational ing superfluid Fermi gas. This decomposition of the current
component even at zero temperature. On the other hand, will allow us to extract the normal and superfluid fractions of
nonvanishing temperatuig a certain fraction of the Cooper the total density of the system. Let us briefly summarize
pairs is broken by thermal excitations. This leads to the wellsome basic formulaor more explanations and details, see

II. DERIVATIONS
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Ref. [9]). We assume that equal numbers of atoms in twahe normal and abnormal density matrices in equilibrium,

spin states are trapped in a harmonic potential, po(r,p) and q(r,p), as well as their deviations from equi-
M2 librium, p4(r,p) and’x(r,p). (For the sake of brevity, we
Vigadr) = > —'riz' (1) will occasionally omit the argumentsand p if there is no
ioxyz 2 risk of confusion). Furthermore we introduce the Poisson

The cigar-shaped form of the traps used in current experil-)raCketS of two phase-space functions

ments corresponds te,<w,=w,. However, in order to of ag  oaf dg

force the system to rotate around the long axis, one has to if.gr= , > Ea_p- B %ﬁ_r : (6)

break the axial symmetry, e.g., by using a rotating laser beam meyz Y

as “spoon.” We will model this by taking, # w,. The mean-  Using the notations defined above, the terms lineaf inf

field single-particle Hamiltonian minus the chemical poten-the Hartree-Fock-Bogoliubov(HFB) or Bogoliubov—de

tial reads Gennes equations up to linear orderkirtan be written as
~ A2 . ~ ~ —- . ~
ho= Zp_m + Vtrap(r) +g p(r) = u, (2) ifi{ho, p1} + 2A0k; = —ifi{hy, po}, (7)
the coupling constarg=4m#2%a/m being proportional to the i7{Ao, P} — 2Noiy = iy, Ko} (8)

atom-atom scattering lengénh<0, andp(r) being the density  rpoqe are exactly Eqe84) and (85) of Ref. [9]. The main
per spin state. The order parameter in equilibrium is denotednint of the present article concerns the solution of this sys-
Ay(r). Note that we W|II re'ly on the yaI|d|ty of mean-field o, of equations in the case of ardependent gapo(r).
theory throu_ghout this article. This is the reason why we Eirst we eliminatée, by multiplying Eq.(7) by h, and Eq.
have to restrict ourselves to the BCS phase. In the BEC-BC%) by A, and adding up the two resulting equations. Using

crossover region, it would be necessary to include quantuifhe chain and product rules of differentiation, we then obtain
and thermal fluctuationgl5].

Now We'want to describe_ Whgt happens if the trap is %{EZ@}:—ho{ﬁl,po}+Ao{ﬁl, Ko} (9)
slowly rotating around the axis with a rotation frequency ) ) 5
Q=Qe, This is most easily done in the rotating referenceWhereE<(r,p)=hy(r,p)+Ag(r). To proceed further, we ex-
frame. Then we still have a static problem, but the Hamil-presspy and «q in terms ofhg and Aq. Within the Thomas-

tonian receives the additional term Fermi (TF) or local-density approximation, these relations
. . read
hi=—QL,=-(Q Xr)-p, 3
T P 1 )

which we will treat as a small perturbation. Because of polr,p) =7 - [1 - 2f(E(r,p))], (10

. . 2 2E(r,p)

this term, the order parameteki(r) receives a phase

exd —2i¢(r)]. The explicit form of(r) is unknown for the Aq(r)

moment and will be determined below. It is convenient to Ko(r,p) = ﬁrp)[l_ 2f(E(r,p))]1, (11)

eliminate this phase by a gauge transformation, multiplying
all single-particle wave functions by epigh(r)]. In this way  wheref(E)=1/[exp(E/ksT)+1] denotes the Fermi function.
the gauge-transformed gayir) stays real, which in the case Although Egs.(10) and (11) are the solutions of thé — 0

of a slow rotation implies thak does not change at diie., limit of the HFB equations, they are valid up to linear order

~ . . in A [16] and therefore consistent with Eq&l) and (8).
A=A,. On the other hand, this gauge transformation Changer%sert[ing] Eqgs(10) and (11) into Eq. (9), we qobtain again
the momentum operator according to ’ ’

after repeated use of chain and product rules of differentia-

r‘): B—£V B(r). (4) tion, the following simple equation:
Hence, the price to pay for the real gap is an additional term }{Ez,ﬁl} = }{Ez,ﬁlﬂ}. (12)
in the Hamiltonian. To linear order in the rotation frequency 2 2 dE
the new perturbation Hamiltonian reads It is evident that this equation is solved by
< ~
hy=-QL,— —{p-[V&(r)]+[Ve(r)]-pl. 5 ~ _= df
1 z 2m{p [ ¢( )] [ ¢( )] p} ( ) 1= hld_E' (13)

In order to describe the system semiclassically, we make

i ) : However, before this solution can be used, the gauge
use of the Wigner-Kirkwood expansion. TP that end we de'transformation that has been introduced in order to make the

note the Wigner transforms of ﬁo,ﬁl, etc., by gap real must be inverted:
ho(r,p),hy(r,p), etc. We need also the Wigner transforms of p(r,p) =3lr,p+#V &(r)]. (14)

T ) ) _ To linear order inQ, this can also be written as
Since the magnitude ok cannot depend on the sign 6f, its

change must be at least of the ord. p(r,p)=pdlr,p+AaV ¢(r)] +psi(r,p) (15
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=polr.p+7V $(r)]

>
fi df ]
—(er+—V¢(r))-p— : ;
m dE| g p) %
(16)
The last line has been obtained with the help of Efsand S
(13). &
The next step consists in calculating the corresponding a
current density per spin state, ;:
0 S
_ RE 0 02 04 06 08 1 12
GE f (Zﬂ;’)g%p(r,p). (17) ey

FIG. 1. (a) Temperature dependence of the gap normalized to its
value at zero temperatufe\(0)=1.76T.]. (b) Temperature depen-
dence of the normalsolid line) and superfluiddashed ling frac-

A A tions of the superfluid system in the limit of weak pairifig
j(r)==—po(r)=V o(r) - (Q Xr+—V qﬁ(r)) <¢p). These relations hold locally, if, is interpreted as the local
m m critical temperature, defined Biy(r)=0.57A(r ; T=0).

Using the explicit expression fgs(r,p) given above, one
easily obtains

o 67 m dE|g )’ 18 Vi) +pn - (@X1)-Vp(n=0, (22
with wherep(r)=0 in our case of a stationary rotation ap()
=po(r) up to linear order if). Taking the divergence of Eq.
d°p (20), one can see that the normal-fluid component drops out
polr) :f W,Po(ﬁp)- (190 and it remains a continuity equation for the superfluid com-
ponent:
The current density can therefore be written in a more sug- "
g(ra]ztll)vzar;/vay in terms of normal and superfluid densitigs) - V - [pr) V d(r)]-(Q X 1) - Vp(r)=0. (23
S H

7 In the case of a deformed harmonic trapping potential,
J(r)=pa(NQ X1 =pr)—V ¢(r), (20) this equation can be solved analytically. To see this, remem-
m ber that within the TF approximation the densjiy(r) and

if the normal and superfluid densities are defined according1e gapAq(r), and consequently also the superfluid der_15ity
to the textbook resultRef. [17], p. 459 as ps, depend onr only via the local chemical potential

Mioc(r)=p=Vyalr), i.e., ps(r)=pd u=Vyqalr)]. Hence Eq.

“ dp p* df (23) can be written as
= - == —=— —— . (21
pult) = polr) = po(r) fo e e . .
o . — [Vvtrap(r)]'<_v¢(r)+ﬂx I')
In the BCS limit, i.e., if Ay(r)<eg(r), where e(r)=pu datioc #=VirafT) m
—Virap(r) —0po(r) denotes the local Fermi energy, the ratio A
pn(r)/po(r) becomes a function of only one dimensionless —;\ps(r)quS(r) =0. (24)

argumentT/T.(r), whereT(r)=0.57Ay(r ; T=0) denotes the
local critical temperaturdthe existence of a local critical
temperature is an artifact of the TF approximation; see th
discussion in Sec. IJI This function, as well as the tempera-
ture dependence of the ratigy(r)/Aq(r; T=0), is shown in

In the special case of the harmonic potentia), it can
?eadily be shown that this equation has the same solution as
in the simple case of constang studied in Ref[9],

Fig. 1. 2_ 2
Up to now, the phase(r), which determines the velocity o(r) = n—m’;—wggrxry, (25)
of the superfluid component, is completely unknown. In Ref. h wy + o)

[9], this phase was determined by calculatiigfrom &, and since this solution is independent of the formmfuw). The

imposing the condit.iorz_slzo. Th_en it was shown that with. current density per spin statdr), is therefore given by
this choice the continuity equation for the current was satis-

fied. Here we will adopt another method which is commonly 2_ 2

used in the literatur¢1l] and which consists in using the i) =pa(nQ Xt —ps(r)%lﬁQV(rxry). (26)
continuity equation. In the rotating frame the latter reads wy T oy
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but the densitiep, andpg have again been obtained from Eq.
(21).2
In order to make the comparison between the gaps
calculated within the TF approximation and by solving the
full HFB equations, we had to choose a rather moderate
number of particlesN=36 000, for which the HFB calcula-
tion is feasible. Unfortunately, for realistic numbers of par-
ticles, like N=4x 10° as quoted in Ref.1], we are not able
to solve the HFB equations numerically. Of course, this limi-
tation does not concern the calculations done within the TF
approximation. If we had not been interested in the compari-
son between the results obtained with the HFB and TF gaps,
we could have shown the TF results for arbitrarily large
numbers of particles. We emphasize that even for much
larger numbers of particles the qualitative behavior of the TF
results remains unchanged, provided that the coupling con-
stantg is tuned such that the conditiah< e (BCS condi-
tion) remains satisfiedand the temperatures are scaled with
respect to the critical temperature.
r (po) Before discussing the normal and superfluid densities, let
us briefly comment on the temperature dependence of the
FIG. 2. (@ Gap Aq(r), (b) superfluid densityps(r), and (c) gap, Fig. 2a). It can be seen that at zero temperature the
normal-fluid densityp,(r) as a function of the distanagefrom the ~ HFB and TF gaps are in very good agreement. At nonzero
center of the spherical trap with frequeneyfor several tempera- temperature, however, the TF gap becomes exactly zero be-
tures:T=(0,2,4,06%w/kg. For convenience, all quantities are given yond a certain radius, because of the fact that within the TF
in harmonic oscillator units, i.et,in I,,=\A/Mao, Agin w,p;and  approximation to each poimtcorresponds a critical tempera-
Pnin 113, The number of atoms is 36 000, their interaction strengthture T¢(r) depending on the local chemical potentigl(r)
is set tog=-#2l,,,/m. This choice of parameters allows us to com- at that point. With increasing temperature, this radius be-
pare the TF result&dashed lineswith results obtained from a nu- comes smaller and smaller, and finally, Bt T.(r =0) the
merical solution of the full HFB equatiorfsolid lines. In (8 and  gap vanishes everywhere. The temperatliggr =0) has
@), the solid lines fofT=6 Zw/kg are not visible since in this case therefore been identified with the critical temperat’ﬁ&e': of

A, andpg are equal to zero. the system within the TF approximati¢@0]. This behavior
is different from that obtained within the HFB calculation,
ll. NUMERICAL RESULTS where the critical temperatufi is a global quantity, i.e., for

T<T, the gap is nonzero everywhefalthough extremely
As mentioned aboveyy(r) and Ay(r) [and consequently small at larger). This global critical temperaturé rg is
ps(r) and p,(r)] depend onr only via the local chemical lower thanTC,_TF [19,21]: for the_present parameters, we find
potential. Therefore it is sufficient to perform the TF calcu- TeHre=5-Stw and T, 1.=6.2fiw. This explains why in Fig.
lation for a spherical trap with the geometrically averaged2(a the TF gap afl =6%w is nonzero at the center, whereas
trapping frequencys=(wywyw,) 2. In this spherical trap, of the HFB gap is zero everywhere at this temperature.
course, the densityg, gapAq, etc., depend only on the dis- Now we turn to the superfluid and normal densities shown

tance from the center, i.eao(r)=py(r), etc. (quantities re- in Figs. 2b) and Zc), respectively. At zero temperature, the

lated to the spherical trap will be marked by an overbay.bar trapped Fermi gas is completely superfluid, i@z po and

The corresponding quantities in the deformed trap can theﬁf‘:o' At low but nlofTv_?jn|sh|ng temperatureT =2hw h
be obtained from ~0.36T;rg) @ normal-fluid component appears near the

surface, since there the gap is smallest and consequently the
Cooper pairs are most easily broken by thermal excitations.
1 If the temperature increases furth@r=4fw=0.72T 4ep),
_—(t /22, 22, 22 :
po(r) —p0< — Nl + ol + wzrz> (27) the normal-fluid component starts to extend over the whole
@ volume, and finally, slightly above the critical temperature
(T=6hw) the superfluid component vanishes completely

and analogously foAy(r),ps(r), etc. Note, however, that all -
this is true only within the TF approximation. In Ref. [14] a formula is given to calculatp, and ps without
In Fig. 2 we show the normal and superfluid densities pefesorting to any semiclassical approximation. For the parameters

. — — . . used here, this formula gives results which are very close to those
spin stat€p,, andp,) and the gap\ in the spherical trap for obtained from Eq(21).

different temperatures. The dashed lines cgrespond to the3At zero temperature and at the center of the trap we have with

TF (A—0) results. For the solid lines the gay has been our choice of parameters~ 0.2, i.e., we are already close to the
obtained by solving numerically the HFB equatidds$,19, BCS-BEC crossover region.
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© (106 m 11210)

T (wkp)

FIG. 4. Moment of inertig® of a trapped Fermi gas as function
of temperature. The parameters are the same as in Figs. 2 and 3. The
moment of inertia and the temperature are given in harmonic oscil-
lator units, i.e.® in mi2, and T in #iw/kg. The transition tempera-
ture to the BCS phase lies at approximatelyZm5The solid line
has been obtained by performing a full HFB calculation fg(r)

andKo(r), while for the dashed line the TF results have been used.

3-2-101 2 3 3-2-101 2 3
ry (ho) g (he)

FIG. 3. Current density divided by the angular velocity of the

rotation, j(r)/€, in the &p_lane(rfo) of a trap withw,/ w,=0.7 8mmla? 2\ [ W2 = 02\2

and ,/ w,;=0.03 (v, =\wyw,) at four different temperatures. The @ = —(—2 + _z)f dr r‘{ﬁl(r) + <’2(—§> Fs(r)} .
remaining parameters are the same as in Fig. 2. The length of the 3\ wy/ Jo oy +

arrow displayed in the lower right corner of each figure corresponds (29)

to a current density of =20Q/1%.. The coordinates, and ry are

given in units ofl,, and the temperatures in units &/ kg. In Fig. 4 we show the moment of inertia for the same set

of parameters that were already used in Figs. 2 and 3 as a

(solid line. Within the TF approximationdashed linegs  function of temperature. The solid line has been calculated
there is still a small superfluid region surviving near the cenPY using the HFB density profiles, while the dashed line was
ter of the trap afl =6fw because of . 1.~ 6.2 w. However, obtained from the density profile within TF approximation.
apart from this point, one can say that in generaldpand ~ One can see that the moment of inertia decreases strongly as
. the agreement between TF and HFB is reasonable arff#€ temperature goes to zero. The limiting value at zero tem-
better than for the gaKo itself. The reason why the agree- perature is determined by the deformation of the trap in the

i - - Xy plane,
ment between TF and HFB is better fgyandpg than forA, 205
is that near the critical temperature the temperature depen- -
- 0 e P O(T=0 = %% Bga, (30)
dence ofps/p is much weaker than that &/A(T=0) (see W2+ w2 9

Fig. 1). o

Using the spherical density profiles and E¢@6) and  Where ©,;5q denotes the corresponding rigid-body moment
(27), we can immediately calculate the current distributionOf inertia[which can be obtained from E¢29) by putting
j(r). In Fig. 3 we show the current in they plane(r,=0) for ~ Pn=po @ndps=0]. In our case Ofw,/wy=0.7, we haved(T
a deviation from axial symmetry ob,/w,=0.7 at several =0)=0.12,4. Above the critical temperature, the moment
temperatures(For the cases shown, the current densities obof inertia is equal to the rigid-body one. The latter does not
tained from the HFB and TF density profiles are indistin-Stay constant, but it is weakly temperature dependent due to
guishable within the resolution of the plpAt zero tempera- the fact that the radius of the atomic cloud increases with
ture, the current is irrotational and rather weikanishes in  increasing temperature. An important point to notice is that,
the limit of axial symmetryw,=w,). In the surface region coming from high temperatures, one does not observe an
the current reaches its ordinafygid-body) form already at appreciable change of the moment of inertia until one
T=1.5w0~0.27T.. At T=3hw~0.54T, the current shows reaches temperatures far below the critical one. The reason
almost everywhere the rigid-body behavior, only near theor this effect is that the main contribution to the moment of
center is it still a little bit weaker than in the normal phase,inertia comes from the outer regions of the trapped gas,

T=6to. where the order parameter becomes small and where conse-
Let us now look at the temperature dependence of thguently the normal-fluid fraction is large even far beldw
moment of inertia®, which is defined as The discrepancy between the HE®Iid line) and TF results

(dashed ling below =2%w can be traced back to the effect
that within the TF approximation the gap near the surface

fdgr[rxjy(f)—fij(r)]- (29) vanishes already at very low temperature, such that the
normal-fluid fraction near the surface is overestimated within
TF.

The factor of 2 is a consequence of our convention fhat

denotes the current density per spin state. Using again Egs. IV. CONCLUSIONS

(27) and(26), we can express the moment of inertia in terms

of the density profile in the corresponding spherical trap as a In this article we have applied the two-fluid model known

simple radial integral: from the theory of superconductiviffl0-12 to the case of

0]
Q Q
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ultracold trapped fermionic atoms in the BCS phase. In conlidity of the Thomas-Fermi approximation for the ground
trast to the usual situation, the ratio of the normal and superstate, the conditiokw; <A has been inferred from the re-
fluid densities is explicitly position dependent due to the in-quirement that the coherence lengfszve/7A (vg being
homogeneous trapping potential. Specializing to the case ofthe Fermi velocity must be much smaller than the typical
slowly rotating system, we have shown that the linear ordefength scale of the system, which is approximately given by
in A of the linear response equations gives a current whickhe Thomas-Fermi radiuRye=\2u/mw? [13]. However, it
can be decomposed in a natural way into normal and Supefs |ess evident where the assumpt'fmil<A enters into the

fluid components. The normal component appears as a CO/escription of the dynamics of the system within the gener-
sequence of Cooper pairs which are broken by thermal eXCljized Viasov equation

tations already be!ow the critical temperature We have To give a specific example, in R4B], quantum correc-
shown that especially the outer region of the trapped ga o X .
lons to the moment of inertia of higher orders in

behaves essentially as if it was normal fluid, even far belo . ;
T.. Only the central region of the gas keeps its superﬂui(f‘(“’xi wy)/ A were discussed. Also in the case of the strength

character up ta.. of the twist mode mentioned above, the fully quantum-

As a consequence, the moment of inertia decreases mop@echanical(“mic_roscopic’) calculgtion showed deviations
slowly than it was previously expectéd] if the temperature  from the two-fluid model, especially at very low tempera-
is lowered belowT,, i.e., the effects of superfluidity become tures. In both cases, the corrections act as if the normal-fluid
visible only far belowT,. This important but in a certain component of the system was larger than predicted by Eq.
sense negative result will apply analogously to other observ21) and in particular nonvanishing even at zero temperature.
ables which are mainly sensitive to the surface of the systenip a certain sense the accelerations acting on the Cooper
like, e.g., collective modes. For example, the theory prepairs during their motion through the inhomogeneous poten-
sented here was used in RE22] in order to explain the tial seem to have a similar pair-breaking effect as the thermal
temperature dependence of the strength of the response furexcitations which are responsible for the normal-fluid com-
tion for the so-called “twist mode.” There the effect was evenponent given by Eq(21). From a completely different point
more dramatic, since the relevant integral contained®n of view, Eq.(21) is usually derived by looking at the long-
weight factor instead of* in Eq. (29). wavelength limit(qé<1) of the current-current correlation

We are therefore convinced that it is not justified to com-function in a homogeneous systdt2,17. In the trapped
pare the experimentally measured frequencies of collectiveystem, however, the wave vectors must be of the ogder
modes directly with theoretical predictions obtained for zero~1/R;¢, and we recover the conditicf< Ryr.
temperature, as is done in the current literatite2]. We Deviations from superfluid hydrodynami€g=0) or from
rather expect that the temperature dependence is importagie two-fluid model(T>0), respectively, may therefore be
and can be predicted by generalizing the two-fluid modekspecially important in the case of the strongly elongated
presented here to the dynamic case, i.e., by performing thgaps used in current experiments, which have rather high
Wigner-Kirkwood expansion of the time-dependent HFBadial trapping frequencies, andw,. Therefore this kind of
equations up to linear order if [11,23. This leads to @ quantum effect should be studied in more detail. In the case
generalization of the Vlasov equation for the normal phasegf collective modes, this could be done, e.g., by comparing
which results from the Wigner-Kirkwood expansion of the systematically the results obtained in quantum-mechanical
time-dependent Hartree-Fock equation up to linear order iguasiparticle random-phase approximation calculat@4$

h. with those of hydrodynamics.
However, one should keep in mind that the Thomas-Fermi

approximation for. the ground state as well as Fhe Wigner- ACKNOWLEDGMENTS
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