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We investigate the rovibrational dynamics of heteronuclear diatomic molecules exposed to a strong external
static and homogeneous electric field. We encounter in the presence of the field the effect of induced adiabatic
coupling among the vibrational and hybridized rotational motions. Exact results are compared to the predic-
tions of the adiabatic rotor approach as well as to the previously established effective rotor approximation. A
detailed analysis of the impact of the electric field is performed: the hybridized and oriented rotational motion,
the mixing of angular momenta, and the squeezing of the vibrational motion are observed. It is demonstrated
that these effects can well be accounted for by the adiabatic rotor approximation.
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I. INTRODUCTION

Molecules exposed to external fields represent, in spite of
its substantial history, a very active and promising research
area with several intriguing perspectives. Due to the key role
that external fields play in the cooling, trapping, and guiding
of atoms and molecules, the availability of molecular Bose-
Einstein condensatesf1–3g has stimulated further studies. In-
deed, the long-range anisotropic dipole-dipole interaction be-
tween ultracold polar molecules will give rise to interesting
physics, such as cold molecule-molecule collision dynamics
f4–7g, molecular collective quantum effectsf8,9g, ultrahigh
resolution and high-precision spectroscopy, chemical reac-
tions f10,11g, molecular optics and interferometry, and po-
tentially also to quantum computingf12g. Moreover, the
availability of ultracold molecules might provide an im-
provement of the precision of several experiments involving
molecules, such as the measurement of the dipole moment of
the electronf13,14g, the measurement of the time variation
of the fine-structure constantf15g, or the study of weak in-
teraction effects in chiral moleculesf16g.

In particular, electric fields play an important role in one
of the main experimental techniques to trap molecules. An
array of time varying inhomogeneous electric fields has been
used to decelerate and trap polar moleculesf17,18g, provid-
ing a different technique which can be used for a large vari-
ety of neutral molecules. Recently, the control of the trans-
lational motion of Rydberg states of the H2 molecule has
been demonstrated by applying an inhomogeneous electric
field f19g. The group of Bohn has introduced an uncommon
species of molecular states called “field linked” states
f20,21g which are composed of two ground-state polar mol-
ecules held at large internuclear separation under the joint
influence of electric dipole forces and external electric fields.

They have shown how the main properties of these states
strongly depend on the external electric field, leading to con-
trol over the ultracold scattering propertiesf20,21g.

Initially studies of molecules in electric fields were moti-
vated by the possibility to get a deeper insight into chemical
reaction dynamics by controlling the orientation or alignment
of the involved molecules. At the end of the 1970s the ori-
entation of symmetric top molecules with permanent electric
dipole moments was achieved by using a hexapole electric
field f22,23g. Only molecules in a few specific preselected
states could be oriented this way. In the early 1990s the
orientation of molecules inS states became possible via the
passage of the corresponding molecules through an electric
field, known as the “brute force” methodf24g. Strong electric
fields have subsequently been used to orient the rotational
motion of diatomic and also of polyatomic molecules
f24–29g. In the beginning only static electric fields were em-
ployed and low-lying rotational states were considered. Sub-
sequently also magnetic fieldsf30g were used to orient para-
magnetic moleculesf31g and more recently intense laser
fields have been employed to align moleculesf32–36g.

Traditionally the theoretical description of the nuclear dy-
namics of molecules in an electric field is based on the rigid
rotor approximationf37g, neglecting the “coupling” between
the vibrational and rotational motions and assuming a perma-
nent dipole moment for the molecule. The pendular states
appear for strong electric field when the molecule is oriented
along the field direction and the rotational motion becomes a
librating one, each pendular state being a coherent superpo-
sition of field-free rotational statesf38g. It is only recently
that the authors provided a full rovibrational description
sFRVd of a heteronuclear diatomic molecule in a homoge-
neous electric field including the coupling between the vibra-
tional and rotational motions and taking into account that the
electric dipole moment functions depend on the internuclear
coordinate f39g. An effective rotor approximationsERAd
which describes the effect of the electric field on rigid di-
atomic moleculesf39g was developed. The ERA includes
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main properties of each vibrational state, and it has been
shown to describe the effect of the electric field even for
highly excited rovibrational states of the molecule, being su-
perior to the traditional rigid rotor approach.

In the present work we go beyond the regime of validity
of the effective rotor approach which represents a crude adia-
batic approximation with respect to the separation of the vi-
brational and rotational motion. In particular we investigate
the regime for which a fully adiabatic separation of the rovi-
brational motion is necessary: the fast vibrational motion de-
pends now parametrically on the angular coordinates. The
latter effect is exclusively due to the presence of the external
electric field. Since we focus on effects due to the field-
induced adiabaticity and their theoretical description in gen-
eral we refrain from using potential-energy curves and dipole
moment functions belonging to specific molecules but use
parameter-dependent models of them in order to address and
cover as many as possible physically different situations. The
use of these models does not affect the general validity of
our results. We address the regime of field strengths for
which a nonperturbative description of the nuclear motion is
necessary assuming that the effects of the electric field on the
electronic motion can be described perturbatively.

The paper is organized as follows. In Sec. II we define our
rovibrational Hamiltonian and we briefly discuss some spe-
cifics of our computational method. Here we also present the
key aspects of the adiabatic separation of the vibrational and
rotational motions in order to obtain the adiabatic rotor
Hamiltonian. In Sec. III we describe the potential-energy
curves and electric dipole moment functions used to model a
general heteronuclear diatomic molecule. In Sec. IV we
present the results and their discussion, including a detailed
comparison of the adiabatic rotor approachsARAd with the
full rovibrational description. The conclusions and outlook
are provided in Sec. V. Atomic units will be used throughout,
unless stated otherwise.

II. ROVIBRATIONAL HAMILTONIAN
AND THE ADIABATIC ROTOR APPROXIMATION

We employ the Born-Oppenheimer approximation for the
Hamiltonian of a heteronuclear diatomic molecule which is
assumed to be in its1S+ electronic ground state. The mol-
ecule is exposed to an external homogeneous and static elec-
tric field. In the rotating molecule fixed frame with the coor-
dinate origin at the center of mass of the nuclei the
Hamiltonian describing the nuclear motion takes on the fol-
lowing appearance:

H = −
"2

2mR2

]

]R
SR2 ]

]R
D +

J2su,fd
2mR2 + «sRd − FDsRdcosu,

s1d

whereR and u ,f are the internuclear coordinate and Euler
angles, respectively, andm is the reduced mass of the nuclei.
Jsu ,fd is the orbital angular momentum,«sRd represents the
electronic potential-energy curvesPECd of the molecule in
field-free space, andDsRd is the corresponding electronic
dipole moment functionsEDMFd. The first and second terms

are the vibrational and rotational kinetic energies, and the
last term provides the interaction with an electric field of
strengthF, which is oriented parallel to thez axis of the
laboratory frame. As it was stated above, we consider the
regime where perturbation theory holds for the description of
the electronic structure but a nonperturbative treatment is
indispensable for the corresponding nuclear dynamics.

In the field-free case each state is characterized by its
vibrational n, rotationalJ, and magneticM quantum num-
bers. In particular, the exact solution to the Schrödinger
equation belonging to the Hamiltonians1d is a product of a
purely R-dependent vibrational wave function that depends
parametrically on the conserved angular momentumJ and a
spherical harmonic depending exclusively on the anglesu ,f.
In the presence of an external electric field only the magnetic
quantum numberM is conserved, giving rise to a noninte-
grable two-dimensional dynamics insR,ud space. In order to
solve the corresponding rovibrational equation of motion we
use a hybrid computational approach, which combines dis-
crete and basis-set methods. For the angular part a basis-set
expansion in terms of associated Legendre polynomials is
used, taking into account thatM is conserved. The vibra-
tional degree of freedom is treated by a discrete variable
representation. Due to the typical shape of the molecular
PEC, we choose the radial harmonic oscillator discrete vari-
able representation, where the odd harmonic oscillator func-
tions are taken as basis functions. Employing the variational
principle, the initial differential equation is finally reduced to
a symmetric eigenvalue problem which is diagonalized with
the help of Krylov space techniques.

The theoretical description of the angular motion of a di-
atomic molecule in an external field is traditionally based on
the rigid rotor approach for which the so-called pendular
Hamiltonian reads

H =
J2

2mReq
2 − FDeqcosu, s2d

whereReq andDeq are the equilibrium internuclear distance
and the corresponding dipole moment, respectively. For di-
atomic molecules this rigid rotor Hamiltonian is integrable
and it was solved numerically in the seventies by von Mey-
enn f37g. Recently, the authors went beyond this rigid rotor
description and proposed an effective rotor approximation
which includes the main characteristics of each vibrational
state f39g. The corresponding effective rotor Hamiltonian
reads as follows:

Hn
R =

1

2m
kR−2ln

s0dJ2 − FkDsRdln
s0dcosu + En

s0d s3d

with kR−2ln
s0d=kcn

s0duR−2ucn
s0dl, kDsRdln

s0d=kcn
s0duDsRducn

s0dl, and
cn

s0d andEn
s0d are the field-free vibrational wave function and

energy, respectively. The total wave functions for the nuclear
motion arecn

s0dsRd ·xksud wherexk are the eigenfunctions of
the Hamiltonians3d. The ERA takes into account the vibra-
tional state dependent moment of inertia and the dependence
of the electric dipole moment on the vibrational coordinate,
which are of particular importance for highly excited vibra-
tional states. It was shown to properly describe both low-
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lying and highly excited rovibrational states exposed to an
electric field. In particular it is superior to the traditional
rigid rotor approachf39g.

The effective rotor represents, in the terminology of an
adiabatic approach, a crude adiabatic approximation to the
true wave function thereby neglecting the influence of the
electric field on the vibrational motion. Obviously, this ap-
proximation is expected not to hold for arbitrary parameters
and regimes, i.e., for arbitrary excitations, field strengths,
and molecular species. In the present work we investigate the
rovibrational motion in a regime where the vibrational mo-
tion is modified by the electric field, i.e., it becomes para-
metrically dependent on the slow angular variableu. This
leads to interesting effects in the rovibrational spectra and
eigenfunctions which occur typically in the strong-field re-
gime.

Following Ref. f39g we exploit the conservation of the
angular momentum associated with the angular motion due
to f by the ansatzCsR,u ,fd=CMsR,udeiMf, with M being
the magnetic quantum number. We restrict ourselves to the
caseM =0. Let us now perform an adiabatic separation of the
vibrational and rotational motion. To this end we assume that
the vibrational problem has been solved for a specific value
of the rotational coordinateu,

F−
"2

2mR2

]

]R
SR2 ]

]R
D + esRd − FDsRdcosuGcnsR;ud

= EnsudcnsR;ud, s4d

wherecnsR;ud is a member of the orthonormal vibrational
eigenfunctions labeled byn. cnsR;ud depends parametrically
on the angleu. Making the following ansatz for the rovibra-
tional wave function:

CsR,ud = o
n

cnsR;udxnsud,

and inserting it in the rovibrational equation of motion be-
longing to the Hamiltonians1d, after left multiplication with
cn

*sR;ud, and performing the integral overR, using the or-
thonormality of the vibrational adiabatic eigenfunctions as
well as Eq.s4d we arrive at

F 1

2m
kR−2ln J2 + Ensud − EGxnsud + o

k

SAnk
2

2
+ Ank

1 JDxksud

+ o
kÞn

Ank
0

2
J2xksud = 0 s5d

with

kR−2ln =E
0

`

cn
*sR;udcnsR;uddR,

Ank
j =

1

m
E

0

`

cn
*sR;udJ jcksR;uddR, j = 0,1,2, s6d

whereAnk
j are nonadiabatic coupling terms involving differ-

ent vibrational eigenfunctions,Ensud represents a potential
for the motion inu space, ands1/2mdkR−2ln J2 is an effective

rotational kinetic energy. If the nonadiabatic coupling ele-
ments are neglected Eq.s5d reduces to a single channel equa-
tion and an adiabatic separation and approximation of the
angular and radial motions has been achieved.

Let us comment on the vibrational equation of motions4d.
For weak electric fields the interaction term −FDsRdcosu is
significantly smaller than the vibrational spacing due to the
electronic PEC. This allows us to use the field-free vibra-
tional wave functions and to apply first-order perturbation
theoryssee Ref.f39gd with respect to the electric-field terms
thereby leading to the effective rotor Hamiltonians3d. How-
ever, for sufficiently strong electric fields and/or highly ex-
cited vibrational states, the interaction with the electric field
leads vibrational states that depend parametrically on the an-
gular variableu. We therefore enter a regime for which the
above adiabatic separation still holds but the vibrational mo-
tion is affected by the electric field. In practice one then
solves the vibrational equation of motions4d on an angular
grid, hui, i =1,… ,Nj thereby obtainingcnsR;uid andEnsuid.
This allows us to compute the expectation values
kcnsR;uiduR−2ucnsR;uidl and in principal also the nonadia-
batic coupling elementsAnk

j which both depend onu.
Here we assume the validity of the adiabatic approxima-

tion to the separation of the vibrational and rotational motion
and neglect all nonadiabatic coupling elements. This defines
the “adiabatic rotor approach” and the “adiabatic rotor
Hamiltonian” describing the rotational motion of the molecu-
lar system:

F 1

2m
kR−2ln J2 + Ensud − EGxnsud = 0, s7d

where the first term is an effective rotational kinetic energy
and the second one represents the interaction with the elec-
tric field. The rotational equation of motions7d looks differ-
ent for each vibrational state since it explicitly contains the
expectation valueskR−2ln and the vibrational energyEnsud,
which have to be computed for each state.

The main difference of the adiabatic rotor approximation
s7d compared to the previously obtained effective rotor ap-
proachs3d is the way the vibrational motion is treated. The
expressions7d takes into account the influence of the electric
field on the vibrational motion, which might be of impor-
tance for very strong electric fields or highly excited vibra-
tional levels due to the field-induced adiabatic coupling be-
tween the rotational and vibrational motions. In contrast to
this we neglected the influence of the electric field on the
vibrational motion in case of the effective rotor approach.
Obviously, the effective rotor approach is contained in the
adiabatic rotor approach. Both approximations are, however,
complementary in the following sense. There is a large num-
ber of situations depending on the field strength, the EDMF,
and on the part of the spectrum under consideration, where
either the ERA or the ARA might be sufficient to describe the
behavior and properties in the field.

Let us comment on how to solve the resulting equations
s4d ands7d of the above scheme. In a first step, and in order
to facilitate the computational procedure, we choose the ze-
ros of theNRth order associated Legendre polynomial as grid
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points for the angular coordinate. The vibrational equation
s4d is integrated with the help of the discrete variable ap-
proachNR times on the gridhuij, thus we obtain the vibra-
tional wave functionscnsR;uid and the corresponding spec-
trum Ensuid. The expectation valuekR−2ln is computed. These
quantities,Ensuid and kR−2ln, are introduced in the effective
rotational equation of motions7d, which is solved by means
of a basis-set expansion with respect to the associated
Legendre polynomials.

There are two reasons for applying the adiabatic rotor
approximation compared to the full rovibrational description
of the problem. First, a fully adiabatic approach describes
emerging field-induced effects. Second, from a computa-
tional point of view it provides a drastic reduction of the
numerical effort. In both cases we need the same number of
grid pointsNV in the discrete variable representation applied
to the vibrational coordinate, and the same number of angu-
lar functionsNR in the basis-set expansion performed for the
rotational coordinate. In the full rovibrational description we
have to diagonalize aN3N real symmetric banded eigen-
value problem withN=NV·NR. However, in the case of the
ARA we first diagonalizeNR times aNV3NV real symmetric
banded eigenvalue problem for the vibrational part and sub-
sequently for each vibrational state anNR3NR real symmet-
ric eigenvalue problem to diagonalize the rotational equation
of motion.

III. POTENTIAL-ENERGY CURVE AND ELECTRONIC
DIPOLE MOMENT FUNCTION

The electronic potential-energy curves and the electronic
dipole moment functions provide valuable information on
the properties of a molecular system including its rovibra-
tional spectrum and its response to external fields. Both
quantities can be obtained fromab initio calculations and/or
experimental results in the literature. Since we are interested
in predicting general properties and principal effects with the
focus on their understanding and theoretical description we
do not address a specific molecular system but use model
functions for the PEC and the EDMF.

As a PEC we employ the Morse potential

«sRd = defe−2asR−Red − 2e−asR−Redg, s8d

whereRe andde are the equilibrium internuclear distance and
the depth of the potential well, respectively. Here we choose
the valuesa=0.5,de=0.02, andRe=6.0 a.u. being motivated
by the shape of the PEC of heteronuclear alkali dimersf40g.
The latter are characterized by a large equilibrium distance
Re,6–7 a.u., and a very shallow potential well. We will
also study the casea=0.5, de=0.02, andRe=2.2 a.u. We
remark that our model potential does not possess the correct
asymptotic behavior for largeR which is of importance for
very high excitations close to the dissociation threshold. Our
investigation therefore focuses on not too high excitations
for which the asymptotics is irrelevant.

In order to illustrate the difference with respect to the
energy scales of the vibrational and rotational motions we
have computed the vibrational and rotational energy spacing
for a vanishing electric field. The rotational and vibrational

spacing areDEr
n=En,1−En,0 and DEv

n=En+1,0−En,0, respec-
tively, with En,J being the field-free energy of thesn ,Jd state.
Figure 1 presents these two quantities as a function of the
vibrational quantum number 0ønø20 for the PECs with
Re=2.2 a.u. andRe=6 a.u. Note that the vibrational spacing
is independent of the equilibrium distanceRe, and the differ-
ence between both sets of parameters is due to the rotational
spacing. For the Morse potential withRe=2.2 a.u. the ratio
between both quantities takes the initial valueDEv

0/DEr
0

<53, and it decreases monotonically asn is increased, reach-
ing for the highest state the valueDEv

20/DEr
20<39. For the

Morse with Re=6.0 a.u. a similar behavior is observed, al-
though now the ratios areDEv

0/DEr
0<396 andDEv

20/DEr
20

<319, i.e., almost one order of magnitude larger than in the
previous case. It is clear from these results that the energy
scales associated with the rotational and vibrational motions
are well separated.

For the EDMF we take a Gaussian function given by

DsRd = M0e
−AsR − Re − Dd2, s9d

whereRe is the equilibrium distance,A provides the width of
the Gaussian,D is a shift with respect toRe, andM0 deter-
mines the strength of the EDMF at the maximumR=Re+D.
By choosing this kind of function we ensure a proper
asymptotic behavior of the EDMF, satisfying both
limR→0DsRd=0 and limR→`DsRd=0.

We have selected three different shapes for the EDMF, the
main difference between them being the position of the
maximum and the width of the Gaussian function. The cho-
sen parameters are given in Table I. For the different appear-
ances of the three functions we refer the reader to Fig. 2:DC
is centered atRe, DW is a broader function, its maximum

FIG. 1. Field-free vibrational energy spacingsssd for the Morse
potentials withRe=2.2 a.u. andRe=6.0 a.u. as a function of the
vibrational quantum numbern. Field-free rotational energy spacings
for the Morse withRe=2.2 a.u.s+d andRe=6.0 a.u.s!d as a function
of the vibrational quantum numbern.

TABLE I. Parameters of the electric dipole moment functions;
see text.

Name M0sDd A sa.u.d D sa.u.d

DC 5 2 0

DS 5 2 2

DW 5 0.5 1
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being shifted with respect toRe, andDS is an even further
shifted but again narrower dipole moment function. In many
cases the electric dipole moment of heteronuclear diatomic
molecules is a single humped function possessing its maxi-
mum at a position close toRe. However, exceptions do occur
such as the double humped dipole momentum function of the
CO molecule that possesses a zero close toRe and a broad
outer hump for large internuclear distances.

IV. RESULTS AND COMPARISON OF THE ADIABATIC
ROTOR APPROXIMATION WITH THE FULL

ROVIBRATIONAL DESCRIPTION

We have performed a full rovibrational analysisfi.e., we
solved the Schrödinger equation belonging to Eq.s1dg of the
effects of an electric field on the six models for molecular
systems, i.e., the Morse withRe=2.2,6 a.u., and the three
EDMFs being centeredsDCd, shifted sDSd, and widened
sDWd. The reduced mass of the CO moleculem
=12 498.102 a.u. has been used. In order to show very well
pronounced effects for our model system we will choose a
field strength F=10−3a.u. corresponding to 514sMV/md
which is somewhat stronger than the static fields available in
the laboratory. We emphasize, however, that the observed
effects are expected to be pronounced for significantly lower
slaboratoryd field strengths for highly excited rovibrational
states of certain species, such as the alkali dimers.

For each molecule, we have computed the states with
0ønø20 and angular momentumJ=0 for M =0 corre-
sponding to the first 21 vibrational states in the absence of
the field. The expectation valueskcosul ,kJ2l, and kRl, to-
gether with density profiles of the eigenfunctions enable us
to find and analyze relevant phenomena. Equally we perform
for our model systems studies in the framework of the adia-
batic rotor approachsARAd and the effective rotor approach
sERAd. A comparison between these three approachessexact,
ARA, ERAd allows us to conclude upon the validity of the
different approximations. Let us introduce the relative differ-
ence between the results obtained in the ERA and ARA com-
pared to the full rovibrational description of the problem:

DAn
X =

uAn
F − An

Xu
An

F with X = E,A, s10d

whereAn
F represents one of the expectation values mentioned

above and the upper right indexF ,E ,A refers to the exact,
ERA, and ARA approach.

In the following we will usen and J as labels of the
rovibrational states. These labels correspond to quantum
numberssconserved quantitiesd only in the case of the ab-
sence of the electric field whereas in the presence of the field
a strongsrotationd and weaksvibrationd mixing of field-free
states takes place.

A. Morse potential for Re=6.0 a.u.

Figure 3sad shows the expectation values ofkcosul for the
rovibrational states with 0ønø20 emerging from theJ=0
states forF=0 as a function of the vibrational numbern for
the Morse potential withRe=6 a.u. Results for the three
Gaussian EDMF are included in this figure.kcosul provides
a measure of the orientation of the molecule with respect to
the field direction: the closer it is to 1, the stronger is the
orientation. ForDC all states show a strong orientation,
which slightly decreases as the degree of excitation is in-
creased, from the rovibrational ground state withkcosul
=0.9827 to then=20 state withkcosul=0.9626. The behav-
ior of the states in case ofDS is completely different. The
effect of the electric field on the low-lying states is weak
compared to the high-lying states. For the rovibrational
ground state we havekcosul=0.5360. The reason for this
behavior is obviously the small values ofDS in the neighbor-

FIG. 2. The electric dipole moment functions used in our com-
putations, centeredDC, shiftedDS, and widerDW as a function of
R−Re.

FIG. 3. sColor onlined sad The expectation valueskcosul, sbd the
relative errorDkcosuln

E of the effective rotor approximation,scd the
relative errorDkcosuln

A of the adiabatic rotor approximation as a
function of the vibrational label 0ønø20 for states emerging from
J=0 for F=0 for the Morse potential withRe=6.0 a.u. and the three
EDMFs DC sLd, DS s+d, andDW shd.
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hood of the equilibrium internuclear distance. The orienta-
tion of the states increases as the vibrational number in-
creases: It reaches a maximum forn=10 being kcosul
=0.9761 and slightly decreases thereafter. ForDW, kcosul
increases very little with increasingn and reaches a maxi-
mum for the staten=5 with kcosul=0.9813. Forn=20 we
encounterkcosul=0.9766. It is clear from Fig. 3 that the
effects of the electric field on the orientation depend on the
state under consideration but also strongly on the chosen
EDMF. For these model systems and due to the strong
electric-field strength all the considered states show a very
strong orientation. In Fig. 3sbd, the relative error for this
expectation value computed by using the ERA,Dkcosuln

E, is
shown as a function of the vibrational numbern for the three
EDMF. The results provided by the ERA for the expectation
value kcosul for this molecule using the dipole moment
functions DC and DW show a good agreement for all the
states under consideration, i.e., we haveDkcosuln

E,0.01 for
0ønø20. Note, however, that in case ofDS the states for
n=2–5possess a relative error larger than 0.01, while for the
remaining statesDkcosuln

E,0.01. Figure 3scd presents the
relative error ofkcosul using the ARA,Dkcosuln

A, as a func-
tion of n. Again all three cases of EDMF are considered. The
results obtained forkcosul are excellent, i.e.,Dkcosuln

A,2
310−4 for all the states and any EDMF. Apart from a single
exception sn=10d we have Dkcosuln

A!Dkcosuln
E demon-

strating that the adiabatic rotor approach is superior to the
effective rotor one.

The dependence of the expectation valuekJ2l on the vi-
brational labeln is illustrated in Fig. 4sad for the three
EDMF. kJ2l provides a measure for the mixture of the field-
free angular momentum states with fixedMJ, i.e., it describes
the hybridization of the rotational motion forF=0. The ef-
fects due to the electric field depend not only on the chosen
EDMF but also strongly on the degree of excitation as al-
ready indicated when studying the corresponding behavior of
kcosul. For DC, kJ2l decreases significantly with increasing
n. All states show, however, a very strong hybridization of
the rotational motion, i.e.,kJ2l=28.321 for the rovibrational
ground state andkJ2l=12.872 for then=20 state. ForDW we
encounter also a strong mixing: In this casekJ2l slightly
increases withn reaching a maximum forn=6 with kJ2l
=26.229 and decreasing thereafter. In case ofDS the low-
lying states exhibit a much smaller hybridization compared
to the previous cases: For the rovibrational ground state we
find kJ2l=0.527. The reason for this effect is that the low-
lying states “do not feel” the EDMFDS, due to the small
overlap of the wave function and the EDMF. In this casekJ2l
rapidly increases asn increases, reaching a maximum forn
=10 with kJ2l=20.577 and slightly decreases thereafter. Fig-
ure 4sbd shows the corresponding relative errors of this ex-
pectation value computed by means of the ERA,DkJ2ln

E, as a
function of the vibrational numbern. Note that for each
EDMF there is a significant number of states withDkJ2ln

E

.0.01. Even more, forDS the states withn=3–8 show
DkJ2ln

E.0.1. Therefore we can conclude that the ERA is not
good enough to describe the hybridization of the rotational
motion taking place in this systems. The relative errors for

the ARA, DkJ2ln
A, as a function ofn are presented in Fig.

4scd. This figure clearly illustrates the advantage of our pro-
posed approximation ARA compared to ERA. For the three
EDMF and all the considered states we obtain relative errors
significantly smaller than 0.01. We therefore conclude that
the adiabatic rotor approach accurately describes the proper-
ties of the wave function whereas the effective rotor approxi-
mation fails to do so, at least in most cases.

To complete the description of the effect of the electric
field on our systems, we illustrate in Fig. 5sad the expectation
value of the vibrational coordinatekRl as a function ofn for
the same set of states and EDMF. For comparison also the
corresponding field-free values ofkRl have been included.
This expectation value provides a measure of the size of the
molecular state. In the case ofDC the states satisfykRlF

, kRl0, where F indicates the presence of the field and 0
stands forF=0. They are attracted towards the maximum of
DC at R=6 a.u. and have a lower energy compared to the
field-free case. For the low-lying states,n=0–2, in thecase
of DS we obtain kRlF<kRl0, the maximum ofDS at R
=8 a.u. is too far, and therefore the attraction is not strong
enough to modify the vibrational part of the wave function.
The statesn=3–11 show a completely different behavior,
i.e., kRlF. kRl0 being stretched due to the attraction of the
EDMF thereby lowering their energy. The states forn

FIG. 4. sColor onlined sad The expectation valueskJ2l, sbd the
relative errorDkJ2ln

E of the effective rotor approximation,scd the
relative errorDkJ2ln

A of the adiabatic rotor approximation as a func-
tion of the vibrational label 0ønø20 for states emerging fromJ
=0 for F=0 for the Morse potential withRe=6.0 a.u. and the three
EDMFs DC sLd, DS s+d, andDW shd.
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=12–20 possesskRlF, kRl0 being also attracted by the
maximum of the EDMF. However, for these states a signifi-
cant part of their amplitude is at distances larger than 8 a.u.
and that is why they are squeezed compared to their field-
free extension. A similar behavior is observed whenDW is
used. The states forn=0–6 arestretched compared to their
field-free counterparts. For the statesn=7–9 wehavekRlF

<kRl0. Due to the attraction of the EDMF maximum, the
states withnù10 are again squeezed. We would like to point
out the importance of these results: they show how the elec-
tric field is affecting the vibrational part of the wave function
of the molecule. Indeed, we can identify this effect as an
adiabatic coupling between the vibrational and rotational
motion induced by the strong electric field. Figures 5sbd and
5scd show the relative error ofkRl computed by using ERA
and ARA,DkRln

E andDkRln
A, respectively, as a function ofn

for the three EDMFs. Comparing these two figures, the ARA
approximates much more accurately the FRV results than the
ERA does. Only for a few states does the ERA provide an
adequate description of the effects of the electric field.

B. Morse potential for Re=2.2 a.u.

Figure 6sad shows the expectation valueskcosul for the
states 0ønø20 emerging from the states withJ=0 for F

=0 for the Morse potential withRe=2.2 a.u. Results for the
three Gaussian EDMFsDS, DC, and DW are included. The
relative errors obtained by using the ERA and the ARA,
Dkcosuln

E and Dkcosuln
A, are presented in Figs. 6sbd and

6scd, respectively. ForDC all the states exhibit a strong ori-
entation, which smoothly decreases as the degree of excita-
tion increases, fromkcosul=0.9526 for n=0 to kcosul
=0.8926 for then=20 state. ForDS the low-lying states
show a weak orientation such askcosul=0.1092 forn=0.
The orientation quickly increases with increasingn, reaches
a maximum forn=9 with kcosul=0.9312 and slowly de-
creases thereafter. The orientation of the states belonging to
DW increases fromn=0 to n=2 with kcosul=0.9485 de-
creases slowly thereafter, except for the staten=19 with
kcosul=0.8910 for which a dip of this expectation value
with respect to the values of the neighboring levels is ob-
served. The corresponding expectation values provided by
the ERA forDC fsee Fig. 6sbdg agree well with the exact ones
Dkcosuln

E,0.01. Similar results are found forDW except
again for then=19 stateDkcosul19

E <0.05, which interrupts
the smooth behavior of the ERA relative error for the other
states. ForDS only the states withn=2–8 show a relative
difference larger than 0.01. In Fig. 6scd we observe how the
ARA improves the results of the ERA and apart from a few
exceptions we always findDkcosuln

E.Dkcosuln
A. The ARA

relative error obtained for then=19 state usingDW is
Dkcosul19

A <0.05 being much larger than the relative error
for the remaining states.

Figures 7sad–7scd illustrate the behavior ofkJ2l , DkJ2ln
E,

andDkJ2ln
A, respectively, as a function ofn for the same set

FIG. 5. sColor onlined sad The expectation valueskRl, sbd the
relative errorDkRln

E of the effective rotor approximation,scd the
relative errorDkRln

A of the adiabatic rotor approximation as a func-
tion of the vibrational label 0ønø20 for states emerging fromJ
=0 for F=0 for the Morse potential withRe=6.0 a.u. and the three
EDMFs DC sLd, DS s+d, andDW shd. For completeness the field-
free values ofkRl s3d have also been included.

FIG. 6. sColor onlined Same as in Fig. 3 but forRe=2.2 a.u.
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of states and the three EDMFs. The hybridization of this
model system is much smaller than the hybridization
achieved by the Morse potential withRe=6 a.u. due to its
smaller rotational constant. ForDC, kJ2l decreases asn is
increased, fromkJ2l=10.049 forn=0 to kJ2l=4.163 for n
=20. For theDS we obtain a small hybridization for low-
lying states,kJ2l=0.018 for the rovibrational ground state,
and strong mixing of the rotational motion for the statesn
ù3, kJ2l increases with increasingn, reaching a maximum
for n=10 with kJ2l=7.523, and decreasing thereafter. ForDW

first kJ2l slightly increases withn, reaches a maximum for
the n=5 state withkJ2l=9.473, and decreases as the degree
of excitation is further increased. As for the expectation
valuekcosul, then=19 state shows an anomalous behavior,
having a largerkJ2l than the rest of the neighboring states:
kJ2l=11.128. The relative error of the ERA forDC for
1ønø10 andn=20 yields DkJ2ln

E.0.01. ForDS we find
that only the statesn=12, 16, 17, and 18 satisfyDkJ2ln

E

,0.01. For the states 3ønø9 we encounter an error being
larger than 0.1. In the case ofDW we see that only the states
with 11ønø18 possessDkJ2ln

E,0.01. Again the staten
=19 is exceptional withDkJ2l19

E <0.37. The ARA relative
errors, see Fig. 7scd, improve in most cases but not always
the results obtained by the ERA. For the staten=19 for DW
we find a large relative errorDkJ2l19

A <0.37.
The expectation valuekRl, the relative errorsDkRln

E and
DkRln

A of the ERA and ARA are shown as a function ofn in
Figs. 8sad–8scd, respectively. By comparing Figs. 5sad and
8sad we conclude that the behavior ofkRl for the three
EDMF is similar for the two casesRe=2.2 a.u. andRe

=6 a.u. This holds both for the dependence ofkRl on the
vibrational excitation and on the choice of the EDMF. More-
over, the phenomenon of squeezing and stretching of the
vibrational wave function can be observed equally forRe
=2.2 a.u. We remark that the behavior ofkRl as a function of
n is smoothfor all the levelsand any EDMF. The compari-
son of the relative errors of the ERA and ARA support our
previous observation that the ARA is superior to the ERA.

Let us comment on the anomalous behavior of the expec-
tation valueskJ2l andkcosul for the staten=19 when com-
pared to its neighboring states. Closely inspecting higher ro-
tational excitations it turns out that the state emerging from
the field-free state withn=18, J=3, M =0 comes very close
in energy to the consideredn=19 state. For the field strength
F=10−3 a.u. the energetical spacing of these two states is
very small DE= uEs19,0d−Es18,3du<5310−8. For F=0 these
two states would not interact. However, we conjecture that
the electric field induces a strong nonadiabatic mixing be-
tween these two states belonging to two different vibrational
bands thereby causing the observed uncommon properties.
To study this phenomenon goes however beyond the scope
of the present investigation.

Comparing the relative errors obtained forkJ2l and
kcosul, one realizes that the latter expectation value is nor-
mally better described by the ERA and ARA thankJ2l. kJ2l
provides a measure for the error we perform in our approxi-
mate approaches, since the computation of it in these
schemes neglects the elementss6d. Therefore we can con-
sider it as an indicator of the quality of the eigenfunctions
computed within a certain approximation. We also conclude

FIG. 7. sColor onlined Same as in Fig. 4 but forRe=2.2 a.u.

FIG. 8. sColor onlined Same as in Fig. 5 but forRe=2.2 a.u.
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that the adiabatic rotor approach works better for the Morse
potential with Re=6 a.u. compared to the system withRe
=2.2 a.u. We believe that the reason herefore is the separa-
tion of the vibrational and rotational energy scales. For the
Morse with Re=6 a.u. the ratio of the rotational and vibra-
tional spacing is one order of magnitude smaller compared to
the Morse withRe=2.2 a.u.ssee Fig. 1d.

C. Probability densities

From the many data obtained within the present investi-
gation let us show some representative examples for the
field-induced changes introduced in the rovibrational prob-
ability densities. We compare the exact FRV results with the
results of the ARA and the ERA for three typical states for a
certain EDMF. As already discussed in Sec. II the ERA em-
ploys the field-free vibrational wave function whereas the
ARA takes into account the adiabatic coupling of the rota-
tional and vibrational motions.

First we consider the rovibrational ground state for the
Morse potential withRe=6 a.u. and the centered EDMF. Fig-
ures 9sad–9scd show contour plots in thesR,ud plane of the
square of the wave function computed with FRV, ARA, and
ERA, respectively. The orientation achieved for this state is
kcosul=0.983. The position of the maximum of the wave
function forF=0 atR=6.02 a.u. foru=0 is slightly modified
by the electric field toR=6.01 a.u. and this is reproduced by
the ARA. The value at the maximumR=6.01, u=0 for the
FRV probability density isuCs6.01,0du2=4.90 being repro-
duced by the ARA withuCs6.01,0du2=4.90. However, the
ERA provides a lower valueuCs6.02,0du2=4.25. This effect
can be seen in Figs. 9sad–9scd. The ERA wave function is
vibrationally more extended than the FRV wave function,
i.e., we observe a compression due to the field. The ARA
reproduces this effect, which is again a manifestation of the
field induced adiabatic coupling between the vibrational and
rotational motions.

As a second example we analyze the rovibrational ground
state of the Morse potential withRe=2.2 a.u. forDW. The
contour plots of the probability densities for the FRV, ERA,
and ARA are presented in Figs. 10sad–10scd, respectively. As
in the previous case the wave function is strongly oriented
along the field direction,kcosul=0.948. The ARA wave
function provides a good approximation to the FRV one,
whereas major discrepancies are observed in case of the
ERA wave function. The maximum of the density foru=0 is
now atR=2.36 a.u., i.e., due to the attraction of the EDMF it
has been shifted from its field-free positionR=2.22 a.u. The
ARA yields R=2.34 a.u., whereas the ERA provides the
field-free value. In addition, the ERA yields for the maxi-
mum uCs2.22,0du2=1.27, compared to the full rovibrational
result uCs2.36,0du2=1.37, while the ARA gives a much bet-
ter approximationuCs2.34,0du2=1.38. This effect can be also
observed in Figs. 10sad and 10scd.

As a last example we present the state emerging from the
field-free vibrational quantum numbern=5 and the rota-
tional quantum numberJ=0 for the Morse with Re
=2.2 a.u. and the shifted EDMF. The contour plots of the
probability densities for the FRV, ARA, and ERA are in-

cluded in Figs. 11sad–11scd, respectively. Compared to the
two above analyzed states, this state shows a weaker orien-
tation kcosul=0.894. The probability density possesses six
maxima. We will concentrate here on the most pronounced
one with the largest value forR. In the field-free case, this
maximum is atR=3.31 a.u. In the presence of the electric
field, the FRV analysis yieldsR=3.46 a.u., i.e., the wave
function, attracted by the maximum EDMF shifted atR
=8 a.u., is shifted towards larger values of the vibrational
coordinate. Using the ARA we obtainR=3.44 a.u., which is
a very good approximation to the exact result. Here the
maximal density isuCs3.46,0du2=0.4 being slightly overes-
timated by the ARA resultuCs3.44,0du2=0.42. For the ERA
we obtain a much lower value,uCs3.31,0du2=0.31. In addi-
tion, the ERA is also not able to reproduce the extension of

FIG. 9. sColor onlined Probability density of the rovibrational
ground state of the Morse potential withRe=6.0 a.u. and the cen-
tered EDMF for the field strengthF=10−3 a.u.
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each hump of the wave function, see Fig. 11scd compared to
Fig. 11sad.

V. SUMMARY AND OUTLOOK

The rovibrational motion of diatomic molecules is given
by a product of asJ-dependentd vibrational and a rotational
wave functionsmany of the Coriolis coupling terms vanish
in case of an electronic ground state of1S+ symmetry and we
neglect the remaining onesd. In the presence of a static ho-
mogeneous electric field that is weak enough to be treated
perturbatively with respect to the electronic structure of the
molecule but strong enough to act nonperturbatively on its

nuclear motion this separability is no longer present. Still, for
not too strong fields and/or rigid molecules, i.e., molecules
for which the energy scales of the vibrational and rotational
motions are well separated, the dominant effect of the elec-
tric field is to hybridize the rotational motion. The effective
rotor approximation developed in a previous work of the
authors describes this hybridization accurately and in par-
ticular it provides the correct description of the angular mo-
tion depending on the vibrational state. Here the vibrational
motion is assumed to be not influenced by the electric field.
In contrast to this the traditional pendular state approach pro-
vides a hybridization that is independent of the vibrational
state.

In the present work we made a step beyond the above-
described regime and investigated stronger fields and/or flop-

FIG. 10. sColor onlined Probability density of the rovibrational
ground state of the Morse potential withRe=2.20 a.u. andDW for
the field strengthF=10−3 a.u.

FIG. 11. sColor onlined Probability density of the staten=5
emerging from the field-freeJ=0 state of the Morse potential with
Re=2.20 a.u. andDS for the field strengthF=10−3 a.u.
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pier systems. Since we are interested in new phenomena and
properties we did not address a specific molecule, i.e.,
potential-energy curve and electric dipole moment function,
but a model—the Morse potential—possessing variable pa-
rameters and we study three models for the electronic dipole
moment function covering typical cases. The field strength
we have been usingF=10−3 a.u. corresponding to
514 sMV/md is somewhat above the experimentally acces-
sible static field strength. However, we expect that the prin-
cipal effects we have found do occur in certain regimes and
species at significantly lower field strengths. Moreover, our
results should be equally applicable to the quasistatic regime
of low-frequency electromagnetic fields for which the dy-
namical and electromagnetic frequency scales are well sepa-
rated. An estimation of thessemiclassicald tunneling rate due
to the presence of the fieldF=10−3 a.u. indicates that the
electronic ionization process can safely be neglected. Fur-
thermore, in many cases the interaction with the field due to
the polarizability of the molecule can equally be neglected
due to its quadratic dependence on the field strength.

Starting from the rovibrational equation of motion in the
molecule fixed frame we have developed an adiabatic sepa-
ration of the vibrational and rotational motions. It turns out
that the effective rotor approximation is a crude adiabatic
approach in this framework: the fast vibrational motion is the
field-free one and in particular independent on the slow dy-
namical variable, i.e., the angular motion. We established the
full adiabatic approximation, the so-called adiabatic rotor ap-
proach, to the rovibrational motion for which the vibrational
wave function depends parametrically on the angular vari-
able. Subsequently studies for several model systems includ-
ing many vibrational excitations have been performed. Our
focus has been on the states emerging from the field-free
ground rotational statesJ=0 for M =0. It turns out that ap-
plying the above field strength we indeed enter the regime
where the ERA description is no longer adequate and field-
induced effects and full adiabaticity occur. The ARA accu-
rately describes the energies and physical properties, i.e., to-

tal wave functions in this regime. We have analyzed the
orientation effects, the mixing of angular momenta, and the
vibrational stretching and squeezing effects due to the exter-
nal field in detail. In the case of a shifted electric dipole
moment function we observed a distortion of the wave func-
tion specifically a squeezing effect towards the maximum of
the EDMF. We remark that these properties and effects de-
pend on the state under consideration which adds to the va-
riety of possible behavior and properties in the presence of
the field.

Paradigms of heteronuclear diatomic molecules with a
large equilibrium internuclear distance, a small dissociation
energy, and a large maximal electric dipole moment are the
alkali dimers. The latter are currently in the focus of ultra-
cold molecular physics since they constitute the prototype of
an ultracold quantum gas with long-range dipole-dipole in-
teractions. Several experimental groups are working in this
directionf41–43g. However, there is still a need for accurate
potential-energy curves and electric dipole moment functions
for these species, naming specifically the LiCs dimer.

The vibrational state dependence of the adiabatic rotor
equation together with the field-induced adiabaticity of the
vibrational and rotational motion open interesting perspec-
tives for the application of the external field to hybridize the
rovibrational motion. Natural extensions of the present work
would include the investigation of the hybridization of states
emerging from higher rotational excitations and/or studies of
states with nonzero magnetic quantum numbersM.
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