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Theory of light-induced drift. VI. Roles of accommodation of normal and tangential momenta
in surface light-induced drift with positive spontaneous relaxation parameter
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Surface light-induced drift of a rarefied gas in cells with flat-plate and circular-cylindrical geometries is
studied, and exact analytical solutions to the model rate equations are obtained in the limit of large Knudsen
number. The work is a continuation of part V of this series of papers, in which the model rate equations were
tailored specifically in order to study the roles played by both the tangential and normal momentum molecule-
surface accommodation coefficients. In part V, the “spontaneous decay” paramet@s set equal to zero,
and the case of general “laser excitation” parameagenwas studied. In the present paper, we get exact
analytical results for the case of arbitrapyin the limit of smallqg; we also get accurate numerical results for
arbitrary y andg. In passing, one serious, and other less serious, typographical errors in part V are corrected.
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[. INTRODUCTION The “active speed” of the molecules is denoted here;by
This paper is the lstof a sries o papftss]on he (21 1SLPLAFP) cosll 5 v and o e CC case
phenomenpn of I|ght—|nQUced dr_n‘t. It. IS on surfac_:e I|ght— four molecular velocity distribution functionﬁ-uEﬁu> @
induced drift(SLID), and is a continuation of part V, it being _ e u=i,o0) are of the form(5] ! i
necessary for readers to have read and understood part V; an>’® ’
understanding of parts | and Il would be highly beneficial
also. In the previous papers of the series it was shown how LH VA, +udy, + Ky,
exact results may be obtained for reasonably nontrivial mod- om = v2+uB+C (1.2
els of both SLID and BLID(the bulk analogue of SLIP and
how meaningful applications to experiment may be made. In
part V it was shown that both the normal and tangentialwhere m is the (bulk) Maxwellian distribution, with
momentum molecule-surface accommodation coefficient@8m(s;,s,)=1 wheres, , are the velocity variables defined by
play roles in SLID, whereas the author’s intuition was thatEq. (V.2.13; Eq. (1.2) defines the fourteen constants, which
the normal momentum coefficient would be irrelevant. How-depend on the fouas yet unknowhquantitiescjuEC(”) and
ever, a problem with part V is that the spontaneous decagn the caséFP or CQ considered5]. The notationu=i,0
rate, from excited state to ground state, denoteg,byas set  used here refers to molecules whose componeptsf ve-
equal to zero in order to simplify the working therein, and solocity along the cell are inside, outside of the laser excitation
the role ofy is still unclear. A main purpose of this paper is interval (v,,v;,) defined by Eq.l1.2.4); thusu=i if vy,<v,
to clarify the role ofy in this problem. <uvp, and u=o0 otherwise. In general, all of the fourteen
There is one serious typographical error, and a few lesgonstants in Eq(1.2) depend ong,y, and the normal and
serious ones, in part V, and these are corrected (teeze”  tangential  momentum accommodation coefficients for
means “in the present papgih Appendix A. The notation  ground-state and excited-state molecules, denotedrgay
used here is the same as that used in part V, except that trg%t, ey @t iN the obvious notatiofi5].
laser excitation frequency parametgy, defined from Egs. In parts -1V, methods were developed to get exact ana-
(|23) and(l24), is abbreviated t@. Additional definitions |ytica| results in cases in which the ana|oguié]$ of fju are
analogous to some of those made in Eys2.9) are as fol-  ratios oflinear polynomials inv; for y=0, Eq.(1.2) becomes

lows: just such a ratid5], which is the reason why only the case
v=0 was studied in part V. Foy>0, the author is still
Aa= ag—ae, (1.1 (nable to get exact analytical results for arbitrgryn the
cases considered in part[8]. However, using ideas which
la = aya, (1.1p  stem from the work in part V, such exact results have been

obtained for the casg> 0 in the important limit of smalty.
where a4, are the accommodation coefficients for ground, These results, together with a description of the method by
excited state molecules used in parts | and IlI. which they are obtained, are presented and discussed here.
The starting point is the set of Maxwell-Boltzmann rate The author is able to getumericalresults, correct to arbi-

equations, the first appearance of which, for the preserttary accuracy, for arbitrary values of the parameters, includ-
model, is Egs(V.2.13 a-d for flat-plate (FP) geometry to- ing g now; those numerical results indicate that the important
gether with the replacements in E¢¥.3.2) and(V.3.3) for  results, as far as SLID is concerned, do not depend signifi-
circular-cylindrical(CC) geometry. cantly ong.
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II. METHOD OF SOLUTION
We defineBy, Cj,, Mjy, Py, by
BjU = ‘]jU - BAiU’

Cju = Kju - CAjuv

(2.1)
(2.2)

(Up - Um)(Mju: P]u) = (C]u - UmBjuvvaju - Cju)v (23)

with v, (M, p=minus, plug given by

)= 5e (5
Um 2 \4 ’

in order to expand Ed1.2) into partial fractions in the form
Mju + Piu

(2.9

fi,=A . 2.5
BT v Tty #9

We use the notation
HkE H(Uk) = 1 _Gk! kE m,p, (26)

where the function€G(u) and H(u)=1-G(u) are defined
and discussed in Appendix D of part I.
The concentrationsjuzcgu) are given by[5]

Cju:fdslufdszfjuv

, and the quantitieé’juchu) are given by

(2.7

whereds, =ds”

(5]

Cju:<v>;]1fdslufdszufju, (2.9

where(v),, is the average speed in the relevant Maxwellian

distribution, given from

()PP = 2(p) (€O = 7172, (2.9
and wheres;, s, are given in terms ob,, v by
s, = erfuy, (2.109
sy = erfo, (2.10bh
§C0 = g, (2.100

The integrands in Eq$2.7) and(2.8) are independent af,,
and we gef5]

fdslu:AsuEAs“‘). (2.12)

In converting the integrals oves, to integrals ovemw, the
Jacobians are given from Eq®.109 and(2.10bH by

|dsy/dv|FP = (272, (2.123

|dsy/dv|(€© = 206, (2.12h

Use of the result$2.7)—(2.12 gives, in an obvious notation,

(FP) (FP)
E&ug: Aju+G_mMju+EEPju y (213)
Um Up
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C(FP)

u_ _ 1/2 FP
As, - [Aju ta (HmMju + prju)]( ),

(2.149

(CO)
C;
_iug = [AJU + Wllz(HmMju + Hiju)](CC), (215)

(cO)

AJUSU = [Aju + 2(77‘1/2— HmUm)Mju + 2(77—1/2_ HpUp) Pju](cc).

(2.16
The “unitary condition” is

Cgi + Cgo+ Cei+ Ceo™= 1!

(2.1

and exact analytical results, for arbitragy would be found
for the FP and CC cases if the nine relevant equations were
solved for the four quantitie€;, in each case; for the FP
case, there are four equations from each of EZ43 and
(2.14), together with Eq(2.17); for the CC case, there are
four equations from each of Eg.15 and(2.16), together
with Eq. (2.17). As stated in Sec. |, the author has failed to
get exact analytical results for arbitragyand that is because
the resulting algebraic expressions are too complicated for
the author’s computing resources to handle; however, he has
obtained such exact results in the limit of sm@llusing the
procedure described in the next paragraph, which gives great
simplification of the calculations. Accurate numerical results
are discussed at the end of Sec. IV below.

We expand all necessary quantities in powers|,dfeep-
ing only terms of orders zero and one, and use the notation
that, for any quantityX(q), X, and X, are defined by

X, = X(0), (2.18a

X,=X'(0), (2.18b

where the prime’ and the subscrigh denote derivative. We
get

Mju:quupy (2193

Pju = quup! (219@

Aju :Ajuo+quupa (2-20)

Cju:Cjuo"'quupv (2-21)

where
1
Aguozcguoz Ea (2.22
Acuo= Ceuo=0- (2.23

From Egs.(2.13—2.16), (2.193, (2.19b, (2.20, and(2.2])
we get

(EP) Gmo 9@ (FP)
—I—ASJ = Aju+q<v_moMjup+ vpo P]up) y (224)
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(FP)

jup  _ 1/2 FP
As, [Jup+77 (HmoMjup+H Pjup)]( ) (2.295

(CO
Ciu

ASJ = [Aju + 71'1/2q(l_|mo'v|jup+ H P]up)] CC), (2-26)

(CO)
JUP —

A]up +2(m 2 Hindmo Mjup

+2(7 Y 1€0O, (2.27

- Hpovpo)Piup

It follows from the working described above that the quan-

tities vy, andup,, that is the values of, andwv, with =0,
are given from

(2.28

Umo@e comb™ Upo@en= 9

with the notation of Eq(V.2.7) for ae coms Whereg™,g(c®
are defined by

g =y, (2.293

go=r, (2.29h
with T defined by[5]

I'=myl2. (2.30

Exact analytic results, in the limit of smal| are found by
solving the nine equations for the four quantitigsg, in each
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of small u, the results for the limity— 0 may be written as

follows:
-1 ( |1e)<FP> 2
—\ =] == (3.9
In y\lgq ™ ag,
- (FP)
1 ( Iy ) _ 2d(exp Aacomb’ (3.2
Iny 7 d(erf) Tlacomp
( |_1€><CC> B 1 + (712 = 1) zagy] 33
qu Zlgiten '
(LXS)«;C) d(exp) { Aay (Z ) 1) Aacomb:| 34
qu d(erf) Hat 2 Hacomb

where the notatiowl(erf) is defined by Eq(l.4.10). All four

of these results are the exact analogues of those obtained, for
the limit g— 0, in part V, in whichy was set equal to zer@
priori. To “recover” the analogous results in parts | and 11, it

is sufficient to make the following formal direct substitutions

in the resulty3.1)—(3.4):

(3.9

For example, the analogue of res(#t4) appears in part Il as

i)~
Ixs
l4d

Ae— 1, @en— @ G — @ Acomp— Q.

wd(exp) Aa
2 d(erf) Ma

(3.6

case: for the FP case, there are four equations from each While the physical significance of the last three substitutions

Egs.(2.24 and(2.25, together with Eq(2.17); for the CC
cases, there are four equations from each of E2j26) and
(2.27), together with Eq(2.17). The c;, may now be calcu-
lated from Eqs(2.24) and(2.26), and the quantitiet, lyg
and|lqq from [5]

Ile(Q) = Cej t Ceo (2-31)

(C it Cei) (C ot ceo) d(exp)
L@ = gAs - gASo e (232
lqa(@) = a(Cqi — Cei), (2.33

where the notatiod(exp) is defined by Eq(l.E4), and where
we note that a typographical error in HY.2.24) is pointed
out in Appendix A.

It turns out that 4./ andl,¢/q are now independent @f;
as desired, but,q/q is not, so, consistently with our smajl-
analysis, we calculate a reviség(q) from

lqa(@) = Algaps (2.34)

using the notation of Eq2.120 for the derivative. Our re-
sults forlye/lgg, Iys/ lqa @ndlqg/q are exactfor y>0) in the
limit g— 0, and are presented in Appendix B.

IIl. RECOVERY OF RESULTS, FOR THE LIMIT OF
SMALL 1y, FROM EARLIER PARTS

in Eq. (3.5 is clear, the author does not understand why the
first substitution works; maybe the fact that, appears only
in the productza, is relevant.

IV. DISCUSSION AND CONCLUSION

The effects of nonzergy may of course be studied, for
general values of the several parameters, by comparing the
results in Appendix B with those in Sec. Il and in Appendix
V A. However, as discussed in Sec. IV of part V, in the
context of current experimental capability, tag are sure to
be close to unity{6-10], and this fact allows considerable
simplification of the results. Let us briefly consider such sim-
plification for one of the important quantities in the analysis.
The three important integrals atg |4, that is the concen-
tration of excited molecules, given B¥]

o[ [ [

(i) lys that is the sum of the molecular fluxéwhich is
proportional to the pressure difference across the,agiten

by [1]
= f f J B[ f4(v) + fo(V) oy,

and (iii) 144, that is the laser contribution to the rate of in-

(4.1

(4.1b

Using the results in Appendix B, together with the ana-crease in the concentration of excited molecules, given by

lytical propertieq 1] of the functionsG(u), H(u) in the limit

(1]
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FIG. 1. Our functionJ(u) de-
fined by Eq.(4.5), and its expan-
sions, up to quartic terms, for
small and large u, where
o(=0.58 is Euler’s constant.
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10 — : ' '
0.8 I
o . Jy=1-n"2-(2 Inu— o)’ +27" % + Qnu—1+ o)t + ... -
—
=
™~
0.4
0.2 1
0.0 T T ¥ !

(4.10

lqa= f J f d*V[fo(v) = fo(V)]a(vy).

The important quantity we study here is the ratjg/lyq,
which is the quantity most directly related to experimental
measuremenfd ]. With the ;, close to unity, it follows from
the results in Appendix B, bearing in mind results such as

G#\Eg)) = G(ylae comd = G(¥), (4.2
which follows from Eq.(2.28), that
d(erf) ( |xs>(FP) ( Aacomb)
— ~G(y)| Ay + , 4.3
d(exp) \ g () Ae 2y (4.9
d(erf) (IXS)(CQ
o\ ] =IDAa, (4.9
d(exp \lgq t

where I is defined by Eq(2.30 and the functionJ(u) is
defined, foru>0, by

J() =1 - 72uH(u) (4.59

e
dX(x +u)’
(4.5b

with J(0)=1[1]. We showJ(u), together with its expansions
for small and largeu [11], up to quartic terms, in Fig. 1.

In deriving the approximatioté.4), we have assumed that
Aa;#0 and have dropped a term proportional A@vcomp
which should[5] be negligible. TheAaqom, term may not
necessarily be dropped from the approximatiiér8) because
vy may be of ordefA aq,myf Aay| or smaller; of course, if this
is not the case, then the term may be dropped.

The effects of nonzerg are most clearly seen by study-
ing Egs. (4.3 and (4.4) and the functiongG(u) and J(u).

oo

=1 —’771/2L| + ZUZJ
0

0334

Relevant to the FP case E@.3), G(u)/u becomeg1] pro-
portional to Inu for very smallu, which leads to interesting
behavior if Aaomp# 0. In any case, the strong dependence
on vy in both the FP and CC cases is now clear. Importantly,
the introduction of a nonzerg does not affect the qualitative
conclusions in part V concerning the roles of the normal and
tangential momentum accommodation coefficients in SLID.

The strong dependence gnand the weak dependence on
g, mentioned in Sec. | above, are illustrated in Fig. 2, in
which numerical results, in the CC case, for the quantity
Ixs/14q @are shown as functions of bothandg. The param-
eters chosen for the calculations are shown in the caption to
Fig. 2. The calculations are consistent with the approxima-
tion (4.4) in all cases.

APPENDIX A: TYPOGRAPHICAL ERRORS IN PART V

The only potentially misleading, and hence serious, error
in part V occurs in the second line of EQ/.2.24), in which
the + sign should be a- sign. A less serious error, because
it is easier to find, occurs in the first line of EQ/.2.21): a
factorv is missing from the integrand therein.

Three trivial, easy to find, errors occur in EY.2.23 and
the first line of Eq.(V.2.24), in which ds” andds® should
be dsfl') and ds(lo), respectively. Finally, although it could be
argued that these are not errarshould beV in three places
in Ref.[21] of part V.

APPENDIX B: EXACT ANALYTICAL RESULTS, FOR y>0
IN THE LIMIT g—0

All of the results presented in this appendix are derived
from Egs.(2.31)—(2.33.

1. FP geometry

With the notations defined by Egé/.2.6) to (V.2.9), the
results are given from

12-4
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3 1 1 1 1 1
y=0.0 . .
2 FIG. 2. Numerical results, in
b3 0.1 the CC case, for the quantity
= u Ixs/l1qq @s @ function ofg, for sev-
e eral values ofy. The other param-
= eters are ag,=ay=0.998, ag,
Pt =a=0.996, d(erf)=d(exp=1.0,
— 0.5 and z=0.5. All quantities are di-
1 . . -
mensionless, with characteristic
1.0 dimensional quantities chosen as
in parts | and Il
2.0
0 T T T T T
-3 -2 -1 0 1 2 3
logjo(q)
Y e _ 2@t 721 - zae) y (B1) - dierf) Iys
Gpolqd Zoigiten t 771/2(1 — Zargy) VGpo, 9o combd(exp) Iqd
ZAay+ ZAagomy
’yagtag comb d(erf) I_XS - (YtAat - YnAan)7+ YCAa’comb = a a2 + 2a (i,n_—l/za _ H 01—‘)1_‘ [}
Gmo d(exp Iqd et combT 71'llzaen modCmo , efe comb enme e comb Tm
(B6)
(B2)
lq/a=d(erf/2, (B3) l/q=d(erf)/2, (B7)
with Y, . defined by
with Z, . defined by
Y= aent+ (1~ a’gt)[(l = aep) (et + a’gt) v
-(1- ag“)(agt tae coml)]i (B4a) Z,= (@ comb™ 7Tl/szoF)Ha’comb (B8a)
Yo =(1-ag)a, (B4b)
Z.=[ae com™Hmd2 - 1) + 7Tl/szol—‘]l_[at- (B8b)
Yo =7 "0e comflay. (B4c)
Readers are reminded th@f, andH,, (k=m,p) are given
2. CC geometry from [Egs.(2.6), (2.183, (2.28), (2.293, and(2.29h]
The analogues of Eq$B1)—(B4) are
ilie _ Qe+ Zag@er(mHp/2 — 1) - (1 - Zag)Hpol' Hmo=H(@/ae comd =1 = Cmo (B93)
w2 lqa Zaetagn+ 2(1 - zag) (7 YParg - Hool DI ’
(B5) Hpo= H(0/aepn) = 1 -Gy (B9b)
[1] F. O. Goodman, Phys. Rev. 85, 063409(2002. [6] L. B. Thomas, Prog. Astronaut. Aeronaut4, 83 (1981).
[2] F. O. Goodman, Phys. Rev. &5, 063410(2002. [7] R. W. M. Hoogeveen, G. J. van der Meer, and L. J. F. Her-
[3] F. O. Goodman, Phys. Rev. A7, 013410(2003. mans, Phys. Rev. A2, 6471(1990.
[4] F. O. Goodman, Phys. Rev. A7, 013411(2003. [8] B. Broers, G. J. van der Meer, R. W. M. Hoogeveen, and L. J.
[5] F. O. Goodman, Phys. Rev. A8, 013403(2003. F. Hermans, J. Chem. Phy85, 648 (199)).

033412-5



FRANK O. GOODMAN PHYSICAL REVIEW A 71, 033412(2005

[9] G. J. van der Meer, B. Broers, R. W. M. Hoogeveen, and L. J[11] Handbook of Mathematical Functionsedited by M.
F. Hermans, Physica A82 47 (1992. Abramowitz and I. A. SteguiiDover, New York, 1972 Sec.
[10] E. J. van Duijn, R. Nokhai, L. J. F. Hermans, A. Yu. Pankov, 27.6.
and S. Yu. Krylov, J. Chem. Phy4.07, 3999(1997.

033412-6



