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Effect of a potential step or impurity on the Bose-Einstein condensate mean field
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The full set of stationary states of the mean field of a Bose-Einstein condensate in the presence of a potential
step or pointlike impurity are presented in closed analytic form. The nonlinear Schrédinger equation in one
dimension is taken as a model. The nonlinear analogs of the continuum of stationary scattering states, as well
as evanescent waves, are discussed. The solutions include asymmetric soliton trains and other wave functions
of intriguing form, such as a pair of dark solitons bound by an impurity.
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I. INTRODUCTION superfluid transmission of matter waves across various po-

The nonlinear Schrodinger equatioNLS) models many ~ tentials has been studid@8,29. In addition, bound solu-
kinds of wave phenomena. The NLS appears in diverse fielddons to the NLS are the one-dimensional analog to the
such as nonlinear opti¢4], gravity waves on deep watgz], pinned vortex solutions which occur when a discontinuity is
magnetostatic spin wavé8], solitons in liquid crystal§4],  Present in a two-dimensional system, such as in a two-
and magnetosonic solitons in the atmospheric magnetopaugénensional highF; superconducting system.
boundary layer{5]. It also describes the dynamics of the In order to obtain the full set of stationary states in closed
mean field of a weakly interacting atomic or molecular Bose-analytic form, we assume the BEC to be in the quasi-one-
Einstein condensatBEC) [6—9], where it is known as the dimensional regime. When the transverse dimensions of the
Gross-Pitaevskii equatigri0,11]. BEC are on the order of its healing length, and its longitudi-

Here, we consider the steady-state response of the mea&al dimension is much longer than its transverse ones, the
field of a BEC to a potential step or a delta function poten-one-dimensional1D) limit of the three-dimensional NLS is
tial, as modeled by the NLS. These potentials may be easilgppropriate to describe the syst¢80]. The 1D NLS, with
produced in present experiments on the BEC. The forme&n external potentiaV(x), may be written
may be realized by a detuned laser beam shined over a razor 1
edge to make a sharp barrier, where the diffraction-limited ; __= 2
falloff of the laser intensity is smaller than the healing length 1900 = =2 3V + gAY £ VOO, @
of the condensate, so that the potential is effectively a step _ ) i _
function. The latter models the response of the condensate #§here @ harmonic oscillator confinement in the transverse
an impurity of a length scale smaller than the healing lengthdirections with frequency has been assum¢8] for atoms
which could be realized by a tightly focused laser beam, b)pf mass_M, the length has been rescaled according to units of
another spin state of the same atom, or by any other object€ oscillator lengthly,,=(%/Mw)*?, and energy rescaled ac-
as for instance another alkali atom, confined in an opticafording to units of the oscillator enerdyw. The renormal-
trap. Moreover, the solution methods developed in this papezed 1D couplingg=2as/ln, Whereas is the swave scat-
may be generalized to arbitrarily complicated piecewise contering length, characterizes the short-ranged pairwise
stant potentials. interactions between atoms. The wave function or order pa-

The complete set of solutions to the NLS with a constanfameter ¥(x,t) has the physical meaning off'(x,t)
potential on the infinite line were discovered by Zakharov=1yp(X,t)exfip(x,t)], wherep(x,t) is the longitudinal line
and Shabaft12,13. The stationary solutions of the NLS un- density and the longitudinal superfluid velocity is given by
der periodic and box boundary conditions has also been(x,t)=d¢(x,t)/dx. Both attractive and repulsive atomic in-
solved analytically{14,15, as well as the finite wel[16].  teractions, i.e.g>0 andg<0, shall be considered.

The parabolic potential has been solved numericglly]. In the case where the harmonic oscillator length ap-
The potential step has been examined theoretically and eyproaches the-wave scattering length,,=as, the 1D NLS
perimentally for the linear Schrédinger equation with a con-no longer models the system and a one-dimensional field
stant[18,19 and oscillating 20] step. Klein examined simi- theory with the appropriate effective coupling constant must
lar problems experimentally by deflecting neutron beamse considered insted®1]. Sinceas is on the order of ang-
with a vibrating crysta[21]. In addition, symmetric steady- stroms for typical BEC's, this regime is not relevant to the
state solutions with a pointlike impurity potential have beenpresent study. Thus it should be noted that this study does not
studied by Hakim[22] and Taras-SemchulR3] in certain examine the Tonks-Girardeau regirf#2], where quantum
limiting cases. Pointlike impurity potentials have been stud{luctuations become important and the Gross-Pitaevskii
ied extensively, such as with helium impurities in a BEC equation no longer models the system.

[24,25, BEC formation initiated by pointlike impurities With the experimental demonstration of Feshbach reso-
[26], and impurity scattering in a BEC of sodiuf@7]. The  nances in BEC'’s of dilute atomic gade33,34], it is possible
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to alter thes-wave scattering length and hence the nonlinear- p=Asrt(bx+xq,k) + B, (8)
ity of the NLS. Near a Feshbach resonance, the scattering ) o o .
length becomes a function of a uniform background magWhere sn is one of the Jacobi elliptic functioAsis a density
netic field. By altering the magnetic field, the effects of thePrefactor,b is a translational scalingy, is a translational
nonlinearity can be experimentally controlled. It is thereforeCffSet, ke(0, 1] is the elliptic parameter, anBl is a vertical
important to be able to characterize the complete set of sglensity offset. The period of the density is given b§(k)/b,
lutions as a function of the interaction strength. whereK(K) e /2, ) is the complete elliptic integral of the
This paper is organized as follows. In Sec. II, the full setfirst kind. Since the density is positive definite, the variables
of stationary solutions of the NLS along the infinite line areare restricted such th&=0 andB+A=0. In Sec. VI the
presented. In Sec. Il the stationary solutions influenced by #elation between these variables and the mean number den-
step potential are discussed. The effects of a pointlike impusity, energy density, and momentum density are calculated
rity are presented in Sec. IV. Section V shows the connectio@nd discussed for the nonlinear wave of ).
between the NLS solutions and the well-known solutions to It should be noted that since many of the solutions are
the linear Schrodinger equation. The results are discussed #nbounded, the norm of the wave function remains uncon-
Sec. VI, including a physical interpretation of all solution strained. This is in contrast to bound or localized solutions
variables. In Appendix A, the special functions used throughwhen the normalization,
out the paper are briefly reviewed. Finally, in Appendix B the +o0
fact that the solutions discussed in Sec. |l are indeed the full f (p-pidx=1, 9)
set of stationary solutions to the 1D NLS with a constant —

potential[ 14,19 is demonstrated formally. may be used36], wherep is the average density. Alterna-

tively, it is possible to use a nonlinear scaling of the position
and densityx— ax andp— a?p, to scale the maximum den-
Il. CONSTANT POTENTIAL sity on one side of the boundary to unity. However, through-

A brief review is given of the stationary solutions of Eg. Out this paper the wave function remains unnormalized.

(1) of the form One may then determine the variablgs «, andk, in
terms of A,B,b, andg by substituting Eq(8) into Eq. (6)
W(x,t) = Rx)expli¢(x)Jexd —iut], (2 and equating powers of the elliptic sn function to give
whereu is the eigenvalue. There are several excellent refer- 1
ences which consider stationary solutions in a constant po- m= E[b2+ (A+3B)g]+V, (10
tential[30,35—-38. Assuming a constant external potential
the separation of Eq1) into real and imaginary parts gives o= B(A+B)(b? + Bg). (1)
Rixxd + 2(0xR)(dx) = O, ()
A
EaxxR"' 5(&x¢)2R+gR3+VR: HR. (4)
This leaves the eigenvalye, the constant of integration of
Equation(3) can be integrated to give the phaser, and the elliptic parametée determined up to
A,B,b, and the interaction strength Note that the fact that
dep= i’, (5) a enters into the equations only @ implies that allnon-
p trivial phasesolutions, i.e., those for whick# 0, are doubly

ddegenerate, asatlead to the same value of the eigenvajue
without otherwise changing the form of the density or phase.
We shall use the terrtrivial phaseto refer to solutions for
which the phase is spatially constant.

dp . — 5 5 ' In th.e following two segtions theseT results are app!ied to

ax - 2V9r- 2(u=V)p~+Cp—a”. (6)  piecewise constant potentials. In particular, the potential step

and the delta function potential are examined.

where « is an undetermined constant of integration, an
p(x)=R(x)? is the single-particle density. Substituting E8)
into Eq. (4) and integrating yields

Integrating a second time gives

1
7 dp: 2X+X0, (7)
J Vop® = 2(u=V)p?+ Cp—a?

IIl. POTENTIAL STEP

In this section the complete set of solutions to the NLS

whereC andx, are undetermined constants of integration. [tWith an external step potential of heighiy beginning atx

is shown in Appendix B that the only solutions to this inte- =0,

gral equation are given by the Jacobi elliptic functions _

[39,40. In Appendix A these special functions are briefly V) = Vol (13
reviewed. The most general form of the solution is thenare presented analytically, given the solution parameters on
given by the negativex, or left, side of the step. In the following two
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subsections, the general solution to the NLS with a potential bZR: 2(u— Vo) - (Ag+ 3BR)g. (21)
step and some particular examples are discussed. ) ] ] )
These variables are substituted into EdS) and(15), using

Eqg. (11 iv
A. General solution a. (11), to give

2 _
Applying the two boundary conditions of continuity of the al =Br(Ar+Br)[2(n = Vo) = (Ar+ 2BR)g],  (22)
wave function and continuity of the derivative of the wave
function gives the following five conditions: (dkpL)? =~ 4Br— pL)(Ar+Br— pL)
p(0") = p(07), (14) X[2(n=Vo) = (Ar+2Br+p)g]. (23
Equations(22) and(23) are quadratic ifAg and cubic inBg
3,p(0") = d,p(07), (150 and can be solved analytically fdkz and By to give six
solutions. The remaining variables on the right side can then
$(0%) = $(07) + 2, (16) be found by substituting the values Ak and By into Eq.

(21), to find bg, and by taking the inverse Jacobi sn function

#(0%) = a0, (17 of Eq. (20) to give

_ -B A
(07 = p(0), 18) or= 1 1<pLA—RR \ biég) 29

wheren is an integer. The first two conditions represent theThe full solution is then completely known. It is therefore
continuity of the density, Eq.14), and the derivative of the possible to completely describe the system analytically
density, Eq.(15). The next two conditions represent the con-knowing only the parameters on one side of the step. This
tinuity of the phase, Eq16), and the derivative of the phase, not only introduces computational ease in evaluating solu-
Eq. (17). Equation(18) demands that the eigenvalue be thetions, it also provides all possible solutions, most of which
same on either side of the boundary. Note that in(E6). the  cannot be determined using purely numerical methods. In the
eigenvalue on the right-hand side is offset\lgyas compared following section, specific examples of a BEC in the pres-
to the left-hand side. Sinae only enters into the phase and ence of a step potential will be examined.

does not effect such quantities as the eigenvalue and density,
only then=0 state is considered and, consequently, the phase
¢ is continuous across the boundary. However, it is impor- . ) o
tant to note that all solutions are of denumerably infinite. The solutions to the potential step problem can be divided

degeneracy, according to E(.6). Sinceé is given by into two categories. The eigenvalyecan be large enough
that particles are free to move across the boundary and the

* a nonlinear analog to a transmitted wave for the linear
P(x) :f @dx"’ const, (19 schrédinger equation becomes possible. However, if the ei-
0 genvalue is too small, then the wave function must decay
continuity in the phase is easily achieved by setting the conunder the step. _ _
stant phase shift equal on either side of the boundary and Whenw is larger than the effective potential,
therefore Eq(16) is satisfied. _

In the fol?owing derivation, it is assumed that the wave- VerlX) = Vo + gp(), (25)
function parameters on the left side of the step are knownhe wave can be transmitted across the boundary. Note, that
completely. Therefore the density prefactr, the vertical in the case of an attractive interactiapn< 0, the eigenvalue
density offsetB,, the translational scaling,, and the hori- can be less than the step heiyht and for a repulsive inter-
zontal offsetxy are all known, where the subscribt refers action,g>0, the eigenvalue must be strictly greater than the
to variables on the left side; aR subscript will refer to  step height. In Fig. (8 the density of a nonlinear state with
variables on the right side. In addition, the experimental paa repulsive interaction strength is shown. A step of height
rameters of the interaction strengghand the potential step Vy=1, positioned ak=0, and a condensate with an interac-
heightV, are both known. From the variables on the left andtion strength ofg=0.2 and eigenvalue ofi=2.404 were
Eq. (8), the density at the boundany, =p(07), and its de- used. Notice that the increased interaction strength and non-
rivative at the boundaryg,p, = d,0(07), can be determined. linearity has caused the peaks of the wave function to be-
The eigenvalugu and the phase constant can be deter- come much broader than in the linear case. The phase that

B. Particular examples

mined from Eqs(10) and(11). corresponds to this density is shown in Figb)1 Figure Xc)
From Eqgs.(8) and(14) the square of the Jacobi elliptic sn shows a similar solution but with an attractive interaction
function can be solved for, strength. This potential is again given by a step with height
of Vy=1, positioned ak=0. An interaction strength of=
2 Arg) _pL—Bg —-0.2 and eigenvalue gf=0.98 was used. In this case, the
ST Xo: 0/ Ar (20) peaks have instead narrowed due to the attractive interaction.
R The phase that corresponds to this density is shown in Fig.
and, from Eqs(10) and(18), the horizontal scalingg, 1(d).
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functions that approach zero at infinity must hate-B,
and hence from Eqg5) and (11), the phase is constant. In
order to stress the importance of the effective potential, and
not just the step potential, Figs(2 and Zd) show the den-
sity of two nonlinear wave functions with attractive interac-
0 . . . . tions, g=-1, that decay on théower side of the potential.
-10 0 10 20 -10 0 10 20 Both wave functions have an eigenvalue ©0f-0.5 and a
Position (units of ) Position (units of ) potential of height o/;=0.01 andVy=1 were used for Figs.

2(c) and Zd), respectively.

Thus the NLS with a potential step has solutions to the

Phase /2Tt

Density (units of 4,,")

()

24
o r O step potential that provide a connection between the linear
4 S solutions and a wide variety of exotic nonlinear wave func-
§ 201 g 2 tions, as shall be discussed in Sec. V.
S A~
g : s .
& _010 0 30 60 00 30 60 IV. POINTLIKE IMPURITY
Position (units of #,) Position (units of 4,,)

In this section, the case of a potential of form

FIG. 1. Stationary solutions to the NLS with a potential step of —
the form V(x)=Vy6(x). These solutions, which are the nonlinear V(9 = Vod(x) (26)
analogs of the continuum of linear stationary scattering states, eXs considered. Such a potential models an impurity which
hibit a large deviation from the traditional linear solutions. Showndeforms the constant background potential on a length scale
are particular examples @) the density andb) the phase for a much less than that of the healing length. Given the state of
repulsive interaction strength artd) the density andd) the phase  the system on the negatiwe or left side of the impurity, the
for attractive interaction strength. variables on the right side of the impurity are determined. A

, _ . ._hegative value ol/, represents an attractive impurity, such
When the eigenvalue is less than the effective potentlalaS due to defects in hydrogen-bonded ché#tis4d, and a

< Veri(x), the wave function must decay under the step. Inggitive value ofv, represents a repulsive impurity, such as
Fig. 2(@) the density of a nonlinear solution with a repulsive it helium atoms in a BEC24,25.

interaction strength that decays as it crosses the boundary of
the step is shown. A step with height \@§=1, positioned at _
x=0, and a condensate with an interaction strengthyof A. General solution
=0.12 and eigenvalue oft=0.5 were used. Figure(ld The boundary conditions for an impurity are similar to
shows a similar solution but with an attractive interactionthose for the potential step, except that the derivative of the
strength. This potential is again given by a step with heightvave function experiences a discontinuity at the boundary.
of V=1, positioned ak=0. An interaction strength of=  Therefore it is necessary that Eq&4), (18), (17), and(16)
-10 and eigenvalue oft=-49 were used. For both wave must still be satisfied, as well as
functions, the phase is necessarily trivial, since all wave

dp(0%) = axp(07) = = 4p(0) V. (27)
(b) It is again assumed that all variables on the left side of the
impurity are known as well as the experimental parameters
of interaction strengtly and impurity strength/,. Using a
treatment that is exactly analogous to that for the step func-
o . ‘ , tion, all of the parameters on the right side, given those on
-25 -10 o 10 -1 0 05 the left, are analytically determined. The only difference is
Position{units of £,) Position (units of /) that in Eqgs.(21)—<(24), the quantityd,p, must be replaced
5 with (d,p —4Vpp ) and (u—Vy) must be replaced witl. It
@ is therefore possible to completely describe the system ana-
lytically knowing only the parameters on one side of the
impurity. In the following section, examples of a wave func-
tion subject to an impurity are examined.

5

<

(@

w

2.5¢

Density (units of /,,,")

Density (units of /,,*)

=
[}

©

Density (units of /,,)
Density (units of /,,")

% 0 10 20 10 0 10 20

Position (units of /,,) Position (units of f,) B. Particular examples

FIG. 2. Stationary solutions to the NLS with a potential step for ~ FOr the delta function potential, both symmetric and non-
which the wave functions decay, which are the nonlinear analogs t§Yymmetric wave functions are possible. Of particular interest
evanescent waves. Shown are particular examples of the densiti@e the symmetric wave functions in the=1 limit of the
of nonlinear waves wita) repulsive interaction strengtii) at-  Jacobi elliptic functions. In this case all solutions become
tractive interaction strength, arid) and(d) with an attractive inter- hyperbolic trigonometric functions with a localized change
action strength that decays on tlesver side of the step. in the density around the impurity and no oscillations &t +
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o2 . 1 o2 o 1
£ (@ (b) £ @ £ | ()
3 e k) B
Z g 2 2
£ & g
A o 1 A - A ,

-5 - . ! -5 - . 935 0 5 05 0 5

Position (units of /) Position (units of /y,,) Position (units of /) Position (units of 4,,)
fﬁ 2 © ' L5 (d) ' FIG. 4. Localized, symmetric solutions to the NLS with attrac-
o) ® tive interaction strength in the presence of an impurity. Shown are
é . a 0 particular examples ofa) the density of a bright soliton, which is
= g the ground-state solution to the NLS, deformed by a repulsive im-
g 3 Yy p
§ A purity and(b) the density of a bright soliton deformed by an attrac-
g o .
Ja) 0_5 0 L _1'5_5 tive |mpur|ty.
Position (f,,) Position (units of £,.)
dark solitons. Figure @) shows the hyperbolic cotangent

5 2 © ' 1 ® ' function solution with an impurity strength &f;=-0.5; this
3 B may be interpreted as a deformation of the ground-state con-
é . ‘E ol | stant solution to the NLS with a constant potential. In all
I é plots an interaction strength @f=1 and phase constant of
Z «=0.5 were used.
A o5 5 s 15 5 . It should be noted that there exists a bound state of a

"~ Position (units of /,,) " Position (units of /) repulsive condensate with an attractive impurity. This solu-

tion is given by

FIG. 3. Localized, symmetric solutions to the NLS with repul-
sive interaction strength in the presence of an impurityx) _ b? ?l b h_1<‘Vo> 2
=V,d(x). Shown are particular examples @) the density andb) P= g ese X+ cot b ’ (32
the phase of a dark soliton bound by a repulsive impufity,the
density and(d) the phase of a pair of dark solitons bound by anWhere the interaction strengthy has specifically been in-
attractive impurity, ande) the density andf) the phase of a super- cluded andb must be determined such that the density is
current deformed by an attractive impurity. Note tifak and (b) normalized to unity. These requirements place a limit on how
may also be interpreted as deformations of a supercurrent. repulsive the interaction may become and is given by

Solutions of this type we terntocalized[16]. Due to the Gmax= ~ AVo, (33

form of the solutions, there are four different solution types.where g, is the most repulsive interaction the condensate

The possible wave functions are then may have. If the interaction is increased past this point, the
— condensate will spill away from the impurity and will no
p= o+ 1- az)tank?(vl - a2|X| +Xo), (298 longer be bound.
The set of symmetric localized solutions for the case of
p=a?+(1-a?)cothf(\1 - a?X| + X)), (29) attractive interactions do not allow for nontrivial phases, in
contrast to the case of repulsive interactions. For attractive
p =b?secR(b|x| +Xo), (30)  interactions,g<<0, the hyperbolic secant function solution,
Eg. (30), is valid for bothV,>0, Fig. 4a), andV,<0, Fig.
p = b2cscR(b[X| +X), (31) 4(b), where potential strengths ¥=0.9 andV,=-0.9 were

used, respectively. These solutions may be interpreted as a
where the translational offset, is determined by the impu- single bright soliton, which is the ground-state solution to the
rity strengthV, and the density has been normalized accord1D NLS, deformed by an impurity. The hyperbolic cosecant
ing to Eq.(9). Equationg28) and(29) are valid for repulsive  function solution, Eq.(31), is only valid if Vu<O and is
interactions, while Eq930) and(31) are valid for attractive similar in form to the hyperbolic secant solution of Figby
interactions. The two solutions types are degenerate Wgr< 0, with an

Figure 3 shows the possible wave functions for repulsivesigenvalue ofu=-b?/2. In Figs. 4a) and 4b) an interaction
interactions. An example of the solution described by Egstrength oig=-1 and translational scaling bf=1 were used.
(28) is plotted in Fig. 8a) with a repulsive impurity of Nonsymmetric wave functions which oscillate at infinity
strengthV,=0.5. This may be interpreted as a single darkare also possible and come in two forms: oscillations on one
soliton bound by an impurity. This is similar to the solution side of the delta function and oscillations on both sides. Fig-
found by Hakim[22] for a soliton that is moving with an ure 5 shows two possible nonsymmetric wave functions sub-
impurity. In addition, a bound state of two dark solitons, Fig.ject to a delta function positioned @t 0 that oscillate on one
3(c), can be created when the strength of the impurity isside of the potential. The density of a wave function with a
attractive and exactly balances the repulsion between the twepulsive interaction strength @=0.21 and eigenvalue of
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3 15 @ s 30 ) There are two distinct types of possible waves. If the wave
o = has enough energy it is possible to make the wave propagate
2 101 8 20 through space. However, if it does not have enough energy,
g g the wave can carry no current and is referred to as an eva-
=Y i z 10 nescent wave. These waves must decay. In the next two sec-
§ 0 ‘ g . tions, these two types of waves are discussed concerning

-5 0 S 05 0 0.5 their role as the linear limit of the nonlinear solutions.

Position (units of /) Position (units of /)

FIG. 5. Solutions to the NLS with an impurity that oscillates on A. Transmitted waves

one side of the potential. Shown are particular exampleg)athe In a linear system, if the energy of the system is greater

density of a nonlinear wave with repulsive interaction strength andp, g the potential energy, then the wave can be transmitted
(b) the density of a nonlinear wave With' attractive irllteraction through space as sine waves. The nonlinear Jacobi elliptic sn
strength. These waves have no analog with the solutions of thg,ion waves are the nonlinear analog of the sine waves of
linear Schrodinger equation. a linear system. In this section, it is shown how the nonlinear
w=2.4, distorted by a delta functioN;=2, is shown in Fig. solutions_, in the linear limit, recreate the linear solutions of
5(a), where the left side reproduces the hyperbolic tangenpropagating waves. '

function of Eq.(29). In Fig. 5b), an attractively interacting, For the linear case, the usual representation of the system
g=-50, wave function with an eigenvalue pf=-50, dis- by incident, transmitted, and reflected waves is given by
torted by a delta functionY,=10, is shown that appears

— (oK cik Xy oo
similar to the evanescent wave functions of Fig. 2 that decay W (x,1) = (" + R, (34)
beneath a step. Note that Fig(abhas a nontrivial phase . '

while the phase of Fig.(b) is trivial. Pr(x,t) = Tekrg (35

Figure 6 shows two possible nhonsymmetric wave func- R _ , .
tions subject to a delta function positioned set0 with ~ Wherek =y2(u=V\), ke=y2(u=Vg), u is the eigenvalue
strengthV,=2 that oscillate on both sides of the potential. A of the Schrodinger equatioR is the reflection coefficient
repulsive interaction strength produces the characteristits the transmission coefficient, and the incident wave is as-
widening of the pulse peaks, Fig(éh. The corresponding sumed to be coming in from the left. The potentials,and
phase is given in Fig.(B). An attractive interaction strength Vg, and the scattering coefficient®,and T, are determined
creates a narrowing of the pulse peaks, Fig).6The corre- by the type of boundary. For the case of a potential step, the
sponding phase is given in Fig(d). The condensates in potentials are given by, =0 andVg=V,. For a delta func-
Figs. Ga) and Gc) are characterized by eigenvalues @f tion potential, the potentials are given b =Vg=0. The
=2.4 andp=-1.3, respectively. wave function can be alternately described by an amplitude
V LINEAR LIMITS and phase as follows:

In this section it is shown how the solutions to the NLS pL=(1+1)2=4r sif(V2ux - 5/2), (36)
connect to the solutions of the linear Schrédinger equation.
o 15 - ' ' 3 , , ; (r=21)(r+1)\2u
‘E b (? ¢ = . — 3 (37)
> (@ . (b) e (1+71)= 4r sir(N2ux — s/2)
2 10} hy
El 20 where
z 5 £ — .
5 WL () = oL exili ()], (39
O~ 10 15 P50 5 10 15
Position (units of /) Position (units of 1,,) R=re's (39
: 3 6 @ with r ands real. The nonlinear solution is then connected to
% " the linear solution by
2 2r s 3r
E % Xg=~— 5/2, (40)
- & o
2
8 o ' - 3 b?=2u, (41
-10 -5 0 4 -10 50
Position (units of /) Position (units of /,;)
A=—4r, (42)

FIG. 6. Nonsymmetric solutions to the NLS with an impurity.
Shown are particular examples @ the density andb) the phase B=(r+ 1)2 (43)
of a nonlinear wave with repulsive interaction strength gl the '
density andd) the phase of a nonlinear wave with attractive inter- The transmitted wave can easily be given by
action strength. These solutions are the nonlinear analogs to the
continuum of linear stationary scattering states. PR= t2, (44)
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\ZTL Schrddinger equation in one dimension, in the presence of a

Kdpr= 2 (45 potential step or pointlike impurity were presented in closed
analytic form. Nondecaying solutions were divided into two

where categories: localized solitonlike solutions, and solutions that
— . oscillate out to infinity. The localized solutions are of a

Wr(x,t) = Vpr(x)expi pr(x)Je™, (46)  purely nonlinear character, as they have no linear analog.

_ The oscillating solutions, on the other hand, were shown to

T=teV, (47) be adiabatically connected to the solutions to the linear

Schrodinger equation.
The localized solutions present interesting wave func-
tions. With a delta function potential, the localized solution

with t andw real. The nonlinear solution is then connected to
the linear solution by

X=0, (48) can be interpreted as a single bright or dark soliton trapped
by the impurity. In addition, it was shown that an impurity
b?=2u (49) can also bind a soliton pair. If the impurity is attractive, the

natural repulsion between two dark solitons can be exactly
canceled by the attraction of the impurity, while if the impu-
rity is repulsive, it can balance the natural attraction of in-
phase bright solitons. Since these solutions are conjected to
B=t (51)  pe stable(see below, they are excellent candidates for the

The nonlinear solutions when the eigenvalue is greater thagXPerimental realization of stationary excited states of a
the effective potential are therefore adiabatically connecte@©S€-Einstein condensate. In addition, the maximum repul-
to the linear transmitted wave solutions. The next sectior$iVe interaction strength of the condensate with an attractive

connects the decaying evanescent waves with nonlinear snPUrity that allows for a bound state has been determined.
lutions. The oscillating solutions to the NLS, despite being adia-

batically connected to oscillating solutions to the
Schrodinger equation, have very different properties due to
the concept of an effective potential. For the attractive inter-
If the eigenvalueu is less than the effective potential then action solution for an evanescent wave decaying under a
the wave function must decay. In the linear case, the decay isep, as illustrated in Fig.(B), the eigenvalue is larger than
precisely exponential. The Jacobi elliptic sn function solu-the effective potential in the regions of high density and is
tion, Eq.(8), of the NLS can provide the appropriate expo-|ess than the effective potential in regions of low density.
nential decay. In the limitg— 0 andB,x,— +c under the  Figures Zc) and 2d) show more radical deviations from the
constraintsA=-B and Ag/b®=1, Eq.(8) gives linear solutions since the wave functions decay on the lower
. b side of the step.
B,)!(')TMB secti(bx+xo) = poe™, (52 It is possible to characterize the general solution to the
NLS, Eqg. (8), in terms of physical quantities such as the

mean linear number density, mean energy densit§, and

A=0, (50

B. Evanescent waves

wherepy is the density at the boundary and is given by

_ 4B mean momentum densify. The densities are given by
PO= 2 (53
— 1 EK
When the limit thaty approaches zero is not enforced, n=B+A K k2K (k) )’ (55)
() = : (54) 2 b
p _ ) — -
(N+6Xp+bx+ N_exp bX)Z EZW,LL + M + %(M -V)(n-B), (56)

6
whereN, andN_ are constants related to the magnitude and

sign of the interaction strength. The decay of the density is _
therefore not strictly an exponential decay. It is interesting to P=a, (57)
note that all decaying solutions, whether linear or nonlinear,

must possess a trivial phase. This is due to the restriction thé(‘fhere"f’a' andk are given by Eqs(10), (11), and (12),
A=-B, and, hence from Eq¢11) and (5), the phase must respe_c_:uvely. In general, the number, energy, and momen_tum
vanish. This is also consistent with the physical interpreta-(]l_ens'tIeS must be calculated sepgrately for the left and rlght
tion of the phase since a nontrivial phase corresponds to des of a boundary. These densities can be used to determine

superfluid velocity and the velocity must vanish if the wavel€ variablesA,B, andb of Eg. (8), leaving only the trans-

cannot be transmitted. lational fosetxo as a free variable determined by the t_)oupd—
ary conditions. It should be noted that the factor multiplying
V1. DISCUSSION AND CONCLUSIONS A in the mean number density, E&5), approaches one-half

when k approaches zero and approaches one whep-
The full set of stationary states of the mean field of aproaches unity. This is to be expected since the mean number
Bose-Einstein condensate, modeled by the nonlineadlensity of a linear wave is given bg+A/2 and the mean
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number density of an extremely nonlinear wave is given byzero constant at infinity. Localized solutions in the case of
B+A. The mean energy density can easily be calculated fromepulsive nonlinearity are obviously stable in the cases of
Figs. 3a) and 3b) and 3e) and 3f), since they are the
E=Tp- 9?’ (58)  ground state. The bound pair of dark solitons, illustrated in
2 Fig. 3(c) and 3d), should be likewise stable, so long as the
jmpurity is sufficiently strong. All of these solution types,

and so the second and third terms on the right side of Ed. . ! o ;
(56) are due to this nonlinear correction. Since the mean xcept for attractive solitons bound by a repulsive impurity,

momentum density, Eq57), is equal toa, the mean mo- are expected to be experimentally pbservable in fini_te sys-
mentum density must be equal on both sides of the bounda ms, such as an eIongated hafmoﬂ'c trqp. An. anquss of the
due to the boundary condition an Eq. (17). In addition, the tability of solitons pinned with impurities is given by

momentum density as a function of position is also given bfogﬂz;n;;gill.itmz]f. soliton trains is a less certain issue. In the
a and so the momentum density is equal everywhere. Y '

The healing lengthé of the NLS in the quasi-one- repulsive case, the central question is whether or not the

dimensional regime, where the transverse dimensions a hase locking of the individual solitons in the train is de-

. . —— stroyed by the impurity or potential step; if it is, they may
trapped by a harmonic potential of frequenayis given by become unstable in the region of the discontinuity in the

) |ﬁo potential. In the case of bright soliton trains, unless there is a
&= 8—_' (59 strong phase difference between the peaks, they will attract
78N and become unstable; otherwise, the discontinuity should not
wheren is given by Eq(55). Since the mean number density present a source of instability, since bright solitons adjust
can vary across the boundary, it is possible for the conderthemselves to perturbation by emission of a small fraction of
sate to have a different healing length on either side of dhe total wave functiori45]. In order to perform numerical
boundary. Since the speed of sound in the condensate is istudies, the solutions would have to be quantized on a ring,
versely proportional to the healing length, the speed within order to provide a finite domain for simulation. Such a
which phononlike excitations can travel vary as they crosstability study presents a subject for future research.
the boundary. We emphasize that neither the idea of left and right trav-
While finding the complete set of solutions to Efj) with  eling waves nor that of reflectgrusincident waves apply to
an impurity or step potential provides much information honlinear wave equations. This is important since one cannot
about the system, only stable solutions are experimentallgreate wave packets from linear combinations of these solu-
observable. Previous works have examined the stability ofions. Instead, these solutions already contain the wave-
stationary states for a constant external poter(sak, for —packet-like solutions, or solitons, that are necessary to de-
example, Refs[35-38,43—-4§, as well as for periodic and scribe the system; moreover, solitons, unlike wave packets,
harmonic potentialgsee, for example, Ref§47,48). Most ~ are nondispersive. Time-dependent nonlinear scattering re-
studies are ultimately numerical: linear stability can bemains an open question that can certainly be addressed via
solved in a few special cases, while nonlinear stability isnumerical studies. In general, the stationary solutions to the
analytically intractable. For a constant external potentialNLS give physical insight into its dynamics, without which
single bright and dark solitons and dark soliton trains argwumerical solutions may be difficult to interpret. Perhaps
stable. A finite number of bright solitons may form bound more importantly, using the general nature of the solutions to
states, as, for example, ordersolitons(n>1). Bright soli-  the cases of a step function and an impurity, it is possible to
ton trains are always unstable, but may be experimentallglescribe all stationary states to piecewise constant potentials.
stable, in that their lifetime is much longer than experiments, In conclusion, we have analytically solved for all station-
which typically require stability timescales of from millisec- ary solutions to the nonlinear Schrodinger equation with a
onds to seconds. Bright soliton trains which have a phaséelta function or a step function potential. This models the
difference A¢ between adjacent peaks such that/2  steady-state behavior of the mean field of a Bose-Einstein
<A¢<3m/2 exhibit this experimental stability, with the condensate in the presence of an impurity, or of a potential
lifetime being longer the closek¢ is to 7. Bright soliton ~ step created by, for instance, a laser passing over the edge of
trains with -m/2<A¢< m/2 are unstable but become qua- @ razor blade. Intriguing wave functions were found, includ-
siperiodic in time in a finite syste51,52,. ing solitons trapped by the impurity and the nonlinear analog
Based on these known results from the case of a constaff transmitted and evanescent waves.

potential, as well as the from the stability analysis with an
impurity performed by Bogdaet al.[49], the stability of an
attractive condensate with an impurity is as follows. Accord-
ing to Bogdan, the bound state of two bright solitons, as in  We acknowledge helpful discussions with John Cooper.
Fig. 4b), are stable, since, so long as they are strongly overSupport is acknowledged for B.T.S. from the National Sci-
lapping, they will be in phaséA¢=0) and remain bound to ence Foundation and for L.D.C. from the U.S. Department of
the impurity. This is also the ground state of the systemEnergy, Office of Basic Energy Sciences via the Chemical
However, the kind of solution shown in Fig(a} is unstable  Sciences, Geosciences and Biosciences Division, as well as
[49]. We then conject on the stability of a repulsive conden-the National Science Foundation via Grant No. MPS-DRF
sate that is not bound and whose density approaches a nod104447.
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TABLE |. Limits of the Jacobian elliptical functions and inte- Table I. The period of the éncr?, and di functions is

grals[40]. 2K (K).
k=0 k=1 APPENDIX B: COMPLETE SOLUTION SET
sn(u,k) sin(u) tant(u) It is possible to prove that Eq7) is a Jacobi elliptic
cn(u, k) coqu) sectfu) integral of the first kind and can therefore be inverted to
dn(u, k) 1 secliu) produce the Jacobi elliptic functions. If arbitrary parameters
nsu, k) csdu) coth(u) are used, Eq(7) becomes
ds(u,k) csqu) cschu) 1
cqu,k) cot(u) cschu) J , dp =X+ Xg, (B1)
K(K) /2 oc VAgp® + Agp® + Agp + Ag
E(k) 2 1 where theA;’s are real constants. The cubic polynomial can
be factored to give
. 1
APPENDIX A: JACOBI ELLIPTIC FUNCTIONS f ’ dp =X+ X, (B2)
V(p+B)(p+Bo)(p+By)

A brief review of the Jacobi elliptic functiongt0,5Q is
given. Of the 12 elliptic functions, there are only six that arewhere at least one of the constaBsmust be real. Without
normalizable. Of these six, only three represent a differenfoss of generality we may take the real constanBasThe
physical form, sn, cn, and dn. However, they are still relatedsubstitutionp=y?- B, is then made in Eq(B2) to yield
by

2
cr?=1- s, (A1 f dy=x+X,. (B3)
: Y2+ (B BT+ (Bs- By
dr? =1 -K3srf. (A2)  This is the general form of the elliptic integral of the first

The six non-normalizable elliptic functions can also be re—klnd [40] and therefore gives

duced through a phase shift to three with different forms, ns, C.el™{(C,y,Cy) =X+ Xo, (B4)

ds, and cs, which are also related by i o
where theC;’s are constants and el is one of the 12 elliptic

cg=ng-1, (A3)  functions. This can be inverted apdreplaced to produce
d=ng -2, (A4) Vp+ By = G lel(CrH(x + %0),Ca), (B5)
whereke[0,1] is the Jacobi elliptic parameter. The normal- O finally,
izable and non-normalizable functions can be related through p = C;2eR(CTL(x +X0),Cs) — By. (B6)
sr[iK(1 -k?) + z k] = k>n(z,k), (A5)

Since the square of any elliptic function can be related lin-
whereK(x) is the complete elliptic integral of the first kind. €arly to the square of sn, only one independent solution of
Therefore the square of any elliptic function can be relatedhe form
linearly to s. _

The limits of the sn, cn, and dn functions, along with the p=AsIT(bx+xK) +B ®7)
complete elliptic integralK(k) and E(k) are presented in need be considered.
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