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Viscous relaxation and collective oscillations in a trapped Fermi gas near the unitarity limit
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The viscous relaxation time of a trapped two-component gas of fermions in its normal phase is calculated as
a function of temperature and scattering length, with the collision probability being determined by an energy-
dependeng-wave cross section. The result is used for calculating the temperature dependence of the frequency
and damping of collective modes studied in recent experiments, starting from the kinetic equation for the
fermion distribution function with mean-field effects included in the streaming terms.
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I. INTRODUCTION atom interactions enter both the collision integral and the

The trapping and cooling of fermions has become one optreaming terms of the equation. Several recent theoretical
the central areas of research within the field of ultracoldP@Pers have considered the effect of collisions on the collec-

atomic gases. Such gases offer the exciting prospect of eflve oscillations of a trapped gas of fermiof@-12. Our
approach differs from that of previous authors in that we take

amining the properties of interacting Fermi gases with un- )
precedented flexibility. Due to the existence of Feshbacti!to account both the energy dependence of the scattering

resonances, the interactions between atoms can be varied §/°55 section in the collision integral and the effects of the

most at will by changing an external magnetic field, allowing renxeaer(l;tggl(:olrkl);hiﬁ'] Sgr?:m'?ng t:]eern:es. i(?r?trr:eg;etshee ?ggg:;r?é:
one to study the intriguing problem of a two-component P P 9 '

Fermi gas with a unitarity-limited interaction. It has beenWe determine the appropriate relaxation rate from an ap-

dicted that th tlow t t ists of a B roximate solution to the kinetic equation which is known to
predicted that tn€ gas at low lemperatures consists of a Osgive very accurate results for the viscous relaxation time in

Einstein condensa{®EC) of tightly bound molecules on the the limits of high and low temperaturés3]. We then use it

molecular side of the resonance whereckka<l, with 4 exiract the frequency and damping of the collective oscil-
a being the scattering length arigt the magnitude of the |ations in the trapped gas.

Fermi wave vector, and a Bardeen-Cooper-SchridB&s) Since our approach takes full account of the collision pro-
superfluid state on the other side of the resonance whergesses and includes the effects of the mean field, it allows for
0<-kra<1, with an interesting crossover regime in be-a direct comparison between the measured and calculated
tween[1]. Several experimental groups have now reportedvalues of the frequency and damping of collective modes.
clear experimental evidence for a BEC of diatomic mol-Our results indicate that the transverse oscillations measured
ecules on the molecular side of the resonance from measurexperimentally[5—7] are never truly hydrodynamic in the
ments of the momentum distribution of the d&3. Experi-  normal phase, and it identifies the regions at high and low
ments have also probed the<0 side of the resonance using temperatures in which collisionless behavior is to be ex-
a magnetic-field sweep to the BEC side together with radigpected. Our calculations suggest that further insight into the
frequency(rf) spectroscopy3]. properties of the gas near the unitarity limit may be obtained
The study of collective modes is an important spectro-by more extensive measurements of the oscillation frequen-
scopic tool for probing the many-body dynamics of atomiccies at magnetic fields near resonance as a function of tem-
gases[4]. Three recent papers report measurements of thperature in a regime where the temperature is comparable to
collective modes of a two-component Fermi d8isi) close  or higher than the Fermi temperature.
to the unitarity limit [5—-7]. Although the collective mode The plan of the paper is as follows. In Sec. Il we intro-
spectrum of a normal gas in the hydrodynamic regime andluce the viscous relaxation time and derive its temperature
that of a bulk superfluid gas are identi¢&l, it was argued in  dependence for both a uniform and a trapped gas from ap-
Ref. [6] that the damping of the modes as a function ofproximate solutions to the kinetic equation for the fermion
temperature should allow one to distinguish between a nomistribution function. The kinetic equation also forms the
mal gas in the hydrodynamic regime and a superfluid gas. starting point for the calculation of collective-mode frequen-
In the following we shall examine the collective mode cies and their damping. In Sec. Ill we obtain these by taking
spectrum of a two-component Fermi gas in its normal phasenoments of the equation and present our results for a trapped
Our starting point is the Boltzmann-Vlasov equation for thegas of°Li atoms in an axially symmetric trap. The effects of
fermion distribution functionf(r,p,t). The effects of atom- interaction in the streaming terms are taken into account to
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leading order by adding a mean field to the trap potential. d°p
For realistic scattering lengths and trap parameters the fre- Iy=2 f 2 ﬂ_ﬁ)svypr’ (5)
quencies of the collective modes are close to their values in

the collisionless limit at hlgh and low temperatures. In theto the gradient of the flow Ve|ocity according tny
intermediate-temperature regime the gas approaches hydre-,y, /gy. The factor of 2 appearing on the right-hand side
dynamic behavior in the sense that the viscous relaxation raigf gq. (5) arises from summing over the contributions of the
becomes comparable to the oscillation frequency. In Sec. o components] and |). In order to establish the concept
we compare the calculated frequencies and attenuation of the a viscous relaxation time let us make a relaxation time
collective modes to experiment, and our main findings argypproximation to the collision integral with a relaxation time
summarized in the concluding section V. A detailed accountrm which so far is an unknown quantity:

of the moment method used for solving the Boltzmann-

Vlasov equation is given in the Appendix. f— 0

I[f]= : (6)

Ty

II. VISCOUS RELAXATION TIME The collision integral(6) yields together with Eqs(4) and

We shall consider a two-component Fermi gas of atom4® the viscosity
with massm in its normal phase. The gas may be uniform or e P
trapped in a potentiaV(r). We assume that the dynamics is n=2r, P 305 )2(<_ _> 7)
described by a semiclassical distribution functiffn,p,t) (27h) de
which satisfies the Boltzmann equation

The total particle density,,; of the two components is

af . of . of
CHbwpe =], & ¢p

or p Nt = 2 (gﬂ-ﬁ)Sfo' (8)
wherel is the collision integral. The time developmentrof
andp is given by the equations of motion The angular integration in momentum space yields a factor

of 1/15, and the ratiop/n,,; may then after partial integra-
f=v= E, p=- ﬂ_ (2)  tion be written in terms of energy integrals as
m ar
Since this paper concerns dynamics for which the two com- f €291 - f%de
ponents of the gas move together, we only need to introduce n 2 Jo
one distribution function referring to a definite set of internal Kt “57n : (9)
quantum numbers, for brevity denoted by “spin” with the ° f €¥2f9(1 - f%de
0

two valueso=T1,|. The distribution functiorf always refers
to a definite spin value, and we havef,=f,. Since we
considers-wave scattering, the interaction only involves par-
ticles with opposite spin. In the present section the streamin
terms on the left-hand side of E¢l) do not contain any
effects of the interaction, but later, in Sec. Ill, we shall ad
these as a mean field in the equations of mo{®n

The viscous relaxation time, which plays an important
part in the following, is defined in terms of the viscosity. Let —
us briefly recall how one determines the viscosity by linear-Ed- (9) becomes
izing the kinetic equation in the spatial derivatives of the
flow velocity u(r). For simplicity we take the direction of the /. kT . (10)
flow velocity as ourx axis and assume that it varies in the Ntot 7
direction,u=(u,(y),0,0. To calculate the viscosity we insert
a local equilibrium distributiorf,,. given by

fioe(p) = = u - p), 3 n_1 o "
where e=p?/2m and f° denotes the equilibrium Fermi func-
tion, .a_nd linearize in the gradiemu,/dy. Under stationary wherevg=#k-/m is the Fermi velocity. We shall use E®)
conditions Eq/(1) then becomes [and the limiting forms(10) and (11)] to definethe viscous
au, 5f0 relaxation timer, in terms of the viscosity calculated by

- _prxa_: - I[f]. (4)  taking the full collision integral into account. The viscous
N € relaxation time at low temperaturé¥<Tg) would thus be

The shear viscosity; relates the momentum current density defined in terms of the calculated low-temperature viscosity
I1,y, given by ow @ccording t07n:5n|owlntotmvé.

Analytic expressions for the integrals occurring in E)

ay be obtained whekT is either small or large compared
o the Fermi energys,::hzk,z:/Zm, where the magnitude of
dthe Fermi wave vectokg, is given bykE:Sn-Zntot. When the
temperature is much larger than the Fermi temperature,
Te=ec/k, the equilibrium distribution function isf®
exfd (u-€)/kT], with u being the chemical potential, and

At low temperaturesT<Tg) we obtain from Eq(9) that
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In the presence of the full collision integrilf], which is 1
a functional of the distribution function, we linearize the H@zml[d)]. 17
Boltzmann equation in terms of a small deviatiéinfrom the
equilibrium  distribution by writing f(r,p,t)=f%r,p)  The explicit factor of 2 in the numerator of E(L6) arises

+6f(r,p,t) with from summing the contributions of the two components. The
corresponding viscous relaxation time is
sf(r,p,t) =, p)[1 - r,p)1@(r,p,t). (12 XX
The linearized collision integral becomes a functionakdof = x ;4X)’ (18)
given by '
e q which is seen to be independent of the normalizatiorX.of
I[®] :f 9P j dQ—U|v—v1| The final expressiofl8) is thus an approximate expression,
(27h)® dQ obtained by a trial function proportional ta,p,, but it is
X[D+d, - D' - q)ﬂfoftl)(l —f0)(1 - f<1),), known[13] to differ at high and low temperatures by only a

few percent from the viscosity obtained from the exact solu-
(13)  tion to the Boltzmann equation.

whereda/dQ is the differential cross section ardl is the In the classical limitT> Tg, and for an energy-dependent
solid angle for the direction of the relative outgoing momen-Scattering cross section given by Ej4) the viscosity, when

tum p;=(p’—p})/2 with respect to the relative incoming Exp/resied_ in terms of the viscous relaxation timg
momentump, =(p—p,)/2 [4]. In the present paper, we take ~ 7 NoKT, is (see, e.g., Re(13))

the cross section to be given by the resonant form 1 8 (kT) iz 19
—=— — .

& « (14) T Sim

dQ  1+(p/h)%a® Here o is an effective cross section, which depends on the
In the unitarity limit, where|a| tends toward infinity, the '2ti0 T/Ta, Where the temperaturg, is defined by
calculated viscous relaxation rate approaches a finite value %2
that depends on temperature, since the cross section in this KTa= m2" (20)
case is determined by the typical value of the wave number
p,/# for the relative motion. In general, we have

It should be noted that we neglect in the cross sectidh dmal [

any effects of the medium, which can be significant at very o= ma f dxx7e‘X2(1 +X2T/IT,) L. (21
low temperature$l4]. 0

A. Viscosity of a uniform gas For T<T, we obtain from Eq.(21) the classical result

s S ol .
We shall now calculate the viscosity of a homogeneous_A'Tra » while in the opposite limifl>T,, Eq. (21) yields

gas starting from Eq<1) and(13), using a variational prin- _ 4ma’T, Am #?

ciple commonly employed in transport theory. The Boltz- o= 3T :?ka’ (22)

mann equation has the form of a linear, inhomogeneous

integral equationX=H®, where the inhomogeneous term which is seen to be independent of the scattering leagth

is X andH is an integral operator with eigenvalues greaterand, apart from a numerical constant, equal to the square of
than or equal to zero. The use of the Schwarz inequalitghe thermal de Broglie wavelength.
(U,HU)(®,H®) = (U,HD)?, where(...,...) denotes a suit- At low temperaturesT<Tg, one expects on general
ably defined scalar product andlis a trial function, allows grounds that 17‘,]<>CT2 due to the restrictions on the available
one to put a lower bound on the viscosity, which is propor-Phase space caused by the occupied states, the so-called
tional to (®,X)=(®,Hd). In the present case we choae Pauli blocking. The magnitude of t/ depends on the di-

to be equal to,p, and define the scalar product according tomensionless quantity=(kra)*=2T¢/T,. The corresponding
variational solution to the Landau-Boltzmann equation of a

d3 L. . .
(AB) :f p 3A(p)B(p)f°(1 ~10), (15) Fermi liquid (see Ref[13], Sec. 6.2.1yields
(2mh) 1 kP
where A and B are functions of the momentum. Since the T_” = 277;1_1-51':(7)’ (23)

momentum-space dependence of the left-hand side of the ) o )
Boltzmann equation involves,p,, it is natural to use a trial Where the functiorF(y) is given by the integral

function proportional taw,p, as a first approximation. The 1 x5 1
viscosity can therefore be approximated by the lower bound F(y) = 2] dxﬁl T (29
o V1-Xx X
2 (X,X)?
N= o (16)  the variablex being equal to the sine of half the angle be-
KT (X,HX) . . . . -
tween the two incoming particle momenta in a collision. The
where the integral operatéf is defined as function F(y) decreases monotonically from its=0 value
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FIG. 1. (Color online The viscositys as a function of tempera- FIG. 2. (Color onling The average viscous relaxation raterl/

ture forkg/a|=4.5, in units ofyy(Te) =5(mkTg/ m)Y2/32a2, the clas-  divided by the transverse trap frequensy as a function of tem-
sical value of the viscosity for an energy-independent scatteringperature, forkg|a|=0.01. The asymptotic temperature dependences
cross section, evaluated at the Fermi temperafin@.. The inset  are indicated by the dashed lines. Note that the system is highly

illustrates the low-temperatufe? dependence of the viscosity. collisionless, since the maximum value ofd/7 is about 0.000 25.
F(0)=16/15 to its asymptotic expressi =4/3y for
y(>>)1 ymp pressidr( ) Y . Jdgr(x,Hx)
In the unitarity limit (ja| — o) the viscous relaxation rate - (26)
. . . T
(23) becomes independent of the magnitude of the scattering f d®r(X,X)
length, sinceF(y) in this limit is proportional to 142 In

general, the calculated relaxation rate tends toward a well; . . .
defined value which depends on temperature, when the scalﬁl—me that the spatial average of H@B) is carried out here

. o . or the denominator and numerator separately. As demon-
tering length tends toward infinity. The value of# /at uni- . ) o .

. . 5 ny . strated in the Appendix, this is the quantity that enters as an
tarity vanishes a3“ at low temperatures and as*'< at high . . X
temperatures effective relaxation rate when we take moments of the ki-

In Fig. 1 we plot the calculated viscosity as a function ofnetlc e_quatlon n order_ to determine the freqqency and at
~ : tenuation of the collective modes. The calculation of the av-
temperature for the valukgal=4.5. The inset shows the ) . _
i . L 5 . ; erage viscous relaxation rate proceeds as in Ré&i [see,

viscosity multiplied byT< in order to illustrate its character- ; X
o L : e.g., Eq(38)], where the corresponding rate was obtained for
istic low-temperature behavior given by E@3). SinceT, ; ) ;
= ) . . : bosons above the Bose-Einstein condensation temperature,
=0.1T for this value ofkg|al, the viscosity at high tempera-

tures is proportional td%2. This may be seen by combining the only modification being the change of sign in the equi-

. ST . librium distribution function. The resulting five-dimensional
the high-temperature relation=n,,kT7, with Egs.(19) and . ) . . : .
. . S : integrations were carried out numerically, with varying step
(22), which show thatr,, is proportional toT“ at high tem- ; : .
. 7 ) sizes until convergence was achieved.
peratures, resulting inp<T°< In the case of energy-

! . < . o The results shown in Fig. 2 and all following figures were
mde_pe.ndent scz_ittermgT?/2> Te) the high-temperature vis obtained for a total numbeX of particles given byN=2.8
cosity is proportional tar'<.

X 10°, which represents a typical value for the experiments
on 8Li reported in Refs[5-7]. We use the trap frequencies
for the cigar-shaped cloud of Ref6]—i.e., an axial
frequency w,=27X70 Hz and a transverse frequency

In order to apply these results to a trapped atomic cloud? =27 1550 Hz, giving an anisotropy ratio equal to

we now include the trap potential in the equilibrium Fermi >\=_|¢_0ﬁ/w¢=0|i945- . \axati e is sh .
function. We consider the harmonic-oscillator potential _ 'Ne resulling average viscous relaxation rate 1S Snown in
Figs. 2 and 3 for two different values of the paramégeal,

one characterizing the regime of weak coupling and the other
the regime near the unitarity limit, wheke is the magnitude
V(r) = T(w)Z(XZJr wly? + w?B). (25)  of the Fermi wave vector in the center of the trap. At low
2 Y temperatures the relaxation rates are proportiondPt@and
they exhibit in both cases a pronounced maximum at a tem-
perature somewhat beloW:. The asymptotic behavior at
The average viscous relaxation raterig defined by high temperatures differs in the two cases. Whefa is

B. Viscous relaxation rate of a trapped gas
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_ FIG. 3. (Color onling The average viscous relaxation raterl/ FIG. 4. (Color onling The average viscous relaxation rater1/
divided by the transverse trap frequensy as a function of tem-  gjyided by the transverse trap frequenay as a function of 1K|al
perature, folke|a|=5.5, corresponding to the experiment of R€l.  for four different temperatures. The parametd@i&T-=0.03 and

at a magnetic field of 870 G. The asymptotic temperature depenr/Ton_l correspond to the experimental conditions of RE],
dences are indicated by the dashed lines. The dotted line is thegspectively.

result obtained in the unitarity limjg| — c.

much less than unity, the average viscous relaxation rate deﬁzn?:nf:n?m/Z—andm(r) similarly denotes the nonequi-
creases as T/ at high temperatures. This may seem at odddibrium change in density for a single spin. The effective
with the fact that for a uniform gas %/ according to Eq. potential is thus the sum df and the harmonic oscillator
(19) is proportional toT*2 in this limit, sincec is indepen-  potential V(r) given by Eq.(25), yielding the equations of
dent of temperature. However, the average density in @notion

trapped gas is not a constant, but decreases at high tempera-

tures in proportion ta 32, resulting in an average relaxation ) p . AV +U)
rate proportional toT"*. When kg|a| is much greater than r=v= P p=- “a
unity, the temperature-dependent cross sectf?) causes

the relaxation rate to decrease even more strongly, in propor- Let us first establish some useful relations between equi-
tion to T™2. In the unitarity limit, whenja| approaches infin-  jibrium quantities. We consider the kinetic equation in equi-

|ty, the average viscous relaxation rate approaches a ||m|t|ngbr|um, where the right-hand side of EQ]_) vanishes, and
value indicated by the dotted curve in Fig. 3. This is furtherjngert the equations of motiof28), which results in

illustrated in Fig. 4 where we plot the average viscous relax-

(28)

ation rate as a function of k¢|a| for various temperatures. 0 PRI
We have normalized in Figs. 2—4 the viscous relaxation > | pi= - (?i +mg—)— =0 (29
rate to the transverse trap frequensy used in the experi- i=xy.z i Jr; ) op;

ments[6,7]. The limiting value of the average viscous relax- )
ation rate forlaj] — is seen never to be large compared to©': €quivalently,

o, which demonstrates that hydrodynamics cannot be ap- 0 0 0

plied to the transverse motion of the trapped atomic clouds in > {pw} => w,[(7, + mgai>

the normal phase. In the next section we determine the fre- 5y, | ioyz L\ i

quency and attenuation of the collective modes and obtain 0 0

results in support of this general conclusion. XM} (30)
P

Ill. FREQUENCY AND ATTENUATION
OF COLLECTIVE MODES For convenience we have here introduced the variable
We proceed now to extract the dispersion relation of thdi=Meif; in terms of which the potential i¥/(r)=T?/2m. If
low-lying collective modes by solving the linearized We now multiply Eq.(30) by Xp,p; and integrate over both
Boltzmann-Vlasov equatior{l) with an appropriate trial —POsition and momentum variables, we obtain
function®. The equations of motio(2) are maodified to take

into account the mean-field potentidl given b 2 2 2 m _
pean-fied potentialgiven by (o) - 6y + kT [ rind=0, (a1
U(r) =gn(r) =g[n“(r) + on(r)], (27)

whereg=4m%%a/m is the interaction constant. The density where(:--) denotes multiplication by°(1-f° and integra-
n® denotes the equilibrium density for a single spin—that istion over the whole phase space:
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d3
(= f & f oo A0, @2

Using fo(1 -9 =-(mkT/p)9f°/ dp, we can calculate analyti-
cally the integrals appearing in E1) and obtain the virial
theorem[16]

1 1 1
§Ekin - éEpot"' EEint =0. (33
Here
d3p p2
Exn=2 | d’ f —f° 34
kin f (271%)32m ( )

is the kinetic energy and

3 d°p 0
Epot=2 | dr 2 )3V(r)f (35
i FIG. 5. (Color online The temperature dependence of the pa-

is the potential energy, while rameter¢ given by Eq.(41) for different values ofkra. At high
temperature$| decreases ab /2

— 3 0\2
Sin gf o) (36 f9(1-f% and any of the term®?,y?, ... ,p> appearing ind,
and subsequently integrating over botAndp. The result is
a homogeneous set of nine coupled equations for the nine
coefficientsa,,ay, ... ,c, and the frequencies of the collective
modes emerge as the roots of the determinant. The details of
the calculation are given in the Appendix for the general case

an° i i .
&2p§> G - mg<7<2§/%> -0, (37) when all three trap frequencies are different

which wiI_I be us_ed in the Appendix to simplify the matri>§ IV RESULTS AND COMPARISON WITH EXPERIMENT
that we diagonalize to obtain the frequencies of the collective

modes.
To lowest order in the coupling constamtthe linearized
version of Eq.(1) reads

b ob (. an®\ o
—+ 2 o pi?‘ ri+mg_— |——
I

is the interaction energy.

If instead we multiply the equilibrium equatiof80) by
the combinatioﬁ(zypy and integrate as before, we obtain the
equality

In order to make contact with recent experimeffis7]
we consider an axially symmetric trap with=w,=w, and
w,=\w . We introduce the parameter

at i=x,y,z aFi api 3Eint
__mg il @) o T 4y
o1 -1 & ap ] O(1-19)’

where n® as before denotes the equilibrium density for a
single spin while the corresponding nonequilibrium chang
in the density is

which, as we shall see, determines the sign and relative mag-
“hitude of the frequency shifts. We shall expand our results to
first order in¢, since our mean-field treatment of the interac-
d’p 0 0 tion in the streaming terms of the kinetic equation is only
éh:f (zﬂ,h)gf (1-f)P. (39 valid when|g is small compared to unity. The temperature
dependence of is shown in Fig. 5. In accordance with our
We shall in the following consider modes for which the drift first-order treatment of the mean field we calculatey ap-
velocity u has a spatial dependence given lgy<r;. The  proximating the equilibrium Fermi function, which enters
deviation function® of a fluid moving with velocityu is  Ej, as well asE;, by its value in the absence of interaction.
proportional tou-p. Since acting oru-p with the left-hand At high temperatures one finds from Hg) that|& o« T2,
side of Eq.(1) generates terms likg?, p)z(, etc., we follow since the interaction enerdy,, in the classical regime is

Ref.[17] in choosing the trial function as inversely proportional to the volume of the cloud;,
B _ ~ «T-3/2) while the potential energy is proportional to the
<I>:e"°‘,2 (aF7 +bFip; + cipf). (40 temperature.
i=x,y,z

The determinant of the matrix, which is derived in the
We insert this ansatz into the kinetic equati@®8) and  Appendix, has the form of a polynomial in the frequeney
calculate moments by multiplying with the product of The vanishing of the determinant yields the equation
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2
cl

0=o[(w?- a)ﬁd) —ionw’ - w?)]
X[((DZ - a)ﬁm)(a)z - wﬁd—) - in(wz - C0§|+)(w2 - wé-)],
(42)

wherer is defined by Eq(26). Note that the average viscous
relaxation rate 1# depends on temperature as illustrated in
Figs. 2—-4.

In general, the solutions to E¢42) have a real and an
imaginary partw=Re&w) +i Im(w), which determine the fre-

quency and the damping of the collective modes, respec:

tively. The(purely real frequencies appropriate to the hydro-
dynamic limit, v7— 0, are denoted by subscrifitd), while
those for the collisionless limiipr— o, carry the subscript
(cl). To first order in&, we find

iy = 207, (43
2 _ 42 §
wg =40 | 1- 2/ (44)
Whys 5+’ y AN -N5F ) +25%y)
w3 £5 6y ’
(45)

with y=(25-322+16\%)Y2 For\ <1 the latter are approxi-
mately given by

wﬁd+: wi(l + g) (46)
and
12
Wiy = Ew§(1+250>. (47

The modes labeled- and — are the transverse and axial

PHYSICAL REVIEW A 71, 033607(2005

2.05} - -- no mean field |
' Collisionless, £=0 — with mean field
O experiment
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FIG. 6. (Color online The calculated frequency of the trans-
verse(+) mode as a function of temperature, with and without the
mean-field correction for values & less than or equal to 0.5. The
experimental values from Rd#6] are indicated for comparison with
the mean-field-corrected curve, with the estimated error bars
included.

of the frequency shifts caused by the interaction cannot be
trusted beyond first order i, our results are in essential
agreement with those of Ref12]. Our work thus extends
that of Ref.[12] in the sense that we determigeand  as
functions of temperature, thereby allowing a direct compari-
son with experiment.

In Fig. 6 we plot the calculated frequency as a function of
temperature fokga|=5.5, which corresponds to the param-
eters used in Ref6], along with their experimental values.
Since we assumig| to be small compared to unity, we show
the mean-field curve only in the temperature region whére
is less than 0.5. There is a clear discrepancy between

modes, respectively, which are studied in the experimentg,. cajculated frequency and the experimental result at

[5-7].
In the collisionless limit we obtain, for elongated traps
(A<1),

w3y = b0, (48)
wg,_:4w§<1 -f) (49)

while, for spherical trapgh=1),
ozaed(1+£), 0
wﬁ,_:4wi<1—§>. (52)

These results, valid to first order if) are in agreement
with those of Pedrét al.[12] when expanded to first order in

T=1.15T and further work is needed to understand the ori-
gin of this. From the point of view of theory it appears im-
plausible that allowance for medium effects, leading to
modification of the cross sectidi4), would resolve the dis-
crepancy at this high temperature. The corresponding results
for the damping, given by the imaginary part of the fre-
quency, are shown in Fig. 7. The dashed curves in Figs. 6
and 7 illustrate the changeover between the collisionless re-
gimes at high and low temperature, but should not be com-
pared to experiment since they do not include the effects of
the mean field. In order to compare with the experimental
data below 0.%: in Figs. 6 and 7, it is necessary to improve
our treatment of the interaction effects in the streaming terms
of the kinetic equation.

In Figs. 8 and 9 we show results for the real and imagi-
nary parts of the frequency of the axial mode. Since
w,<w , there is a broad temperature region where the sys-
tem behaves hydrodynamically. The damping shows a

&, but our results differ to second and higher order. This isdouble-peak structure that reflects, as temperature is lowered,

understandable since the form of Eg40) is more general
than the scaling ansatz used in Réf2], which involves six

the transition between the different regimes, from collision-
less to hydrodynamic and back to collisionless behg\vior.

rather than nine parameters. However, since our calculatiohhe mean-field corrections in Fig. 8 are seen to be much
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FIG. 7. (Color onling The inverse damping _rate of th_e trans- mo'c:i:aGés?'a(f‘:uori?::igglEfet;—nllzzlarr‘;teurf; damping rate of the axial)
verse(+) mode as a function of temperature, with and without the
mean-field correction. The mean-field-corrected curve is plotted for =~ . ) ) o
values ofl less than or equal to 0.5. The experimental values from@tion is proportional to the viscous relaxation rate, which is
Ref.[6] are indicated for comparison with the mean-field-correctedSmall compared to the oscillation frequency. If hydrodynam-

curve.

smaller than those of Fig. 6, in agreement with E¢$) and

(47).

V. SUMMARY AND CONCLUSIONS

ics is applicable, the viscous relaxation rate must be much
larger than the oscillation frequency, and the rate of attenu-
ation is then proportional to the oscillation frequency
squared times the viscous relaxation time. Our treatment in
the present work applies to both limits as well as to the
intermediate regime and yields results that allow for a direct
comparison between experiment and theory.

We have demonstrated that for a normal Fermi gas over

Starting from a kinetic equation for the semiclassical dis-most of the temperature range studied experimenfaiy],
tribution function we have calculated the viscous relaxatiorhydrodynamic theory does not apply even at the unitarity
rate which determines the frequency and attenuation of colimit for the transverse oscillations. It would be interesting to
lective modes. By including interaction effects as a mearstudy further the behavior of the gas very near the unitarity
field in the streaming terms, we have solved the kinetic equalimit, for both negative and positiva, by more extensive
tion using a moment method which takes the conservatiomeasurements of the oscillation frequencies at a fixed mag-
laws into account and provides an accurate account of theetic field as a function of temperature, thereby testing the
damping. Deep in the collisionless regime the rate of attenupredicted shifts in frequency and attenuation over a broad

2.1¢ Collisionless, £=0 - -+ no mean field

—— with mean field

107 107" 10° 10"
T,

FIG. 8. (Color onling The frequency of the axidl-) mode as a
function of temperature.

range of temperatures.

ACKNOWLEDGMENTS

The authors thank Evgeni Kolomeitsev and Christopher J.
Pethick for useful discussions.

APPENDIX: MOMENTS OF THE BOLTZMANN-VLASOV
EQUATION

In this appendix we provide details of the calculation of
the 9X 9 matrix, from which the frequencies and damping
rates can be extracted.

First we state some useful identities involving the mo-
mentum variablesp, and the rescaled position variables

Ti=majr; (i=X,Y,2),

(pipd) = 3pip}), (A1)
together with
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1
(PEp}) = SMPKTEn (A2)
and
22 _1 5
i) = Sk T B (A3)
From these it follows that
&2p>2(> — E@t Epot _ 1 (A4)
<p>2<p)2/> Exin pot 3Elnt/2 1- f

Similar identities hold for the other componentspandT.

They are valid both in the presence and absence of the mean .

field in the equilibrium Fermi functior®.

The following identity holds when the mean field is ne-

glected in the equilibrium Fermi function,

d;p J : ( a;)
d’r X% — mkT:
2 )3 rxn m %

mgx°n% =mg f

0 2
= m2kTgf d?’r[(no)z +7(%n0} = m?kTEint:
(A5)
and implies that
mg(x°n°

In order to obtain the matrix determining the collectiv
modes we insert Eq40) into Eq. (38) and start taking mo-
ments of Eq.(38) with X2, resulting in

—iw[(3ay + a, + ag) (X2 + (C; + Cy + Ca) (X°p))]

+ wxblAl + wyb2A2 + (,()Zb3A3 =0. (A?)

PHYSICAL REVIEW A 71, 033607(2005

The constantA; also vanishes for the same reasonAgs
Collisions do not appear in EGA7) since the combinations

T? (as well ag;p)) are collision invariants—i.el[f?]=0. We

now divide Eq. (A7) by (X%p2. Since the integral
mg(y>xan®/ X) appearing in Eq(37) only introduces fre-
quency shifts of second order § we use here the approxi-
mation (x%y%)/(x?p2) = 1. This yields
—iw[3a;+a,+ag+Cc +C+C3] - 2w,b; =0. (A8)
Next we proceed to take moments wip, and obtain
— iy () + w,[2(pF)(a; — ¢y) + ¢MPkTEy +B] =0,
(A9)

whereB is given by

B=-m L<f°+’“6’f0>
- (1 - ) x
e
== mg<5'(2n0> E g — kTEmt 2 G.
i=x,y,z i=x,y,z

Dividing Eq. (A9) by (X?
—iwby+w,(2-§(a; -

p2), we obtain
C1) —&(ay+Cy+ a3 +cy)]=0.
(A10)

Finally we take moments Wlthx Unlike T r andT;p, the

e quantltlespI are not separately coII|S|on mvarlants By ex-

ploiting the fact that the surpx+ py+ pZ p? is indeed a col-
lision invariant we arrive at the equation

—iw[(1-8 Hay+a,+ag) + (3+4i/3w7C,
+ (1 - 2/3(,07')((:2 + C3)] + wabl =0 (All)
where 7 is given by Eq.(26). Equations(A8), (A10), and

Using the identities given above and Eg7), we find (A11) form, respectively, the first, second, and third lines of
our system of coupled equations. The other six equations

may be obtained from the three given above by simple per-

Ay = GCp2) - (%) - mg< 3';’;0>:—2&2p§>,

mutation of the indices.
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