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We study the diffraction of atoms and weakly bound three-atomic molecules from a transmission grating at
non-normal incidence. Due to the thickness of the grating bars, the slits are partially shadowed. Therefore, the
projected slit width decreases more strongly with the angle of incidence than the projected period, increasing,
in principle, the experimental resolution. The shadowing, however, requires a revision of the theory of atom
diffraction. We derive an expression in the style of the Kirchhoff integral of optics and show that the diffraction
pattern exhibits a characteristic asymmetry which must be accounted for when comparing with experimental
data. We then analyze the diffraction of weakly bound trimers and show that their finite size manifests itself in
a further reduction of the slit width bys3/4dkrl wherekrl is the average bond length. The improved resolution
at non-normal incidence may in particular allow us to discern, by means of their bond lengths, between the
small ground state of the helium trimerfkrl<1 nm, Barletta and Kievsky, Phys. Rev. A64, 042514s2001dg
and its predicted Efimov-type excited stateskrl<8 nm, ibid.d, and in this way to experimentally prove the
existence of this long-sought Efimov state.
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I. INTRODUCTION

The combination of two unique features makes matter-
wave diffraction of noble gas trimers an outstanding enter-
prise. First, diffraction presently is the only experimental
technique which allows one to detect such very weakly
bound clusters and to determine their propertiesf1–3g. Sec-
ond, the helium trimer4He3 is the only molecule predicted to
possess an Efimov-type bound statef4–6g under normal con-
ditions f7g.

Only recently did diffraction of atomic and molecular
beams evolve towards a precise experimental technique.
Early pioneering experiments had proved diffraction for a
sodium beam through a grating initially fabricated for x rays
f8g, as well as for metastable heliumf9g and for neonf10g
through micrometer double slits. Later, transmission gratings
with a period ofd=200 nm had brought an improvement, but
finally the production of reliable nanoscale transmission grat-
ings with a period of onlyd=100 nmf11g paved the way for
quantitative matter diffraction experiments with an unparal-
leled spatial coherence across up to 100 slits for a helium
atom beamf12g. Unprecedented, matter diffraction also al-
lows one to investigate the coherence properties of very
heavy molecules with many internal degrees of freedom such
as fullerenesf13,14g.

Classical wave optics can merely serve as an approxima-
tion to the underlying physical scattering process of atom
diffraction. The hierarchy of the diffraction peak intensities
in a diffraction experiment with neutral atoms or molecules
is significantly affected by the weak van der Waals surface
force, which acts on atoms in the vicinity of the material
grating. This was included in a quantitative theory in Refs.
f15,16g which allowed one, in comparison with experimental
data, to characterize this surface force for the noble gases
helium, neon, argon, and krypton and the covalently bound
D2 moleculef12g, as well as for metastable helium and neon
f17g.

Moreover, there is no analog in wave optics for the dif-
fraction of weakly bound small noble gas van der Waals
clusters such as the helium dimer4He2 and trimer4He3. Ex-
perimental evidence for these delicate molecules was for the
first time unambiguously provided through the mass-
selective property of grating diffractionf2g. Moreover, the
comparatively large interatomic distance ofkrl=5.2 nm in
4He2, implied by the small binding energyEb=−1.1 mK f3g,
was shown to manifest itself as an apparent narrowing of the
grating slits by1

2krl. It was this size effect which rendered
possible the determination ofkrl from experimental diffrac-
tion dataf3g. This allowed for comparison with modern re-
alistic helium-helium potentials of Refs.f18,19g.

Numerical studies of the helium trimer relying on these
helium-helium potentialsf4–6,20–28g and quantum Monte
Carlo simulationsf29g as well as quantum chemicalab initio
calculationsf30g have long predicted two bound states for
4He3: a ground state at −126 mK and a shallow excited state
at −2.3 mKf4g. Moreover, the excited state is believed to be
an Efimov-type state. Originally in the context of nuclear
physics, Efimovf31g had shown that if the scattering length
of a pair potential exceeds the effective range of the potential
by far, then a universal series of bound states exists in the
three-body system near the dissociation threshold. Examples
for such Efimov states, however, have been searched for in
vain in three-nucleon systems, leaving the three-atomic he-
lium molecule presently as the only candidate.

The 4He3 excited state cannot experimentally be distin-
guished from the ground state by its mass. However, due to
the large difference in binding energy, both predicted states
have markedly different interatomic distances:krl=0.96 nm
in the ground state andkrl=7.97 nm in the excited statef4g.
Therefore, the size effect, which had previously played the
essential role in the dimer diffraction experiment and which
we show to be3

4krl for a trimer, is expected to render the two
states distinguishable. Bruchet al. have analyzed the mole
fraction of small helium clusterssincluding atomsd in a
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nozzle beam diffraction setup and showed that up to 7% can
be trimersf32g. This should be an ample amount for a quan-
titative analysis. The population ratio of ground-state versus
excited-state trimers in the beam is, however, not known. It
is therefore essential to provide sufficient experimental reso-
lution for the small ground state in order to evaluate diffrac-
tion data from a mixed beam. A limitation in the resolution is
posed by the period of the grating,d=100 nm, and the slit
width, typicallys0=60 nm, which are both large compared to
the ground-state size. Transmission gratings with smaller pe-
riods and slit widths are, however, presently not available.

To address this issue we consider diffraction from a cus-
tom transmission grating at obliquesnon-normald incidence;
i.e., the grating is rotated by an angleu8 about an axis par-
allel to its bars. The grating typically consists of at
<120 nm thick layer of silicon nitride into which the slits
have been etched in a lithographic production processf11g.
As the grating is rotated the upstream edges of its bars cut
into the incident beam, partially shadowing the slits. By this
effect the projected slits' width sperpendicular to the inci-
dent beamd decreases more strongly withu8 than the pro-
jected periodd'. Since the diffraction pattern is roughly gov-
erned by the squared slit functionf33g

Fsinsnps'/d'd
snps'/d'd G2

,

where n denotes the diffraction order, one expects that at
non-normal incidence more atoms or molecules are dif-
fracted into higher diffraction orders. For example, att
=120 nm and an angle of incidencesrotation angled of u8
=21° the ratiod' /s' is twice as large asd/s0 snormal inci-
denced while the diffraction angles, to good approximation,
only increase by the ratiod/d'. This effect increases the
experimental resolution. Due to the shadowing, however, the
fundamental results obtained earlier for atom diffraction at
normal incidence cannot be carried over unchanged.

While we illustrate our results using the experimentally
most interesting case of helium trimer diffraction, the general
findings of this work equally apply to other weakly bound
trimers, possibly consisting of nonidentical atoms. The ar-
ticle is structured as follows. In Sec. II we derive, from quan-
tum mechanical scattering theory, the transition amplitude
for an atom diffracted from a bar of finite thickness. In Sec.
III we construct a periodic transmission grating from many
bars and introduce the notion of a slit at non-normal inci-
dence. We show that if the slits are not aligned with the
direction of periodicity, a characteristic asymmetry of the
diffraction pattern arises which went unnoticed in a previous
experimentf35g. The asymmetry is relevant for the precise
evaluation of experimental data. In Sec. IV we outline the
general scattering theory approach to trimer diffraction and
work it out in Sec. V for non-normal trimer diffraction from
a grating. In Sec. VI we provide the link between diffraction
data and the trimer bond length and discuss aspects of a
helium trimer diffraction experiment.

II. ATOM DIFFRACTION FROM A DEEP BAR

In a typical beam diffraction experiment with an average
beam velocity of the order ofv=500 m/s the kinetic energy

per atom is a few tens of meV, much less than the electronic
excitation energies of the atom. Therefore, we treat atoms as
point particles and neglect their electronic degrees of free-
dom throughout this article. The de Broglie wavelengthldB
associated with the atomic motion is typically of the order of
0.1 nm whereas a typical length scale of the scattering object
is d=100 nm. We shall, in the following, refer to this relation
as thediffraction condition:

ldB ! d. s1d

The free Hamilton operator for an atom of massm is
H0= p̂2/2m. The interaction between the diffracting object
and the atom will be described by a Lennard-Jonesf36g type
surface potentialWsxd wherex is the position of the atom.
This interaction exhibits a strongly repulsive core at a dis-
tancel from the diffracting object of the order of the atomic
diameter, and it passes into a weak attractive −C3/ l3 van der
Waals potential atl *1 nm f12,37g. Due to the low kinetic
energy of the atoms in the beam, it is sufficient for the pur-
poses of this work to model the repulsive part of the inter-
action by a hard core. The attractive part will be omitted for
the moment and will be be included later in Sec. III.

Generally, the scattering stateup8 , +l for an atom with
incident momentump8 and positive energyE8= up8u2/2m sat-
isfies the Lippmann-Schwinger equationf38g

up8, + l = up8l + G0sE8 + i0dWup8, + l, s2d

whereG0szd=fz−H0g−1 is the free Green’s function or resol-
vent. Denoting the atom transition amplitude associated with
the potentialW by

tatsp;p8d = kpuWup8, + l, s3d

where p=p8+Dp is the outgoing momentum andE
= upu2/2m, theS matrix element has the usual decomposition
f38g

kpuSup8l = ds3dsp − p8d − 2pidsE − E8dtatsp;p8d. s4d

In many applications the diffraction object may be effec-
tively regarded as translationally invariant along one direc-
tion whence the diffraction process can be treated in two
space dimensions. This is the case, for instance, for diffrac-
tion from a slit if the vertical spread of the focused atom
beam is much less than the physical height of the slit. In this
article we shall always assume the scattering object to be
translationally invariant along thex3 axis. To adapt the nota-
tion, we denote the two-dimensional projections into the
sx1,x2d plane of all three-dimensional vectors, such asp, by
their corresponding italic letters, such asp. As scattering
does not occur along thex3 axis a delta functiondsDp3d
expressing momentum conservation can be extracted from
Eq. s3d, leaving a two-dimensional transition amplitude
tats2dsp;p8d which satisfies

tatsp;p8d = dsDp3dtats2dsp;p8d. s5d

In order to derive an expression fortats2dsp;p8d we project
Eq. s2d into configuration space. The full wave function
csk8 ,xd=2p"kx up8 , +l, wherek8=p8 /", is a sum of the in-
cident partcincsk8 ,xd=2p"kx up8l and the scattered part
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cscattsk8,xd = 2p"kxuG0
s2dsE8s2d + i0dWup8, + l. s6d

Here, E8s2d= up8u2/2m, and the two-dimensional Green’s
function, or resolvent, isG0

s2dszd=fz− p̂2/2mg−1.
If the scale of an object is large compared to the wave-

length of visible light it is well known that the diffraction
about the forward direction depends only on itsstwo-
dimensionald silhouette as seen from the direction of the il-
luminating light—e.g., as for a disk and a ball. In two dimen-
sions the silhouette of a diffraction object is simply a straight
line, here called a shadow linesline A in Fig. 1d, and, as in
optics, due to the diffraction conditions1d the scattered part
cscatt of the wave function can be approximated at small
scattering angles about the forward directionf39g. Neglect-
ing the attractive part of the potentialWsxd the repulsive hard
core imposes Dirichlet boundary conditions on the circum-
ference of the diffracting object. Denoting the Green’s func-
tion in configuration space by

G0
s2dsuk8u;x,x8d = −

"2

2m
kxuG0

s2dsE8s2d + i0dux8l s7d

and using the Green theorem one finds, after some algebra,

cscattsk8,xd . E
A

da2FG0
s2dsuk8u;x,ad

]

]a1
cincsk8,ad

− cincsk8,ad
]

]a1
G0

s2dsuk8u;x,adG
a1=0

. s8d

Here,da2 is the infinitesimal line element alongA and] /]a1
denotes the normal derivativescf. Fig. 1d. The Green’s func-
tion s7d can be expressed in terms of a Hankel functionsf40g,
Chap. 3.10d:

G0
s2dsuk8u;x,x8d =

i

4
H0

s1dsuk8uux − x8ud. s9d

Using the asymptotic expansionsf41g, Chap. 9.2d

H0
s1dsuk8uux − x8uduxu → `

, Î 2

puk8u
e−i uk8ux8·x/uxue

isuk8uuxu−p/4d

Îuxu
,

s10d

the far-fieldsFraunhoferd limit of cscattsk8 ,xd can readily be
calculated. Inserting the expansion into Eq.s8d shows that
the vectork= uk8ux / uxu in the first exponential should be iden-
tified with the outgoing wave vector andp="k with the out-
going momentum. Comparing this expression with the far-
field limit of Eq. s6d one arrives at the two-dimensional
transition amplitude

tats2dsp;p8d = −
i

2

pa1
+ pa1

8

s2pd2m"
E

−A/2

A/2

da2e
−iDpa2

a2/" s11ad

=−
i

2

pa1
+ pa1

8

s2pd2m"

sinsDpa2
A/2"d

Dpa2
/2"

, s11bd

whereA denotes the length of the shadow lineA. Further-
more,pa1

8 is the momentum component ofp8 normal to the
shadow line andpa2

8 is the parallel componentscf. Fig. 1d. In
accordance with the Babinet principle, the transition ampli-
tude shows the characteristic behavior of an optical slit func-
tion. The Babinet principle of wave optics states that two
complementary objects, such as a slit and a bar of the same
width, cause the same diffraction pattern outside the direc-
tion of illumination sforward scatteringd f33g.

III. ATOM DIFFRACTION FROM A DEEP GRATING

A. Atom slit function of the deep grating

In diffraction experiments one often employs transmission
gratings to enhance the measurable diffraction peak intensi-
ties by a factor ofN2, whereN is the number of coherently
illuminated bars. One grating bar is simply a special case of
the general scattering object considered in the previous sec-
tion. In the following we arrangeN identical bars to create a
regularly spaced periodic transmission grating. While the
simplest and most familiar situation in which the bars are
aligned along their common shadow linesa2 axis; cf. Fig. 1d
is treated in virtually every textbook on opticsse.g., Ref.
f33gd, we are not aware of a more general treatment where
the individual shadow lines are not parallel to the alignment
axis. This situation arises naturally, however, for diffraction
from a grating with bars of finite thickness at nonzero angle
of incidencescf. Fig. 2d. We note that apart from the period
an additional length scale of the grating is given by the dis-
tance between the bars. Depending on the angle of incidence
the sprojectedd distance can become small or even zero. The
diffraction condition s1d, which must hold for all length
scales, therefore also imposes a limit on the maximal angle
of incidence.

FIG. 1. Two-dimensional geometry of atom diffraction from a
diffraction objectsbard of finite thickness. The incident momentum
of the atom is denoted byp8. The straight shadow lineA, which
plays the role of the silhouette, divides the bar into an “illuminated”
part and a “shadowed” part. Also drawn is the adapted coordinate
systemsa1,a2d with the a2 axis centered along the shadow line.
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Under the diffraction condition the transition amplitude of
a grating ofN bars with periodd along thex2 axis can be
written as the coherent sum of the spatially translated ampli-
tudes of each bar:

tgra
ats2dsp;p8d = o

n=0

N−1

e−ifn−sN−1d/2gDp2d/" tats2dsp;p8d s12ad

=HNsDp2dtats2dsp;p8d. s12bd

In the second line, the sum has been carried out and replaced
by the grating functionf33g

HNsDp2d =
sinsDp2dN/2"d
sinsDp2d/2"d

, s13d

whose argument is the momentum transfer along the direc-
tion of periodicity x2. Equations12d yields, in principle, a
satisfactory description of the diffraction problem in terms of
atom scattering from a bar. The literature on optics, however,
commonly adapts a complementary point of view by focus-
ing on the aperturessslitsd between the bars rather than on
the aperture stopssbarsd themselves. This is expressed, for
example, by the Kirchhoff integral of opticsf33g. In recent
work this viewpoint has also proven very useful in the field
of atom and molecule diffraction from a transmission grat-
ing: small quantum mechanical effects such as the van der
Waals interactionf12,17g between the atoms in the beam and
the grating as well as the finite size of the helium dimerf3g
manifest themselves as an apparent reduction of the slit
width of the grating. In these articles the respective quanti-
ties could be determined quite precisely by comparison of
the reduced slit width with the true geometrical slit width.
Unlike for grating diffraction at normal incidence, however,
it is initially not evident how to define a slit in the case of

non-normal incidence: the correct choice may depend on the
angle of incidence. We provide, therefore, a mathematical
prescription which converts Eq.s12d into an expression in
the style of the Kirchhoff integral. This is achieved by intro-
ducing, between every pair of adjacent bars, a new coordi-
nate systemss1,s2d as depicted in Fig. 2 such that thes2 axis
meets the boundaries of the two bars at their respective
shadow lines. The length of the resulting straight “slit line”S
will be denoted byS0. We now substitute the integration
variablea2 of Eq. s11ad by

s2 =
Dpa2

Dps2

Sa2 ±
A

2
D ±

S0

2
asa2 + 0,

whereDps2
denotes the momentum transfer parallel to thes2

axis. Similarly, we denote the components of the incident
and outgoing momenta with respect to thes1 axis byps1

8 and
ps1

, respectively.fAn explicit expression for these momen-
tum components in terms of the geometry of the grating will
be given below in Eqs.s27d and s28d for the transmission
grating of Fig. 4.g Using the identities

Dpa2
A + Dps2

S0 = Dp2d, s14ad

pa1
+ pa1

8

Dpa2

=
ps1

+ ps1
8

Dps2

=
p1 + p18

Dp2
, s14bd

which hold because of energy conservation, and the abbre-
viation D=dDp2/Dps2

, the transition amplitude of the single
bar, Eq.s11ad, becomes

tats2dsp;p8d = −
i

2

ps1
+ ps1

8

s2pd2m"HeiDp2d/2"E
S0/2

D/2

ds2e
−iDps2

s2/"

+ e−iDp2d/2"E
−D/2

−S0/2

ds2e
−iDps2

s2/"J . s15d

Keeping in mind that the integration variables2 was substi-
tuted fora2 for a single bar the following geometrical inter-
pretation is possible: in the integral fromS0/2 to D /2 in Eq.
s15d the variables2 represents the position along the upper
half of the slit lineS on one side of the bar; similarly, in the
integral running from −D /2 to −S0/2 , s2 is the position
along the lower half of the next slit line at the other side the
bar. Inserting Eq.s15d into Eq. s12ad the half slit lines of the
N adjacent bars can be joined to yieldN−1 slits between
them. Collecting all terms and introducing a “slit function”

aatsp8;Dps2
d =E

−D/2

D/2

ds2 exps− iDps2
s2/"dtatsp8;s2d,

s16d

where the transmission functiontatsp8 ;s2d inserted here is
unity inside the slitS and zero otherwise, the transition am-
plitude of the grating can be written, forN@1, as

FIG. 2. Geometry of atom diffraction from a grating of identical
deep bars with periodd along thex2 direction. The slit lineS, which
connects the shadow linesA of adjacent bars, provides a generali-
zation of the notion of a slit at normal incidence. It lends itself to
the application of the Huygens principle. Also drawn is the adapted
coordinate systemss1,s2d with the s2 axis centered along the slit
line and the anglea by which the coordinate systemssx1,x2d and
ss1,s2d are rotated with respect to each other.
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tgra
ats2dsp;p8d . −

i

2

ps1
+ ps1

8

s2pd2m"HsinsDp2Nd/2"d
Dps2

/2"

− HN−1sDp2daatsp8;Dps2
dJ . s17d

The first term in curly brackets is sharply peaked about the
forward direction, and in the limitN→`, using Eq.s14bd, it
simply reduces to 2p"sp1/ps1

ddsDp2d. The second term,
which is a product of the grating functions13d and the slit
function s16d, generates the familiar diffraction pattern of a
grating f34g. The nth-order principle diffraction maximum
appears at the momentum transfer

Dp2 =
n2p"

d
.

Introducing the angle of incidenceu8 such that p18
= up8ucosu8 and p28= up8usinu8 scf. Fig. 2d and, equivalently,
the diffraction angle u such that p1= upucosu and p2
= upusinu, the nth order is located at the angleu=un satisfy-
ing

sinun = sinu8 +
n2p"

up8ud
. s18d

Generally, the diffraction intensities are proportional to the
scattering matrix elementukpuSup8lu2 where the components
of the outgoing momentump must be evaluated at the angle
un. Inserting Eq.s17d into Eq. s4d one finds, after some
algebra,

In = I0Sps1
+ ps1

8

2ps1
8

D2uaatsp8;Dps2
du2

uaatsp8;0du2
, s19d

where the intensityI0 of the zeroth diffraction order serves as
a normalization constant depending on the experimental
counting rate and where, from Eq.s16d, uaatsp8 ;0du2=S0

2 sin
the absence of the van der Waals interaction considered be-
lowd.

We now discuss the intensity formula, Eq.s19d, to explain
the origin of the asymmetry of the diffraction pattern. The
slit function aatsp8 ;Dps2

d is an even function of the momen-
tum transfer componentDps2

. The geometrical factorsps1
+ps1

8 d2/ s2ps1
8 S0d2 sthe componentps1

depends onDps2

through conservation of energy and momentumd can be
shown to introduce, for positive incident angleu8, a slight
attenuation of the slit function at positiveDps2

and likewise
an intensification at negativeDps2

. The product of the slit
function and the geometrical factor serves in Eq.s19d as an
envelope function which is probed by the grating function at
the momentum transferDp2 rather than atDps2

. SinceDps2
andDp2 are not proportional to each other, this probing is not
symmetric for positive and negative diffraction angles. This
is depicted in Fig. 3, and it leads to the characteristic asym-
metry of the diffraction pattern of a deep grating at non-
normal incidence. ExpandingDps2

, using Eq.s14bd, into a
power series insDp2/cosu8d through second order,

Dps2

cossa + u8d
.

Dp2

cosu8
+

tanu8 − tansa + u8d
2up8u

S Dp2

cosu8
D2

,

s20d

the leading nonlinear term is seen to vanish likeDp2/ up8u
relative to the linear term. Accordingly, the asymmetry is less
pronounced for smaller diffraction orders, for faster beams,
and, in the case of molecules, for heavier molecules. While
at up8u /"=10 nm−1 scorresponding to a4He beam atv
<160 m/sd, as seen in Fig. 3, the quadratic term in Eq.s20d
is responsible for a ±8% deviation of the positive and nega-
tive fifth diffraction orders, respectively, its contribution re-
duces to ±0.7% atv=1800 m/s. This smallness explains
why the asymmetry has previously been missedscf. Fig. 5 in
Ref. f35gd. Clearly, in the thin grating limita→0 the mirror
symmetry is recovered in Eq.s20d.

In the derivation so far no comment has been made about
the inclusion of the attractive van der Waals interaction be-
tween the atom and grating. It can be accounted for through
the transmission functiontatsp8 ;s2d in the slit functions16d
as outlined in Appendix and in Refs.f12,15g. Unlike the case
of normal incidence, at non-normal incidence the influence
of the van der Waals interaction may be different on each
side of the slit, introducing, in principle, an additional source
of asymmetry to the diffraction pattern. Numerical compari-
sons using the explicit expression of the Appendix for the
transmission function demonstrate, however, that this effect
is minor.

FIG. 3. Asymmetric probing of the envelope function by the
grating function at non-normal incidence. Both curves show the
productsps1

+ps1
8 d2/ s2ps1

8 S0d2uaatsp8 ;Dps2
du2 as it appears in Eq.s19d

versus the momentum transferDps2
. The solid curve refers to the

positive values ofDps2
on the horizontal axis. The dashed curve

refers to the negative values ofDps2
which have been mirrored onto

the positive axis for comparison. The circles and triangles on top of
the solid and dashed curves, respectively, mark those values ofDps2
where the grating functionHNsDp2d probes the slit function—i.e.,
whereDp2=n2p" /d is satisfied forn=0, ±1, ±2,… . Their inten-
sities correspond to the measurable diffraction peaks. For the cal-
culation of this figure the grating cross section of Fig. 4 was used
with the beam parametersu8=21° andup8u /"=10 nm−1.
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B. Atom diffraction pattern of the deep grating

The quantitative evaluation of experimental diffraction
data requires one to determine a set of parameters describing
the geometry of the particular gratingscf. Fig. 4d as well as
the van der Waals interaction coefficientC3 scf. The Appen-
dixd. Previous work has shown that an immediate numerical
fit of Eq. s19d to experimental data does not reliably deter-
mine these parameters. Analogous to the procedure devel-
oped in Ref.f12g for diffraction at normal incidence we
therefore introduce a two-term cumulant approximation of
the slit function. To this end we rewrite Eq.s16d as

aatsp8;Dps2
d =

"

iDps2

HeiDps2
S0/2"F−SDps2

"
D

− e−iDps2
S0/2"F+SDps2

"
DJ , s21d

where the functionsF+skd andF−skd are defined by

F±skd =
71

tatsp8;0dE0

S0/2

dj e±ikj tat8Xp8; ± SS0

2
− jDC .

s22d

Here, tat8sp8 ;s2d denotes the derivative of the transmission
function with respect to its position argument. AsF±s0d=1
the logarithm ofF±skd can be expanded into a power series
of the form

ln F±skd = o
j=1

`
s± ikd j

j !
Rj

±. s23d

The complex numbersR1
± and R2

±, which are known as the
first two cumulants, are uniquely determined by Eqs.s22d
and s23d. One finds

R1
± =

S0

2
−E

0

S0/2

dj tatXp8; ± SS0

2
− jDC s24d

and

R2
± = SS0

2
D2

− sR1
±d2 − 2E

0

S0/2

dj j tatXp8; ± SS0

2
− jDC .

s25d

Using the explicit form of the transmission function derived
in the Appendix the length scale of the cumulants can be
shown to be set by the parameterÎC3/ s"vd. For helium and
a SiNx grating C3<0.1 meV nm3 f12g. Therefore, for the
purposes of this work it is sufficient to truncate the expan-
sion, Eq.s23d, after the second order. Inserting the first two
terms into the slit function, Eq.s21d, and introducing the four
quantities

Seff = S0 − ResR1
+ + R1

−d, D = ImsR1
+ + R1

−d,

G = ImsR1
+ − R1

−d, S =Î1

2
ResR2

+ + R2
−d,

thenth-order diffraction intensity relative to the zeroth order
is given, within this approximation, by

In

I0
=F ps1

+ ps1
8

2ps1
8 ÎSeff

2 + D2G2

expf− sDps2
Sd2/"2gexpf− GDps2

/"g

3
sin2fDps2

Seff/2"g + sinh2fDps2
D/2"g

fDps2
/2"g2 . s26d

Here, the momentum components are to be taken explicitly
at the angles

ps1
= up8ucossa + und, s27ad

ps1
8 = up8ucossa + u8d, s27bd

and the momentum transfer is given by

Dps2
= up8ufsinsa + und − sinsa + u8dg, s28d

where a denotes the angle shown in Fig. 4 by which the
coordinate systemss1,s2d is rotated with respect tosx1,x2d.
The diffraction intensity formulas26d is, though more com-
plicated, reminiscent of the result for normal incidence de-
rived in Ref.f12g: The long fraction involving the sine ofSeff
resembles the Kirchhoff slit function for a slit of “effective
width” Seff whose intensity zeros, though, are removed by the
hyperbolic sine function involvingD. The Gaussian expo-
nential reflects the suppression of higher diffraction orders.
The asymmetryInÞ I−n of the diffraction pattern is now em-
bodied by the asymmetry inDps2

as a function ofn in Eq.
s28d. The second exponential in Eq.s26d accounts for the
minor additional asymmetry in the diffraction pattern due to
the different influence of the van der Waals interaction on
both sides of the bar. A comparison of the diffraction inten-

FIG. 4. Geometrical cross section of a custom diffraction grating
as it has been used in matter diffraction experimentsf3,12g. The
parameters and their typical values are periodd=100 nm, slit width
s0=60 nm, thicknesst=120 nm, and wedge angleb=6°. The angle
by which the coordinate systemssx1,x2d andss1,s2d are rotated with
respect to each other satisfies cota=tanb+s0/ t andS0sina= t. At
the above parametersa<58°. The characteristic shape of the bars
is reminiscent of the lithographic production processf11g.
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sities calculated from Eq.s19d and the approximations26d is
displayed in Fig. 5.

By a numerical fit of Eq.s26d to experimental diffraction
data the effective slit widthSeff, among the other parameters,
can be determined accurately and allows for further compari-
son between theory and experiment along the lines of Ref.
f12g. For completeness, we note that

Seff = S0 − ReE
−S0/2

S0/2

ds2f1 − tatsp8;s2dg. s29d

This means that the geometrical slit widthS0 appears to be
reduced by the average deviation from unity of the transmis-
sion functiontatsp8 ;s2d.

IV. TRIMER DIFFRACTION THEORY

A trimer, in the scope of this article, is a three-atomic
molecule which is weakly bound by pair interactionsf42g.
Again, the atoms themselves are treated as point particles.
An additional three-body interaction between the atoms is
assumed to be negligible. Central to later applications will be
the helium trimer4He3 in which case at least these assump-
tions are expected to be validf30g.

A. Three-body bound states

The masses of the three atoms at positionsr i, for i =1,2,3,
will be denoted bymi and are assumed to be of the same
order of magnitude. The interaction between atomj andk is
modeled by a potentialv jksur s jkdud where r s jkd=r j −r k is the
relative coordinate. We introduce the Jacobi coordinates
R , rsid , r s jkd sketched in Fig. 6, which can be expressed in
block matrix form as

1R

rsid

r s jkd 2 =1
mi

M
1

mj

M
1

mk

M
1

1 −
mj

mj + mk
1 −

mk

mj + mk
1

0 1 − 1
21r i

r j

r k
2 ,

s30d

where1 and0 denote the 333 unit and zero matrix, respec-
tively, andM =m1+m2+m3 is the total mass. It is sufficient
to restrict the combinations of indices to the ascending per-
mutations

si jkd = s123d,s231d,s312d. s31d

The transformation between different sets of Jacobi coordi-
nates can be derived from Eq.s30d. It takes the form

1R

rs jd

r skid 2 = Js ji d1R

rsid

r s jkd 2 , s32d

where the block matrixJs ji d is given by

Js ji d =1
1 0 0

0 −
mi

mi + mk
1

mkM

smj + mkdsmk + mid
1

0 − 1 −
mj

mj + mk
12 . s33d

The three matricesJs ji d satisfy the relations detJs ji d=1 and
Js ji dJsikdJskjd=1. Expressed in Jacobi coordinates the Hamil-
ton operator for a free trimer is given byH0+V where

H0 =
1

2M
P̂2 +

M

2mismj + mkd
q̂sid2 +

mj + mk

2mjmk
p̂s jkd2,

V = vi jSUr̂sid −
mk

mj + mk
r̂ s jkdUD + v jksur̂ s jkdud

+ vkiSUr̂sid +
mj

mj + mk
r̂ s jkdUD . s34d

Here,P, qsid, andps jkd are the conjugate momenta associated

FIG. 5. Diffraction intensities of a helium atom beam atv
=500 m/s from ad=100 nm transmission grating as displayed in
Fig. 4 atu8=21° angle of incidence. The solid curve was calculated
using Eq.s19d; the dashed curve shows the two-term cumulant ap-
proximations26d. To guide the eye these functions are shown con-
tinuously. The circles on top of the solid curve at integern mark the
experimentally accessible diffraction ordersIn/ I0.

FIG. 6. One of three possible sets of Jacobi coordinates. The
vectorrs1d points from the center of mass of the subsystems23d to
atom 1. The vectorr s23d is the relative coordinate of the subsystem.
The coordinateR snot shownd corresponds to the center-of-mass
position and is, therefore, identical for all three sets.
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with R , rsid, andr s jkd, respectively. Denoting the eigenstates

of the center-of-mass momentumP̂ by uPl the full trimer
states can be written in product formuP,fgl;uPlufgl satis-
fying

fH0 + VguP,fgl = EuP,fgl, s35d

with energy eigenvalues

E =
uPu2

2M
+ Eg, s36d

whereEg is the negative binding energy of the trimer bound
stateuflg.

The representation of a trimer state by its wave function
depends on the particular set of Jacobi coordinates. Denoting
the common eigenstates of the relative momentum operators
q̂sid and p̂s jkd by uq ,pli,jk, whereq andp are the correspond-
ing eigenvalues, we introduce momentum-space wave func-
tions by

fg
si,jkdsq,pd = i,jkkq,pufgl. s37d

Because of the transformation, Eq.s32d, wave functions with
respect to different sets of Jacobi coordinates can be chosen
to satisfy the transformation relation

fg
si,jkdsqsid,ps jkdd = fg

s j ,kidsqs jd,pskidd. s38d

The corresponding configuration space wave functions
fg

si,jkdsr ,r d are defined analogously. In order not to overload
the notation we will omit in the following, where possible,
the indices of the relative coordinates: if not denoted other-
wise, we implicitly use si jkd=s123d whence r;rs1d , r
; r s23d andq;qs1d , p;ps23d.

Since the discovery of the Efimov effectf31g in 1970, the
helium trimer 4He3 has received much attention
f4–6,20–30,44–47g. This trimer is predicted to possess, apart
from its quite tightly bound ground statesEg=−126 mKd, a
weakly bound Efimov-type excited statesEe=−2.3 mKd f4g.
As both states have zero total angular momentum the corre-
sponding wave functions only depend on three coordinates
which may be taken asr= uru , r = ur u and the angle betweenr
and r . A common way to visualize trimer wave functions is
to draw the hyperspherical probability densityPsRd: The hy-
perradiusR, which is independent of the choice of the set of
Jacobi coordinates, is defined asm0Rsr ,rd2= 2

3mr2+ 1
2mr2

and the corresponding probability density can be calculated
according to

PsRd =E d3rd3r ufgsr,r du2d„Rsr,rd − R…. s39d

The purpose of the “mass” parameterm0 is to ensure that the
unit of R is length. The numerical value ofm0 is, in principle,
arbitrary as it simply scalesR. Figure 7 displays the hyper-
radial probability densities for the two helium trimer states,
usingm0/m= 1

2, which were calculated numerically from the
momentum-space Faddeev equationsf48,49g in the unitary
pole approximationf50g based on the TTY potentialf51g.

B. Scattering theory approach to trimer diffraction

We now proceed to the diffraction of a trimer from an
external potential

Wsr 1,r 2,r 3d = W1sr 1d + W2sr 2d + W3sr 3d, s40d

where theWisr id are the interactions of the individual atoms
with the diffraction object. The full Hamilton operator is
given by

H = H0 + V + W. s41d

By virtue of this structure, which is formally identical to that
of dimer diffractionf16g, we may carry over the fundamental
algebraic relations from previous work. Introducing, as in
Ref. f16g, the resolvents

G0szd = fz− H0g−1, s42ad

GVszd = fz− H0 − Vg−1, s42bd

GWszd = fz− H0 − Wg−1, s42cd

and the two-bodyT matrices in three-body space,

TVszd = V + VGVszdV, s43d

TWszd = W+ WGWszdW, s44d

for the potentialsV and W, an Alt-Grassberger-Sandhas-
sAGSd type f52g transition operatorUVV can be derived
which satisfies the equation

FIG. 7. Hyperradial probability densitiesPsRd according to Eq.
s39d of the two theoretically predicted bound states of the helium
trimer 4He3. The states were calculated numerically using the
momentum-space Faddeev equationsf48,49g in the unitary pole ap-
proximationf50g based on the Tang-Toennies-YiusTTYd potential
f51g for the helium-helium interaction. Clearly, the excited state,
with its expectation value of the hyperradius ofÎm0/mkRle

=10.1 nm, is spatially more extended by almost one order of mag-
nitude than the ground state withÎm0/mkRlg=1.1 nm. The scaling
of the horizontal axis is logarithmic.
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UVV = TW + TWG0TVG0UVV. s45d

In particular, the transition amplitude is given by the matrix
element of this transition operatorf16g,

tsP,fg;P8,fg8d = kP,fguUVVsE8 + i0duP8,fg8l, s46d

and it determines theS matrix associated withH as

kP,fguSVVuP8,fg8l

= ds3dsP − P8ddgg8 − 2pidsE − E8dtsP,fg;P8,fg8d.

s47d

We shall in the following impose the condition

uEgu,ukfguVufglu !
uPu2

2M
,
uP8u2

2M
, s48d

which ensures that the internal energies of the trimersboth
binding energy and potential energyd are much smaller than
the external energy associated with the center-of-mass mo-
tion. For a helium trimer beam at an incident beam velocity
of v=500 m/s, for example, the center-of-mass kinetic en-
ergy uP8u2/ s2Md<16 meVscorresponding to 180 Kd exceeds
the trimer ground-state energy by more than three orders of
magnitude. Using the Schrödinger equation for bound trimer
wave functionsfgsq ,pd the conditions48d can be shown to
entail the relations

uqu ! uPu,uP8u and upu ! uPu,uP8u. s49d

These state that the wave functions of the trimer are concen-
trated in momentum space at relative momenta far smaller
than the center-of-mass momentum.

Under the conditionss48d and s49d an approximation of
the equation forUVV, Eq. s45d, to lowest order is possible
and sufficientsf53g, Chap. 3.4d whence the transition ampli-
tude becomes

tsP,fg;P8,fg8d . kP,fguTWsE8 + i0duP8,fg8l. s50d

We note that within this approximation the trimer binding
potential V is only implicitly contained through the bound
statesuflg anduflg8. The evaluation of the right-hand side of
Eq. s50d is nontrivial. A series of approximations, all accu-
rate within the conditions48d, may, however, be applied to
simplify the transition amplitude. As the first step, the matrix
element ofTWsE8+ i0d can be shown to vary slowly under a
variation ofE8 on the scale of the binding energiesEg8. This
allows us to replace the energy argument ofTW in Eq. s50d
by the sumE18+E28+E38 whereEi8= upi8u

2/2mi are the energies
of the free atoms. Introducing two complete sets of states Eq.
s50d becomes

tsP,fg;P8,fg8d . E d3qd3pd3q8d3p8fg
* sq,pdfg8sq8,p8d

3 kp1,p2,p3uTWsE18 + E28 + E38 + i0d

3up18,p28,p38l. s51d

Using Eqs.s42d and s44d the algebraic relationTWszdG0szd
=WGWszd can be shown to hold. Inserting this relation the
matrix element ofTWsE18+E28+E38+ i0d is replaced by

kp1,p2,p3uWup18,p28,p38, + l, s52d

where up18 ,p28 ,p38 , +l;up18 , +lup28 , +lup38 , +l is the scattering
state of three independent atoms associated with the potential
Wsr 1,r 2,r 3d. Splitting W according to Eq.s40d into the indi-
vidual potentialsWisr id and using the Lippmann-Schwinger
eqations2d the matrix elements52d can be expressed by the
known atom transition amplitudess3d:

kp1,p2,p3uWup18,p28,p38, + l

= t1
atsp1;p18dd

s3dsp2 − p28dd
s3dsp3 − p38d + t1

atsp1;p18d

3ds3dsp2 − p28dt3
atsp3;p38dF 1

E38 − E3 + i0
+

1

E18 − E1 + i0
G

+ t1
atsp1;p18dt2

atsp2;p28dt3
atsp3;p38d

3
1

E28 − E2 + i0

1

E38 − E3 + i0
+ scycl. perm.d. s53d

Here, “cycl. perm.” indicates that all explicitly shown terms
on the right-hand side of Eq.s53d should be repeated with
their indices permuted once and twice, in ascending order.
Applying again the condition of the weak binding energy
s48d the complex energy denominators can be approximated.
First, using the principal value formulasx+ i0d−1=−ipdsxd
+Px−1 it is possible to approximate

ds3dsp2 − p28dF 1

E38 − E3 + i0
+

1

E18 − E1 + i0
G

. ds3dsp2 − p28df− 2pidsE1 − E18dg, s54d

where a small correction termOsEg /Ed was neglected. Sec-
ond, for three variablesx, y, z with x+y+z=0 the distribu-
tion identity

1

x + i0

1

y + i0
+

1

y + i0

1

z+ i0
+

1

z+ i0

1

x + i0

= −
s2pd2

3
fdsxddsyd + dsyddszd + dszddsxdg s55d

can be shown to hold. Ifx+y+zÞ0, such as in Eq.s53d for
x=E18−E1, y=E28−E2, andz=E38−E3, Eq. s55d is still appli-
cable within the same range of validity as Eq.s54d. Combin-
ing the steps one arrives at the following approximate ex-
pression for the matrix element ofTWsE18+E28+E38+ i0d:

kp1,p2,p3uTWsE18 + E28 + E38 + i0dup18,p28,p38l . t1
atsp1;p18d

3 ds3dsp2 − p28dd
s3dsp3 − p38d − 2pi dsE1 − E18dt1

atsp1;p18d

3 ds3dsp2 − p28dt3
atsp3;p38d −

s2pd2

3
dsE2 − E28ddsE3 − E38d

3 t1
atsp1;p18dt2

atsp2;p28dt3
atsp3;p38d + scycl. perm.d. s56d

Upon insertion of Eq.s56d into the trimer transition ampli-
tude s51d several momentum integrals can be carried out by
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virtue of the momentumd functions. Moreover, the energyd
functions allow the integration of a further momentum com-
ponent each. As an example, we consider the delta function
dsE1−E18d in the second term of Eq.s56d. Switching back to
Jacobi coordinates, after integrating overds3dsp2−p28d it be-
comes

dsE1 − E18d = dSFm1

M
P + qG2

− FP8 −
m2 + m3

M
P + q

−
m2 + m3

m2
DpG2D . s57d

To proceed we decompose the momentum vectors into their
components parallel and perpendicular to the incident center
of mass momentumP8: the parallel component ofq, for
example, is denoted byqi and the two-dimensional perpen-
dicular vector is denoted byq'. Then, by conditions49d and
using P'8 =0 by definition, thed function s57d can be ap-
proximated by

dsE1 − E18d .
dSDPi +

m2 + m3

m2
Dpi + jSm1

M
Pi + qiDD

2
m2 + m3

m2
Sm1

M
Pi + qiD ,

where the term involving the factorj<6sldB/dd2 is a cor-
rection which is small by the diffraction conditions1d. Inte-
grating, according to Eq.s51d, the second term of Eq.s56d
over dpi8, the correction involvingj is pushed into the func-

tional arguments of the atom transition amplitudes as well as
the trimer wave functions. In both cases, however, these
functions vary slowly on the scale ofjPi such that the cor-
rection can be shown to be negligible altogether. Similar
simplifications are readily derived for the other energyd
functions in Eq.s56d.

Combining all steps the general expression for the trimer
transition amplitude subject to the diffraction condition and
the condition of weak binding energy is obtained. Before-
hand, however, it is helpful to introduce two abbreviations.
First, we express the atom transition amplitude in terms of
the momentum transferDpi =pi −pi8 as

t̃ispi ;Dpid = tispi ;pi8d. s58d

Second, we introduce a molecular “form factor”

Fgg8sq;pd =E d3q8d3p8fg
* sq8,p8dfg8sq + q8,p + p8d.

s59d

With this notation the trimer transition amplitude assumes
the form

tsP,fg;P8,fg8d . HFgg8S0,−
m2 + m3

M
DP';0D t̃1

atSm1

M
P;DPD − 2pi

Msm2 + m3d
m2Pi

E d2p't̃3
atSm3

M
P;DPi,−

m2 + m3

m2
p'D

3Fgg8X0,−
m2 + m3

m2
Sm2

M
DP' + p'D ;0,−p'C t̃1

atSm1

M
P;0,DP' +

m2 + m3

m2
p'D −

4p2

3

M2

Pi
2 E d2q'd2p'

3Fgg8s0,−q';0,−p'dt̃1
atSm1

M
P;DPi,

m1

M
DP' + q'D t̃2

atSm2

M
P;0,

m2

M
DP' −

m2

m2 + m3
q' + p'D

3t̃3
atSm3

M
P;0,

m3

M
DP' −

m3

m2 + m3
q' − p'DJ + scycl. perm.d, s60d

where again use has been made of conditions49d to simplify
the functional arguments of the atom transition amplitudes
where possible.

V. TRIMER DIFFRACTION FROM A DEEP GRATING

A. Trimer slit function of the deep grating

In this section the general trimer transition amplitude will
be evaluated for diffraction from a deep grating. Inserting, to

this end, expressions17d for the atom transition amplitude
into Eq. s60d yields a very long sum containing a total of 42
terms which we do not spell out explicitly. These 42 terms
can be classified by the numbers0–3d of references to the slit
function in each. In the context of a many-body multiple-
scattering series expansionf53g they may, respectively, be
interpreted as forward-s9 termsd, single-s18 termsd, double-
s12 termsd, and triple-s3 termsd scattering terms. A cumber-
some and little elucidating calculation involving the transfor-
mation properties of the form factors59d with respect to
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different sets of Jacobi coordinates reveals that the 18 single-
scattering terms interfere almost destructively and that their
net contribution is small by a factorOsldB/dd2 compared to
the forward- and triple-scattering terms. They may thus be
neglected by the diffraction conditions1d. Similarly, the 12
double-scattering terms contribute only to orderOsldB/dd
and may also be neglected.

The forward- and triple-scattering terms, respectively, can
be combined. As in the atom case in Eq.s5d a delta function

dsDP3d can be extracted from the trimer transition amplitude,
leaving

tsP,fg;P8,fg8d = dsDP3dts2dsP,fg;P8,fg8d, s61d

where bold italic letters again denote the two-dimensional
projections of vectors into the plane perpendicular to thex3
axis. The two-dimensional trimer transition amplitude for
diffraction from a transmission grating becomes

tgra
s2dsP,fg;P8,fg8d . −

i

2

Ps1
+ Ps1

8

s2pd2M"

1

3H2p"
P1

Ps1

dsDP2ddgg8 −
1

s2p"d2

Ps1

2

Pi
2 E dq'dp'Fgg8s0,−q',0;0,−p',0d

3HNXDPisinu8 + Sm1

M
DP' + q'Dcosu8Ca1

atXm1

M
P8;DPisinsa + u8d + Sm1

M
DP' + q'Dcossa + u8dC

3HNXSm2

M
DP' −

m2

m2 + m3
q' + p'Dcosu8Ca2

atXm2

M
P8;Sm2

M
DP' −

m2

m2 + m3
q' + p'Dcossa + u8dC

3HNXSm3

M
DP' −

m3

m2 + m3
q' − p'Dcosu8Ca3

atXm3

M
P8;Sm3

M
DP' −

m3

m2 + m3
q' − p'Dcossa + u8dCJ

+ scycl. perm.d. s62d

Inserting now for each atom the slit functionss16d and re-
writing the form factors59d as a configuration-space integral,

Fgg8sq;pd =E d3rd3re−isq·r+p·r d/"fg
* sr,r dfg8sr,r d,

the integrations overdq' anddp' in Eq. s62d can be carried
out. The three grating functionsHN give rise to a triple sum
of which only the on-diagonal terms contribute significantly:
they represent diffraction of all three atoms from the same
bar; the off-diagonal terms, which correspond to diffraction
of atoms from different bars, are negligible since the prob-
ability for atoms to be spatially separated as far as the dis-
tance between two adjacent barss100 nmd is strongly sup-
pressed by the bound-state wave functions of the trimer.
Collecting the remaining terms the trimer transition ampli-
tude can be cast into the form

tgra
s2dsP,fg;P8,fg8d . −

i

2

Ps1
+ Ps1

8

s2pd2M"H2p"
P1

Ps1

dsDP2ddgg8

− HNsDP2dagg8
tri sP8;DPs2

dJ . s63d

Here, we introduced a trimer slit function by

agg8
tri sP8;DPs2

d =E
−D/2

D/2

dS2exps− iDPs2
S2/"dtgg8

tri sP8;S2d,

s64d

whereS2 can be interpreted geometrically as the center-of-
mass position of the trimer along the slit linescf. Fig. 2d and
where, analog to the atom case,D=dDP2/DPs2

. Both Eqs.
s63d and s64d exhibit the same structure as their atom coun-
terparts. Only the new trimer transmission function, which
appears in the trimer slit functions64d and which turns out as

tgg8
tri sP8;S2d =E d3rd3rfg

* sr,r dfg8sr,r d

3t1
atSm1

M
P8;

r1'

cossa + u8d
D

3t2
atSm2

M
P8;

r2'

cossa + u8d
D

3t3
atSm3

M
P8;

r3'

cossa + u8d
D , s65d

incorporates the complicated internal configuration of the tri-
mer molecule through the bound-state wave functions. In
particular, the notation

r1' = S2cossa + u8d +
m2 + m3

M
r', s66ad
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r2' = S2cossa + u8d −
m1

M
r' +

m3

m2 + m3
r', s66bd

r3' = S2cossa + u8d −
m1

M
r' −

m2

m2 + m3
r' s66cd

has been chosen to emphasize the geometrical meaning of
the position arguments of the atom transmission functions:
The quantitiesr i' /cossa+u8d can be interpreted as the posi-
tions of the individual atoms projected onto the slit lineS
while the integration variableS2 represents the projected
center-of-mass positionR' /cossa+u8d. The trimer transmis-
sion function s65d is, therefore, simply the product of the
three atomic transmission functions averaged over the wave
functions of the incident and the outgoing bound trimer state.
This intuitive result is a straightforward extension of the case
of dimer diffractionf54g.

B. Trimer diffraction pattern of the deep grating

Thanks to the formal coincidence of Eqs.s63d and s64d
with their counterparts, Eqs.s16d and s17d, of atom diffrac-
tion the derivation of thenth-order relative diffraction inten-

sity In
gg8 for the incident bound statefg8 and the outgoing

bound statefg can be carried over immediately. Therefore,
we write the trimer diffraction intensities in the form

In
gg8 = I0

gg8SPs1
+ Ps1

8

2Ps1
8

D2uagg8
tri sP8;DPs2

du2

uagg8
tri sP8;0du2

. s67d

Contrary to the atom case, however, the trimer slit function
depends on the spatially extended trimer bound statesfg and
fg8 and, therefore, in generaluagg8

tri sP8 ;0du2,S0
2.

Equation s67d determines the diffraction intensities of
both elasticsfg=fg8d and inelasticsfgÞfg8d processes.
Earlier works on the helium trimerf47g as well as on van der
Waals dimersf54g have shown that diffraction orders corre-
sponding to inelastic processes are typically less intense by
five to six orders of magnitude than those of elastic pro-
cesses. They are, therefore, experimentally less relevant. In
the following we focus on elastic processes. Analogous to
the procedure in Sec. III,In

gg can be approximated by a two-
term cumulant expansion. The cumulantsRg,j

± now depend on
the trimer statefg. Moreover, because of the threefold van
der Waals interaction, an additional termVg= 1

2ImsR2,g
+

−R2,g
− d should be retained in the expansion for sufficient nu-

merical accuracy. Taking these generalizations into account
the nth-order relative intensity becomes

In

I0
=F Ps1

+ Ps1
8

2Ps1
8 ÎSeff,g

2 + Dg
2G2

expf− sDPs2
Sgd2/"2 − DPs2

Gg/"g
sin2fDPs2

Seff,g/2"g + sinh2fsDPs2
Dg/" + DPs2

2 Vg/"2d/2g

fDPs2
/2"g2 , s68d

where, analogous to Eqs.s27d ands28d, the momentum com-
ponents are to be evaluated at the incident angleu8 and the
diffraction angleun as

Ps1
= uP8ucossa + und, Ps1

8 = uP8ucossa + u8d,

and the momentum transfer parallel to thes2 axis is given by

DPs2
= uP8ufsinsa + und − sinsa + u8dg.

Analogous to the atom case the effective slit widthSeff,g is
related to the trimer transmission functions65d by the equa-
tion

Seff,g = S0 − ReE
−S0/2

S0/2

dS2f1 − tgg
tri sP8;S2dg. s69d

Figure 8 shows elastic diffraction intensities for a beam of
4He3 in its ground state calculated according to Eqs.s67d and
s68d. The asymmetry of this diffraction pattern is not as pro-
nounced as in the atom casesFig. 5d. This is due to the
threefold mass of the trimer which entails a 3 times shorter
de Broglie wavelength. Similarly, Fig. 9 shows diffraction
intensities for a beam of4He3 in its excited state.

Since inelastic diffraction processes are negligible, an ex-
perimental diffraction pattern of a4He3 beam will in general

be well described by an incoherent superposition of the in-
dividual diffraction patterns of the two bound states weighted
by their relative population numbers in the beam. In the fol-
lowing section we first derive the trimer size effect for a pure
beam containing trimers in only one state. Hereafter the
treatment of a mixed beam will be considered.

VI. DETERMINING THE TRIMER SIZE

A. Trimer size effect

Since the effective slit width of the trimers69d depends,
on the one hand, on the trimer bound statefthrough
tgg

tri sP8 ;S2dg and is, on the other hand, experimentally acces-
sible sthrough In

ggd, it represents a link between experiment
and theory. Earlier work on atom and dimer diffraction re-
vealed that the differenceS0−Seff,g carries information about
both the van der Waals surface interactionf12g and the size
of weakly bound dimersf3g. The reduction of the slit width
by the dimer size was found to be12krl wherekrl denotes the
dimer bond length. The subsequent evaluation of helium
dimer diffraction data yielded the experimental resultkrl
=5.2±0.4 nm for4He2 f3g.

In the following we derive the corresponding size effect
for a trimer. To this end we explicitly insert the trimer trans-
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mission functions65d into Eq. s69d. By definition the atom
transmission functionsti

atspi8 ;si2d in Eq. s65d are zero if their
positional argumentssi2=r i' /cossa+u8d lie outside the slit
interval f−S0/2 ,S0/2g. This fact may be utilized to reduce
the integration interval for the center-of-mass positionS2: at
fixed relative coordinatesr ,r the interval may be limited, for
r'.0, to

−
S0

2
+

D2
+

cossa + u8d
, S2 ,

S0

2
−

D1
+

cossa + u8d
s70ad

and, similarly, forr',0, to

−
S0

2
+

D1
−

cossa + u8d
, S2 ,

S0

2
−

D2
−

cossa + u8d
. s70bd

Here, the geometrical quantities

D1
± = ±

1

2
Hm2 + m3 − m1

M
r' +

m3

m2 + m3
r'

± Ur' −
m3

m2 + m3
r'UJ s71d

and

D2
± = ±

1

2
H−

m2 + m3 − m1

M
r' +

m2

m2 + m3
r'

± Ur' +
m2

m2 + m3
r'UJ s72d

have been introduced. Neglecting, for the moment, the van
der Waals interaction, all atom transmission functions are
unity inside the reduced domain of integrations70ad and
s70bd. In this case the effective slit width depends only onD1

±

and D2
±. Accordingly, we call it the geometrical part of the

effective slit width and denote it by

Seff,g
geom= S0 −

1

cossa + u8d
ReE d3rd3r ufgsr,r du2

3hfD1
+ + D2

+gQsr'd + fD1
− + D2

−gQs− r'dj, s73d

whereQsr'd is the Heaviside step function. Both integrands
in Eq. s73d can be simplified using the transformation prop-
erties of the Jacobi coordinatess32d and the wave functions
s38d. Combining the results, the geometrical part of the ef-
fective slit width becomes

FIG. 8. Diffraction intensities of a pure beam of ground state
4He3 at v=500 m/s from ad=100 nm transmission grating atu8
=21° angle of incidence for the grating geometry of Fig. 4. The
solid curve was calculated using Eq.s67d; the dashed curve shows
the two-term cumulant approximations68d. To guide the eye these
functions are shown continuously. The circles on top of the solid
curve at integern mark the experimentally accessible diffraction
ordersIn

gg/ I0
gg.

FIG. 9. As in Fig. 8 but for a pure beam of excited state4He3.
Due to the larger pair distance of the excited state, the effective slit
width is smaller, resulting in a considerably wider envelope func-
tion than for the ground state.

FIG. 10. Geometrical interpretation of the effective slit width
formula. Clearly, the expression12sur

'

s23du+ ur
'

s31du+ ur
'

s12dud may be in-
terpreted as the “width”sprojected diameterd of the trimer perpen-
dicular to its incident direction. Taking the expectation values with
the bound-state wave function yields the expressions76d. The mul-
tiplication by fcossa+u8dg−1 corresponds to an orthogonal projec-
tion onto the slit lineS. Hence the slit widthS0 appears reduced by
the projected width of the trimer.
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Seff,g
geom= S0 −

kur'
s23dulg + kur'

s31dulg + kur'
s12dulg

2 cossa + u8d
, s74d

where the expectation values in the numerator are defined as

kur'
s jkdulg =E d3rsidd3r s jkdufg

si,jkdsrsid,r s jkddu2ur'
s jkdu. s75d

In Eq. s74d the symmetric term

1

2
skur'

s23dulg + kur'
s31dulg + kur'

s12dulgd s76d

represents the expectation value of the “width”sprojected
diameterd of the trimer perpendicular to the incident direc-
tion. Therefore, as the factorfcossa+u8dg−1 corresponds to
an orthogonal projection of the perpendicular coordinates
onto the slit linescf. Fig. 10d Seff,g

geomis simply smaller thanS0
by the projected width of the trimer.

In the presence of the van der Waals interaction an addi-
tional termSeff,g

vdW accounting for the deviation from unity of
the atom transmission functions arises. The entire effective
slit width is the sum

Seff,g = Seff,g
geom+ Seff,g

vdW. s77d

As the general expression for the van der Waals partSeff,g
vdW is

long and little informative we shall not give its general form
explicitly.

B. Size effect for three identical bosons

In the remaining paragraphs of this section we focus on
trimers of three identical bosons, such as the4He3. As a
consequence, we denote the masses bym=mi and the equal
projected pair distances bykur'ulg. The geometric part of the
effective slit widths74d immediately reduces to

Seff,g
geom= S0 −

3

2

kur'ulg

cossa + u8d
. s78d

Moreover, if the spatial extent of the bound-state wave func-
tion is small compared to the slit width, the van der Waals
part Seff,g

vdW is to very good approximation given by

Seff,g
vdW . − ReE d3rd3r ufgsr,r du25E

0

S0/2

dS2831 − tatSP8

3
;S28Dtat1P8

3
;S28 −

Ur' −
1

2
ur'uU

cossa + u8d
2

3tat1P8

3
;S28 −

ur'u + Sr' −
1

2
ur'uDQSr' −

1

2
ur'uD

cossa + u8d
24 +E

−S0/2

0

dS2831 − tatSP8

3
;S28Dtat1P8

3
;S28 +

Ur' +
1

2
ur'uU

cossa + u8d
2

3tat1P8

3
;S28 +

ur'u − Sr' +
1

2
ur'uDQS− r' −

1

2
ur'uD

cossa + u8d
246 . s79d

Within the approximations79d it is evident thatSeff,g
vdW is in-

deed zero if the atom transmission functions are unity inside
the slit and if the spatial extent of the trimer wave function is
small on the scale of the slit width. Therefore, ifSeff,g

vdW were
but a small correction to the full effective slit widths77d, it
could be neglected and the projected trimer pair distance
kur'ul could be determined using Eq.s78d. Experience with
dimer diffraction has shown, however, that the effect of the
van der Waals interaction can be of the same order as the pair
distancef3g and must be accounted for. Since Eq.s79d de-
pends on the full trimer wave function, it cannot be used
immediately for the evaluation of experimental data and an
approximation is required. The integrand in Eq.s79d is, how-
ever, slowly varying on the scale of the variation of
ufgsr ,r du2. Therefore, the positional arguments of the atom
transmission functions can approximately be replaced by
their expectation values. This approach is in analogy to Ref.
f3g. An analysis of the combinations ofr' and r', using

once more the transformation properties of the relative coor-
dinatess32d, shows that these expectation values are express-
ible solely in terms ofkur'ul. For example,

KUr' −
1

2
ur'uUL

g

= kur'ulg s80d

and

KSr' −
1

2
ur'uDQSr' −

1

2
ur'uDL

g

=
1

4
kur'ulg. s81d

Inserting these one finds as the final form of the van der
Waals part of the effective slit width
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Seff,g
vdW . − ReHE

0

S0/2

dS28F1 − tatSP8

3
;S28DtatSP8

3
;S28

−
kur'ulg

cossa + u8d
DtatSP8

3
;S28 −

5

4

kur'ulg

cossa + u8d
DG

+E
−S0/2

0

dS28F1 − tatSP8

3
;S28D

3tatSP8

3
;S28 +

kur'ulg

cossa + u8d
D

3tatSP8

3
;S28 +

5

4

kur'ulg

cossa + u8d
DGJ . s82d

In order to test the validity of this approximation we carried
out a numerical analysis of the error introduced by the re-
placement of Eq.s79d by Eq.s82d: if applied to experimental
data, the approximation entails, for the two theoretically pre-
dicted bound states of4He3, a systematic overestimation of
kur'ul by 7% s4He3 ground stated or 3% sexcited stated. As
seen from Fig. 11 the approximation is more reliable at high
velocities as the impact of the van der Waals interaction be-
comes smaller.

Theoretical studies of the helium trimer commonly state
the expectation value of the pair distancekrl itself, wherer
= ur u, rather than a component such askur'ul. To link experi-
mental results to these, a relation betweenkrl andkur'ul must
be established. Both predicted4He3 bound states are spheri-
cally symmetricszero total angular momentumd. Moreover,
the two-body scattering matrix corresponding to the He-He
potential is dominated by the shallows-wave bound-state
pole of 4He2, and higher partial waves may to good approxi-

mation be neglectedf21g. By the Faddeev equationsse.g.,
Ref. f49gd for the helium trimer bound state, it is then pos-
sible to derive the relation

kur'ul =
1

2
krl. s83d

In summary, the effective slit widths77d depends to good
approximation only on one trimer parameter: namely, the
expectation value of the pair distancekrl. Consequently,krl
can, in principle, be determined from trimer diffraction data.

C. Experimental considerations

Using the results of the preceding sections the improve-
ment in resolution through diffraction at non-normal inci-
dence over normal incidence may be estimated. The evalua-
tion process of experimental data involves two main steps:
First, values for the effective slit widthSeff,g must be ob-
tained by numerical fits of the intensity formulas68d to ex-
perimental diffraction patterns. Second,krl is determined
from a fit of Eq.s77d to the values forSeff,g. The stronger the
dependence of this procedure onkrl, the more preciselykrl
can be determined. Askrl changes the width of the Kirchoff-
like slit function in Eq.s68d a natural measure for this de-
pendence is provided by the number of diffraction orders
under the central maximum of the slit function to either side
of the forward direction. This number, which we denote here
by nc and which we treat as a continuous variable, can be
approximately written as

nc =
d'

s'

, s84d

whered' denotes thesprojectedd period perpendicular to the
beam ands' denotes the projected slit width. At the angle of
incidenceu8 the projected period isd'=d cosu8. Further-
more, neglecting for this estimate the van der Waals part, we
inserts'=Seff,g

geomcossa+u8d for the projected slit width of the
deep grating whereSeff,g

geom will be taken from Eq.s78d. The
relative variation ofnc with krl can then be calculated and
becomes, to leading order inkrl /S0,

1

nc

dnc

dkrl
.

3

4

1

S0cossa + u8d
.

In contrast, at normal incidence the right-hand side would be
3/s4s0d. Inserting the parameters of Fig. 8 yields
sdnc/dkrld /nc<2.6310−2 nm−1 for u8=21° as compared to
1.2310−2 nm−1 for normal incidence. This roughly twofold
gain in sensitivity is expected to halve the final error bars on
krl.

Finally, since the population ratio of the two predicted
4He3 states in the nozzle beam is generally unknown, the
situation of a mixed beam must be considered. To analyze
this we have summed diffraction patterns as shown in Figs. 8
and 9 for different population ratios. Hereafter, we have used
Eq. s68d to determine, from the summed patterns, an average
effective slit widthSeff and from this an average bond length
krl. It turned out that the such determinedkrl varies almost

FIG. 11. Effective slit widths versus the beam velocityv
= uP8u /M for the ground state and excited state of4He3. The numeri-
cal results using the full expression, Eq.s79d, are shown as solid
curves and the approximation Eq.s82d as dotted curves. The angle
of incidence was taken asu8=21°. The approximation becomes
more reliable at high velocities as the impact of the van der Waals
interaction decreases. Asymptotically, for high velocities, both pairs
of curves approach their respective upper limitsSeff,g

geomgiven by Eq.
s78d.
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linearly with the population ratio from the ground-state value
of krl spure ground-state beamd to the excited-state value
spure excited-state beamd. Therefore, three possible out-
comes of an experiment are to be expected. A value ofkrl
<1 nm would be attributed to the ground state and indicate
a negligiblesor zerod population of the excited state. Equiva-
lently, a result of about 8 nm would doubtlessly provide evi-
dence for the excited state and its large pair distance. Third,
a value in between these two would indicate that both states
are present and evidence for the excited state would still be
available. A controlled variation of the accessible beam pa-
rameters might then allow to influence the population ratio in
favor of either state and to measure the pair distance for one
state with less disturbance by the other.

VII. CONCLUSIONS

Motivated by the long-standing interest in the Efimov ef-
fect f31g we have studied the diffraction of weakly bound
trimers in a typical matter optics setup. As an earlier diffrac-
tion experiment for the spatially extended helium dimer
skrl=5.2 nmd f3g had indicated that the resolution provided
by a customs0=60 nm transmission grating, at normal inci-
dence, may be insufficient to resolve the helium trimer
ground stateskrl=0.96 nm predictedf4gd, it had suggested
itself to use obliquesnon-normald incidence at a rotated
transmission grating for reducing the projected slit width.
The partial shadowing of the slits caused by the finite thick-
ness of the etched material grating has required, however, a
revision of the theory of atom diffraction. In particular, the
familiar mirror symmetry encountered in diffraction patterns
from normal incidence is lifted for non-normal incidence.
This effect was visible in Fig. 5 of Ref.f35g but went unno-
ticed. It has been traced back to the nonalignment of the
direction of periodicity of the grating with the shadow lines
of its bars or, equivalently, its slit lines. The weak attractive
van der Waals surface interaction, which introduces an addi-
tional but minor asymmetry, has been taken into account in a
way similar to the case of normal incidence.

Using atom diffraction as one building block, the multi-
channel many-body quantum mechanical scattering theory
approach of Refs.f15,16g has been extended to derive the
constitutive formulas of trimer diffraction. While this proce-
dure structurally partly parallels that of dimer diffraction it is
mathematically more complex due to the additional atom.
The resulting equations for the trimer diffraction pattern,
however, have been readily interpretable and provide intui-
tive physical insight into the diffraction of weakly bound
molecules: the significant measurable quantity is the quan-
tum mechanical expectation value of the “width”sprojected
diameterd of the trimer perpendicular to its flight direction.
For identical boson trimers, such as the helium trimer, the
width is related to the molecular bond length by3

4krl. This
fact can be used, in principle, to determinekrl from a matter
diffraction experiment.

If a transmission grating of the type used earlier by
Grisenti et al. f12g is rotated byu8=21°, the projected slits
appear approximately half as wide as the nominal slits of the

grating. This leads to an estimated doubling of the resolution,
sufficient to determine the ground-state pair distance of4He3.
Moreover, should the4He3 Efimov state, whose pair distance
is predicted to be larger by almost an order of magnitudef4g,
exist and should its population in the beam be significant, it
ought to be clearly distinguishable from the ground state
solely by its size.
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APPENDIX: SURFACE INTERACTION

Earlier work has shown that at beam velocities typically
encountered in matter diffraction experiments the effective
reduction of the slit width due to both the van der Waals
surface interaction and the finite molecular size can be
of the same order of magnitudef3,12g. A quantitative deter-
mination of the atom transmission functiontatsp8 ;s2d, which
was inserted into Eq.s16d, is therefore necessary. As in Ref.
f12g we use the eikonal approximation to writetatsp8 ;s2d
=expfiwsp8 ;s2dg for s2 inside the slit andtatsp8 ;s2d=0 out-
side. The phase functionwsp8 ;s2d is given byf55g

wsp8;s2d = − s"vd−1E dt Wsurf„sstd…, v =
up8u
m

, sA1d

where the straight path of integrationsstd must be taken to
run parallel to the direction of incidence and to cross the slit
line S at the positions2. The surface interactionWsurfsxd at a
position x between two bars is calculated from the integra-
tion of an attractive −C6/ l6 potential of Lennard-Jones type
sthe repulsive part has already been modeled by the bound-
ary conditions in Sec. IId over the volume of the bars. Car-
rying out all four integrations for the typical wedge-shaped
bars shown in Fig. 4 the phase function can be calculated
explicitly. Using the abbreviations

C3 =
pC6

6
, d̃ =

cosu8

cossa + u8d
d, s0̃ =

cosu8

cossa + u8d
s0,

it reads

wsp8;s2d =
C3

2"v cos2u8cos2sa + u8d

3 H j11
−2 + sj11 − d̃d−2 − j12

−2 − sj12 + d̃d−2

tanu8 + tanb

+
j21

−2 + sj21 − d̃d−2 − j22
−2 − sj22 − d̃d−2

tanu8 − tanb
J ,

where j11=S0/2−s2, j21=S0/2+s2, j12=S0/2−s2−s0̃

+hcosfsa+u8d−2u8g /cossa+u8djS0, andj22=S0/2−s2−s0̃.
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