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We investigate the dynamical properties of a superfluid gas of trapped fermionic atoms in the BCS phase. As
a simple example we consider the reaction of the gas to a slow rotation of the trap. It is shown that the currents
generated by the rotation can be understood within a two-fluid model similar to the one used in the theory of
superconductors, but with a position-dependent ratio of normal and superfluid densities. The rather general
result of this paper is that already at very low temperatures, far below the critical one, an important normal-
fluid component appears in the outer regions of the gas. This renders the experimental observation of super-
fluidity effects more difficult and indicates that reliable theoretical predictions concerning other dynamical
properties, like the frequencies of collective modes, can only be made by taking into account temperature
effects.
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I. INTRODUCTION

In the last few months, experiments with trapped fermi-
onic 6Li atoms made great progress. The fact that by using
the Feshbach resonance the Fermi gas can be transformed
into a Bose-Einstein condensatesBECd of molecules, which
can be cooled by evaporative cooling and afterward trans-
formed back into a Fermi gas, allows one to reach extremely
low temperatures of the order of 0.03TF f1g, where TF
=kBeF is the Fermi temperature. This allows, among other
things, a detailed study of the BEC-BCS crossover. In par-
ticular, a temperature of 0.03TF should even be low enough
to realize the BCS phase which is characterized by the con-
dition D!eF, whereD denotes the pairing gap.

However, at present it is not very clear how the transition
to the BCS phase could be detected. While several observ-
ables related to collective oscillationsse.g., breathing modesd
of the system have been investigatedf1,2g, the most unam-
biguous signatures of the superfluid BCS phase seem to be
those that concern the rotational properties of the systemf3g.
For instance, the moment of inertia of a slowly rotating
Fermi gas was proposed to be a suitable observable for the
detection of the BCS transitionf4g. It should be mentioned
that at present most of the theoretical predictions concerning
possible experimental signatures of the BCS phasese.g.,
f3,5–8gd neglect temperature effects as well as possible de-
viations from hydrodynamic behavior due to the discrete
level spectrum in the trap.

In a previous articlef9g we calculated the moment of
inertia of a superfluid atomic Fermi gas in a slowly rotating
trap at finite temperature. There it turned out that the irrota-
tional flow, which is characteristic for superfluidity, is real-
ized only in the limit when the gapD is very large compared
with the temperatureT and the level spacing"v of the trap.
In all other cases, the velocity field has both rotational and
irrotational components. For example, if the level spacing
"v is comparable withD, the current has a strong rotational
component even at zero temperature. On the other hand, at
nonvanishing temperatureT, a certain fraction of the Cooper
pairs is broken by thermal excitations. This leads to the well-

known effect that the system behaves like a mixture of nor-
mal and superfluid componentsf10–12g. Under rotation, the
former behaves like a rigid body, while the latter can only
have an irrotational velocity field.

However, in the calculation of Ref.f9g the gapDsr d has
been replaced by a constantD corresponding to the average
diagonal matrix element ofDsr d at the Fermi surface. While
this averaging procedure seems to be justified in cases where
only one oscillator shell participates in the pairingsintrashell
pairing, D,"vd, it is not well suited for the strong pairing
regimesD."vd, where the properties of the system can be
described locally and depend onr via the spatial dependence
of Dsr d f13g. In particular, the normal and superfluid frac-
tions of the density,rn/r andrs/r, should depend onr . To
our knowledge this fact has not been taken into account in
the existing published literature. The author recently learned
that ther dependence ofrn and rs has been considered by
Nygaard in Ref.f14g, but there the derivation follows a com-
pletely different method and no numerical results are pre-
sented.

In this article, we will concentrate on the"→0 limit, i.e.,
we will neglect the quantum effect which is responsible for
the rotational component of the velocity field at zero tem-
perature. Anyway, if the system is sufficiently large and if the
temperature is not extremely low, this quantum effect be-
comes much smaller than the effect resulting from the ther-
mally created normal component of the system. The impor-
tant point is that we will now take into account ther
dependence of the gap. In addition, we will not rely on the
simplification made in our previous work that the full poten-
tial strap+mean fieldd is approximately harmonic.

II. DERIVATIONS

In this section we will derive expressions for the normal
and superfluid parts of the current density in a slowly rotat-
ing superfluid Fermi gas. This decomposition of the current
will allow us to extract the normal and superfluid fractions of
the total density of the system. Let us briefly summarize
some basic formulassfor more explanations and details, see
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Ref. f9gd. We assume that equal numbers of atoms in two
spin states are trapped in a harmonic potential,

Vtrapsr d = o
i=xyz

mvi
2

2
r i

2. s1d

The cigar-shaped form of the traps used in current experi-
ments corresponds tovz!vx=vy. However, in order to
force the system to rotate around the long axis, one has to
break the axial symmetry, e.g., by using a rotating laser beam
as “spoon.” We will model this by takingvxÞvy. The mean-
field single-particle Hamiltonian minus the chemical poten-
tial reads

ĥ0 =
p̂2

2m
+ Vtrapsr d + g rsr d − m, s2d

the coupling constantg=4p"2a/m being proportional to the
atom-atom scattering lengtha,0, andrsr d being the density
per spin state. The order parameter in equilibrium is denoted
D0sr d. Note that we will rely on the validity of mean-field
theory throughout this article. This is the reason why we
have to restrict ourselves to the BCS phase. In the BEC-BCS
crossover region, it would be necessary to include quantum
and thermal fluctuationsf15g.

Now we want to describe what happens if the trap is
slowly rotating around thez axis with a rotation frequency
V=Vez. This is most easily done in the rotating reference
frame. Then we still have a static problem, but the Hamil-
tonian receives the additional term

ĥ1 = − VL̂z = − sV 3 r d · p̂, s3d

which we will treat as a small perturbation. Because of
this term, the order parameterDsr d receives a phase
expf−2ifsr dg. The explicit form offsr d is unknown for the
moment and will be determined below. It is convenient to
eliminate this phase by a gauge transformation, multiplying
all single-particle wave functions by expfifsr dg. In this way

the gauge-transformed gapD̃sr d stays real, which in the case

of a slow rotation implies thatD̃ does not change at all,1 i.e.,

D̃=D0. On the other hand, this gauge transformation changes
the momentum operator according to

p̂̃ = p̂ − " = fsr d. s4d

Hence, the price to pay for the real gap is an additional term
in the Hamiltonian. To linear order in the rotation frequency
the new perturbation Hamiltonian reads

h̃
ˆ

1 = − VL̂z −
"

2m
hp̂ · f=fsr dg + f=fsr dg · p̂j. s5d

In order to describe the system semiclassically, we make
use of the Wigner-Kirkwood expansion. To that end we de-

note the Wigner transforms of ĥ0,h̃
ˆ

1, etc., by

h0sr ,pd ,h̃1sr ,pd, etc. We need also the Wigner transforms of

the normal and abnormal density matrices in equilibrium,
r0sr ,pd and k0sr ,pd, as well as their deviations from equi-
librium, r̃1sr ,pd and k̃1sr ,pd. sFor the sake of brevity, we
will occasionally omit the argumentsr and p if there is no
risk of confusion.d Furthermore we introduce the Poisson
brackets of two phase-space functions

hf,gj = o
i=x,y,z

S ] f

]r i

]g

]pi
−

] f

]pi

]g

]r i
D . s6d

Using the notations defined above, the terms linear inV of
the Hartree-Fock-BogoliubovsHFBd or Bogoliubov–de
Gennes equations up to linear order in" can be written as

i"hh0,r̃1j + 2D0k̃1 = − i"hh̃1,r0j, s7d

i"hD0,r̃1j − 2h0k̃1 = i"hh̃1,k̃0j. s8d

These are exactly Eqs.s84d and s85d of Ref. f9g. The main
point of the present article concerns the solution of this sys-
tem of equations in the case of anr -dependent gapD0sr d.

First we eliminatek̃1 by multiplying Eq.s7d by h0 and Eq.
s8d by D0 and adding up the two resulting equations. Using
the chain and product rules of differentiation, we then obtain

1
2hE2,r̃1j = − h0hh̃1,r0j + D0hh̃1,k0j, s9d

whereE2sr ,pd=h0
2sr ,pd+D0

2sr d. To proceed further, we ex-
pressr0 and k0 in terms ofh0 and D0. Within the Thomas-
Fermi sTFd or local-density approximation, these relations
read

r0sr ,pd =
1

2
−

h0sr ,pd
2Esr ,pd

f1 − 2f„Esr ,pd…g, s10d

k0sr ,pd =
D0sr d

2Esr ,pd
f1 − 2f„Esr ,pd…g, s11d

where fsEd=1/fexpsE/kBTd+1g denotes the Fermi function.
Although Eqs.s10d and s11d are the solutions of the"→0
limit of the HFB equations, they are valid up to linear order
in " f16g and therefore consistent with Eqs.s7d and s8d.
Inserting Eqs.s10d and s11d into Eq. s9d, we obtain, again
after repeated use of chain and product rules of differentia-
tion, the following simple equation:

1

2
hE2,r̃1j =

1

2
HE2,h̃1

df

dE
J . s12d

It is evident that this equation is solved by

r̃1 = h̃1
df

dE
. s13d

However, before this solution can be used, the gauge
transformation that has been introduced in order to make the
gap real must be inverted:

rsr ,pd = r̃fr ,p + " = fsr dg. s14d

To linear order inV, this can also be written as

rsr ,pd = r0fr ,p + " = fsr dg + r̃1sr ,pd s15d
1Since the magnitude ofD cannot depend on the sign ofV, its

change must be at least of the orderV2.
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=r0fr ,p + " = fsr dg

− SV 3 r +
"

m
= fsr dD ·pU df

dE
U

Esr ,pd
.

s16d

The last line has been obtained with the help of Eqs.s5d and
s13d.

The next step consists in calculating the corresponding
current density per spin state,

j sr d =E d3p

s2p"d3

p

m
rsr ,pd. s17d

Using the explicit expression forrsr ,pd given above, one
easily obtains

j sr d = − r0sr d
"

m
= fsr d − SV 3 r +

"

m
= fsr dD

3E
0

` dp

6p2"3

p4

m
U df

dE
U

Esr ,pd
, s18d

with

r0sr d =E d3p

s2p"d3r0sr ,pd. s19d

The current density can therefore be written in a more sug-
gestive way in terms of normal and superfluid densitiesrnsr d
andrssr d,

j sr d = rnsr dV 3 r − rssr d
"

m
= fsr d, s20d

if the normal and superfluid densities are defined according
to the textbook resultsRef. f17g, p. 459d as

rnsr d = r0sr d − rssr d = −E
0

` dp

6p2"3

p4

m
U df

dE
U

Esr ,pd
. s21d

In the BCS limit, i.e., if D0sr d!eFsr d, where eFsr d=m
−Vtrapsr d−gr0sr d denotes the local Fermi energy, the ratio
rnsr d /r0sr d becomes a function of only one dimensionless
argumentT/Tcsr d, whereTcsr d=0.57D0sr ;T=0d denotes the
local critical temperaturesthe existence of a local critical
temperature is an artifact of the TF approximation; see the
discussion in Sec. IIId. This function, as well as the tempera-
ture dependence of the ratioD0sr d /D0sr ;T=0d, is shown in
Fig. 1.

Up to now, the phasefsr d, which determines the velocity
of the superfluid component, is completely unknown. In Ref.

f9g, this phase was determined by calculatingD̃1 from k̃1 and

imposing the conditionD̃1=0. Then it was shown that with
this choice the continuity equation for the current was satis-
fied. Here we will adopt another method which is commonly
used in the literaturef11g and which consists in using the
continuity equation. In the rotating frame the latter reads

= · j sr d + ṙsr d − sV 3 r d · = rsr d = 0, s22d

where ṙsr d=0 in our case of a stationary rotation andrsr d
=r0sr d up to linear order inV. Taking the divergence of Eq.
s20d, one can see that the normal-fluid component drops out
and it remains a continuity equation for the superfluid com-
ponent:

−
"

m
= · frssr d = fsr dg − sV 3 r d · = rssr d = 0. s23d

In the case of a deformed harmonic trapping potential,
this equation can be solved analytically. To see this, remem-
ber that within the TF approximation the densityr0sr d and
the gapD0sr d, and consequently also the superfluid density
rs, depend onr only via the local chemical potential
mlocsr d=m−Vtrapsr d, i.e., rssr d=rsfm−Vtrapsr dg. Hence Eq.
s23d can be written as

U drs

dmloc
U

m−Vtrapsr d
f=Vtrapsr dg ·S "

m
= fsr d + V 3 rD

−
"

m
rssr d=2fsr d = 0. s24d

In the special case of the harmonic potentials1d, it can
readily be shown that this equation has the same solution as
in the simple case of constantD0 studied in Ref.f9g,

fsr d =
m

"

vx
2 − vy

2

vx
2 + vy

2Vrxry, s25d

since this solution is independent of the form ofrssmd. The
current density per spin state,j sr d, is therefore given by

j sr d = rnsr dV 3 r − rssr d
vx

2 − vy
2

vx
2 + vy

2V = srxryd. s26d

FIG. 1. sad Temperature dependence of the gap normalized to its
value at zero temperaturefDs0d=1.76Tcg. sbd Temperature depen-
dence of the normalssolid lined and superfluidsdashed lined frac-
tions of the superfluid system in the limit of weak pairingsD
!eFd. These relations hold locally, ifTc is interpreted as the local
critical temperature, defined byTcsr d=0.57Dsr ;T=0d.
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III. NUMERICAL RESULTS

As mentioned above,r0sr d and D0sr d fand consequently
rssr d and rnsr dg depend onr only via the local chemical
potential. Therefore it is sufficient to perform the TF calcu-
lation for a spherical trap with the geometrically averaged
trapping frequencyv̄=svxvyvzd1/3. In this spherical trap, of

course, the densityr̄0, gapD̄0, etc., depend only on the dis-
tance from the center, i.e.,r̄0sr d= r̄0srd, etc. squantities re-
lated to the spherical trap will be marked by an overbar bard.
The corresponding quantities in the deformed trap can then
be obtained from

r0sr d = r̄0S 1

v̄
Îvx

2rx
2 + vy

2ry
2 + vz

2rz
2D s27d

and analogously forD0sr d ,rssr d, etc. Note, however, that all
this is true only within the TF approximation.

In Fig. 2 we show the normal and superfluid densities per

spin statesr̄n andr̄sd and the gapD̄0 in the spherical trap for
different temperatures. The dashed lines correspond to the

TF s"→0d results. For the solid lines the gapD̄0 has been
obtained by solving numerically the HFB equationsf18,19g,

but the densitiesrn andrs have again been obtained from Eq.
s21d.2

In order to make the comparison between the gapsD̄0
calculated within the TF approximation and by solving the
full HFB equations, we had to choose a rather moderate
number of particles,N=36 000, for which the HFB calcula-
tion is feasible. Unfortunately, for realistic numbers of par-
ticles, likeN=43105 as quoted in Ref.f1g, we are not able
to solve the HFB equations numerically. Of course, this limi-
tation does not concern the calculations done within the TF
approximation. If we had not been interested in the compari-
son between the results obtained with the HFB and TF gaps,
we could have shown the TF results for arbitrarily large
numbers of particles. We emphasize that even for much
larger numbers of particles the qualitative behavior of the TF
results remains unchanged, provided that the coupling con-
stantg is tuned such that the conditionD!eF sBCS condi-
tiond remains satisfied3 and the temperatures are scaled with
respect to the critical temperature.

Before discussing the normal and superfluid densities, let
us briefly comment on the temperature dependence of the
gap, Fig. 2sad. It can be seen that at zero temperature the
HFB and TF gaps are in very good agreement. At nonzero
temperature, however, the TF gap becomes exactly zero be-
yond a certain radius, because of the fact that within the TF
approximation to each pointr corresponds a critical tempera-
ture Tcsr d depending on the local chemical potentialmlocsr d
at that point. With increasing temperature, this radius be-
comes smaller and smaller, and finally, atT=Tcsr =0d the
gap vanishes everywhere. The temperatureTcsr =0d has
therefore been identified with the critical temperatureTc,TF of
the system within the TF approximationf20g. This behavior
is different from that obtained within the HFB calculation,
where the critical temperatureTc is a global quantity, i.e., for
T,Tc the gap is nonzero everywheresalthough extremely
small at largerd. This global critical temperatureTc,HFB is
lower thanTc,TF f19,21g: for the present parameters, we find
Tc,HFB<5.5"v̄ andTc,TF<6.2"v̄. This explains why in Fig.
2sad the TF gap atT=6"v̄ is nonzero at the center, whereas
the HFB gap is zero everywhere at this temperature.

Now we turn to the superfluid and normal densities shown
in Figs. 2sbd and 2scd, respectively. At zero temperature, the
trapped Fermi gas is completely superfluid, i.e.,r̄s= r̄0 and
r̄n=0. At low but nonvanishing temperaturesT=2"v̄
<0.36Tc,HFBd a normal-fluid component appears near the
surface, since there the gap is smallest and consequently the
Cooper pairs are most easily broken by thermal excitations.
If the temperature increases furthersT=4"v̄<0.72Tc,HFBd,
the normal-fluid component starts to extend over the whole
volume, and finally, slightly above the critical temperature
sT=6"v̄d the superfluid component vanishes completely

2In Ref. f14g a formula is given to calculatern and rs without
resorting to any semiclassical approximation. For the parameters
used here, this formula gives results which are very close to those
obtained from Eq.s21d.

3At zero temperature and at the center of the trap we have with
our choice of parametersD<0.2eF, i.e., we are already close to the
BCS-BEC crossover region.

FIG. 2. sad Gap D̄0srd, sbd superfluid densityr̄ssrd, and scd
normal-fluid densityr̄nsrd as a function of the distancer from the
center of the spherical trap with frequencyv̄ for several tempera-
tures:T=s0,2,4,6d"v̄ /kB. For convenience, all quantities are given

in harmonic oscillator units, i.e.,r in lho=Î" /mv̄, D̄0 in "v̄ , r̄s and
r̄n in lho

−3. The number of atoms is 36 000, their interaction strength
is set tog=−"2lho/m. This choice of parameters allows us to com-
pare the TF resultssdashed linesd with results obtained from a nu-
merical solution of the full HFB equationsssolid linesd. In sad and
sbd, the solid lines forT=6 "v̄ /kB are not visible since in this case

D̄0 and r̄s are equal to zero.

MICHAEL URBAN PHYSICAL REVIEW A 71, 033611s2005d

033611-4



ssolid linesd. Within the TF approximationsdashed linesd,
there is still a small superfluid region surviving near the cen-
ter of the trap atT=6"v̄ because ofTc,TF<6.2"v̄. However,
apart from this point, one can say that in general forr̄n and
r̄s the agreement between TF and HFB is reasonable and

better than for the gapD̄0 itself. The reason why the agree-

ment between TF and HFB is better forr̄n andr̄s than forD̄0
is that near the critical temperature the temperature depen-
dence ofrs/r is much weaker than that ofD /DsT=0d ssee
Fig. 1d.

Using the spherical density profiles and Eqs.s26d and
s27d, we can immediately calculate the current distribution
j sr d. In Fig. 3 we show the current in thexy planesrz=0d for
a deviation from axial symmetry ofvx/vy=0.7 at several
temperatures.sFor the cases shown, the current densities ob-
tained from the HFB and TF density profiles are indistin-
guishable within the resolution of the plot.d At zero tempera-
ture, the current is irrotational and rather weaksit vanishes in
the limit of axial symmetry,vx=vyd. In the surface region
the current reaches its ordinarysrigid-bodyd form already at
T=1.5"v̄<0.27Tc. At T=3"v̄<0.54Tc the current shows
almost everywhere the rigid-body behavior, only near the
center is it still a little bit weaker than in the normal phase,
T=6"v̄.

Let us now look at the temperature dependence of the
moment of inertiaQ, which is defined as

Q =
kL̂zl
V

=
2m

V
E d3rfrxjysr d − ryjxsr dg. s28d

The factor of 2 is a consequence of our convention thatj
denotes the current density per spin state. Using again Eqs.
s27d ands26d, we can express the moment of inertia in terms
of the density profile in the corresponding spherical trap as a
simple radial integral:

Q =
8pm

3
S v̄2

vx
2 +

v̄2

vy
2DE

0

`

dr r4Fr̄nsrd + Svx
2 − vy

2

vx
2 + vy

2D2

r̄ssrdG .

s29d

In Fig. 4 we show the moment of inertia for the same set
of parameters that were already used in Figs. 2 and 3 as a
function of temperature. The solid line has been calculated
by using the HFB density profiles, while the dashed line was
obtained from the density profile within TF approximation.
One can see that the moment of inertia decreases strongly as
the temperature goes to zero. The limiting value at zero tem-
perature is determined by the deformation of the trap in the
xy plane,

QsT = 0d = Svx
2 − vy

2

vx
2 + vy

2D2

Qrigid, s30d

where Qrigid denotes the corresponding rigid-body moment
of inertia fwhich can be obtained from Eq.s29d by putting
r̄n= r̄0 and r̄s=0g. In our case ofvx/vy=0.7, we haveQsT
=0d<0.12Qrigid. Above the critical temperature, the moment
of inertia is equal to the rigid-body one. The latter does not
stay constant, but it is weakly temperature dependent due to
the fact that the radius of the atomic cloud increases with
increasing temperature. An important point to notice is that,
coming from high temperatures, one does not observe an
appreciable change of the moment of inertia until one
reaches temperatures far below the critical one. The reason
for this effect is that the main contribution to the moment of
inertia comes from the outer regions of the trapped gas,
where the order parameter becomes small and where conse-
quently the normal-fluid fraction is large even far belowTc.
The discrepancy between the HFBssolid lined and TF results
sdashed lined below <2"v̄ can be traced back to the effect
that within the TF approximation the gap near the surface
vanishes already at very low temperature, such that the
normal-fluid fraction near the surface is overestimated within
TF.

IV. CONCLUSIONS

In this article we have applied the two-fluid model known
from the theory of superconductivityf10–12g to the case of

FIG. 3. Current density divided by the angular velocity of the
rotation, j sr d /V, in the xy planesrz=0d of a trap withvx/vy=0.7
and vz/vr =0.03 svr =Îvxvyd at four different temperatures. The
remaining parameters are the same as in Fig. 2. The length of the
arrow displayed in the lower right corner of each figure corresponds
to a current density ofj =20V / lho

2 . The coordinatesrx and ry are
given in units oflho and the temperatures in units of"v̄ /kB.

FIG. 4. Moment of inertiaQ of a trapped Fermi gas as function
of temperature. The parameters are the same as in Figs. 2 and 3. The
moment of inertia and the temperature are given in harmonic oscil-
lator units, i.e.,Q in mlho

2 andT in "v̄ /kB. The transition tempera-
ture to the BCS phase lies at approximately 5.5"v̄. The solid line
has been obtained by performing a full HFB calculation forr̄0srd
andD̄0srd, while for the dashed line the TF results have been used.
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ultracold trapped fermionic atoms in the BCS phase. In con-
trast to the usual situation, the ratio of the normal and super-
fluid densities is explicitly position dependent due to the in-
homogeneous trapping potential. Specializing to the case of a
slowly rotating system, we have shown that the linear order
in " of the linear response equations gives a current which
can be decomposed in a natural way into normal and super-
fluid components. The normal component appears as a con-
sequence of Cooper pairs which are broken by thermal exci-
tations already below the critical temperatureTc. We have
shown that especially the outer region of the trapped gas
behaves essentially as if it was normal fluid, even far below
Tc. Only the central region of the gas keeps its superfluid
character up toTc.

As a consequence, the moment of inertia decreases more
slowly than it was previously expectedf9g if the temperature
is lowered belowTc, i.e., the effects of superfluidity become
visible only far belowTc. This important but in a certain
sense negative result will apply analogously to other observ-
ables which are mainly sensitive to the surface of the system,
like, e.g., collective modes. For example, the theory pre-
sented here was used in Ref.f22g in order to explain the
temperature dependence of the strength of the response func-
tion for the so-called “twist mode.” There the effect was even
more dramatic, since the relevant integral contained anr6

weight factor instead ofr4 in Eq. s29d.
We are therefore convinced that it is not justified to com-

pare the experimentally measured frequencies of collective
modes directly with theoretical predictions obtained for zero
temperature, as is done in the current literaturef1,2g. We
rather expect that the temperature dependence is important
and can be predicted by generalizing the two-fluid model
presented here to the dynamic case, i.e., by performing the
Wigner-Kirkwood expansion of the time-dependent HFB
equations up to linear order in" f11,23g. This leads to a
generalization of the Vlasov equation for the normal phase,
which results from the Wigner-Kirkwood expansion of the
time-dependent Hartree-Fock equation up to linear order in
".

However, one should keep in mind that the Thomas-Fermi
approximation for the ground state as well as the Wigner-
Kirkwood expansion of the dynamical equationssi.e., the
generalized Vlasov equation and the superfluid hydrodynam-
ics to which it reduces in the zero-temperature limitd depend
on the assumption"vi !D for i =x,y,z. Concerning the va-

lidity of the Thomas-Fermi approximation for the ground
state, the condition"vi !D has been inferred from the re-
quirement that the coherence lengthj="vF /pD svF being
the Fermi velocityd must be much smaller than the typical
length scale of the system, which is approximately given by
the Thomas-Fermi radiusRTF=Î2m /mvi

2 f13g. However, it
is less evident where the assumption"vi !D enters into the
description of the dynamics of the system within the gener-
alized Vlasov equation.

To give a specific example, in Ref.f9g, quantum correc-
tions to the moment of inertia of higher orders in
"svx±vyd /D were discussed. Also in the case of the strength
of the twist mode mentioned above, the fully quantum-
mechanicals“microscopic”d calculation showed deviations
from the two-fluid model, especially at very low tempera-
tures. In both cases, the corrections act as if the normal-fluid
component of the system was larger than predicted by Eq.
s21d and in particular nonvanishing even at zero temperature.
In a certain sense the accelerations acting on the Cooper
pairs during their motion through the inhomogeneous poten-
tial seem to have a similar pair-breaking effect as the thermal
excitations which are responsible for the normal-fluid com-
ponent given by Eq.s21d. From a completely different point
of view, Eq. s21d is usually derived by looking at the long-
wavelength limitsqj!1d of the current-current correlation
function in a homogeneous systemf12,17g. In the trapped
system, however, the wave vectors must be of the orderq
<1/RTF, and we recover the conditionj!RTF.

Deviations from superfluid hydrodynamicssT=0d or from
the two-fluid modelsT.0d, respectively, may therefore be
especially important in the case of the strongly elongated
traps used in current experiments, which have rather high
radial trapping frequenciesvx andvy. Therefore this kind of
quantum effect should be studied in more detail. In the case
of collective modes, this could be done, e.g., by comparing
systematically the results obtained in quantum-mechanical
quasiparticle random-phase approximation calculationsf24g
with those of hydrodynamics.
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