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I. INTRODUCTION

The trapping and cooling of fermions has become one of
the central areas of research within the field of ultracold
atomic gases. Such gases offer the exciting prospect of ex-
amining the properties of interacting Fermi gases with un-
precedented flexibility. Due to the existence of Feshbach
resonances, the interactions between atoms can be varied al-
most at will by changing an external magnetic field, allowing
one to study the intriguing problem of a two-component
Fermi gas with a unitarity-limited interaction. It has been
predicted that the gas at low temperatures consists of a Bose-
Einstein condensatesBECd of tightly bound molecules on the
molecular side of the resonance where 0,kFa!1, with
a being the scattering length andkF the magnitude of the
Fermi wave vector, and a Bardeen-Cooper-SchrieffersBCSd
superfluid state on the other side of the resonance where
0,−kFa!1, with an interesting crossover regime in be-
tween f1g. Several experimental groups have now reported
clear experimental evidence for a BEC of diatomic mol-
ecules on the molecular side of the resonance from measure-
ments of the momentum distribution of the gasf2g. Experi-
ments have also probed thea,0 side of the resonance using
a magnetic-field sweep to the BEC side together with radio
frequencysrfd spectroscopyf3g.

The study of collective modes is an important spectro-
scopic tool for probing the many-body dynamics of atomic
gasesf4g. Three recent papers report measurements of the
collective modes of a two-component Fermi gass6Li d close
to the unitarity limit f5–7g. Although the collective mode
spectrum of a normal gas in the hydrodynamic regime and
that of a bulk superfluid gas are identicalf8g, it was argued in
Ref. f6g that the damping of the modes as a function of
temperature should allow one to distinguish between a nor-
mal gas in the hydrodynamic regime and a superfluid gas.

In the following we shall examine the collective mode
spectrum of a two-component Fermi gas in its normal phase.
Our starting point is the Boltzmann-Vlasov equation for the
fermion distribution functionfsr ,p ,td. The effects of atom-

atom interactions enter both the collision integral and the
streaming terms of the equation. Several recent theoretical
papers have considered the effect of collisions on the collec-
tive oscillations of a trapped gas of fermionsf9–12g. Our
approach differs from that of previous authors in that we take
into account both the energy dependence of the scattering
cross section in the collision integral and the effects of the
mean field in the streaming terms. Both these effects are
expected to be important in the region near the resonance.
We determine the appropriate relaxation rate from an ap-
proximate solution to the kinetic equation which is known to
give very accurate results for the viscous relaxation time in
the limits of high and low temperaturesf13g. We then use it
to extract the frequency and damping of the collective oscil-
lations in the trapped gas.

Since our approach takes full account of the collision pro-
cesses and includes the effects of the mean field, it allows for
a direct comparison between the measured and calculated
values of the frequency and damping of collective modes.
Our results indicate that the transverse oscillations measured
experimentallyf5–7g are never truly hydrodynamic in the
normal phase, and it identifies the regions at high and low
temperatures in which collisionless behavior is to be ex-
pected. Our calculations suggest that further insight into the
properties of the gas near the unitarity limit may be obtained
by more extensive measurements of the oscillation frequen-
cies at magnetic fields near resonance as a function of tem-
perature in a regime where the temperature is comparable to
or higher than the Fermi temperature.

The plan of the paper is as follows. In Sec. II we intro-
duce the viscous relaxation time and derive its temperature
dependence for both a uniform and a trapped gas from ap-
proximate solutions to the kinetic equation for the fermion
distribution function. The kinetic equation also forms the
starting point for the calculation of collective-mode frequen-
cies and their damping. In Sec. III we obtain these by taking
moments of the equation and present our results for a trapped
gas of6Li atoms in an axially symmetric trap. The effects of
interaction in the streaming terms are taken into account to
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leading order by adding a mean field to the trap potential.
For realistic scattering lengths and trap parameters the fre-
quencies of the collective modes are close to their values in
the collisionless limit at high and low temperatures. In the
intermediate-temperature regime the gas approaches hydro-
dynamic behavior in the sense that the viscous relaxation rate
becomes comparable to the oscillation frequency. In Sec. IV
we compare the calculated frequencies and attenuation of the
collective modes to experiment, and our main findings are
summarized in the concluding section V. A detailed account
of the moment method used for solving the Boltzmann-
Vlasov equation is given in the Appendix.

II. VISCOUS RELAXATION TIME

We shall consider a two-component Fermi gas of atoms
with massm in its normal phase. The gas may be uniform or
trapped in a potentialVsr d. We assume that the dynamics is
described by a semiclassical distribution functionfsr ,p ,td
which satisfies the Boltzmann equation

]f

]t
+ ṙ ·

]f

]r
+ ṗ ·

]f

]p
= − Iffg, s1d

whereI is the collision integral. The time development ofr
andp is given by the equations of motion

ṙ = v =
p

m
, ṗ = −

]V

]r
. s2d

Since this paper concerns dynamics for which the two com-
ponents of the gas move together, we only need to introduce
one distribution function referring to a definite set of internal
quantum numbers, for brevity denoted by “spin” with the
two valuess= ↑ ,↓. The distribution functionf always refers
to a definite spin value, and we havef = f↑= f↓. Since we
considers-wave scattering, the interaction only involves par-
ticles with opposite spin. In the present section the streaming
terms on the left-hand side of Eq.s1d do not contain any
effects of the interaction, but later, in Sec. III, we shall add
these as a mean field in the equations of motions2d.

The viscous relaxation time, which plays an important
part in the following, is defined in terms of the viscosity. Let
us briefly recall how one determines the viscosity by linear-
izing the kinetic equation in the spatial derivatives of the
flow velocity usr d. For simplicity we take the direction of the
flow velocity as ourx axis and assume that it varies in they
direction,u=suxsyd ,0 ,0d. To calculate the viscosity we insert
a local equilibrium distributionf loc given by

f locspd = f0se − u ·pd, s3d

wheree=p2/2m and f0 denotes the equilibrium Fermi func-
tion, and linearize in the gradient]ux/]y. Under stationary
conditions Eq.s1d then becomes

−
]ux

]y
vypx

]f0

]e
= − Iffg. s4d

The shear viscosityh relates the momentum current density
Pxy, given by

Pxy = 2E d3p

s2p"d3vypxf , s5d

to the gradient of the flow velocity according toPxy
=−h]ux/]y. The factor of 2 appearing on the right-hand side
of Eq. s5d arises from summing over the contributions of the
two componentss↑ and↓d. In order to establish the concept
of a viscous relaxation time let us make a relaxation time
approximation to the collision integral with a relaxation time
th, which so far is an unknown quantity:

Iffg <
f − f0

th

. s6d

The collision integrals6d yields together with Eqs.s4d and
s5d the viscosity

h = 2thE d3p

s2p"d3vy
2px

2S−
]f0

]e
D . s7d

The total particle densityntot of the two components is

ntot = 2E d3p

s2p"d3 f0. s8d

The angular integration in momentum space yields a factor
of 1/15, and the ratioh /ntot may then after partial integra-
tion be written in terms of energy integrals as

h

ntot
=

2

5
th

E
0

`

e5/2f0s1 − f0dde

E
0

`

e3/2f0s1 − f0dde

. s9d

Analytic expressions for the integrals occurring in Eq.s9d
may be obtained whenkT is either small or large compared
to the Fermi energyeF="2kF

2 /2m, where the magnitude of
the Fermi wave vector,kF, is given bykF

3=3p2ntot. When the
temperature is much larger than the Fermi temperature,
TF=eF/k, the equilibrium distribution function is f0

.expfsm−ed /kTg, with m being the chemical potential, and
Eq. s9d becomes

h

ntot
= kTth. s10d

At low temperaturessT!TFd we obtain from Eq.s9d that

h

ntot
=

1

5
mvF

2th, s11d

wherevF="kF/m is the Fermi velocity. We shall use Eq.s9d
fand the limiting formss10d and s11dg to definethe viscous
relaxation timeth in terms of the viscosity calculated by
taking the full collision integral into account. The viscous
relaxation time at low temperaturessT!TFd would thus be
defined in terms of the calculated low-temperature viscosity
hlow according toth=5hlow/ntotmvF

2.
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In the presence of the full collision integralIffg, which is
a functional of the distribution function, we linearize the
Boltzmann equation in terms of a small deviationdf from the
equilibrium distribution by writing fsr ,p ,td= f0sr ,pd
+dfsr ,p ,td with

dfsr ,p,td = f0sr ,pdf1 − f0sr ,pdgFsr ,p,td. s12d

The linearized collision integral becomes a functional ofF
given by

IfFg =E d3p1

s2p"d3 E dV
ds

dV
uv − v1u

3fF + F1 − F8 − F18gf0f1
0s1 − f08ds1 − f1

08d,

s13d

whereds /dV is the differential cross section andV is the
solid angle for the direction of the relative outgoing momen-
tum pr8=sp8−p18d /2 with respect to the relative incoming
momentumpr =sp−p1d /2 f4g. In the present paper, we take
the cross section to be given by the resonant form

ds

dV
=

a2

1 + spr/"d2a2 . s14d

In the unitarity limit, whereuau tends toward infinity, the
calculated viscous relaxation rate approaches a finite value
that depends on temperature, since the cross section in this
case is determined by the typical value of the wave number
pr /" for the relative motion.

It should be noted that we neglect in the cross sections14d
any effects of the medium, which can be significant at very
low temperaturesf14g.

A. Viscosity of a uniform gas

We shall now calculate the viscosity of a homogeneous
gas starting from Eqs.s1d ands13d, using a variational prin-
ciple commonly employed in transport theory. The Boltz-
mann equation has the form of a linear, inhomogeneous
integral equation,X=HF, where the inhomogeneous term
is X and H is an integral operator with eigenvalues greater
than or equal to zero. The use of the Schwarz inequality
sU ,HUdsF ,HFdù sU ,HFd2, wheres…,…d denotes a suit-
ably defined scalar product andU is a trial function, allows
one to put a lower bound on the viscosity, which is propor-
tional to sF ,Xd=sF ,HFd. In the present case we chooseX
to be equal tovypx and define the scalar product according to

sA,Bd =E d3p

s2p"d3AspdBspdf0s1 − f0d, s15d

where A and B are functions of the momentum. Since the
momentum-space dependence of the left-hand side of the
Boltzmann equation involvesvypx, it is natural to use a trial
function proportional tovypx as a first approximation. The
viscosity can therefore be approximated by the lower bound

h =
2

kT

sX,Xd2

sX,HXd
, s16d

where the integral operatorH is defined as

HF =
1

f0s1 − f0d
IfFg. s17d

The explicit factor of 2 in the numerator of Eq.s16d arises
from summing the contributions of the two components. The
corresponding viscous relaxation time is

th =
sX,Xd

sX,HXd
, s18d

which is seen to be independent of the normalization ofX.
The final expressions18d is thus an approximate expression,
obtained by a trial function proportional tovypx, but it is
known f13g to differ at high and low temperatures by only a
few percent from the viscosity obtained from the exact solu-
tion to the Boltzmann equation.

In the classical limit,T@TF, and for an energy-dependent
scattering cross section given by Eq.s14d the viscosity, when
expressed in terms of the viscous relaxation timeth

=h /ntotkT, is ssee, e.g., Ref.f13gd

1

th

=
8

5Îp
ntotSkT

m
D1/2

s̄. s19d

Here s̄ is an effective cross section, which depends on the
ratio T/Ta, where the temperatureTa is defined by

kTa =
"2

ma2 . s20d

In general, we have

s̄ =
4pa2

3
E

0

`

dxx7e−x2
s1 + x2T/Tad−1. s21d

For T!Ta we obtain from Eq.s21d the classical results̄
=4pa2, while in the opposite limitT@Ta, Eq. s21d yields

s̄ =
4pa2Ta

3T
=

4p

3

"2

mkT
, s22d

which is seen to be independent of the scattering lengtha
and, apart from a numerical constant, equal to the square of
the thermal de Broglie wavelength.

At low temperaturesT!TF, one expects on general
grounds that 1/th~T2 due to the restrictions on the available
phase space caused by the occupied states, the so-called
Pauli blocking. The magnitude of 1/th depends on the di-
mensionless quantityg=skFad2=2TF/Ta. The corresponding
variational solution to the Landau-Boltzmann equation of a
Fermi liquid ssee Ref.f13g, Sec. 6.2.1d yields

1

th

= 2p
kT2

"Ta
Fsgd, s23d

where the functionFsgd is given by the integral

Fsgd = 2E
0

1

dx
x5

Î1 − x2

1

1 + gx2 , s24d

the variablex being equal to the sine of half the angle be-
tween the two incoming particle momenta in a collision. The
function Fsgd decreases monotonically from itsg=0 value
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Fs0d=16/15 to its asymptotic expressionFsgd.4/3g for
g@1.

In the unitarity limit suau→`d the viscous relaxation rate
s23d becomes independent of the magnitude of the scattering
length, sinceFsgd in this limit is proportional to 1/a2. In
general, the calculated relaxation rate tends toward a well-
defined value which depends on temperature, when the scat-
tering length tends toward infinity. The value of 1/th at uni-
tarity vanishes asT2 at low temperatures and asT−1/2 at high
temperatures.

In Fig. 1 we plot the calculated viscosity as a function of
temperature for the valuekFuau=4.5. The inset shows the
viscosity multiplied byT2 in order to illustrate its character-
istic low-temperature behavior given by Eq.s23d. SinceTa
=0.1TF for this value ofkFuau, the viscosity at high tempera-
tures is proportional toT3/2. This may be seen by combining
the high-temperature relationh=ntotkTth with Eqs.s19d and
s22d, which show thatth is proportional toT1/2 at high tem-
peratures, resulting inh~T3/2. In the case of energy-
independent scatteringsTa@TFd the high-temperature vis-
cosity is proportional toT1/2.

B. Viscous relaxation rate of a trapped gas

In order to apply these results to a trapped atomic cloud
we now include the trap potential in the equilibrium Fermi
function. We consider the harmonic-oscillator potential

Vsr d =
m

2
svx

2x2 + vy
2y2 + vz

2z2d. s25d

The average viscous relaxation rate 1/t is defined by

1

t
=
E d3rsX,HXd

E d3rsX,Xd
. s26d

Note that the spatial average of Eq.s18d is carried out here
for the denominator and numerator separately. As demon-
strated in the Appendix, this is the quantity that enters as an
effective relaxation rate when we take moments of the ki-
netic equation in order to determine the frequency and at-
tenuation of the collective modes. The calculation of the av-
erage viscous relaxation rate proceeds as in Ref.f15g fsee,
e.g., Eq.s38dg, where the corresponding rate was obtained for
bosons above the Bose-Einstein condensation temperature,
the only modification being the change of sign in the equi-
librium distribution function. The resulting five-dimensional
integrations were carried out numerically, with varying step
sizes until convergence was achieved.

The results shown in Fig. 2 and all following figures were
obtained for a total numberN of particles given byN=2.8
3105, which represents a typical value for the experiments
on 6Li reported in Refs.f5–7g. We use the trap frequencies
for the cigar-shaped cloud of Ref.f6g—i.e., an axial
frequency vz=2p370 Hz and a transverse frequency
v'=2p31550 Hz, giving an anisotropy ratio equal to
l=vz/v'=0.045.

The resulting average viscous relaxation rate is shown in
Figs. 2 and 3 for two different values of the parameterkFuau,
one characterizing the regime of weak coupling and the other
the regime near the unitarity limit, wherekF is the magnitude
of the Fermi wave vector in the center of the trap. At low
temperatures the relaxation rates are proportional toT2, and
they exhibit in both cases a pronounced maximum at a tem-
perature somewhat belowTF. The asymptotic behavior at
high temperatures differs in the two cases. WhenkFuau is

FIG. 1. sColor onlined The viscosityh as a function of tempera-
ture forkFuau=4.5, in units ofhclsTFd=5smkTF/pd1/2/32a2, the clas-
sical value of the viscosity for an energy-independent scattering
cross section, evaluated at the Fermi temperatureT=TF. The inset
illustrates the low-temperatureT−2 dependence of the viscosity.

FIG. 2. sColor onlined The average viscous relaxation rate 1/t
divided by the transverse trap frequencyv' as a function of tem-
perature, forkFuau=0.01. The asymptotic temperature dependences
are indicated by the dashed lines. Note that the system is highly
collisionless, since the maximum value of 1/v't is about 0.000 25.
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much less than unity, the average viscous relaxation rate de-
creases as 1/T at high temperatures. This may seem at odds
with the fact that for a uniform gas 1/th according to Eq.
s19d is proportional toT1/2 in this limit, sinces̄ is indepen-
dent of temperature. However, the average density in a
trapped gas is not a constant, but decreases at high tempera-
tures in proportion toT−3/2, resulting in an average relaxation
rate proportional toT−1. When kFuau is much greater than
unity, the temperature-dependent cross sections22d causes
the relaxation rate to decrease even more strongly, in propor-
tion to T−2. In the unitarity limit, whenuau approaches infin-
ity, the average viscous relaxation rate approaches a limiting
value indicated by the dotted curve in Fig. 3. This is further
illustrated in Fig. 4 where we plot the average viscous relax-
ation rate as a function of 1/kFuau for various temperatures.

We have normalized in Figs. 2–4 the viscous relaxation
rate to the transverse trap frequencyv' used in the experi-
mentsf6,7g. The limiting value of the average viscous relax-
ation rate foruau→` is seen never to be large compared to
v', which demonstrates that hydrodynamics cannot be ap-
plied to the transverse motion of the trapped atomic clouds in
the normal phase. In the next section we determine the fre-
quency and attenuation of the collective modes and obtain
results in support of this general conclusion.

III. FREQUENCY AND ATTENUATION
OF COLLECTIVE MODES

We proceed now to extract the dispersion relation of the
low-lying collective modes by solving the linearized
Boltzmann-Vlasov equations1d with an appropriate trial
functionF. The equations of motions2d are modified to take
into account the mean-field potentialU given by

Usr d = gnsr d = gfn0sr d + dnsr dg, s27d

whereg=4p"2a/m is the interaction constant. The density
n0 denotes the equilibrium density for a single spin—that is

n0=n↑
0=n↓

0=ntot
0 /2—anddnsr d similarly denotes the nonequi-

librium change in density for a single spin. The effective
potential is thus the sum ofU and the harmonic oscillator
potentialVsr d given by Eq.s25d, yielding the equations of
motion

ṙ = v =
p

m
, ṗ = −

]sV + Ud
]r

. s28d

Let us first establish some useful relations between equi-
librium quantities. We consider the kinetic equation in equi-
librium, where the right-hand side of Eq.s1d vanishes, and
insert the equations of motions28d, which results in

o
i=x,y,z

viFpi
]f0

]r̃ i

− Sr̃ i + mg
]n0

]r̃ i
D ]f0

]pi
G = 0 s29d

or, equivalently,

o
i=x,y,z

viFpi
]ff0s1 − f0dg

]r̃ i
G = o

i=x,y,z
viFSr̃ i + mg

]n0

]r̃ i
D

3
]ff0s1 − f0dg

]pi
G . s30d

For convenience we have here introduced the variable
r̃ i =mvir i in terms of which the potential isVsr d= r̃2/2m. If
we now multiply Eq.s30d by x̃pxpy

2 and integrate over both
position and momentum variables, we obtain

kpx
2py

2l − kx̃2py
2l +

m2

2
kTgE d3rsn0d2 = 0, s31d

where k¯l denotes multiplication byf0s1− f0d and integra-
tion over the whole phase space:

FIG. 3. sColor onlined The average viscous relaxation rate 1/t
divided by the transverse trap frequencyv' as a function of tem-
perature, forkFuau=5.5, corresponding to the experiment of Ref.f6g
at a magnetic field of 870 G. The asymptotic temperature depen-
dences are indicated by the dashed lines. The dotted line is the
result obtained in the unitarity limituau→`.

FIG. 4. sColor onlined The average viscous relaxation rate 1/t
divided by the transverse trap frequencyv' as a function of 1/kFuau
for four different temperatures. The parametersT/TF=0.03 and
T/TF=0.1 correspond to the experimental conditions of Refs.f5,7g,
respectively.
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k¯l =E d3r E d3p

s2p"d3 ¯ f0s1 − f0d. s32d

Using f0s1− f0d=−smkT/pd]f0/]p, we can calculate analyti-
cally the integrals appearing in Eq.s31d and obtain the virial
theoremf16g

1

3
Ekin −

1

3
Epot +

1

2
Eint = 0. s33d

Here

Ekin = 2E d3r E d3p

s2p"d3

p2

2m
f0 s34d

is the kinetic energy and

Epot = 2E d3r E d3p

s2p"d3Vsr df0 s35d

is the potential energy, while

Eint = gE d3rsn0d2 s36d

is the interaction energy.
If instead we multiply the equilibrium equations30d by

the combinationx̃2ypy and integrate as before, we obtain the
equality

kx̃2py
2l − kx̃2ỹ2l − mgKx̃2ỹ

]n0

]ỹ
L = 0, s37d

which will be used in the Appendix to simplify the matrix
that we diagonalize to obtain the frequencies of the collective
modes.

To lowest order in the coupling constantg, the linearized
version of Eq.s1d reads

]F

]t
+ o

i=x,y,z
viFpi

]F

]r̃ i

− Sr̃ i + mg
]n0

]r̃ i
D ]F

]pi

−
mg

f0s1 − f0d
]dn

]r̃ i

]f0

]pi
G = −

IfFg
f0s1 − f0d

, s38d

where n0 as before denotes the equilibrium density for a
single spin while the corresponding nonequilibrium change
in the density is

dn =E d3p

s2p"d3 f0s1 − f0dF. s39d

We shall in the following consider modes for which the drift
velocity u has a spatial dependence given byui ~ r i. The
deviation functionF of a fluid moving with velocityu is
proportional tou ·p. Since acting onu ·p with the left-hand
side of Eq.s1d generates terms likex2, px

2, etc., we follow
Ref. f17g in choosing the trial function as

F = e−ivt o
i=x,y,z

sair̃ i
2 + bir̃ ipi + cipi

2d. s40d

We insert this ansatz into the kinetic equations38d and
calculate moments by multiplying with the product of

f0s1− f0d and any of the termsx̃2, ỹ2, . . . ,pz
2 appearing inF,

and subsequently integrating over bothr andp. The result is
a homogeneous set of nine coupled equations for the nine
coefficientsax,ay, . . . ,cz and the frequencies of the collective
modes emerge as the roots of the determinant. The details of
the calculation are given in the Appendix for the general case
when all three trap frequencies are different.

IV. RESULTS AND COMPARISON WITH EXPERIMENT

In order to make contact with recent experimentsf5–7g
we consider an axially symmetric trap withvx=vy=v' and
vz=lv'. We introduce the parameter

j =
3Eint

2Epot
, s41d

which, as we shall see, determines the sign and relative mag-
nitude of the frequency shifts. We shall expand our results to
first order inj, since our mean-field treatment of the interac-
tion in the streaming terms of the kinetic equation is only
valid when uju is small compared to unity. The temperature
dependence ofj is shown in Fig. 5. In accordance with our
first-order treatment of the mean field we calculatej by ap-
proximating the equilibrium Fermi function, which enters
Eint as well asEpot, by its value in the absence of interaction.
At high temperatures one finds from Eq.s41d that uju~T−5/2,
since the interaction energyEint in the classical regime is
inversely proportional to the volume of the cloudsEint

~T−3/2d, while the potential energy is proportional to the
temperature.

The determinant of the matrix, which is derived in the
Appendix, has the form of a polynomial in the frequencyv.
The vanishing of the determinant yields the equation

FIG. 5. sColor onlined The temperature dependence of the pa-
rameterj given by Eq.s41d for different values ofkFa. At high
temperaturesuju decreases asT−5/2.
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0 = vfsv2 − vhd
2 d − ivtsv2 − vcl

2 dg

3fsv2 − vhd+
2 dsv2 − vhd−

2 d − ivtsv2 − vcl+
2 dsv2 − vcl−

2 dg,

s42d

wheret is defined by Eq.s26d. Note that the average viscous
relaxation rate 1/t depends on temperature as illustrated in
Figs. 2–4.

In general, the solutions to Eq.s42d have a real and an
imaginary part,v=Resvd+ i Imsvd, which determine the fre-
quency and the damping of the collective modes, respec-
tively. Thespurely reald frequencies appropriate to the hydro-
dynamic limit, vt→0, are denoted by subscriptshdd, while
those for the collisionless limit,vt→`, carry the subscript
scld. To first order inj, we find

vhd
2 = 2v'

2 , s43d

vcl
2 = 4v'

2 S1 −
j

2
D , s44d

vhd±
2

v'
2 =

5 + 4l2 ± g

3
± j

4l4 − l2s5 7 gd + 2s5 ± gd
6g

,

s45d

with g=s25−32l2+16l4d1/2. Forl!1 the latter are approxi-
mately given by

vhd+
2 =

10

3
v'

2 S1 +
j

5
D s46d

and

vhd−
2 =

12

5
vz

2S1 +
j

20
D . s47d

The modes labeled1 and 2 are the transverse and axial
modes, respectively, which are studied in the experiments
f5–7g.

In the collisionless limit we obtain, for elongated traps
sl!1d,

vcl+
2 = 4v'

2 , s48d

vcl−
2 = 4vz

2S1 −
j

4
D , s49d

while, for spherical trapssl=1d,

vcl+
2 = 4v'

2 S1 +
j

4
D , s50d

vcl−
2 = 4v'

2 S1 −
j

2
D . s51d

These results, valid to first order inj, are in agreement
with those of Pedriet al. f12g when expanded to first order in
j, but our results differ to second and higher order. This is
understandable since the form of Eq.s40d is more general
than the scaling ansatz used in Ref.f12g, which involves six
rather than nine parameters. However, since our calculation

of the frequency shifts caused by the interaction cannot be
trusted beyond first order inj, our results are in essential
agreement with those of Ref.f12g. Our work thus extends
that of Ref.f12g in the sense that we determinej and t as
functions of temperature, thereby allowing a direct compari-
son with experiment.

In Fig. 6 we plot the calculated frequency as a function of
temperature forkFuau=5.5, which corresponds to the param-
eters used in Ref.f6g, along with their experimental values.
Since we assumeuju to be small compared to unity, we show
the mean-field curve only in the temperature region whereuju
is less than 0.5. There is a clear discrepancy between
our calculated frequency and the experimental result at
T=1.15TF and further work is needed to understand the ori-
gin of this. From the point of view of theory it appears im-
plausible that allowance for medium effects, leading to
modification of the cross sections14d, would resolve the dis-
crepancy at this high temperature. The corresponding results
for the damping, given by the imaginary part of the fre-
quency, are shown in Fig. 7. The dashed curves in Figs. 6
and 7 illustrate the changeover between the collisionless re-
gimes at high and low temperature, but should not be com-
pared to experiment since they do not include the effects of
the mean field. In order to compare with the experimental
data below 0.5TF in Figs. 6 and 7, it is necessary to improve
our treatment of the interaction effects in the streaming terms
of the kinetic equation.

In Figs. 8 and 9 we show results for the real and imagi-
nary parts of the frequency of the axial mode. Since
vz!v', there is a broad temperature region where the sys-
tem behaves hydrodynamically. The damping shows a
double-peak structure that reflects, as temperature is lowered,
the transition between the different regimes, from collision-
less to hydrodynamic and back to collisionless behaviorf10g.
The mean-field corrections in Fig. 8 are seen to be much

FIG. 6. sColor onlined The calculated frequency of the trans-
verses1d mode as a function of temperature, with and without the
mean-field correction for values ofuju less than or equal to 0.5. The
experimental values from Ref.f6g are indicated for comparison with
the mean-field-corrected curve, with the estimated error bars
included.
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smaller than those of Fig. 6, in agreement with Eqs.s46d and
s47d.

V. SUMMARY AND CONCLUSIONS

Starting from a kinetic equation for the semiclassical dis-
tribution function we have calculated the viscous relaxation
rate which determines the frequency and attenuation of col-
lective modes. By including interaction effects as a mean
field in the streaming terms, we have solved the kinetic equa-
tion using a moment method which takes the conservation
laws into account and provides an accurate account of the
damping. Deep in the collisionless regime the rate of attenu-

ation is proportional to the viscous relaxation rate, which is
small compared to the oscillation frequency. If hydrodynam-
ics is applicable, the viscous relaxation rate must be much
larger than the oscillation frequency, and the rate of attenu-
ation is then proportional to the oscillation frequency
squared times the viscous relaxation time. Our treatment in
the present work applies to both limits as well as to the
intermediate regime and yields results that allow for a direct
comparison between experiment and theory.

We have demonstrated that for a normal Fermi gas over
most of the temperature range studied experimentallyf5–7g,
hydrodynamic theory does not apply even at the unitarity
limit for the transverse oscillations. It would be interesting to
study further the behavior of the gas very near the unitarity
limit, for both negative and positivea, by more extensive
measurements of the oscillation frequencies at a fixed mag-
netic field as a function of temperature, thereby testing the
predicted shifts in frequency and attenuation over a broad
range of temperatures.
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APPENDIX: MOMENTS OF THE BOLTZMANN-VLASOV
EQUATION

In this appendix we provide details of the calculation of
the 939 matrix, from which the frequencies and damping
rates can be extracted.

First we state some useful identities involving the mo-
mentum variablespi and the rescaled position variables
r̃ i =mvir i si =x,y,zd,

kpx
2px

2l = 3kpx
2py

2l, sA1d

together with

FIG. 7. sColor onlined The inverse damping rate of the trans-
verses1d mode as a function of temperature, with and without the
mean-field correction. The mean-field-corrected curve is plotted for
values ofuju less than or equal to 0.5. The experimental values from
Ref. f6g are indicated for comparison with the mean-field-corrected
curve.

FIG. 8. sColor onlined The frequency of the axials2d mode as a
function of temperature.

FIG. 9. sColor onlined The inverse damping rate of the axials2d
mode as a function of temperature.
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kpx
2py

2l =
1

3
m2kTEkin sA2d

and

kx̃2px
2l =

1

3
m2kTEpot. sA3d

From these it follows that

kx̃2px
2l

kpx
2py

2l
=

Epot

Ekin
=

Epot

Epot − 3Eint/2
=

1

1 − j
. sA4d

Similar identities hold for the other components ofp and r̃ .
They are valid both in the presence and absence of the mean
field in the equilibrium Fermi functionf0.

The following identity holds when the mean field is ne-
glected in the equilibrium Fermi function,

mgkx̃2n0l = mgE d3p

s2p"d3 E d3r x̃n0S− mkT
]f0

]x̃
D

= m2kTgE d3rFsn0d2 + x̃
]n0

]x̃
n0G =

m2

2
kTEint,

sA5d

and implies that

mgkx̃2n0l
kx̃2px

2l
. j. sA6d

In order to obtain the matrix determining the collective
modes we insert Eq.s40d into Eq. s38d and start taking mo-
ments of Eq.s38d with x̃2, resulting in

− ivfs3a1 + a2 + a3dkx̃2ỹ2l + sc1 + c2 + c3dkx̃2px
2lg

+ vxb1A1 + vyb2A2 + vzb3A3 = 0. sA7d

Using the identities given above and Eq.s37d, we find

A1 = kx̃2px
2l − kx̃2x̃2l − mgKx̃3]n0

]x̃
L = − 2kx̃2px

2l,

A2 = kx̃2px
2l − kx̃2ỹ2l − mgKx̃2ỹ

]n0

]ỹ
L = 0.

The constantA3 also vanishes for the same reason asA2.
Collisions do not appear in Eq.sA7d since the combinations
r̃ i

2 sas well asr̃ ipid are collision invariants—i.e.,Ifr̃ i
2g=0. We

now divide Eq. sA7d by kx̃2px
2l. Since the integral

mgkỹ2x̃]n0/]x̃l appearing in Eq.s37d only introduces fre-
quency shifts of second order inj, we use here the approxi-
mation kx̃2ỹ2l / kx̃2px

2l.1. This yields

− ivf3a1 + a2 + a3 + c1 + c2 + c3g − 2vxb1 = 0. sA8d

Next we proceed to take moments withx̃px and obtain

− ivb1kx̃2px
2l + vxf2kx̃2px

2lsa1 − c1d + c1m
2kTEint + Bg = 0,

sA9d

whereB is given by

B = − mgK dn

f0s1 − f0dS f0 + x̃
]f0

]x̃
DL

= − mgkx̃2n0l o
i=x,y,z

ai −
m2

2
kTEint o

i=x,y,z
ci .

Dividing Eq. sA9d by kx̃2px
2l, we obtain

− ivb1 + vxfs2 − jdsa1 − c1d − jsa2 + c2 + a3 + c3dg = 0.

sA10d

Finally we take moments withpx
2. Unlike r̃ i

2 and r̃ ipi the
quantitiespi

2 are not separately collision invariants. By ex-
ploiting the fact that the sumpx

2+py
2+pz

2=p2 is indeed a col-
lision invariant we arrive at the equation

− ivfs1 − jd−1sa1 + a2 + a3d + s3 + 4i/3vtdc1

+ s1 − 2i/3vtdsc2 + c3dg + 2vxb1 = 0, sA11d

where t is given by Eq.s26d. EquationssA8d, sA10d, and
sA11d form, respectively, the first, second, and third lines of
our system of coupled equations. The other six equations
may be obtained from the three given above by simple per-
mutation of the indices.
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