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Matter diffraction at oblique incidence: Higher resolution and the “He, Efimov state
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We study the diffraction of atoms and weakly bound three-atomic molecules from a transmission grating at
non-normal incidence. Due to the thickness of the grating bars, the slits are partially shadowed. Therefore, the
projected slit width decreases more strongly with the angle of incidence than the projected period, increasing,
in principle, the experimental resolution. The shadowing, however, requires a revision of the theory of atom
diffraction. We derive an expression in the style of the Kirchhoff integral of optics and show that the diffraction
pattern exhibits a characteristic asymmetry which must be accounted for when comparing with experimental
data. We then analyze the diffraction of weakly bound trimers and show that their finite size manifests itself in
a further reduction of the slit width b§B/4)(r) where(r) is the average bond length. The improved resolution
at non-normal incidence may in particular allow us to discern, by means of their bond lengths, between the
small ground state of the helium trimgr)~1 nm, Barletta and Kievsky, Phys. Rev. &4, 042514(2001)]
and its predicted Efimov-type excited stdte)~8 nm, ibid.), and in this way to experimentally prove the
existence of this long-sought Efimov state.
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I. INTRODUCTION Moreover, there is no analog in wave optics for the dif-
fraction of weakly bound small noble gas van der Waals
The combination of two unique features makes matterclusters such as the helium dinfétte, and trimer*He;. Ex-
wave diffraction of noble gas trimers an outstanding enterperimental evidence for these delicate molecules was for the
prise. First, diffraction presently is the only experimentalfirst time unambiguously provided through the mass-
technique which allows one to detect such very weaklyselective property of grating diffractiof2]. Moreover, the
bound clusters and to determine their properfies3]. Sec- gompfiratlyely large interatomic distance @§=5.2 nm in
ond, the helium trimefHe, is the only molecule predicted to “He,, implied by the small binding enerdy,=-1.1 mK([3],
possess an Efimov-type bound state6] under normal con-  Was shown to rrl1an|fest itself as an apparent narrowing of the
ditions [7]. grating slits by(r). It was this size effect which rendered
Only recently did diffraction of atomic and molecular Possible the determination ¢f) from experimental diffrac-
beams evolve towards a precise experimental techniqu&ion data[3]. This allowed for comparison with modern re-
Early pioneering experiments had proved diffraction for aalistic helium-helium potentials of Refg18,19.
sodium beam through a grating initially fabricated for x rays ~ Numerical studies of the helium trimer relying on these
[8], as well as for metastable heliuf@] and for neor{10] ~ helium-helium potential§4-6,20-28 and quantum Monte
through micrometer double slits. Later, transmission grating&arlo simulationg29] as well as quantum chemicab initio
with a period ofd=200 nm had brought an improvement, but Salculatlons[SO] have long predicted two bound stgtes for
finally the production of reliable nanoscale transmission grat-1€s: & ground state at ~126 mK and a shallow excited state
ings with a period of onlyd=100 nm[11] paved the way for at —2.3 mK[4]. Moreover, the excited state is believed to be

quantitative matter diffraction experiments with an unparal-2" Efimov-type state. Originally in the context of nuclear
leled spatial coherence across up to 100 slits for a heliunRhysics, Efimoy31] had shown that if the scattering length

atom bear{12]. Unprecedented, matter diffraction also al- of a pair potential exceeds the effective range of the potential

lows one to investigate the coherence properties of ver%y far, then a universal series of bound states exists in the

heavy molecules with many internal degrees of freedom suc ree-body system near the dissociation threshold. Examplgs
as fullerene§13,14). for such Efimov states, however, have been searched for in

Classical wave optics can merely serve as an approximé’-ain in three-nucleon systems, leaving the three-atomic he-

tion to the underlying physical scattering process of atonUm malecule presently as the only candidate. o
diffraction. The hierarchy of the diffraction peak intensities 1€ "He; excited state cannot experimentally be distin-
in a diffraction experiment with neutral atoms or molecules9Uished from the ground state by its mass. However, due to
is significantly affected by the weak van der Waals surfacén€ large difference in binding energy, both predicted states
force, which acts on atoms in the vicinity of the material Nave markedly different interatomic distancés:=0.96 nm
grating. This was included in a quantitative theory in Refs.in the ground state an@)=7.97 nm in the excited stafd].
[15,16 which allowed one, in comparison with experimental Therefore, the size effect, which had previously played the
data, to characterize this surface force for the noble gasegssential role in the dimer diffraction experiment and which
helium, neon, argon, and krypton and the covalently boundve show to beﬁ(r) for a trimer, is expected to render the two
D, molecule[12], as well as for metastable helium and neonstates distinguishable. Brueat al. have analyzed the mole
[17]. fraction of small helium clustergincluding atomy in a
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nozzle beam diffraction setup and showed that up to 7% caper atom is a few tens of meV, much less than the electronic
be trimerg 32]. This should be an ample amount for a quan-excitation energies of the atom. Therefore, we treat atoms as
titative analysis. The population ratio of ground-state versugoint particles and neglect their electronic degrees of free-
excited-state trimers in the beam is, however, not known. ldom throughout this article. The de Broglie wavelenyth

is therefore essential to provide sufficient experimental resoassociated with the atomic motion is typically of the order of
lution for the small ground state in order to evaluate diffrac-0.1 nm whereas a typical length scale of the scattering object
tion data from a mixed beam. A limitation in the resolution is is d=100 nm. We shall, in the following, refer to this relation
posed by the period of the gratind=100 nm, and the slit as thediffraction condition

width, typically s,=60 nm, which are both large compared to

the ground-state size. Transmission gratings with smaller pe- Agg <d. 1)

riods and slit widths are, however, presently not available.  The free Hamilton operator for an atom of massis

To address this issue we consider diffraction from a cusy =p2/2m, The interaction between the diffracting object
tom transmission grating at obliqieon-normal incidence;  and the atom will be described by a Lennard-Jdis€s type
i.e., the grating is rotated by an angle about an axis par- gyrface potential(x) wherex is the position of the atom.
allel to its bars. The grating typically consists of t&  Thjs interaction exhibits a strongly repulsive core at a dis-

~120 nm thick layer of silicon nitride into which the slits 50| from the diffracting object of the order of the atomic
have been etched in a lithographic production pro¢ess  giameter, and it passes into a weak attractiGa/4? van der

As the grating is rotated the upstream edges of its bars Cyja515 potential at=1 nm[12,37). Due to the low kinetic

into the incident beam, partially shadowing the slits. By thisgergy of the atoms in the beam, it is sufficient for the pur-

effect the projected slis, width (perpendicular to the inci- 4qeq of this work to model the repulsive part of the inter-

dent beam decreases more strongly with than the pro-  geion by a hard core. The attractive part will be omitted for

jected periodi, . Since the diffraction pattern is roughly gov- the moment and will be be included later in Sec. II.

emed by the squared slit functi¢83] Generally, the scattering stafg’, +) for an atom with
sin(nzs, /d,) |2 incident momentunp’ and positive energg’ =|p’|?/2m sat-

(nms,/d,) | isfies the Lippmann-Schwinger equati8]

where n denotes the diffraction order, one expects that at [p’, +)=[p") + Go(E' +i0)WIp', +), (2)
non-normal incidence more atoms or molecules are difywhereGy(z)=[z-H,] ™! is the free Green’s function or resol-
fracted into higher diffraction orders. For example, tat yent. Denoting the atom transition amplitude associated with
=120 nm and an angle of incidenceotation anglg of 6" the potentiaM by

=21° the ratiod, /s, is twice as large ad/s, (normal inci-

dencé while the diffraction angles, to good approximation, t*(p;p") = (p/Wlp’, +), 3
only increase by the ratid/d,. This effect increases the where p=p’+Ap is the outgoing momentum and

experimental resolution. Due to the shadowing, however, thg|p|2/2m the S matrix element has the usual decomposition
fundamental results obtained earlier for atom diffraction a 38] '

normal incidence cannot be carried over unchanged.
While we illustrate our results using the experimentally (p|9p"y=8%p-p’) - 2@ SE-EN(p;p’). (4)
most interesting case of helium trimer diffraction, the general

findings of this work equally apply to other weakly bound . | ded lationally | ) | di
trimers, possibly consisting of nonidentical atoms. The ar!Vely regarded as translationally invariant along one direc-

ticle is structured as follows. In Sec. Il we derive, from quan-ton whence the diffraction process can be treated in two

tum mechanical scattering theory, the transition amplitud&Pace dimensions. This is the case, for instance, for diffrac-

for an atom diffracted from a bar of finite thickness. In Sec.gon fr(_)m a Sr:ltl i thﬁ verrt]|calhsp_rea|dhof thhe ]Iorc]:us?.d atorr]r_]
Il we construct a periodic transmission grating from manyP€am is much less than the physical height of the slit. In this

bars and introduce the notion of a slit at non-normal inci-2'ticle we shall always assume the scattering object to be

dence. We show that if the slits are not aligned with thetranslatlonally invariant along the; axis. To adapt the nota-

direction of periodicity, a characteristic asymmetry of the!l0", We denote the two-dimensional projections into the
diffraction pattern arises which went unnoticed in a previougX1:X2) plane of all three-dimensional vectors, suchpady
experimen(35]. The asymmetry is relevant for the precise their corresponding italic Iette_rs, such psAs scattering
evaluation of experimental data. In Sec. IV we outline thed0€S not occur along the; axis a delta functions(Aps)
general scattering theory approach to trimer diffraction ancXPressing momentum conservation can be extracted from
work it out in Sec. V for non-normal trimer diffraction from EG; (3), leaving a two-dimensional transition amplitude

a grating. In Sec. VI we provide the link between diffraction t2?(p;p’) which satisfies

data and the trimer bond length and discuss aspects of a at( ./ = at(2) (e

helium trimer diffraction experiment. tpip’) = AApt™=(pip). ®)

In many applications the diffraction object may be effec-

In order to derive an expression f6t?(p;p’) we project
Il. ATOM DIFFRACTION FROM A DEEP BAR Eqg. (2) into configuration space. The full wave function
In a typical beam diffraction experiment with an average#(k’,x)=27#(x|p’, +), wherek’=p'/#, is a sum of the in-
beam velocity of the order af=500 m/s the kinetic energy cident party;,.(k’,x)=27A(x|p’) and the scattered part
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- i
G (k' [:xx') = ZHG (K [lx = xD. 9

Using the asymptotic expansigf41], Chap. 9.2

. [ 2 . gl (K'lIx|=m/4)
(1)(|k'||X—X'|)‘X‘N Me ilk’[x x/\X\T,

- (10

- the far-field (Fraunhofey limit of ..k’ ,x) can readily be
calculated. Inserting the expansion into Ef) shows that
the vectork=|k’|x/|x| in the first exponential should be iden-
tified with the outgoing wave vector amd=#k with the out-
going momentum. Comparing this expression with the far-
field limit of Eq. (6) one arrives at the two-dimensional
transition amplitude

FIG. 1. Two-dimensional geometry of atom diffraction from a

diffraction object(bar of finite thickness. The incident momentum P FpL (A2
of the atom is denoted by’. The straight shadow lingl, which tat(z)(p'p’) -1 > 4 daze—iApazazlﬁ (114
plays the role of the silhouette, divides the bar into an “illuminated” 2(2m)mhi J

part and a “shadowed” part. Also drawn is the adapted coordinate

system(ay,a,) with the a, axis centered along the shadow line. i Pa, * pf’ﬁ Siﬂ(ApazA/Zﬁ) 1
©2@mPmh Apyj2h

Yscalk' %) = 2mh(x|GF(E'® +iOOWlp', +).  (6)
where A denotes the length of the shadow lige Further-
Here, E'@=|p'|?/2m, and the two-dimensional Green’s more, Pa is the momentum component pf normal to the
function, or resolvent, |§5<2)(z) [z-p?/2m] ™. shadow I|ne anqbaz is the parallel componerttf. Fig. 1. In
If the scale of an ObJeCt is large compared to the waveqaccordance with the Babinet principle, the transition ampli-
length of visible light it is well known that the diffraction tude shows the characteristic behavior of an optical slit func-
about the forward direction depends only on itsvo-  tion. The Babinet principle of wave optics states that two
dimensional silhouette as seen from the direction of the il- complementary objects, such as a slit and a bar of the same
luminating light—e.g., as for a disk and a ball. In two dimen- width, cause the same diffraction pattern outside the direc-
sions the silhouette of a diffraction object is simply a straighttion of illumination (forward scattering[33].
line, here called a shadow liréne A in Fig. 1), and, as in
optics, due to the diffraction conditiofl) the scattered part
¥scar Of the wave function can be approximated at small || ATOM DIFFRACTION FROM A DEEP GRATING
scattering angles about the forward direct[@9]. Neglect-
ing the attractive part of the potentil(x) the repulsive hard
core imposes Dirichlet boundary conditions on the circum- In diffraction experiments one often employs transmission
ference of the diffracting object. Denoting the Green’s func-gratings to enhance the measurable diffraction peak intensi-
tion in configuration space by ties by a factor oN?, whereN is the number of coherently
illuminated bars. One grating bar is simply a special case of
52 the general scattering object considered in the previous sec-
GP([K'[;x,x") == 2—<X|G82)(E'(2) +i0)[x") (7)  tion. In the following we arrang®l identical bars to create a
m regularly spaced periodic transmission grating. While the
simplest and most familiar situation in which the bars are
and using the Green theorem one finds, after some algebrayjigned along their common shadow lite axis; cf. Fig. 2
is treated in virtually every textbook on opti¢s.g., Ref.
[33]), we are not aware of a more general treatment where
Pscad K, X) = f daz[G(z (Jk'[;x a) lﬂmc(k ,a) the individual shadow lines are not parallel to the alignment
axis. This situation arises naturally, however, for diffraction
9 from a grating with bars of finite thickness at nonzero angle
- iﬂinc(k',a)gGéz)(|k'|;X,a) . (8 of incidence(cf. Fig. 2. We note that apart from the period
1 2=0 an additional length scale of the grating is given by the dis-
tance between the bars. Depending on the angle of incidence
Here,da; is the infinitesimal line element alondg andd/da;  the (projected distance can become small or even zero. The
denotes the normal derivativef. Fig. 1). The Green's func- diffraction condition (1), which must hold for all length
tion (7) can be expressed in terms of a Hankel functiei®], scales, therefore also imposes a limit on the maximal angle
Chap. 3.10x of incidence.

A. Atom slit function of the deep grating
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non-normal incidence: the correct choice may depend on the
angle of incidence. We provide, therefore, a mathematical
prescription which converts Eq12) into an expression in
the style of the Kirchhoff integral. This is achieved by intro-
T ducing, between every pair of adjacent bars, a new coordi-
nate systents;,s,) as depicted in Fig. 2 such that thgaxis
meets the boundaries of the two bars at their respective
shadow lines. The length of the resulting straight “slit lige”
d will be denoted byS,. We now substitute the integration
variablea, of Eq. (118 by

_Ap,,

SZ_
ApSZ

Al S
(azi 5) iE asa, =0,

whereApSz denotes the momentum transfer parallel toghe

axis. Similarly, we denote the components of the incident
) : . . and outgoing momenta with respect to fheaxis byp, and

connects the shadow line$ of adjacent bars, provides a generali- g _g | lici P . ﬂ% h ypsi

zation of the notion of a slit at normal incidence. It lends itself to Ps;’ respectively[An explicit expression for these momen-

the application of the Huygens principle. Also drawn is the adaptedUm components in terms of the geometry of the grating will
coordinate systens;,s,) with the s, axis centered along the slit be given b(?'OW n Eqs(27) .and (.2.8) for the transmission
line and the angler by which the coordinate systents;,x,) and  grating of Fig. 4] Using the identities

(s1,S,) are rotated with respect to each other.
Apa, A+ Aps S =Apod, (149

FIG. 2. Geometry of atom diffraction from a grating of identical
deep bars with period along thex, direction. The slit lineS, which

Under the diffraction condition the transition amplitude of
a grating ofN bars with periodd along thex, axis can be

- ) . + ! + !
written as the coherent sum of the spatially translated ampli- Pa,*Pa, Ps,*Ps, pi+p;

= = 14
tudes of each bar: Ap,, Aps, Ap, (14
N-1
at2) (n-pn') = Siln-(N-1)/2]Ap,d/A +at(2) (- ' which hold because of energy conservation, and the abbre-
tgra (P3P o € pip) (129 viation D=dAp,/Aps,, the transition amplitude of the single
bar, Eq.(119, becomes
=Hy(Ap,)*2(p;p). (120 L o
; ; a2 (n ') = _'_M iAp,d/27 —iApg Syl
In the second line, the sum has been carried out and replaced t*'“(p;p’) = 2t g'ap2 ds,e™'Ps;
by the grating functiori33] 2(2m) /2
_SOIZ
sin(Ap,dN/24) ~iAp,d/2h ~iApg Syl
Hi(Apy) = 0 —PEE (13 +eriP f dse™Pat e (15
sin(Ap,d/24) br2

whose argument is the momentum transfer along the direaeeping in mind that the integration variatsg was substi-
tion of periodicity x,. Equation(12) yields, in principle, a tuted fora, for a single bar the following geometrical inter-
satisfactory description of the diffraction problem in terms of pretation is possible: in the integral frof/2 toD/2 in Eq.
atom scattering from a bar. The literature on optics, however15) the variables, represents the position along the upper
commonly adapts a complementary point of view by focus-half of the slit lineS on one side of the bar; similarly, in the
ing on the aperturesslits) between the bars rather than on integral running from B/2 to -§/2,s, is the position
the aperture stopébarg themselves. This is expressed, for along the lower half of the next slit line at the other side the
example, by the Kirchhoff integral of opti¢83]. In recent  bar. Inserting Eq(15) into Eq. (124 the half slit lines of the
work this viewpoint has also proven very useful in the fieldN adjacent bars can be joined to yidk-1 slits between
of atom and molecule diffraction from a transmission grat-them. Collecting all terms and introducing a “slit function”
ing: small quantum mechanical effects such as the van der

Waals interactiofi12,17] between the atoms in the beam and br2

the grating as well as the finite size of the helium dif&r a*(p’;Aps) =f ds, exp(-iAps S,/7) 7(p';s,),
manifest themselves as an apparent reduction of the slit -brz

width of the grating. In these articles the respective quanti- (16)
ties could be determined quite precisely by comparison of

the reduced slit width with the true geometrical slit width. where the transmission functiorf{(p’;s,) inserted here is
Unlike for grating diffraction at normal incidence, however, unity inside the slitS and zero otherwise, the transition am-
it is initially not evident how to define a slit in the case of plitude of the grating can be written, foé>1, as
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120y — - | P Pl [ sinApNa2h) :
gra 2 (2m)*mh Aps/2h
=08
~ Hn-1(Ap2)a®(p’;Aps) - 1z
% 0.6
The first term in curly brackets is sharply peaked about the~§
forward direction, and in the limiN— oo, using Eq.(14b), it g 04
simply reduces to 2/i(p,/ps)d(Apy). The second term, §
which is a product of the grating functioil3) and the slit 55
function (16), generates the familiar diffraction pattern of a 0.2
grating [34]. The nth-order principle diffraction maximum
appears at the momentum transfer 0 : : :
0 +0.02 +0.04 +0.06 +0.08
Ap, = n2mh Momentum transfer Apg, / A [10 nm'l]
d

. o FIG. 3. Asymmetric probing of the envelope function by the
Introducing the angle of incidenced’ such that p;  grating function at non-normal incidence. Both curves show the
=|p’|cos®’ and p;=|p’[sin &' (cf. Fig. 2 and, equivalently, product(ps, +p, )2/ (2p, So)%|a%(p’ ; Aps,)[2 as it appears in Eq19)
the diffraction angle 6 such that p;=|plcosé and p,  versus the momentum transfap, . The solid curve refers to the
=|p|sin 6, the nth order is located at the angl 6, satisfy-  positive values ofAps on the horizontal axis. The dashed curve
ing refers to the negative values Absz which have been mirrored onto
the positive axis for comparison. The circles and triangles on top of
sing,=sin@’ + n2 _ (18) the solid and dgshed curves, respectively, mark Fhose yal%of
|p’|d where the grating functiokiy(Ap,) probes the slit function—i.e.,
whereAp,=n27#/d is satisfied fom=0,+1,+2,... . Their inten-
Generally, the diffraction intensities are proportional to thesities correspond to the measurable diffraction peaks. For the cal-
scattering matrix elemerftp|Sp’)|> where the components culation of this figure the grating cross section of Fig. 4 was used
of the outgoing momentum must be evaluated at the angle with the beam parametes=21° and|p’|/%=10 nnT.
6,. Inserting Eq.(17) into Eq. (4) one finds, after some
algebra, Ap

s _ Ap, tan¢' -ta(a+ 0’)( Ap, )2
o Ps, + Pe, | *1a%(p"; Aps )2 19 cofa+¢) cos¢ 2|p'| cos¢’
n—'0 2pé1 |aa[(pr;0)|2 ,

where the intensity, of the zeroth diffraction order serves as the leading nonlinear term is seen to vanish 'lk?z/|p,,|
a normalization constant depending on the experimentaﬂe'at've to the linear term. Accordingly, the asymmetry is less
counting rate and where, from E(L6), [a®(p’; 0)|2=< (in pronounced for smaller diffraction orders, for faster beams,
the absence of the van der Waals interaction considered b8MNd: In the case of molecules, for heavier molecules. While
low). at |p’[/A=10 nm (qorre_spondlng to aI—_Ie beam atv

We now discuss the intensity formula, EG9), to explain ~ ~160 m/3, as seen in Fig. 3, the quadratic term in E2)
the origin of the asymmetry of the diffraction pattern. The!S responsible for a £8% deviation of the positive and nega-
slit function a®(p’: Ap, ) is an even function of the momen- tive fifth diffraction orders, respectively, its contribution re-
tum transfer con%por?enkp The geometrical factofp duces to +0.7% abv=1800 m/s. This smallness explains
+p)2I(2p.S)? (the comspzjonentp depends onApSl why the asymmetry has previously been misggdFig. 5 in

Sy St ) S1 %  Ref.[35]). Clearly, in the thin grating limitz— 0 the mirror
through conservation of energy ar]d momen)tuoan. be symmetry is recovered in EG20).
shown to introduce, for positive incident anglg, a slight

. _ _ » = > In the derivation so far no comment has been made about
attenuation of the slit function at positivieps, and likewise  the inclusion of the attractive van der Waals interaction be-

an intensification at negativaps,. The product of the slit tween the atom and grating. It can be accounted for through
function and the geometrical factor serves in Etf) as an  the transmission functiom?(p’;s,) in the slit function(16)
envelope function which is probed by the grating function atas outlined in Appendix and in Refgl2,15. Unlike the case
the momentum transfekp, rather than at\ps,. SinceAps,  of normal incidence, at non-normal incidence the influence
andAp, are not proportional to each other, this probing is notof the van der Waals interaction may be different on each
symmetric for positive and negative diffraction angles. Thisside of the slit, introducing, in principle, an additional source
is depicted in Fig. 3, and it leads to the characteristic asymef asymmetry to the diffraction pattern. Numerical compari-
metry of the diffraction pattern of a deep grating at non-sons using the explicit expression of the Appendix for the
normal incidence. Expandingps, using Eq.(14b), into a  transmission function demonstrate, however, that this effect
power series ifAp,/cos#’) through second order, is minor.

(20)
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B. Atom diffraction pattern of the deep grating

The quantitative evaluation of experimental diffraction
data requires one to determine a set of parameters describing
the geometry of the particular gratirigf. Fig. 4) as well as
the van der Waals interaction coefficigdy (cf. The Appen-

dix). Previous work has shown that an immediate numerical
fit of Eq. (19) to experimental data does not reliably deter-
mine these parameters. Analogous to the procedure devel-
oped in Ref.[12] for diffraction at normal incidence we
therefore introduce a two-term cumulant approximation of
the slit function. To this end we rewrite E(L6) as

So

aa‘(p’ Apy) = L eiApSZS)/zﬁq)_<&> I_:IG. 4, Geometrica_l Cross sect_ion ofa custom_ diffraction grating
s iAPsz as it has been used in matter diffraction experim¢Btd2]. The
parameters and their typical values are peded 00 nm, slit width
) Ap S=60 nm, thicknes$=120 nm, and wedge anglg=6°. The angle
- _'Apszs"thq)+< 732> } ) (21 by which the coordinate systerfis, x,) and(s;,s,) are rotated with
respect to each other satisfies asttan+sy/t and Ssina=t. At

the above parameters~=58°. The characteristic shape of the bars

is reminiscent of the lithographic production procgss.

D*(k) = I,l Sdzdéﬁ*”‘ﬁf“(p’:i@of))- /1
2(p’;0) ), 2 F=ImR-Ry), 3=/ RAR;+Ry),

(22)

where the function®*(«x) and®~ (k) are defined by

the nth-order diffraction intensity relative to the zeroth order
Here, 7' (p’;s,) denotes the derivative of the transmissionis given, within this approximation, by

function with respect to its position argument. &5(0)=1 | De +p! 2
the logarithm of®*(x) can be expanded into a power series n _ ,51—512 exf- ( ApSZE)Z/ﬁZ]ex;{— TAps/#i]
of the form lo | 2pVSs+A
N iP[Aps Sep/2%] + sint[Apg A/27]
b @R, o LS, bt i 26
In ®*(x) _121 i R;. (23) [Aps/2h]? ' 20

Here, the momentum components are to be taken explicitly

The complex number®; and R;, which are known as the at the angles

first two cumulants, are uniquely determined by E(%2)

and(23). One finds ps, = [p'[cosa + 6,), (279
S/2 I |~ ’
Rf:%)-f d§ﬁ<p’;i<%-§>) (24) ps, = [p’|coda+ 6"), (27b)
° and the momentum transfer is given by
and Aps = |p'[[sin(a+ ) = sinl@+ 0], (29)
[ S 2 )2 /2 (S where « denotes the angle shown in Fig. 4 by which the
Ry = (E) ~(R)“-2 o de& 7 \p's x 2 £])- coordinate systenfs,,s,) is rotated with respect t€x;,X,).

The diffraction intensity formuld26) is, though more com-
(25) plicated, reminiscent of the result for normal incidence de-
] o o ) ) rived in Ref.[12]: The long fraction involving the sine &
Using the explicit form of the transmission function derived \ogemples the Kirchhoff slit function for a slit of “effective
in the Appendix the length scale of the cumulants can b&iqth” S, whose intensity zeros, though, are removed by the
shO\_/vn to bg set by the parameteC;/ (fiv). For helium and hyperbolic sine function involvingh. The Gaussian expo-
a SiN, grating C3~0.1 meV nni [12]. Therefore, for the nential reflects the suppression of higher diffraction orders.
purposes of this work it is sufficient to truncate the expan-The asymmetry, # | _, of the diffraction pattern is now em-
sion, Eq.(23), after the second order. Inserting the first two pogied by the asymmetry iﬁpsz as a function of in Eq.
terms into the slit function, Eq21), and introducing the four (28). The second exponential in E(R6) accounts for the

quantities minor additional asymmetry in the diffraction pattern due to
L L the different influence of the van der Waals interaction on
Sr=SH-ReR +Ry), A=Im(R; +Ry), both sides of the bar. A comparison of the diffraction inten-
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5001

\\ v FIG. 6. One of three possible sets of Jacobi coordinates. The
vector p'? points from the center of mass of the subsystes) to
1 1 1 1 1

atom 1. The vector® is the relative coordinate of the subsystem.
The coordinateR (not shown corresponds to the center-of-mass
position and is, therefore, identical for all three sets.

-8 -6 -4 -2 0 2
Diffraction order n

FIG. 5. Diffraction intensities of a helium atom beam wat
=500 m/s from ad=100 nm transmission grating as displayed in

. 1 . m m M
Fig. 4 at¢’ =21° angle of incidence. The solid curve was calculated R Ml M 1 Ml r
using Eq.(19); the dashed curve shows the two-term cumulant ap- , :
proximation(26). To guide the eye these functions are shown con- P(') = 1 - m 1 - My 1 Ml
tinuously. The circles on top of the solid curve at integenark the r (k) m; + my m; + my Iy
experimentally accessible diffraction ordefgl,. 0 1 -1
sities calculated from Eq19) and the approximatio(26) is (30
displayed in Fig. 5. wherel and0 denote the X 3 unit and zero matrix, respec-

By a numerical fit of Eq(26) to experimental diffraction  tively, and M =m,+m,+m; is the total mass. It is sufficient

data the effective slit widtls., among the other parameters, to restrict the combinations of indices to the ascending per-
can be determined accurately and allows for further comparimutations

son between theory and experiment along the lines of Ref.

[12]. For completeness, we note that (ijk) = (123,(23D,(312. (31
The transformation between different sets of Jacobi coordi-
/2 , nates can be derived from E@O). It takes the form
=S%-Re| ds[1-7{p";s)]. (29)
-5y/2 R R
_ _ o P | = 7| pi |, (32)
This means that the geometrical slit widsy appears to be p (ki) ¢ i)
reduced by the average deviation from unity of the transmis- )
sion function7(p’;s,). where the block matrix7i) is given by
1 0 0
IV. TRIMER DIFFRACTION THEORY m mM
" 0 - 1
A trimer, in the scope of this article, is a three-atomic gV = m+me  (m+mme+m) [, (33
molecule which is weakly bound by pair interactig&2]. 0 _1 o m 1
Again, the atoms themselves are treated as point particles. m; + m,

An additional three-body interaction between the atoms is _ i) cas ) i
assumed to be negligible. Central to later applications will bel he thkreekmatnceg“ satisfy the relations def"=1 and
the helium trimerHe, in which case at least these assump-J" 7" 7"'=1. Expressed in Jacobi coordinates the Hamil-

tions are expected to be Va'[BO] ton Opel’ator for a free trimer is giVen b’}’o"'v where
Ho= i pee M __gque, Mt M
A. Three-body bound states 2M 2my(m; +my) 2m;my
The masses of the three atoms at positign®or i=1,2,3, m
will be denoted bym and are assumed to be of the same V:vij< f’(i)— k__¢(k) >+Ujk(|f(ik)|)
order of magnitude. The interaction between afoandk is m + My
modeled by a potentiad(|r ™|) whererW=r;-r, is the » m .
relative coordinate. We introduce the Jacobi coordinates +Uki( pl+ —+J—r('k) ) (34)
R, p, ri% sketched in Fig. 6, which can be expressed in My + M
block matrix form as Here,P, g, andpU¥ are the conjugate momenta associated
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with R, p®, andr%, respectively. Denoting the eigenstates 0.8
of the center-of-mass momentuk by |P) the full trimer
states can be written in product fofid, ¢,y =|P)|#.) satis-
[Ho+VIIP,¢,) =EIP, ,), (35 Tg
=04
with energy eigenvalues <
R
E= E +E (36) 0.2
oM ’

whereE, is the negative binding energy of the trimer bound
state[),.

PHYSICAL REVIEW A71, 033606(2005
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The representation of a trimer state by its wave function

10 100
Hyperradius R [nm]

depends on the particular set of Jacobi coordinates. Denoting
the common eigenstates of the relative momentum operators FIG. 7. Hyperradial probability densitie®R) according to Eq.
g™ andp'® by |q,p)i jx, whereq andp are the correspond- (39) of the two theoretically predicted bound states of the helium
ing eigenvalues, we introduce momentum-space wave funarimer “He,. The states were calculated numerically using the
tions by momentum-space Faddeev equatipt 49 in the unitary pole ap-

N proximation[50] based on the Tang-Toennies-YiliTY) potential

d)(,/'"k)(q,p) = a,ple,). (37)  [51] for the helium-helium interaction. Clearly, the excited state,
with its expectation value of the hyperradius @fug/M(R)e

Because of the transformation, E§2), wave functions with  =10.1 nm, is spatially more extended by almost one order of mag-
respect to different sets of Jacobi coordinates can be choseRude than the ground state witf,/m(R)g=1.1 nm. The scaling

to satisfy the transformation relation of the horizontal axis is logarithmic.
¢(yiuik)(q(i),p(ik)) - ¢(}£,ki)(q(1),p(ki))_ (39)

The corresponding configuration space wave functions \We now proceed to the diffraction of a trimer from an

¢(y"1k)(p,r) are defined analogously. In order not to overloadexternal potential

the notation we will omit in the following, where possible,

the indices of the relative coordinates: if not denoted other-

wise, we implicitly use (ijk)=(123 whence p=p¥, r

=13 andquq“) ypEp(z(s)J_ =123 p=r where theW(r;) are the interactions of the individual atoms
Since the discovery of the Efimov effd@1] in 1970, the vv_lth the diffraction object. The full Hamilton operator is

helium trimer “He, has received much attention 9iven by

[4-6,20-30,44—4]7 This trimer is predicted to possess, apart

from its quite tightly bound ground stat&,=-126 mK), a

weakly bound Efimov-type excited stag.=-2.3 mK [4]. By virtue of this structure, which is formally identical to that

As both states have zero total angular momentum the cores gimer diffraction[16], we may carry over the fundamental

sponding wave functions only depend on three coordinategigepraic relations from previous work. Introducing, as in

which may be taken gs=|p|, r=|r| and the angle betwegn  Rqf [16], the resolvents
andr. A common way to visualize trimer wave functions is '

B. Scattering theory approach to trimer diffraction

WIr 4,1 5,13) = Wi(rg) + Wh(rp) + Wi(r3), (40)

H=Hy+V+W. (41)

to draw the hyperspherical probability densR¢R): The hy- Go(2) =[z- Hol ™%, (423
perradiusR, which is independent of the choice of the set of
Jacobi coordinates, is defined a@,R(p,r)Zzémp2+%mr2 o AL
and the corresponding probability density can be calculated Gu(@ =[z-Ho=-VI™, (42b)
according to

Gw(2 =[z=Ho- W™, (420

P(R) :j d*pd’r¢,(p.1)I?(R(p,1) ~ R). (39 and the two-bodyT matrices in three-body space,

The purpose of the “mass” paramejeyis to ensure that the TW(2) =V+VG,(2)V, (43
unit of Ris length. The numerical value @f; is, in principle,
arbitrary as it simply scaleR. Figure 7 displays the hyper- Tw(2) =W+ WGy(2)W, (44)

radial probability densities for the two helium trimer states,

using uo/ m:%, which were calculated numerically from the for the potentialsV and W, an Alt-Grassberger-Sandhas-
momentum-space Faddeev equatip48,49 in the unitary (AGS) type [52] transition operatorU,,, can be derived
pole approximatiori50] based on the TTY potenti§b1]. which satisfies the equation
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Uyv = Tw+ TwGoTyGoUyy- (45) (P1,P2,P3sWP1.P2.P3, +), (52

In particular, the transition amplitude is given by the matrix

element of this transition operatpt6], where|py,p2,ps, +)=p1, +)IP2, +)IP3, +) is the scattering

state of three independent atoms associated with the potential
t(P,¢p,;P",¢b,)) =(P,p,JUNE' +i0)|P",b,,), (46)  WIry,ra,rg). Splitting W according to Eq(40) into the indi-
vidual potentialsWi(r;) and using the Lippmann-Schwinger
eqation(2) the matrix elemen¢52) can be expressed by the
<p,¢y|sw|p',¢,y,> known atom transition amplitud€s):

and it determines th& matrix associated withd as

= 5<3)(P - P’)&W -2mS(E- E,)t(P7¢’y;P’,¢'}/)' (pl,pg,p3IV\/|p1,p§,p§, +)

(47) =t3(p1;p1) ¥ (P2~ p2) 8% (p3 — pa) + ti(p1;pD)
We shall in the following impose the condition 1

3) ISR A
P2 P2 X 8% (p, =~ p)t5(ps;p3) e B0 ECE 0
E Ml < oo (49 ; ;
+t3(p1; P (P2 P25 (P3; P3)
which ensures that the internal energies of the trifbeth 1 1
binding energy and potential enejggre much smaller than X — —— — + (cycl. perm). (53
the external energy associated with the center-of-mass mo- E;-E;+i0E3—E5+i0

tion. For a helium trimer beam at an incident beam velocity o .

of v=500 m/s, for example, the center-of-mass kinetic enHere, “cycl. perm.” indicates that all explicitly shown terms
ergy|P’[2/(2M) ~ 16 meV(corresponding to 180 Kexceeds ©ON the right-hand side of Eq53) should be repeated with
the trimer ground-state energy by more than three orders df'€ir indices permuted once and twice, in ascending order.
magnitude. Using the Schrodinger equation for bound trimef\PPIYing again the condition of the weak binding energy

wave functionsé.(q,p) the condition(48) can be shown to (48) the complex energy denominators can be approximated.
entail the relatioryws First, using the principal value formul&+i0)™1=—-i78(x)

+Px it is possible to approximate

lal <[Pl,|P"| and|p| < |P[,[P’|. (49
These state that the wave functions of the trimer are concen- 53(p,-pb) 1 n 1
trated in momentum space at relative momenta far smaller 2 e E;-Es+i0 E;-E;+i0
than the center-of-mass momentum. — 89(p, - pl)[- 27 SE, ~ E)] (54)
- 27 P2JLT 1~ BV

Under the condition$48) and (49) an approximation of
the equation foiJ,y, Eqg. (45), to lowest order is possible
and sufficient([53], Chap. 3.4 whence the transition ampli-
tude becomes

t(P,$,:P",¢y) = (P,b)|TWE +i0)|P",$,).  (50)

We note that within this approximation the trimer binding 1 1 + 1 1 + 1 1
potential V is only implicitly contained through the bound X+i0y+i0 y+i0z+i0 z+i0x+i0
stateg¢), and|¢),,. The evaluation of the right-hand side of (2m)2
Eq. (50) is nontrivial. A series of approximations, all accu- =-—0
rate within the condition48), may, however, be applied to 3
simplify the transition amplitude. As the first step, the matrix
element ofT\,(E’ +i0) can be shown to vary slowly under a
variation ofE’ on the scale of the binding energigs . This
allows us to replace the energy argumenfTgfin Eq. (50)

by the sumE; +E,+E; whereE/ =|p/|?/2m; are the energies
of the free atoms. Introducing two complete sets of states EcP.

(50) becomes .
(P1,P2, P3| TWE] + E; + E3 +i0)|p1,p2,p3) = t(p1; p1)
t(P, ¢, P, ¢,) = f d*qfpdq’ d*p’ ¢ (a.p) b, (0".p") X 83(p, -~ py) 0¥ (ps— p3) — 2w S(E; — EDt](p1;p7)
(2m)?
3

where a small correction ter@(E,/E) was neglected. Sec-
ond, for three variableg, y, z with x+y+z=0 the distribu-
tion identity

[8(x)&(y) + (y)d(2) + 8(2)6(x)]  (55)

can be shown to hold. K+y+z+# 0, such as in Eq53) for
x=E;-E;, y=E,-E,, andz=E;-E;, Eq. (55) is still appli-
cable within the same range of validity as E&4). Combin-

ing the steps one arrives at the following approximate ex-
ression for the matrix element &f(E; +E;+E;+i0):

X (P1,P2, P3| TWE] + E; + E3 +i0) X 89 (p, - ppt3(ps;p3) -
X|p1,p2:P3)- (51)

Using Egs.(42) and (44) the algebraic relatiom\/(2)Gy(2)
=WG,(2) can be shown to hold. Inserting this relation the Upon insertion of Eq(56) into the trimer transition ampli-
matrix element ofTy(E; +E,+E;+i0) is replaced by tude (51) several momentum integrals can be carried out by

8(E; ~ Ep) (B3~ Ey)

X t(p1; P (P2; PHS(Ps; p3) + (cycl. perm).  (56)
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virtue of the momentund functions. Moreover, the energy tional arguments of the atom transition amplitudes as well as
functions allow the integration of a further momentum com-the trimer wave functions. In both cases, however, these
ponent each. As an example, we consider the delta functiofunctions vary slowly on the scale @P, such that the cor-
S8(E{—E;) in the second term of Eq56). Switching back to  rection can be shown to be negligible altogether. Similar
Jacobi coordinates, after integrating o\ (p,—p5) it be-  simplifications are readily derived for the other energy

comes

functions in Eq.(56).
Combining all steps the general expression for the trimer

SE )= 5([ﬂp+ q]z_ {P’ _ mzl\;msp+ q transition amplitude subject to the diffraction condition and

+
Mty

the condition of weak binding energy is obtained. Before-
2 hand, however, it is helpful to introduce two abbreviations.
] ) (57) First, we express the atom transition amplitude in terms of

my the momentum transfekp,=p;-p/ as

To proceed we decompose the momentum vectors into their

components parallel and perpendicular to the incident center

of mass momentun®’: the parallel component ofj, for Ti(pi; Ap) =ti(pisp)). (59
example, is denoted by, and the two-dimensional perpen-

dicular vector is denoted hy, . Then, by conditior{49) and

using P’ =0 by definition, thes function (57) can be ap-

proximated by

8(E, - Ep) =

Second, we introduce a molecular “form factor”

m, + m m
5<AP|+ 2rr12 3AP|+§(W1PM+Q|))

2

' Foy(a;p) = f &*q'd*p’ p(q".p" )by (q+q",p+p’).
MHWQ)

m, + m3( m,
(59

where the term involving the factaf=~6(\q4g/d)? is a cor-

rection which is small by the diffraction conditidd). Inte-

grating, according to Eq51), the second term of Eqd56)  With this notation the trimer transition amplitude assumes
overdp/, the correction involving is pushed into the func- the form

+ M + ~ +
tP,byiP' ) = {FW(O,— %M%APL;O)T?(%P;AP) oM M) dzpltgt<%P;AP“,— e mSpi)

myP, >
my + Mg m, _ af M1 My + My ArM2 [,
XF,y Oa_T MAPL"'FM 0,—py 3 HPaO’APL"' m, P _?Ff d°q,d%p,
. m m m m m,
XFW’(O,_QL;Oa_pL)tit<ﬁlp;Apll-ﬁAPl +QL>Tgt(M2P;OvM2APL - m,+ ms(h + pJ_)
~atf M3 mg m
xt%‘(MP;O,MAPL— mz+mqu_pl)} + (cycl. permy), (60)

where again use has been made of condit#t®) to simplify  this end, expressiofl7) for the atom transition amplitude
the functional arguments of the atom transition amplitudesnto Eq. (60) yields a very long sum containing a total of 42

where possible.

terms which we do not spell out explicitly. These 42 terms
can be classified by the numb@-3) of references to the slit
function in each. In the context of a many-body multiple-

V. TRIMER DIFFRACTION FROM A DEEP GRATING scattering series expansi¢B3] they may, respectively, be

A. Trimer slit function of the deep grating

interpreted as forward9 terms, single-(18 termg, double-
(12 termg, and triple-(3 termg scattering terms. A cumber-

In this section the general trimer transition amplitude will some and little elucidating calculation involving the transfor-
be evaluated for diffraction from a deep grating. Inserting, tomation properties of the form factq69) with respect to
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different sets of Jacobi coordinates reveals that the 18 single(AP3) can be extracted from the trimer transition amplitude,

scattering terms interfere almost destructively and that theileaving

net contribution is small by a fact@(\ 4g/d)?> compared to

the forward- and triple-scattering terms. They may thus be t(P,¢,,P",d,) = S(AP)tA(P, P b)), (61

neglected by the diffraction conditiofl). Similarly, the 12

double-scattering terms contribute only to ord@(\yg/d) where bold italic letters again denote the two-dimensional

and may also be neglected. projections of vectors into the plane perpendicular toxhe
The forward- and triple-scattering terms, respectively, caraxis. The two-dimensional trimer transition amplitude for

be combined. As in the atom case in E§). a delta function diffraction from a transmission grating becomes

) , | P51+ PSl 1 Pl
tgra(Pvd’y;P l¢y’) 27Th_5(AP2)5 P2 dqldpJ_ yy' (0 qJ_YO O pJ_!O)

C20mMA3| TP "' (2mh)? P

(APsm 0 + (—APi + ql)cosa )al< P";APsin(a+ 6') + (%APi + ql)cos(a+ 0’))
m, m, m,
XHy| | —2AP + 0 - + +0
N(( Mot T ot q. pL>COS ) ( ( P, + a. pi)cos(a ))

mg m mg ms '
XHN((HAPJ_ - m2+3m3qL - pL>COS¢9 ) ( (M P, - m, + ms(h - pl)coia‘* 0 ))

+ (cycl. perm). (62)

Inserting now for each atom the slit functiofk6) and re- N br2 i (.
writing the form factor(59) as a configuration-space integral, a ,(P";APg) = f dSexp-iAPs S/fi)7,.,(P";Sy),

(64)

Fyy(d;p) = f Ppdre™ PP (p.r) b (p,1), where S, can be interpreted geometrically as the center-of-
mass position of the trimer along the slit litgf. Fig. 2 and
where, analog to the atom casm,:dAleAPsz. Both Egs.

the integrations ovedq, anddp, in Eq.(62) can be carried (63) and(64) exhibit the same structure as their atom coun-
out. The three grating functiortsy give rise to a triple sum terparts. Only the new trimer transmission function, which
of which only the on-diagonal terms contribute significantly: @Ppears in the trimer slit functiai64) and which turns out as

they represent diffraction of all three atoms from the same
bar; the off-diagonal terms, which correspond to diffraction

of atoms from different bars, are negligible since the prob-
ability for atoms to be spatially separated as far as the dis-

7 (PS) = fdspdsfqﬁ (p.) by (p.1)

tance between two adjacent b&f0 nnj is strongly sup- XT&H( My rl_i)
pressed by the bound-state wave functions of the trimer. ‘cogat6')
Collecting the remaining terms the trimer transition ampli- m r
tude can be cast into the form ng‘t(—zP’;#)
M coqa+ @)
m3 / r
i Ps+Pg XTat( cos(;i o )) 3
gra(P qs'yapll(b'y’) 2(2 )ZMﬁ 27Tﬁ_6(AP2)5
Py incorporates the complicated internal configuration of the tri-
_ 2 (pr- mer molecule through the bound-state wave functions. In
Hn(AP2)a,, (P APs) (63) particular, the notation
m, + Mg
. . . . ri, =S,coqa+6)+ , 66
Here, we introduced a trimer slit function by 1 = Scosat ) Mo Pt (663
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Lomy mg bound statep, can be carried over immediately. Therefore,
ra. =Scoda+d')- IVIa o+ m3rL’ (66b) e write the trimer diffraction intensities in the form
o [P +PL\2@" (P AP,
B S A h o
far = Sooda+ )~ ip, — R (669 Ps, ), (P";0)|

has been chosen to emphasize the geometrical meaning gpntrary to the atom case, however, the trimer slit function
the position arguments of the atom transmission functions€Pends on the spatially extert1rged trimer bound siafemd
The quantities; , /coga+ ') can be interpreted as the posi- # and, therefore, in gener@,,,(P';0)° <.
tions of the individual atoms projected onto the slit liSe Equation (67) determines the diffraction intensities of
while the integration variableS, represents the projected both elastic(¢,=¢,,) and inelastic(¢,# ¢,/) processes.
center-of-mass positioR, /coga+6'). The trimer transmis- Earlier works on the helium trimg#7] as well as on van der
sion function (65) is, therefore, S|mp|y the product of the Waals dlmeri54] have shown that diffraction orders corre-
three atomic transmission functions averaged over the wav&onding to inelastic processes are typically less intense by
functions of the incident and the outgoing bound trimer statefive to six orders of magnitude than those of elastic pro-
This intuitive result is a straightforward extension of the casecesses. They are, therefore, experimentally less relevant. In
of dimer diffraction[54]. the following we focus on elastic processes. Analogous to
the procedure in Sec. 1117 can be approximated by a two-
term cumulant expansion. The cumulaR{g now depend on
the trimer statep,. Moreover, because of the threefold van
Thanks to the formal coincidence of Eq63) and (64)  der Waals interaction, an additional terfd,=3Im(R;
with their counterparts, Eq¢16) and (17), of atom diffrac-  —R; ) should be retained in the expansion for sufficient nu-
tion thg derivation of thexth-order relative diffraction inten- merical accuracy. Taking these generalizations into account
sity 177 for the incident bound staté,, and the outgoing the nth-order relative intensity becomes

B. Trimer diffraction pattern of the deep grating

SIP{APS S, /271 ] + SINFP[(APG A /7 + APZ Q J71%)/2]
[A PSZIZﬁ]Z ’

In Psl * Pél
’ 2 (68)
2Psl\’iﬁ '}/+ A‘)’

2
} exf - (AP,3)%/h? - AP T /]

where, analogous to EgR7) and(28), the momentum com- be well described by an incoherent superposition of the in-
ponents are to be evaluated at the incident adgland the dividual diffraction patterns of the two bound states weighted
diffraction angleé, as by their relative population numbers in the beam. In the fol-
iy R , lowing section we first derive the trimer size effect for a pure

P51_|P jcosia+ 6y), P31_|P [cosar+¢"), beam containing trimers in only one state. Hereafter the

and the momentum transfer parallel to theaxis is given by ~ reatment of a mixed beam will be considered.

AP =[P’|[sin(a + 6,) = sin(a + 6")]. VI. DETERMINING THE TRIMER SIZE
Analogous to the atom case the effective slit widt ., is A. Trimer size effect
related to the trimer transmission functit8b) by the equa- Since the effective slit width of the trimeé69) depends,
tion on the one hand, on the trimer bound stdtarough
/2 , %;'V(P’;Sz)] and is, on the other hand, experimentally acces-
Sefty =S~ Ref ds[1-7(P";S)]. (69)  sible (through!”), it represents a link between experiment
~S/2 and theory. Earlier work on atom and dimer diffraction re-

Figure 8 shows elastic diffraction intensities for a beam ofvealed that the differencg - S, carries information about
*He, in its ground state calculated according to ) and both the van der Waals surface mtera_ct[dﬁ] and the size
(69). The asymmetry of this diffraction pattern is not as pro-©f weakly bound dimer$3]. The reduction of the slit width
nounced as in the atom ca¢Big. 5. This is due to the Dy the dimer size was found to Bér) where(r) denotes the
threefold mass of the trimer which enta@ 3 times shorter dimer bond length. The subsequent evaluation of helium
de Broglie wavelength. Similarly, Fig. 9 shows diffraction dimer diffraction data yielded the experimental resfilt
intensities for a beam diHe, in its excited state. =5.2+0.4 nm for*He, [3].

Since inelastic diffraction processes are negligible, an ex- In the following we derive the corresponding size effect
perimental diffraction pattern of #e, beam will in general ~ for a trimer. To this end we explicitly insert the trimer trans-
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T T A_ A_
LE —§O+—l,<82<§——2,. (70b

" F 2 coda+d) 2 coda+d)

§Q

&f\t Here, the geometrical quantities

)

'z + -

S Ai:i}mzmaml_|_msrL

5 2 M mp + Mg

=]

=]

£ m

g +|p, ————r 71

& pPL M, + Mg 1 (71)

a

and
L 1 1 1 L 1
8 6 4 2 0 2 + M
Diffraction order n A’; =+ } _ My ™My mlpJ_ + M r,
2 M m, +mg
FIG. 8. Diffraction intensities of a pure beam of ground state m

“He, at v=500 m/s from ad=100 nm transmission grating &t +|p, + 2 r, (72
=21° angle of incidence for the grating geometry of Fig. 4. The m, + Mg

solid curve was calculated using E&7); the dashed curve shows ) )
the two-term cumulant approximatiad68). To guide the eye these have been introduced. Neglecting, for the moment, the van
functions are shown continuously. The circles on top of the soligder Waals interaction, all atom transmission functions are

curve at integem mark the experimentally accessible diffraction unity inside the reduced domain of integratién0g and

99/199
ordersI /1%

mission function(65) into Eq. (69). By definition the atom
transmission functionga‘(pi’ ;Si») in Eq. (65) are zero if their
positional arguments;,=r;, /coga+8#’) lie outside the slit
interval [-$,/2,S,/2]. This fact may be utilized to reduce
the integration interval for the center-of-mass posit®nat
fixed relative coordinateg,r the interval may be limited, for
r,>0, to

A
coga+0')

S

2

S__ A

2 coda+0')

<SS < (709

2

and, similarly, forr, <0, to

=
o
—_

-2 0 2
Diffraction order n

FIG. 9. As in Fig. 8 but for a pure beam of excited stés,.

(70b). In this case the effective slit width depends onlyin
and A3. Accordingly, we call it the geometrical part of the
effective slit width and denote it by

1
Sy =S WRGJ d®pd’r|,(p.1)[?
X{[AT +AZ10(r ) +[A7 +AZ]O(-r1 )}, (73

where®(r ) is the Heaviside step function. Both integrands
in Eqg. (73) can be simplified using the transformation prop-
erties of the Jacobi coordinaté32) and the wave functions
(38). Combining the results, the geometrical part of the ef-
fective slit width becomes

8 .<12)|
) 7

= my |,,(12)| |L_
5 T cos(a+6")
Z 0.1F my 31) 31

= E r |r |

o) £ |r(23)| nm3 + L

f 1 ) cos(a+0)

= .

5]

s

=

a

FIG. 10. Geometrical interpretation of the effective slit width
formula. Clearly, the expressiof(|r??|+|r®?|+[r{*?) may be in-
terpreted as the “width{projected diametgrof the trimer perpen-
dicular to its incident direction. Taking the expectation values with

the bound-state wave function yields the expres$i@). The mul-

Due to the larger pair distance of the excited state, the effective slitiplication by [coga+6')]™* corresponds to an orthogonal projec-
width is smaller, resulting in a considerably wider envelope func-tion onto the slit lineS. Hence the slit widtts, appears reduced by

tion than for the ground state.

the projected width of the trimer.
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geom= g, - <|r(f3)|>7+<|r(fl)|>y+<|r&l2)|>y (74) Ser,y = nge}?;n+ %V¥ (77
.y 2 cofa+6) '
. . ) As the general expression for the van der Waals is
where the expectation values in the numerator are defined Efl?ng and little informative we shall not give its generél form

4 : : N, . explicitly.
<|r<jk)|>7=Jd3p(')d3r“k)|¢(y'”k)(p('),r('k))|2|r(jk)|. (75)

In Eq. (74) the symmetric term B. Size effect for three identical bosons

1 In the remaining paragraphs of this section we focus on
5(<|f(f3)|>y+(|f<fl)|>y+<|r(fz)|>7) (76)  trimers of three identical bosons, such as fhie,. As a
consequence, we denote the massembyn, and the equal
represents the expectation value of the “widfiptojected  projected pair distances Hjr | |),. The geometric part of the
diametey of the trimer perpendicular to the incident direc- effective slit width(74) immediately reduces to
tion. Therefore, as the factgcoga+6¢')]™* corresponds to

an orthogonal projection of the perpendicular coordinates 3 (r,))
onto the slit line(cf. Fig. 10 SE°"is simply smaller tharg, Sty =S~ 5 =2 (78
by the projected width of the trimer. 2coqa+0')

In the presence of the van der Waals interaction an addi-
tional termSe’?ff’x accounting for the deviation from unity of Moreover, if the spatial extent of the bound-state wave func-
the atom transmission functions arises. The entire effectivéion is small compared to the slit width, the van der Waals
slit width is the sum part Sé‘f’fv,‘j is to very good approximation given by

=
S/2 pL ol L

1= -re [ atrio o] [ as|1-A(Zig) A B -

0 coga+0')

R P ) P 2
p’ L PL_E L PL_E L 0 (P’ ) P’ pL PLES
Al g dg|1-2( i) g 21
3 = coga+0') +f_so,2 g_ 3 = 3 =¥ coga+0')
1 1
S A P G
X 7 £ ) + 2 2 (79
S’SZ cofa+6)

Within the approximatior(79) it is evident that ?fW is in-  once more the transformation properties of the relative coor-

deed zero if the atom transmission functions are unity insidelinates(32), shows that these expectation values are express-
the slit and if the spatial extent of the trimer wave function isible solely in terms of|r , |). For example,

small on the scale of the slit width. Therefore 31" were

but a small correction to the full effective slit wid'(ﬁ?), it

could be neglected and the projected trimer pair distance

(|r ,|) could be determined using E(Z8). Experience with

dimer diffraction has shown, however, that the effect of the

van der Waals interaction can be of the same order as the pair

distance[3] and must be accounted for. Since E@9) de- and

pends on the full trimer wave function, it cannot be used

immediately for the evaluation of experimental data and an

approximation is required. The integrand in E€p) is, how- 1 1

ever, slowly varying on the scale of the variation of P~ §|U| Olp. - §|U|
|¢(p.1)|2. Therefore, the positional arguments of the atom

transmission functions can approximately be replaced by

their expectation values. This approach is in analogy to Refinserting these one finds as the final form of the van der
[3]. An analysis of the combinations @f, andr,, using Waals part of the effective slit width

1
PL‘§|M| > =(r.l, (80)
y

1
:Z<|ri|>‘y' (81)

Y
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' ' mation be neglectefR1]. By the Faddeev equation(g.g.,
Ref.[49]) for the helium trimer bound state, it is then pos-
120 P . X . :
e sible to derive the relation
4
He, ground state 1
- (Iruy=2m. (83
£ 1101 -
£ In summary, the effective slit widtl77) depends to good
« approximation only on one trimer parameter. namely, the
Lo 4He3 excited state expe.ctatlc.)n yalue of the pair dlstance._Consgquen.tlym
can, in principle, be determined from trimer diffraction data.
: : : : C. Experimental considerations
0.2 0.3 0.4 0.5 0.6 0.7

v [km/s] Using the results of the preceding sections the improve-
ment in resolution through diffraction at non-normal inci-
FIG. 11. Effective slit widths versus the beam velocity —dence over normal incidence may be estimated. The evalua-
=|P|/M for the ground state and excited statédé,. The numeri-  tion process of experimental data involves two main steps:
cal results using the full expression, EJ9), are shown as solid First, values for the effective slit widt&.¢ , must be ob-
curves and the approximation E@2) as dotted curves. The angle tzined by numerical fits of the intensity fdrmLﬂGS) to ex-

of incidence was taken ag'=21°. The approximation becomes narimental diffraction patterns. Secontt) is determined

more reliable at high velocities as the impact of the van der Waal?rom a fit of Eq.(77) to the values foS, .. The stronger the
. . -

interaction decreases. Asymptotically, for high velocities, both palrsd . .

. ) ; . ependence of this procedure am, the more preciselyr)
of curves approach their respective upper Ilnﬁﬁom iven by Eq. . . .
(78). PP P PP v 9 yEd can be determined. As) changes the width of the Kirchoff-

like slit function in Eq.(68) a natural measure for this de-

&2 , , pendence is provided by the number of diffraction orders
W _ _ R f d%{l _ Tat(P_.Sé> Tat(P_.Sé under the central maximum of the slit function to either side
ff, y ' ) . . . .
0 3 3 of the forward direction. This number, which we denote here
, by n. and which we treat as a continuous variable, can be
_ M) Tat<P_- - §M>} approximately written as
coda+6) 3’ 4coda+0') d
0 p/ Ne=—, (84)
+ f d% 1-74 E ) Sé S,
2 whered, denotes théprojected period perpendicular to the
{P o (rD, beam and, denotes the projected slit width. At the angle of
X7 E'Sz + coga+0') incidence @’ the projected period isl, =d cosé'. Further-

more, neglecting for this estimate the van der Waals part, we
xﬁ‘(P—,'%+ 5 (riby )} _ (82) inserts, =SJg%toga+ ¢') for the projected slit width of the
3’ 4coda+6) deep grating wher&g’" will be taken from Eq.(78). The
relative variation ofn, with (r) can then be calculated and

In order to test the validity of this approximation we carried P&cOmes, to leading order {m)/S,,

out a numerical analysis of the error introduced by the re- l1dn. 3 1
placement of Eq(79) by Eq.(82): if applied to experimental —— =
data, the approximation entails, for the two theoretically pre- nedr)  4Scoda+d)

dicted bound states dHe;, a systematic overestimation of |n contrast, at normal incidence the right-hand side would be
(Ir 1) by 7% (*He; ground stateor 3% (excited state As  3/(4s)). Inserting the parameters of Fig. 8 yields
seen from Fig. 11 the approximation is more reliable at highidn./d(r))/n.~2.6x 102 nm™* for ¢ =21° as compared to
velocities as the impact of the van der Waals interaction be1 2x 102 nm ! for normal incidence. This roughly twofold

comes smaller. _ _ gain in sensitivity is expected to halve the final error bars on
Theoretical studies of the helium trimer commonly state(r),

the expectation value of the pair distanceg itself, wherer Finally, since the population ratio of the two predicted
=|r|, rather than a component such(as |). To link experi-  4He states in the nozzle beam is generally unknown, the
mental results to these, a relation betwéerand(|r ,[) must  sjtuation of a mixed beam must be considered. To analyze
be established. Both predictébles bound states are spheri- this we have summed diffraction patterns as shown in Figs. 8
cally symmetric(zero total angular momentymMoreover,  and 9 for different population ratios. Hereafter, we have used
the two-body scattering matrix corresponding to the He-HeEq. (68) to determine, from the summed patterns, an average
potential is dominated by the shalloswwave bound-state effective slit widthS.; and from this an average bond length
pole of4HeZ, and higher partial waves may to good approxi-{r). It turned out that the such determiné&d varies almost
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linearly with the population ratio from the ground-state valuegrating. This leads to an estimated doubling of the resolution,
of (r) (pure ground-state beanto the excited-state value sufficient to determine the ground-state pair distanc‘b-le@.
(pure excited-state beamTherefore, three possible out- Moreover, should théHe, Efimov state, whose pair distance
comes of an experiment are to be expected. A valué)of is predicted to be larger by almost an order of magnifyde
~1 nm would be attributed to the ground state and indicaté€Xist and should its population in the beam be significant, it
a negligible(or zerg population of the excited state. Equiva- ought to be clearly distinguishable from the ground state
lently, a result of about 8 nm would doubtlessly provide evi-Solely by its size.

dence for the excited state and its large pair distance. Third,

a value in between these two would indicate that both states ACKNOWLEDGMENTS

are present and evidence for the excited state would still be

available. A controlled variation of the accessible beam pa- We would like to thank R. Brihl, O. Kornilov, A. Kalinin,
rameters might then allow to influence the population ratio inT. Kohler, and J. P. Toennies for stimulating discussions.
favor of either state and to measure the pair distance for on€his research was supported by the Deutsche Forschungsge-
state with less disturbance by the other. meinschatft.

APPENDIX: SURFACE INTERACTION
VII. CONCLUSIONS

Earlier work has shown that at beam velocities typically
encountered in matter diffraction experiments the effective
reduction of the slit width due to both the van der Waals
surface interaction and the finite molecular size can be

Motivated by the long-standing interest in the Efimov ef-
fect [31] we have studied the diffraction of weakly bound
trimers in a typical matter optics setup. As an earlier diffrac-
tion experiment for the spatially extended helium dimer . - )
({ry=5.2 nm [3] had indicated that the resolution provided gi:;%;? rgfetr?édaetgrc: tTai%r;ggg?oizguﬁcﬂ;%n;ta ;;;lyev\?heiéir
by a custors, =60 nm transmission grating, at normal inCi- \5 jnserted into Eq(16), is therefore necessary. As in Ref.
dence, may be insufficient to resolve the helium trlmer[lz] we use the eikonal approximation to writ@{(p’:s,)
ground state{r)=0.96 nm predicted4]), it had suggested =exfio(p’;s,)] for s, inside the slit and@i(p’ :s,)=0 out-
itself to use oblique(non-normal incidence at a rotated side. The phase functioa(p’ :s,) is given by[55]
transmission grating for reducing the projected slit width. '

The partial shadowing of the slits caused by the finite thick- I

ness of the etched material grating has required, however, a o(p';sy) = —(ﬁv)_lf dt Wy, (s(t)), v=—, (Al)
revision of the theory of atom diffraction. In particular, the m
familiar mirror symmetry encountered in diffraction patterns

from normal incidence is lifted for non-normal incidence. ) . - .
run parallel to the direction of incidence and to cross the slit

This effect was visible in Fig. 5 of Ref35] but went unno- . S . .
ticed. It has been traced back to the nonalignment of th(leme & at the positions,. The surface interactionl;,(x) at a

direction of periodicity of the grating with the shadow lines {:_)osm?nx b?ttweten t\go/:JGars t'S (E_allcu][alfed fr031 Jthe mtte gra-
of its bars or, equivalently, its slit lines. The weak attractive lon of an aflractive e/1° potential of Lennard-Jones type

van der Waals surface interaction, which introduces an add|(-the repulsive part has already been modeled by the bound-

tional but minor asymmetry, has been taken into account in gy condt|t|?|nfs in S(tac. ]I(t)_ver t?e Yﬁlut”]e. oflthe ctj)ars.hCar—d
way similar to the case of normal incidence. rying out all four integrations for the typical wedge-shape

Using atom diffraction as one building block, the multi- bars shown in Fig. 4 the phase function can be calculated

channel many-body quantum mechanical scattering theor?Xp"Citly' Using the abbreviations
approach of Refs[15,16 has been extended to derive the

where the straight path of integratigit) must be taken to

constitutive formulas of trimer diffraction. While this proce- Cs= W—CG, d= Lﬁ/ , SNO: LG,SO’
dure structurally partly parallels that of dimer diffraction it is 6 coda+6') coda+¢')
mathematically more complex due to the additional atom,

The resulting equations for the trimer diffraction pattern,'t reads

however, have been readily interpretable and provide intui- C

tive physical insight into the diffraction of weakly bound o(p':s,) = 3

molecules: the significant measurable quantity is the quan- 2hv cos'0'cos(a+ 6')

tum mechanical expectation value of the “widtfprojected {§_2+ (=) 2= 2 (£1,+0)2
diametey of the trimer perpendicular to its flight direction. w | 21l 2oll 12 12

For identical boson trimers, such as the helium trimer, the tang’ +tanp

width is related to the molecular bond length §>§r>. This 2, _G)2o g2 _9)2
fact can be used, in principle, to determifne from a matter Lo (&1-d) , €22~ (622~ d)
diffraction experiment. tan¢’ —tanp

If a transmission grating of the type used earlier by ~
Grisentiet al. [12] is rotated byg’=21°, the projected slits Where  £11=%/2-s,,  £1=S/2+s,,  £1,=S/2-5)~ 5
appear approximately half as wide as the nominal slits of the-{cog(a+6')-26"]/coda+6')}S), and&»=/2-5,— .
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