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Surface light-induced drift of a rarefied gas in cells with flat-plate and circular-cylindrical geometries is
studied, and exact analytical solutions to the model rate equations are obtained in the limit of large Knudsen
number. The work is a continuation of part V of this series of papers, in which the model rate equations were
tailored specifically in order to study the roles played by both the tangential and normal momentum molecule-
surface accommodation coefficients. In part V, the “spontaneous decay” parameter,g, was set equal to zero,
and the case of general “laser excitation” parameter,q, was studied. In the present paper, we get exact
analytical results for the case of arbitraryg in the limit of smallq; we also get accurate numerical results for
arbitraryg andq. In passing, one serious, and other less serious, typographical errors in part V are corrected.
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I. INTRODUCTION

This paper is the last of a series of papersf1–5g on the
phenomenon of light-induced drift. It is on surface light-
induced driftsSLIDd, and is a continuation of part V, it being
necessary for readers to have read and understood part V; an
understanding of parts I and II would be highly beneficial
also. In the previous papers of the series it was shown how
exact results may be obtained for reasonably nontrivial mod-
els of both SLID and BLIDsthe bulk analogue of SLIDd, and
how meaningful applications to experiment may be made. In
part V it was shown that both the normal and tangential
momentum molecule-surface accommodation coefficients
play roles in SLID, whereas the author’s intuition was that
the normal momentum coefficient would be irrelevant. How-
ever, a problem with part V is that the spontaneous decay
rate, from excited state to ground state, denoted byg, was set
equal to zero in order to simplify the working therein, and so
the role ofg is still unclear. A main purpose of this paper is
to clarify the role ofg in this problem.

There is one serious typographical error, and a few less
serious ones, in part V, and these are corrected heres“here”
means “in the present paper”d in Appendix A. The notation
used here is the same as that used in part V, except that the
laser excitation frequency parameterq0, defined from Eqs.
sI.2.3d andsI.2.4d, is abbreviated toq. Additional definitions
analogous to some of those made in Eqs.sV.2.9d are as fol-
lows:

Da ; ag − ae, s1.1ad

Pa ; agae, s1.1bd

where ag,e are the accommodation coefficients for ground,
excited state molecules used in parts I and II.

The starting point is the set of Maxwell-Boltzmann rate
equations, the first appearance of which, for the present
model, is Eqs.sV.2.13 a-dd for flat-plate sFPd geometry to-
gether with the replacements in Eqs.sV.3.2d and sV.3.3d for
circular-cylindricalsCCd geometry.

The “active speed” of the molecules is denoted here byv;
for the flat-platesFPd casef1,5g, v;uvzu, and for the CC case
f2,5g, v;V. With g.0, for both the FP and CC cases, the
four molecular velocity distribution functionsf ju; f j

sud sj
;g,e; u; i ,od are of the formf5g

f ju

2m
=

v2Aju + vJju + Kju

v2 + vB + C
, s1.2d

where m is the sbulkd Maxwellian distribution, with
2mss1,s2d=1 wheres1,2 are the velocity variables defined by
Eq. sV.2.1ad; Eq. s1.2d defines the fourteen constants, which
depend on the foursas yet unknownd quantitiesC ju;C j

sud and
on the casesFP or CCd consideredf5g. The notationu; i ,o
used here refers to molecules whose componentsvx of ve-
locity along the cell are inside, outside of the laser excitation
interval sva,vbd defined by Eq.sI.2.4d; thus u; i if vaøvx

øvb, and u;o otherwise. In general, all of the fourteen
constants in Eq.s1.2d depend onq,g, and the normal and
tangential momentum accommodation coefficients for
ground-state and excited-state molecules, denoted byagn,
agt, aen, aet in the obvious notationf5g.

In parts I–IV, methods were developed to get exact ana-
lytical results in cases in which the analoguessf jd of f ju are
ratios oflinear polynomials inv; for g=0, Eq.s1.2d becomes
just such a ratiof5g, which is the reason why only the case
g=0 was studied in part V. Forg.0, the author is still
unable to get exact analytical results for arbitraryq in the
cases considered in part Vf5g. However, using ideas which
stem from the work in part V, such exact results have been
obtained for the caseg.0 in the important limit of smallq.
These results, together with a description of the method by
which they are obtained, are presented and discussed here.
The author is able to getnumerical results, correct to arbi-
trary accuracy, for arbitrary values of the parameters, includ-
ing q now; those numerical results indicate that the important
results, as far as SLID is concerned, do not depend signifi-
cantly onq.

PHYSICAL REVIEW A 71, 033412s2005d

1050-2947/2005/71s3d/033412s6d/$23.00 ©2005 The American Physical Society033412-1



II. METHOD OF SOLUTION

We defineBju, Cju, Mju, Pju by

Bju ; Jju − BAju, s2.1d

Cju ; Kju − CAju, s2.2d

svp − vmdsMju,Pjud ; sCju − vmBju,vpBju − Cjud, s2.3d

with vm,p sm,p;minus, plusd given by

Svp

vm
D ;

B

2
± SB2

4
− CD1/2

, s2.4d

in order to expand Eq.s1.2d into partial fractions in the form

f ju = Aju +
Mju

sv + vmd
+

Pju

sv + vpd
. s2.5d

We use the notation

Hk ; Hsvkd ; 1 − Gk, k ; m,p, s2.6d

where the functionsGsud and Hsud;1−Gsud are defined
and discussed in Appendix D of part I.

The concentrationscju;cj
sud are given byf5g

cju =E ds1uE ds2f ju, s2.7d

whereds1u;ds1
sud, and the quantitiesC ju;C j

sud are given by
f5g

C ju = kvlm
−1E ds1uE ds2vf ju, s2.8d

wherekvlm is the average speed in the relevant Maxwellian
distribution, given from

pkvlm
sFPd = 2kvlm

sCCd = p1/2, s2.9d

and wheres1, s2 are given in terms ofvx, v by

s1 = erf vx, s2.10ad

s2
sFPd = erf v, s2.10bd

s2
sCCd = e−v2

. s2.10cd

The integrands in Eqs.s2.7d ands2.8d are independent ofs1u,
and we getf5g

E ds1u = Dsu ; Dssud. s2.11d

In converting the integrals overs2 to integrals overv, the
Jacobians are given from Eqs.s2.10ad and s2.10bd by

uds2/dvusFPd = s2/p1/2de−v2
, s2.12ad

uds2/dvusCCd = 2ve−v2
. s2.12bd

Use of the resultss2.7d–s2.12d gives, in an obvious notation,

cju
sFPd

Dsu
= FAju +

Gm

vm
Mju +

Gp

vp
PjuGsFPd

, s2.13d

C ju
sFPd

Dsu
= fAju + p1/2sHmMju + HpPjudgsFPd, s2.14d

cju
sCCd

Dsu
= fAju + p1/2sHmMju + HpPjudgsCCd, s2.15d

C ju
sCCd

Dsu
= fAju + 2sp−1/2 − HmvmdMju + 2sp−1/2 − HpvpdPjugsCCd.

s2.16d

The “unitary condition” is

cgi + cgo + cei + ceo= 1, s2.17d

and exact analytical results, for arbitraryq, would be found
for the FP and CC cases if the nine relevant equations were
solved for the four quantitiesC ju in each case; for the FP
case, there are four equations from each of Eqs.s2.13d and
s2.14d, together with Eq.s2.17d; for the CC case, there are
four equations from each of Eqs.s2.15d and s2.16d, together
with Eq. s2.17d. As stated in Sec. I, the author has failed to
get exact analytical results for arbitraryq, and that is because
the resulting algebraic expressions are too complicated for
the author’s computing resources to handle; however, he has
obtained such exact results in the limit of smallq, using the
procedure described in the next paragraph, which gives great
simplification of the calculations. Accurate numerical results
are discussed at the end of Sec. IV below.

We expand all necessary quantities in powers ofq, keep-
ing only terms of orders zero and one, and use the notation
that, for any quantityXsqd, Xo andXp are defined by

Xo ; Xs0d, s2.18ad

Xp ; X8s0d, s2.18bd

where the prime8 and the subscriptp denote derivative. We
get

Mju = qMjup, s2.19ad

Pju = qPjup, s2.19bd

Aju = Ajuo + qAjup, s2.20d

C ju = C juo + qCjup, s2.21d

where

Aguo= Cguo=
1

2
, s2.22d

Aeuo= Ceuo= 0. s2.23d

From Eqs.s2.13d–s2.16d, s2.19ad, s2.19bd, s2.20d, ands2.21d
we get

cju
sFPd

Dsu
= FAju + qSGmo

vmo
Mjup +

Gpo

vpo
PjupDGsFPd

, s2.24d
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C jup
sFPd

Dsu
= fAjup + p1/2sHmoMjup + HpoPjupdgsFPd, s2.25d

cju
sCCd

Dsu
= fAju + p1/2qsHmoMjup + HpoPjupdgsCCd, s2.26d

C jup
sCCd

Dsu
= fAjup + 2sp−1/2 − HmovmodMjup

+ 2sp−1/2 − HpovpodPjupgsCCd. s2.27d

It follows from the working described above that the quan-
tities vmo andvpo, that is the values ofvm andvp with q=0,
are given from

vmoae comb= vpoaen= g, s2.28d

with the notation of Eq.sV.2.7d for ae comb, wheregsFPd ,gsCCd

are defined by

gsFPd ; g, s2.29ad

gsCCd ; G, s2.29bd

with G defined byf5g

G ; pg/2. s2.30d

Exact analytic results, in the limit of smallq, are found by
solving the nine equations for the four quantitiesC jup in each
case: for the FP case, there are four equations from each of
Eqs.s2.24d and s2.25d, together with Eq.s2.17d; for the CC
cases, there are four equations from each of Eqs.s2.26d and
s2.27d, together with Eq.s2.17d. The cju may now be calcu-
lated from Eqs.s2.24d and s2.26d, and the quantitiesI1e, Ixs,
and Iqd from f5g

I1esqd = cei + ceo, s2.31d

Ixssqd = F scgi + ceid
Dsi

−
scgo + ceod

Dso
Gdsexpd

p1/2 , s2.32d

Iqdsqd = qscgi − ceid, s2.33d

where the notationdsexpd is defined by Eq.sI.E4d, and where
we note that a typographical error in Eq.sV.2.24d is pointed
out in Appendix A.

It turns out thatI1e/q andIxs/q are now independent ofq,
as desired, butIqd/q is not, so, consistently with our small-q
analysis, we calculate a revisedIqdsqd from

Iqdsqd = qIqdp, s2.34d

using the notation of Eq.s2.12bd for the derivative. Our re-
sults forI1e/ Iqd, Ixs/ Iqd, andIqd/q are exactsfor g.0d in the
limit q→0, and are presented in Appendix B.

III. RECOVERY OF RESULTS, FOR THE LIMIT OF
SMALL g, FROM EARLIER PARTS

Using the results in Appendix B, together with the ana-
lytical propertiesf1g of the functionsGsud, Hsud in the limit

of small u, the results for the limitg→0 may be written as
follows:

− 1

ln g
S I1e

Iqd
DsFPd

→ 2

p1/2aen
, s3.1d

− 1

ln g
S Ixs

Iqd
DsFPd

→ 2

p

dsexpd
dserfd

Dacomb

Pacomb
, s3.2d

S I1e

Iqd
DsCCd

→ p1/2f1 + sp/2 − 1dzaetg
zaetaen

, s3.3d

S Ixs

Iqd
DsCCd

→ dsexpd
dserfd FDat

Pat
+ Sp

2
− 1DDacomb

Pacomb
G , s3.4d

where the notationdserfd is defined by Eq.sI.4.10d. All four
of these results are the exact analogues of those obtained, for
the limit q→0, in part V, in whichg was set equal to zeroa
priori . To “recover” the analogous results in parts I and II, it
is sufficient to make the following formal direct substitutions
in the resultss3.1d–s3.4d:

aet → 1, aen→ ae, at → a, acomb→ a. s3.5d

For example, the analogue of results3.4d appears in part II as

S Ixs

Iqd
DsCCd

→ p

2

dsexpd
dserfd

Da

Pa
. s3.6d

While the physical significance of the last three substitutions
in Eq. s3.5d is clear, the author does not understand why the
first substitution works; maybe the fact thataet appears only
in the productzaet is relevant.

IV. DISCUSSION AND CONCLUSION

The effects of nonzerog may of course be studied, for
general values of the several parameters, by comparing the
results in Appendix B with those in Sec. III and in Appendix
V A. However, as discussed in Sec. IV of part V, in the
context of current experimental capability, thea jk are sure to
be close to unityf6–10g, and this fact allows considerable
simplification of the results. Let us briefly consider such sim-
plification for one of the important quantities in the analysis.
The three important integrals aresid I1e, that is the concen-
tration of excited molecules, given byf1g

I1e =E E E d3vfesvd, s4.1ad

sii d Ixs, that is the sum of the molecular fluxesswhich is
proportional to the pressure difference across the celld, given
by f1g

Ixs=E E E d3vffgsvd + fesvdgvx, s4.1bd

and siii d Iqd, that is the laser contribution to the rate of in-
crease in the concentration of excited molecules, given by
f1g
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Iqd =E E E d3vffgsvd − fesvdgqsvxd. s4.1cd

The important quantity we study here is the ratioIxs/ Iqd,
which is the quantity most directly related to experimental
measurementsf1g. With thea jk close to unity, it follows from
the results in Appendix B, bearing in mind results such as

Gmo
sFPd ; Gsg/ae combd < Gsgd, s4.2d

which follows from Eq.s2.28d, that

dserfd
dsexpd

S Ixs

Iqd
DsFPd

< GsgdSDat +
Dacomb

p1/2g
D , s4.3d

dserfd
dsexpd

S Ixs

Iqd
DsCCd

< JsGdDat, s4.4d

where G is defined by Eq.s2.30d and the functionJsud is
defined, foru.0, by

Jsud ; 1 − p1/2uHsud s4.5ad

=1 −p1/2u + 2u2E
0

`

dx
e−x2

sx + ud
,

s4.5bd

with Js0d;1 f1g. We showJsud, together with its expansions
for small and largeu f11g, up to quartic terms, in Fig. 1.

In deriving the approximations4.4d, we have assumed that
DatÞ0 and have dropped a term proportional toDacomb,
which shouldf5g be negligible. TheDacomb term may not
necessarily be dropped from the approximations4.3d because
g may be of orderuDacomb/Datu or smaller; of course, if this
is not the case, then the term may be dropped.

The effects of nonzerog are most clearly seen by study-
ing Eqs. s4.3d and s4.4d and the functionsGsud and Jsud.

Relevant to the FP case Eq.s4.3d, Gsud /u becomesf1g pro-
portional to lnu for very smallu, which leads to interesting
behavior if DacombÞ0. In any case, the strong dependence
on g in both the FP and CC cases is now clear. Importantly,
the introduction of a nonzerog does not affect the qualitative
conclusions in part V concerning the roles of the normal and
tangential momentum accommodation coefficients in SLID.

The strong dependence ong, and the weak dependence on
q, mentioned in Sec. I above, are illustrated in Fig. 2, in
which numerical results, in the CC case, for the quantity
Ixs/ Iqd are shown as functions of bothg andq. The param-
eters chosen for the calculations are shown in the caption to
Fig. 2. The calculations are consistent with the approxima-
tion s4.4d in all cases.

APPENDIX A: TYPOGRAPHICAL ERRORS IN PART V

The only potentially misleading, and hence serious, error
in part V occurs in the second line of Eq.sV.2.24d, in which
the 1 sign should be a2 sign. A less serious error, because
it is easier to find, occurs in the first line of Eq.sV.2.21d: a
factor v is missing from the integrand therein.

Three trivial, easy to find, errors occur in Eq.sV.2.23d and
the first line of Eq.sV.2.24d, in which dssid anddss0d should
be ds1

sid and ds1
s0d, respectively. Finally, although it could be

argued that these are not errors,v should beV in three places
in Ref. f21g of part V.

APPENDIX B: EXACT ANALYTICAL RESULTS, FOR g.0
IN THE LIMIT q\0

All of the results presented in this appendix are derived
from Eqs.s2.31d–s2.33d.

1. FP geometry

With the notations defined by Eqs.sV.2.6d to sV.2.9d, the
results are given from

FIG. 1. Our functionJsud de-
fined by Eq.s4.5d, and its expan-
sions, up to quartic terms, for
small and large u, where
ss<0.58d is Euler’s constant.
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g

Gpo

I1e

Iqd
=

zaetaen+ p1/2s1 − zaetdg
zaetaen+ p1/2s1 − zaetdgGpo

, sB1d

gagtag comb

Gmo

dserfd
dsexpd

Ixs

Iqd
=

sYtDat − YnDandg + YcDacomb

aetae comb+ p1/2aen modgGmo
,

sB2d

Iqd/q = dserfd/2, sB3d

with Yt,n,c defined by

Yt ; aen+ s1 − agtdfs1 − aendsaet + agtd

− s1 − agndsagt + ae combdg, sB4ad

Yn ; s1 − agtdagt
2 , sB4bd

Yc ; p−1/2ae combPat. sB4cd

2. CC geometry

The analogues of Eqs.sB1d–sB4d are

1

p1/2

I1e

Iqd
=

aen+ zaetaenspHpo/2 − 1d − p1/2s1 − zaetdHpoG

zaetaen
2 + 2s1 − zaetdsp−1/2aen− HpoGdG

,

sB5d

agtag comb
dserfd
dsexpd

Ixs

Iqd

=
ZtDat + ZcDacomb

aetae comb
2 + 2aen modsp−1/2ae comb− HmoGdG

,

sB6d

Iqd/q = dserfd/2, sB7d

with Zt,c defined by

Zt ; sae comb− p1/2HmoGdPacomb, sB8ad

Zc ; fae combspHmo/2 − 1d + p1/2HmoGgPat. sB8bd

Readers are reminded thatGko andHko sk;m,pd are given
from fEqs.s2.6d, s2.18ad, s2.28d, s2.29ad, ands2.29bdg

Hmo= Hsg/ae combd = 1 −Gmo, sB9ad

Hpo = Hsg/aend = 1 −Gpo. sB9bd
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