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dimension is taken as a model. The nonlinear analogs of the continuum of stationary scattering states, as well
as evanescent waves, are discussed. The solutions include asymmetric soliton trains and other wave functions
of intriguing form, such as a pair of dark solitons bound by an impurity.
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I. INTRODUCTION

The nonlinear Schrödinger equationsNLSd models many
kinds of wave phenomena. The NLS appears in diverse fields
such as nonlinear opticsf1g, gravity waves on deep waterf2g,
magnetostatic spin wavesf3g, solitons in liquid crystalsf4g,
and magnetosonic solitons in the atmospheric magnetopause
boundary layerf5g. It also describes the dynamics of the
mean field of a weakly interacting atomic or molecular Bose-
Einstein condensatesBECd f6–9g, where it is known as the
Gross-Pitaevskii equationf10,11g.

Here, we consider the steady-state response of the mean
field of a BEC to a potential step or a delta function poten-
tial, as modeled by the NLS. These potentials may be easily
produced in present experiments on the BEC. The former
may be realized by a detuned laser beam shined over a razor
edge to make a sharp barrier, where the diffraction-limited
falloff of the laser intensity is smaller than the healing length
of the condensate, so that the potential is effectively a step
function. The latter models the response of the condensate to
an impurity of a length scale smaller than the healing length,
which could be realized by a tightly focused laser beam, by
another spin state of the same atom, or by any other object,
as for instance another alkali atom, confined in an optical
trap. Moreover, the solution methods developed in this paper
may be generalized to arbitrarily complicated piecewise con-
stant potentials.

The complete set of solutions to the NLS with a constant
potential on the infinite line were discovered by Zakharov
and Shabatf12,13g. The stationary solutions of the NLS un-
der periodic and box boundary conditions has also been
solved analyticallyf14,15g, as well as the finite wellf16g.
The parabolic potential has been solved numericallyf17g.
The potential step has been examined theoretically and ex-
perimentally for the linear Schrödinger equation with a con-
stantf18,19g and oscillatingf20g step. Klein examined simi-
lar problems experimentally by deflecting neutron beams
with a vibrating crystalf21g. In addition, symmetric steady-
state solutions with a pointlike impurity potential have been
studied by Hakimf22g and Taras-Semchukf23g in certain
limiting cases. Pointlike impurity potentials have been stud-
ied extensively, such as with helium impurities in a BEC
f24,25g, BEC formation initiated by pointlike impurities
f26g, and impurity scattering in a BEC of sodiumf27g. The

superfluid transmission of matter waves across various po-
tentials has been studiedf28,29g. In addition, bound solu-
tions to the NLS are the one-dimensional analog to the
pinned vortex solutions which occur when a discontinuity is
present in a two-dimensional system, such as in a two-
dimensional high-Tc superconducting system.

In order to obtain the full set of stationary states in closed
analytic form, we assume the BEC to be in the quasi-one-
dimensional regime. When the transverse dimensions of the
BEC are on the order of its healing length, and its longitudi-
nal dimension is much longer than its transverse ones, the
one-dimensionals1Dd limit of the three-dimensional NLS is
appropriate to describe the systemf30g. The 1D NLS, with
an external potential,Vsxd, may be written

i]tC = −
1

2
]xxC + guCu2C + VsxdC, s1d

where a harmonic oscillator confinement in the transverse
directions with frequencyv has been assumedf31g for atoms
of massM, the length has been rescaled according to units of
the oscillator length,lho=s" /Mvd1/2, and energy rescaled ac-
cording to units of the oscillator energy"v. The renormal-
ized 1D coupling,g;2as/ lho, whereas is the s-wave scat-
tering length, characterizes the short-ranged pairwise
interactions between atoms. The wave function or order pa-
rameter Csx,td has the physical meaning ofCsx,td
=Îrsx,tdexpfifsx,tdg, wherersx,td is the longitudinal line
density and the longitudinal superfluid velocity is given by
vsx,td=]fsx,td /]x. Both attractive and repulsive atomic in-
teractions, i.e.,g.0 andg,0, shall be considered.

In the case where the harmonic oscillator length ap-
proaches thes-wave scattering length,lho.as, the 1D NLS
no longer models the system and a one-dimensional field
theory with the appropriate effective coupling constant must
be considered insteadf31g. Sinceas is on the order of ang-
stroms for typical BEC’s, this regime is not relevant to the
present study. Thus it should be noted that this study does not
examine the Tonks-Girardeau regimef32g, where quantum
fluctuations become important and the Gross-Pitaevskii
equation no longer models the system.

With the experimental demonstration of Feshbach reso-
nances in BEC’s of dilute atomic gasesf33,34g, it is possible
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to alter thes-wave scattering length and hence the nonlinear-
ity of the NLS. Near a Feshbach resonance, the scattering
length becomes a function of a uniform background mag-
netic field. By altering the magnetic field, the effects of the
nonlinearity can be experimentally controlled. It is therefore
important to be able to characterize the complete set of so-
lutions as a function of the interaction strength.

This paper is organized as follows. In Sec. II, the full set
of stationary solutions of the NLS along the infinite line are
presented. In Sec. III, the stationary solutions influenced by a
step potential are discussed. The effects of a pointlike impu-
rity are presented in Sec. IV. Section V shows the connection
between the NLS solutions and the well-known solutions to
the linear Schrödinger equation. The results are discussed in
Sec. VI, including a physical interpretation of all solution
variables. In Appendix A, the special functions used through-
out the paper are briefly reviewed. Finally, in Appendix B the
fact that the solutions discussed in Sec. II are indeed the full
set of stationary solutions to the 1D NLS with a constant
potentialf14,15g is demonstrated formally.

II. CONSTANT POTENTIAL

A brief review is given of the stationary solutions of Eq.
s1d of the form

Csx,td = Rsxdexpfifsxdgexpf− imtg, s2d

wherem is the eigenvalue. There are several excellent refer-
ences which consider stationary solutions in a constant po-
tential f30,35–38g. Assuming a constant external potentialV,
the separation of Eq.s1d into real and imaginary parts gives

R]xxf + 2s]xRds]xfd = 0, s3d

1

2
]xxR+

1

2
s]xfd2R+ gR3 + VR= mR. s4d

Equations3d can be integrated to give

]xf =
a

r
, s5d

where a is an undetermined constant of integration, and
rsxd=Rsxd2 is the single-particle density. Substituting Eq.s5d
into Eq. s4d and integrating yields

dr

dx
= 2Îgr3 − 2sm − Vdr2 + Cr − a2. s6d

Integrating a second time gives

E 1
Îgr3 − 2sm − Vdr2 + Cr − a2

dr = 2x + x0, s7d

whereC andx0 are undetermined constants of integration. It
is shown in Appendix B that the only solutions to this inte-
gral equation are given by the Jacobi elliptic functions
f39,40g. In Appendix A these special functions are briefly
reviewed. The most general form of the solution is then
given by

r = A sn2sbx+ x0,kd + B, s8d

where sn is one of the Jacobi elliptic functions,A is a density
prefactor,b is a translational scaling,x0 is a translational
offset, kef0,1g is the elliptic parameter, andB is a vertical
density offset. The period of the density is given by 2Kskd /b,
whereKskdefp /2 ,` d is the complete elliptic integral of the
first kind. Since the density is positive definite, the variables
are restricted such thatBù0 andB+Aù0. In Sec. VI the
relation between these variables and the mean number den-
sity, energy density, and momentum density are calculated
and discussed for the nonlinear wave of Eq.s8d.

It should be noted that since many of the solutions are
unbounded, the norm of the wave function remains uncon-
strained. This is in contrast to bound or localized solutions
when the normalization,

E
−`

+`

sr − r̄ddx= 1, s9d

may be usedf36g, where r̄ is the average density. Alterna-
tively, it is possible to use a nonlinear scaling of the position
and density,x→ax andr→a−2r, to scale the maximum den-
sity on one side of the boundary to unity. However, through-
out this paper the wave function remains unnormalized.

One may then determine the variablesm , a, and k, in
terms ofA,B,b, and g by substituting Eq.s8d into Eq. s6d
and equating powers of the elliptic sn function to give

m =
1

2
fb2 + sA + 3Bdgg + V, s10d

a2 = BsA + Bdsb2 + Bgd, s11d

k2 =
A

b2g. s12d

This leaves the eigenvaluem, the constant of integration of
the phasea, and the elliptic parameterk determined up to
A,B,b, and the interaction strengthg. Note that the fact that
a enters into the equations only asa2 implies that allnon-
trivial phasesolutions, i.e., those for whichaÞ0, are doubly
degenerate, as ±a lead to the same value of the eigenvaluem
without otherwise changing the form of the density or phase.
We shall use the termtrivial phase to refer to solutions for
which the phase is spatially constant.

In the following two sections these results are applied to
piecewise constant potentials. In particular, the potential step
and the delta function potential are examined.

III. POTENTIAL STEP

In this section the complete set of solutions to the NLS
with an external step potential of heightV0 beginning atx
=0,

Vsxd = V0usxd, s13d

are presented analytically, given the solution parameters on
the negativex, or left, side of the step. In the following two
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subsections, the general solution to the NLS with a potential
step and some particular examples are discussed.

A. General solution

Applying the two boundary conditions of continuity of the
wave function and continuity of the derivative of the wave
function gives the following five conditions:

rs0+d = rs0−d, s14d

]xrs0+d = ]xrs0−d, s15d

fs0+d = fs0−d + 2pn, s16d

as0+d = as0−d, s17d

ms0+d = ms0−d, s18d

wheren is an integer. The first two conditions represent the
continuity of the density, Eq.s14d, and the derivative of the
density, Eq.s15d. The next two conditions represent the con-
tinuity of the phase, Eq.s16d, and the derivative of the phase,
Eq. s17d. Equations18d demands that the eigenvalue be the
same on either side of the boundary. Note that in Eq.s10d the
eigenvalue on the right-hand side is offset byV0 as compared
to the left-hand side. Sincen only enters into the phase and
does not effect such quantities as the eigenvalue and density,
only then=0 state is considered and, consequently, the phase
f is continuous across the boundary. However, it is impor-
tant to note that all solutions are of denumerably infinite
degeneracy, according to Eq.s16d. Sincef is given by

fsxd =E
0

x a

rsxd
dx+ const, s19d

continuity in the phase is easily achieved by setting the con-
stant phase shift equal on either side of the boundary and
therefore Eq.s16d is satisfied.

In the following derivation, it is assumed that the wave-
function parameters on the left side of the step are known
completely. Therefore the density prefactorAL, the vertical
density offsetBL, the translational scalingbL, and the hori-
zontal offsetx0L are all known, where theL subscribt refers
to variables on the left side; anR subscript will refer to
variables on the right side. In addition, the experimental pa-
rameters of the interaction strengthg and the potential step
heightV0 are both known. From the variables on the left and
Eq. s8d, the density at the boundary,rL;rs0−d, and its de-
rivative at the boundary,]xrL;]xrs0−d, can be determined.
The eigenvaluem and the phase constanta can be deter-
mined from Eqs.s10d and s11d.

From Eqs.s8d ands14d the square of the Jacobi elliptic sn
function can be solved for,

sn2Sx0R,ÎARg

bR
2 D =

rL − BR

AR
, s20d

and, from Eqs.s10d and s18d, the horizontal scalingbR,

bR
2 = 2sm − V0d − sAR + 3BRdg. s21d

These variables are substituted into Eqs.s17d ands15d, using
Eq. s11d, to give

aL
2 = BRsAR + BRdf2sm − V0d − sAR + 2BRdgg, s22d

s]xrLd2 = − 4sBR − rLdsAR + BR − rLd

3f2sm − V0d − sAR + 2BR + rLdgg. s23d

Equationss22d and s23d are quadratic inAR and cubic inBR
and can be solved analytically forAR and BR to give six
solutions. The remaining variables on the right side can then
be found by substituting the values ofAR and BR into Eq.
s21d, to find bR, and by taking the inverse Jacobi sn function
of Eq. s20d to give

x0R = sn−1SrL − BR

AR
,ÎARg

bR
2 D . s24d

The full solution is then completely known. It is therefore
possible to completely describe the system analytically
knowing only the parameters on one side of the step. This
not only introduces computational ease in evaluating solu-
tions, it also provides all possible solutions, most of which
cannot be determined using purely numerical methods. In the
following section, specific examples of a BEC in the pres-
ence of a step potential will be examined.

B. Particular examples

The solutions to the potential step problem can be divided
into two categories. The eigenvaluem can be large enough
that particles are free to move across the boundary and the
nonlinear analog to a transmitted wave for the linear
Schrödinger equation becomes possible. However, if the ei-
genvalue is too small, then the wave function must decay
under the step.

Whenm is larger than the effective potential,

Veffsxd = V0 + grsxd, s25d

the wave can be transmitted across the boundary. Note, that
in the case of an attractive interaction,g,0, the eigenvalue
can be less than the step heightV0, and for a repulsive inter-
action,g.0, the eigenvalue must be strictly greater than the
step height. In Fig. 1sad the density of a nonlinear state with
a repulsive interaction strength is shown. A step of height
V0=1, positioned atx=0, and a condensate with an interac-
tion strength ofg=0.2 and eigenvalue ofm=2.404 were
used. Notice that the increased interaction strength and non-
linearity has caused the peaks of the wave function to be-
come much broader than in the linear case. The phase that
corresponds to this density is shown in Fig. 1sbd. Figure 1scd
shows a similar solution but with an attractive interaction
strength. This potential is again given by a step with height
of V0=1, positioned atx=0. An interaction strength ofg=
−0.2 and eigenvalue ofm=0.98 was used. In this case, the
peaks have instead narrowed due to the attractive interaction.
The phase that corresponds to this density is shown in Fig.
1sdd.
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When the eigenvalue is less than the effective potential,
m,Veffsxd, the wave function must decay under the step. In
Fig. 2sad the density of a nonlinear solution with a repulsive
interaction strength that decays as it crosses the boundary of
the step is shown. A step with height ofV0=1, positioned at
x=0, and a condensate with an interaction strength ofg
=0.12 and eigenvalue ofm=0.5 were used. Figure 2sbd
shows a similar solution but with an attractive interaction
strength. This potential is again given by a step with height
of V0=1, positioned atx=0. An interaction strength ofg=
−10 and eigenvalue ofm=−49 were used. For both wave
functions, the phase is necessarily trivial, since all wave

functions that approach zero at infinity must haveA=−B,
and hence from Eqs.s5d and s11d, the phase is constant. In
order to stress the importance of the effective potential, and
not just the step potential, Figs. 2scd and 2sdd show the den-
sity of two nonlinear wave functions with attractive interac-
tions, g=−1, that decay on thelower side of the potential.
Both wave functions have an eigenvalue ofm=−0.5 and a
potential of height ofV0=0.01 andV0=1 were used for Figs.
2scd and 2sdd, respectively.

Thus the NLS with a potential step has solutions to the
step potential that provide a connection between the linear
solutions and a wide variety of exotic nonlinear wave func-
tions, as shall be discussed in Sec. V.

IV. POINTLIKE IMPURITY

In this section, the case of a potential of form

Vsxd = V0dsxd s26d

is considered. Such a potential models an impurity which
deforms the constant background potential on a length scale
much less than that of the healing length. Given the state of
the system on the negativex, or left side of the impurity, the
variables on the right side of the impurity are determined. A
negative value ofV0 represents an attractive impurity, such
as due to defects in hydrogen-bonded chainsf41,42g, and a
positive value ofV0 represents a repulsive impurity, such as
with helium atoms in a BECf24,25g.

A. General solution

The boundary conditions for an impurity are similar to
those for the potential step, except that the derivative of the
wave function experiences a discontinuity at the boundary.
Therefore it is necessary that Eqs.s14d, s18d, s17d, ands16d
must still be satisfied, as well as

]xrs0+d − ]xrs0−d = − 4rs0dV0. s27d

It is again assumed that all variables on the left side of the
impurity are known as well as the experimental parameters
of interaction strengthg and impurity strengthV0. Using a
treatment that is exactly analogous to that for the step func-
tion, all of the parameters on the right side, given those on
the left, are analytically determined. The only difference is
that in Eqs.s21d–s24d, the quantity]xrL must be replaced
with s]xrL−4V0rLd and sm−V0d must be replaced withm. It
is therefore possible to completely describe the system ana-
lytically knowing only the parameters on one side of the
impurity. In the following section, examples of a wave func-
tion subject to an impurity are examined.

B. Particular examples

For the delta function potential, both symmetric and non-
symmetric wave functions are possible. Of particular interest
are the symmetric wave functions in thek=1 limit of the
Jacobi elliptic functions. In this case all solutions become
hyperbolic trigonometric functions with a localized change
in the density around the impurity and no oscillations at ±`.

FIG. 1. Stationary solutions to the NLS with a potential step of
the form Vsxd=V0usxd. These solutions, which are the nonlinear
analogs of the continuum of linear stationary scattering states, ex-
hibit a large deviation from the traditional linear solutions. Shown
are particular examples ofsad the density andsbd the phase for a
repulsive interaction strength andscd the density andsdd the phase
for attractive interaction strength.

FIG. 2. Stationary solutions to the NLS with a potential step for
which the wave functions decay, which are the nonlinear analogs to
evanescent waves. Shown are particular examples of the densities
of nonlinear waves withsad repulsive interaction strength,sbd at-
tractive interaction strength, andscd andsdd with an attractive inter-
action strength that decays on thelower side of the step.
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Solutions of this type we termlocalized f16g. Due to the
form of the solutions, there are four different solution types.
The possible wave functions are then

r = a2 + s1 − a2dtanh2sÎ1 − a2uxu + x0d, s28d

r = a2 + s1 − a2dcoth2sÎ1 − a2uxu + x0d, s29d

r = b2sech2sbuxu + x0d, s30d

r = b2csch2sbuxu + x0d, s31d

where the translational offsetx0 is determined by the impu-
rity strengthV0 and the density has been normalized accord-
ing to Eq.s9d. Equationss28d ands29d are valid for repulsive
interactions, while Eqs.s30d ands31d are valid for attractive
interactions.

Figure 3 shows the possible wave functions for repulsive
interactions. An example of the solution described by Eq.
s28d is plotted in Fig. 3sad with a repulsive impurity of
strengthV0=0.5. This may be interpreted as a single dark
soliton bound by an impurity. This is similar to the solution
found by Hakimf22g for a soliton that is moving with an
impurity. In addition, a bound state of two dark solitons, Fig.
3scd, can be created when the strength of the impurity is
attractive and exactly balances the repulsion between the two

dark solitons. Figure 3sed shows the hyperbolic cotangent
function solution with an impurity strength ofV0=−0.5; this
may be interpreted as a deformation of the ground-state con-
stant solution to the NLS with a constant potential. In all
plots an interaction strength ofg=1 and phase constant of
a=0.5 were used.

It should be noted that there exists a bound state of a
repulsive condensate with an attractive impurity. This solu-
tion is given by

r =
b2

g
csch2Fbx+ coth−1S− V0

b
DG , s32d

where the interaction strengthg has specifically been in-
cluded andb must be determined such that the density is
normalized to unity. These requirements place a limit on how
repulsive the interaction may become and is given by

gmax= − 4V0, s33d

wheregmax is the most repulsive interaction the condensate
may have. If the interaction is increased past this point, the
condensate will spill away from the impurity and will no
longer be bound.

The set of symmetric localized solutions for the case of
attractive interactions do not allow for nontrivial phases, in
contrast to the case of repulsive interactions. For attractive
interactions,g,0, the hyperbolic secant function solution,
Eq. s30d, is valid for bothV0.0, Fig. 4sad, andV0,0, Fig.
4sbd, where potential strengths ofV0=0.9 andV0=−0.9 were
used, respectively. These solutions may be interpreted as a
single bright soliton, which is the ground-state solution to the
1D NLS, deformed by an impurity. The hyperbolic cosecant
function solution, Eq.s31d, is only valid if V0,0 and is
similar in form to the hyperbolic secant solution of Fig. 4sbd.
The two solutions types are degenerate forV0,0, with an
eigenvalue ofm=−b2/2. In Figs. 4sad and 4sbd an interaction
strength ofg=−1 and translational scaling ofb=1 were used.

Nonsymmetric wave functions which oscillate at infinity
are also possible and come in two forms: oscillations on one
side of the delta function and oscillations on both sides. Fig-
ure 5 shows two possible nonsymmetric wave functions sub-
ject to a delta function positioned atx=0 that oscillate on one
side of the potential. The density of a wave function with a
repulsive interaction strength ofg=0.21 and eigenvalue of

FIG. 3. Localized, symmetric solutions to the NLS with repul-
sive interaction strength in the presence of an impurity,Vsxd
=V0dsxd. Shown are particular examples ofsad the density andsbd
the phase of a dark soliton bound by a repulsive impurity,scd the
density andsdd the phase of a pair of dark solitons bound by an
attractive impurity, andsed the density andsfd the phase of a super-
current deformed by an attractive impurity. Note thatsad and sbd
may also be interpreted as deformations of a supercurrent.

FIG. 4. Localized, symmetric solutions to the NLS with attrac-
tive interaction strength in the presence of an impurity. Shown are
particular examples ofsad the density of a bright soliton, which is
the ground-state solution to the NLS, deformed by a repulsive im-
purity andsbd the density of a bright soliton deformed by an attrac-
tive impurity.
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m=2.4, distorted by a delta function,V0=2, is shown in Fig.
5sad, where the left side reproduces the hyperbolic tangent
function of Eq.s28d. In Fig. 5sbd, an attractively interacting,
g=−50, wave function with an eigenvalue ofm=−50, dis-
torted by a delta function,V0=10, is shown that appears
similar to the evanescent wave functions of Fig. 2 that decay
beneath a step. Note that Fig. 5sad has a nontrivial phase
while the phase of Fig. 5sbd is trivial.

Figure 6 shows two possible nonsymmetric wave func-
tions subject to a delta function positioned atx=0 with
strengthV0=2 that oscillate on both sides of the potential. A
repulsive interaction strength produces the characteristic
widening of the pulse peaks, Fig. 6sad. The corresponding
phase is given in Fig. 6sbd. An attractive interaction strength
creates a narrowing of the pulse peaks, Fig. 6scd. The corre-
sponding phase is given in Fig. 6sdd. The condensates in
Figs. 6sad and 6scd are characterized by eigenvalues ofm
=2.4 andm=−1.3, respectively.

V. LINEAR LIMITS

In this section it is shown how the solutions to the NLS
connect to the solutions of the linear Schrödinger equation.

There are two distinct types of possible waves. If the wave
has enough energy it is possible to make the wave propagate
through space. However, if it does not have enough energy,
the wave can carry no current and is referred to as an eva-
nescent wave. These waves must decay. In the next two sec-
tions, these two types of waves are discussed concerning
their role as the linear limit of the nonlinear solutions.

A. Transmitted waves

In a linear system, if the energy of the system is greater
than the potential energy, then the wave can be transmitted
through space as sine waves. The nonlinear Jacobi elliptic sn
function waves are the nonlinear analog of the sine waves of
a linear system. In this section, it is shown how the nonlinear
solutions, in the linear limit, recreate the linear solutions of
propagating waves.

For the linear case, the usual representation of the system
by incident, transmitted, and reflected waves is given by

CLsx,td = seikLx + Re−ikLxde−imt, s34d

CRsx,td = TeikRxe−imt, s35d

where kL=Î2sm−VLd , kR=Î2sm−VRd , m is the eigenvalue
of the Schrödinger equation,R is the reflection coefficient,T
is the transmission coefficient, and the incident wave is as-
sumed to be coming in from the left. The potentials,VL and
VR, and the scattering coefficients,R andT, are determined
by the type of boundary. For the case of a potential step, the
potentials are given byVL=0 andVR=V0. For a delta func-
tion potential, the potentials are given byVL=VR=0. The
wave function can be alternately described by an amplitude
and phase as follows:

rL = s1 + rd2 − 4r sin2sÎ2mx − s/2d, s36d

]xfL =
sr − 1dsr + 1dÎ2m

s1 + rd2 − 4r sin2sÎ2mx − s/2d
, s37d

where

CLsx,td = ÎrLsxdexpfifLsxdge−imt, s38d

R= reis, s39d

with r ands real. The nonlinear solution is then connected to
the linear solution by

x0 = − s/2, s40d

b2 = 2m, s41d

A = − 4r , s42d

B = sr + 1d2. s43d

The transmitted wave can easily be given by

rR = t2, s44d

FIG. 5. Solutions to the NLS with an impurity that oscillates on
one side of the potential. Shown are particular examples ofsad the
density of a nonlinear wave with repulsive interaction strength and
sbd the density of a nonlinear wave with attractive interaction
strength. These waves have no analog with the solutions of the
linear Schrödinger equation.

FIG. 6. Nonsymmetric solutions to the NLS with an impurity.
Shown are particular examples ofsad the density andsbd the phase
of a nonlinear wave with repulsive interaction strength andsacd the
density andsdd the phase of a nonlinear wave with attractive inter-
action strength. These solutions are the nonlinear analogs to the
continuum of linear stationary scattering states.
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]xfR =
Î2m

t2
, s45d

where

CRsx,td = ÎrRsxdexpfifRsxdge−imt, s46d

T = teiw, s47d

with t andw real. The nonlinear solution is then connected to
the linear solution by

x0 = 0, s48d

b2 = 2m, s49d

A = 0, s50d

B = t2. s51d

The nonlinear solutions when the eigenvalue is greater than
the effective potential are therefore adiabatically connected
to the linear transmitted wave solutions. The next section
connects the decaying evanescent waves with nonlinear so-
lutions.

B. Evanescent waves

If the eigenvaluem is less than the effective potential then
the wave function must decay. In the linear case, the decay is
precisely exponential. The Jacobi elliptic sn function solu-
tion, Eq. s8d, of the NLS can provide the appropriate expo-
nential decay. In the limitsg→0 andB,x0→ +` under the
constraintsA=−B andAg/b2=1, Eq.s8d gives

lim
B,x0→+`

B sech2sbx+ x0d = r0e
−bx, s52d

wherer0 is the density at the boundary and is given by

r0 =
4B

e2x0
. s53d

When the limit thatg approaches zero is not enforced,

rsxd ~
1

sN+exp+bx + N−exp−bxd2 , s54d

whereN+ andN− are constants related to the magnitude and
sign of the interaction strength. The decay of the density is
therefore not strictly an exponential decay. It is interesting to
note that all decaying solutions, whether linear or nonlinear,
must possess a trivial phase. This is due to the restriction that
A=−B, and, hence from Eqs.s11d and s5d, the phase must
vanish. This is also consistent with the physical interpreta-
tion of the phase since a nontrivial phase corresponds to a
superfluid velocity and the velocity must vanish if the wave
cannot be transmitted.

VI. DISCUSSION AND CONCLUSIONS

The full set of stationary states of the mean field of a
Bose-Einstein condensate, modeled by the nonlinear

Schrödinger equation in one dimension, in the presence of a
potential step or pointlike impurity were presented in closed
analytic form. Nondecaying solutions were divided into two
categories: localized solitonlike solutions, and solutions that
oscillate out to infinity. The localized solutions are of a
purely nonlinear character, as they have no linear analog.
The oscillating solutions, on the other hand, were shown to
be adiabatically connected to the solutions to the linear
Schrödinger equation.

The localized solutions present interesting wave func-
tions. With a delta function potential, the localized solution
can be interpreted as a single bright or dark soliton trapped
by the impurity. In addition, it was shown that an impurity
can also bind a soliton pair. If the impurity is attractive, the
natural repulsion between two dark solitons can be exactly
canceled by the attraction of the impurity, while if the impu-
rity is repulsive, it can balance the natural attraction of in-
phase bright solitons. Since these solutions are conjected to
be stablessee belowd, they are excellent candidates for the
experimental realization of stationary excited states of a
Bose-Einstein condensate. In addition, the maximum repul-
sive interaction strength of the condensate with an attractive
impurity that allows for a bound state has been determined.

The oscillating solutions to the NLS, despite being adia-
batically connected to oscillating solutions to the
Schrödinger equation, have very different properties due to
the concept of an effective potential. For the attractive inter-
action solution for an evanescent wave decaying under a
step, as illustrated in Fig. 2sbd, the eigenvalue is larger than
the effective potential in the regions of high density and is
less than the effective potential in regions of low density.
Figures 2scd and 2sdd show more radical deviations from the
linear solutions since the wave functions decay on the lower
side of the step.

It is possible to characterize the general solution to the
NLS, Eq. s8d, in terms of physical quantities such as the

mean linear number densityn̄, mean energy densityĒ, and

mean momentum densityP̄. The densities are given by

n̄ = B + AS 1

k2 −
Eskd

k2Kskd
D , s55d

Ē = n̄m +
3B2g − b2A

6
+

2

3
sm − Vdsn̄ − Bd, s56d

P̄ = a, s57d

where m ,a, and k are given by Eqs.s10d, s11d, and s12d,
respectively. In general, the number, energy, and momentum
densities must be calculated separately for the left and right
sides of a boundary. These densities can be used to determine
the variablesA,B, andb of Eq. s8d, leaving only the trans-
lational offsetx0 as a free variable determined by the bound-
ary conditions. It should be noted that the factor multiplying
A in the mean number density, Eq.s55d, approaches one-half
when k approaches zero and approaches one whenk ap-
proaches unity. This is to be expected since the mean number
density of a linear wave is given byB+A/2 and the mean
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number density of an extremely nonlinear wave is given by
B+A. The mean energy density can easily be calculated from

Ē = n̄m −
g

2
r2, s58d

and so the second and third terms on the right side of Eq.
s56d are due to this nonlinear correction. Since the mean
momentum density, Eq.s57d, is equal toa, the mean mo-
mentum density must be equal on both sides of the boundary
due to the boundary condition ona, Eq.s17d. In addition, the
momentum density as a function of position is also given by
a and so the momentum density is equal everywhere.

The healing lengthj of the NLS in the quasi-one-
dimensional regime, where the transverse dimensions are
trapped by a harmonic potential of frequencyv, is given by

j2 =
lho
2

8pasn̄
, s59d

wheren̄ is given by Eq.s55d. Since the mean number density
can vary across the boundary, it is possible for the conden-
sate to have a different healing length on either side of a
boundary. Since the speed of sound in the condensate is in-
versely proportional to the healing length, the speed with
which phononlike excitations can travel vary as they cross
the boundary.

While finding the complete set of solutions to Eq.s1d with
an impurity or step potential provides much information
about the system, only stable solutions are experimentally
observable. Previous works have examined the stability of
stationary states for a constant external potentialssee, for
example, Refs.f35–38,43–46gd, as well as for periodic and
harmonic potentialsssee, for example, Refs.f47,48gd. Most
studies are ultimately numerical: linear stability can be
solved in a few special cases, while nonlinear stability is
analytically intractable. For a constant external potential,
single bright and dark solitons and dark soliton trains are
stable. A finite number of bright solitons may form bound
states, as, for example, ordern solitonssn.1d. Bright soli-
ton trains are always unstable, but may be experimentally
stable, in that their lifetime is much longer than experiments,
which typically require stability timescales of from millisec-
onds to seconds. Bright soliton trains which have a phase
difference Df between adjacent peaks such that −p /2
,Df,3p /2 exhibit this experimental stability, with the
lifetime being longer the closerDf is to p. Bright soliton
trains with −p /2,Df,p /2 are unstable but become qua-
siperiodic in time in a finite systemf51,52g.

Based on these known results from the case of a constant
potential, as well as the from the stability analysis with an
impurity performed by Bogdanet al. f49g, the stability of an
attractive condensate with an impurity is as follows. Accord-
ing to Bogdan, the bound state of two bright solitons, as in
Fig. 4sbd, are stable, since, so long as they are strongly over-
lapping, they will be in phasesDf=0d and remain bound to
the impurity. This is also the ground state of the system.
However, the kind of solution shown in Fig. 4sad is unstable
f49g. We then conject on the stability of a repulsive conden-
sate that is not bound and whose density approaches a non-

zero constant at infinity. Localized solutions in the case of
repulsive nonlinearity are obviously stable in the cases of
Figs. 3sad and 3sbd and 3sed and 3sfd, since they are the
ground state. The bound pair of dark solitons, illustrated in
Fig. 3scd and 3sdd, should be likewise stable, so long as the
impurity is sufficiently strong. All of these solution types,
except for attractive solitons bound by a repulsive impurity,
are expected to be experimentally observable in finite sys-
tems, such as an elongated harmonic trap. An analysis of the
stability of solitons pinned with impurities is given by
Bogdanet al. f49g.

The stability of soliton trains is a less certain issue. In the
repulsive case, the central question is whether or not the
phase locking of the individual solitons in the train is de-
stroyed by the impurity or potential step; if it is, they may
become unstable in the region of the discontinuity in the
potential. In the case of bright soliton trains, unless there is a
strong phase difference between the peaks, they will attract
and become unstable; otherwise, the discontinuity should not
present a source of instability, since bright solitons adjust
themselves to perturbation by emission of a small fraction of
the total wave functionf45g. In order to perform numerical
studies, the solutions would have to be quantized on a ring,
in order to provide a finite domain for simulation. Such a
stability study presents a subject for future research.

We emphasize that neither the idea of left and right trav-
eling waves nor that of reflectedplus incident waves apply to
nonlinear wave equations. This is important since one cannot
create wave packets from linear combinations of these solu-
tions. Instead, these solutions already contain the wave-
packet-like solutions, or solitons, that are necessary to de-
scribe the system; moreover, solitons, unlike wave packets,
are nondispersive. Time-dependent nonlinear scattering re-
mains an open question that can certainly be addressed via
numerical studies. In general, the stationary solutions to the
NLS give physical insight into its dynamics, without which
numerical solutions may be difficult to interpret. Perhaps
more importantly, using the general nature of the solutions to
the cases of a step function and an impurity, it is possible to
describe all stationary states to piecewise constant potentials.

In conclusion, we have analytically solved for all station-
ary solutions to the nonlinear Schrödinger equation with a
delta function or a step function potential. This models the
steady-state behavior of the mean field of a Bose-Einstein
condensate in the presence of an impurity, or of a potential
step created by, for instance, a laser passing over the edge of
a razor blade. Intriguing wave functions were found, includ-
ing solitons trapped by the impurity and the nonlinear analog
of transmitted and evanescent waves.
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APPENDIX A: JACOBI ELLIPTIC FUNCTIONS

A brief review of the Jacobi elliptic functionsf40,50g is
given. Of the 12 elliptic functions, there are only six that are
normalizable. Of these six, only three represent a different
physical form, sn, cn, and dn. However, they are still related
by

cn2 = 1 − sn2, sA1d

dn2 = 1 −k2sn2. sA2d

The six non-normalizable elliptic functions can also be re-
duced through a phase shift to three with different forms, ns,
ds, and cs, which are also related by

cs2 = ns2 − 1, sA3d

ds2 = ns2 − k2, sA4d

wherekef0,1g is the Jacobi elliptic parameter. The normal-
izable and non-normalizable functions can be related through

sn2fiKs1 − k2d + z,kg = k2ns2sz,kd, sA5d

whereKsxd is the complete elliptic integral of the first kind.
Therefore the square of any elliptic function can be related
linearly to sn2.

The limits of the sn, cn, and dn functions, along with the
complete elliptic integralsKskd and Eskd are presented in

Table I. The period of the sn2, cn2, and dn2 functions is
2Kskd.

APPENDIX B: COMPLETE SOLUTION SET

It is possible to prove that Eq.s7d is a Jacobi elliptic
integral of the first kind and can therefore be inverted to
produce the Jacobi elliptic functions. If arbitrary parameters
are used, Eq.s7d becomes

E 1
ÎA3r3 + A2r2 + A1r + A0

dr = x + x0, sB1d

where theAi’s are real constants. The cubic polynomial can
be factored to give

E 1
Îsr + B1dsr + B2dsr + B3d

dr = x + x0, sB2d

where at least one of the constantsBi must be real. Without
loss of generality we may take the real constant asB1. The
substitutionr=y2−B1 is then made in Eq.sB2d to yield

E 2
Îfy2 + sB2 − B1dgfy2 + sB3 − B1dg

dy= x + x0. sB3d

This is the general form of the elliptic integral of the first
kind f40g and therefore gives

C1el−1sC2y,C3d = x + x0, sB4d

where theCi’s are constants and el is one of the 12 elliptic
functions. This can be inverted andr replaced to produce

Îr + B1 = C2
−1el„C1

−1sx + x0d,C3…, sB5d

or finally,

r = C2
−2el2„C1

−1sx + x0d,C3… − B1. sB6d

Since the square of any elliptic function can be related lin-
early to the square of sn, only one independent solution of
the form

r = A sn2sbx+ x0,kd + B sB7d

need be considered.
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