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Spectroscopic studies of few-body systems at ultracold temperatures provide valuable information that often
cannot be extracted in a hot environment. Considering a pair of atoms, we propose a cooling mechanism that
makes use of a scattering Feshbach resonance. Application of a series of time-dependent magnetic field ramps
results in either zero, one, or two atoms remaining trapped. If two atoms remain in the trap after the field ramps
are completed, then they have been cooled. Application of the proposed cooling mechanism to optical traps or
lattices is considered.
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A Feshbach resonancef1–3g occurs for two atoms when
their collision energy becomes degenerate with a bound state
in a closed collision channel, producing brief transitions into
and out of this state. In recent years, these resonances have
been used extensively to control the interaction strength in
dilute atomic gasesf4–8g. Here we make use of the charac-
teristics of a Feshbach resonance to reduce the energy of
pairs of externally confined atoms. We show how this
method can be used to cool pairs of atoms taken from a
thermal distribution.

The basis of this method lies in the observation that the
quantum-mechanical energy levels of two atoms in a har-
monic trap shift by an energy corresponding to approxi-
mately two trap quanta as a control parameter is swept in one
direction across the resonance. Throughout this article, we
refer to this control parameter as the magnetic fieldB used to
manipulate the atom-atom scattering lengtha in the vicinity
of a pole. In other contexts, the shift of the energy levels
could be introduced by varying the detuning of an off-
resonant dressing laser, or by varying an electric field
strength. The ideas presented here in terms of the control
parameterB can be straightforwardly extended to those other
contexts. In the following, we first develop the basic mecha-
nism of the Feshbach resonance cooling process. The feasi-
bility and effectiveness of the proposed scheme are then il-
lustrated through an application to a realistic system of two
atoms in a trap. Finally, possible applications to optical traps
are discussed.

The Schrödinger equation for two interacting identical
massm atoms under spherical harmonic confinement with
trapping frequencyn decouples into two equations: one in-
volving the three relative coordinates of the pair, and another
involving the three center-of-masssc.m.d coordinatesf9,10g.
We consider the Schrödinger equation in the relative coordi-
nate for two trapped atoms interacting through a central po-
tential and assume for the time being that the c.m. coordinate
is translationally cold. Accounting for an applied external
magnetic fieldB through a B-dependent quantum defect
bElsBd, the energiesEnlsBd associated with the relative mo-
tion of an atom pair are given byf10g

EnlsBd = f2n − 2bElsBd + l + 3/2g"v, s1d

where v=2pn. Here, the quantum defectbElsBd depends
strongly on the relative orbital angular momentuml of the
pair, while it depends only weakly on the radial oscillator
quantum numbern. The dependence ofbElsBd on the energy
is weak on the scale of an oscillator quantum, i.e.,
udbElsBd /dEnlu!1/"v.

As will become clear later, the quantum defect for one
relative partial wavel for an atom pair, e.g., thes wave,
p wave, or d wave, must rise by unity across the energy
range kBDT of interest, and across the accessible range
of the control parameterDB. In fact, this variation of
bElsBd by unity corresponds to the Feshbach resonance,
which causes the scattering phase shift to rise byp. A
simple closed-form expression exists forbEl f10,11g, which
simplifies at energies higher than a few trap quanta to
bElsBd<arctanfasEnl ,Bd"v /2LoscEnl

Îeg where asEnl ,Bd is
the energy- and field-dependent scattering length and
Losc=Î" / smvd with m=m/2 denotes the characteristic oscil-
lator length.

In this paper, we focus on ans-wave resonance, though
this formalism can be readily extended to higher partial wave
resonances. When ans-wave Feshbach resonance occurs, the
limiting low-energy scattering phase shift is proportional to
the wave numberk=s2mE/"2d1/2. Omitting the subscriptl,
the E- andB-dependent scattering length is then given by

asEn,Bd = abg +
GE

Î"2/s8mEnd
En + sB − BresdEres8 sBd

, s2d

whereabg is the background scattering length. At the mag-
netic field strengthBresof the resonance a zero-energy bound
state occurs. The resonance widthGE in energy is related to
the widthD in the control parameter byGE=2kabgEres8 sBdD,
where Eres8 denotes the rate at which the resonance energy
Eres varies with the control parameterf12g. Figure 1 illus-
trates the characteristics-wave energy levelsEn appropriate
for the relative motion of two atoms in a spherical harmonic
oscillator trap, as functions of the applied magnetic fieldB
for a magnetic Feshbach resonance in85Rbs2,−2d+85Rbs2,
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−2d. In Fig. 1, the parameters adopted areBres=155.2 G,
Eres8 =−3.5 MHz/G,GB=10 G, andabg=−380a0, wherea0 is
the Bohr radius.

Feshbach resonance cooling entails ramping the magnetic
field through the region where the energy levels shift by
<2"v. Figure 1 denotes the internal energy eigenvalues for
a pair of atoms as a function of magnetic fieldB. For a pair
of atoms initially in an eigenstate atB=B1, a sufficiently
slow sadiabaticd field ramp fromB1 to B2 will decrease the
internal energy of the pair by<2"v if the energy level un-
dergoes a shift in that field rangessee inset of Fig. 1d. A fast
snonadiabaticd ramp fromB2 back toB1 will ideally project
the atom pair onto an eigenstateunsB2dl with the same energy
as unsB1dl, resulting in a net decrease in energy of<2"v.
Further field ramps can then be performed.

To model the effects of the magnetic field ramps, we have
developed a two-channel Feshbach resonance model, based
on the single-channel model described in Ref.f13g. Both of
these models describe a two-atom Feshbach resonance for a
harmonic trap, and utilize a zero-range potential to describe
the interaction between the two atoms. The two-channel
model has the advantage of allowing for a field-dependent
resonance state. In the two channels, thes-wave radial solu-
tions for the relative coordinater of the atom pair satisfy the
equations

S−
"2

2m

d2

dr2 +
1

2
mv2r2Du1srd = Eu1srd, s3d

S−
"2

2m

d2

dr2 +
1

2
mv2r2Du2srd = sE − «du2srd, s4d

where« is the energy shift of the second channel from the
first channel. The zero-range potential imposes a boundary

condition at the origin, which is parametrized as

d

dr
Su1srd

u2srd
D

r=0
= S− 1/a1 b

b − 1/a2
DSu1srd

u2srd
D

r=0
. s5d

A quantum-defect-theory treatment, similar to that of Ref.
f13g, can then be applied. The scattering length predicted by
this modelswhenv→0d is

asE,Bd = S 1

a1
+

ubu2

Î2m«sBd/"2 − 2mE/"2 − 1/a2
D−1

, s6d

which can be compared to the measured scattering length to
determine the values of the parametersa1, a2, and b. The
parameters also affect the magnetic-field dependence of the
adiabatic energy states, and their adjustment is able to pro-
vide satisfactory agreement with experimental data in the
regions of interest to us. For example, for85Rb, we finda1
=−435a0, a2=1.49a0, and b=0.00116a0

−1. Simulations can
then be performed by specifying an initial state of the system
and numerically solving the Schrödinger equation.

The simulations reveal the effect of the adiabatic and
nonadiabatic field ramps. Assume first that the atom pair is in
a pure state atB=B1. As expected, the adiabatic field ramp
sB1 to B2 in Fig. 1d decreases the energy of the atom pair
irrespective of the initial eigenstate chosen. A nonadiabatic
ramp sB2 to B1 in Fig. 1d causes a state atB2 that is not
degenerate with the resonance state to project onto a state at
B1 with approximately the same energy as the initial state at
B2. However, if the pair is initially in the state atB2 that is
degenerate with the resonance state, the fast ramp results in a
strong projection onto the resonance state. In this case, the
atom pair gains energy since the resonance state atB1 has a
higher energy than the initial state atB2.

We now generalize our scheme to accommodate a mixed
initial state, and show how cooling can be performed for an
ensemble of atom pairs. For an atom pair taken from a ther-
mal distribution, the occupation probability of a level with
energyEn in the relative motion is determined in terms of a
Boltzmann factor bye−En/t /Zstd with t=kBT, where kB is
Boltzmann’s constant,Zstd=oie

−Ei/t is the partition function
with the sum running over all states of the system, andT is
the temperature of the source of the two atoms. Based on the
results of field ramps for pure states discussed above, we see
that application of a cooling cyclesslow ramp fromB1 to B2
plus fast ramp back toB1d for a mixed state will do two
things: sad decrease by 2"v the energy of the population in
states which undergo a full energy shift betweenB1 andB2,
andsbd increase the energy of the population in the state that
is degenerate with the resonancesi.e., undergoing an energy
shiftd at B2 by moving it to the statesor statesd degenerate
with the resonance atB1. We will denote this state from
which the heated population originates asn=Q.

Figure 2 illustrates the effect of a single cooling cycle on
a mixed state, using the same Feshbach resonance as shown
in Fig. 1. The upper curvesblack lined represents an initial
s-wave probability distribution for the states associated with
the relative coordinate of an atom pair in a harmonic trap
with n=1 MHz and source temperatureT=1 mK. The lower
curve on the left side of the figure and the spike on the right

FIG. 1. sColor onlined Energy levelsEn for the relative coordi-
nate of a harmonically trapped85Rb atom pair near theB0

<155.2 G Feshbach resonance, as a function of the magnetic field
B. A rather large trapping frequency ofn=1 MHz is used in order to
clarify the field dependence of the energy levels. Cooling is per-
formed by ramping the magnetic fieldB slowly from B1 to B2 and
then quickly back toB1. A more realistic ramp would likely encom-
pass more level curvessi.e., cover a larger field ranged. The state
that undergoes a shift forB=B2 swhich we will label asn=Q laterd
is indicated by a dashed line. Ideal cooling is described diagram-
matically in the insetssame axesd, where population transfer from
point a to point b occurs during the slow field ramp and fromb to
c during the fast ramp. See the text for details.
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side of the figuresred lined represents the same probability
distribution after application of a slow and a fast magnetic
field ramp, for Q=15. Application of one cooling cycle
moves the population of the stateQ to states with much
higher energy, heren<88, evidenced by the spike in Fig. 2.
At the same time, the field ramps move the population of
each state withn.Q to the next-lowest state, which has
<2"v less energy. Our numerical simulations indicate that
the net result of these two processes is to increase the aver-
age energy. The few cases where the pair gains a large
amount of energy overcomes the many cases where the pair
loses a small amount of energy.sActually, this behavior is
not unexpected; see Ref.f14g.d However, since the atoms
that gain energy can be displaced to an arbitrarily high en-
ergy statesdetermined by the extremum of the field ramp;B1
in Fig. 1d, it should be possible to remove them using meth-
ods identical to those used for evaporative cooling.

It is interesting to note that such a process is similar to a
conceptual “fractional” evaporative cooling experiment,
wherebyQ becomes the evaporative-cooling cutoff param-
eter and, instead of all the population withn.Q being re-
moved, only a fraction of this population is skimmed off and
removed from the trap. This similarity can be seen in Fig. 2.
Note, however, that Feshbach resonance cooling is distin-
guished from evaporative cooling in that it is not fundamen-
tally statistical: the more that is known about the initial state
of an atom pair, the more effectively they can be cooled. In
fact, if the initial state of the pair is known precisely, a field-
ramp sequence can be designed to move the atom pair to the
ground state of the trap in principle 100% of the time.

As with evaporative cooling, the requirement of atom re-
moval leads to considerations of efficiency. An estimate of
the efficiency can be made by assuming that the population
of the stateQ is removed from the trap, while the population
of all states withn.Q are moved to the next-lowest state,

that is, to states withn−1. This assumes that the range of the
field ramps is such that the heated fractionsn=Qd ends up at
an energy corresponding to negligible thermal populationsas
in Fig. 2d, and that all population above a specified energy
can be removed. If we approximate the level energies atB
=B1 by EnsB1d<2n"v, the probability to remove an atom
pair during a cycle is

PremsQ,td =
e−2"vQ/t

Zstd
. s7d

The average energy decrease in a cooling cycle is due to the
energy of then<Q population removed from the trap, plus
the energy loss for statesn.Q:

DEsQ,td = s2"vQ + kEc.m.ld
e−2"vQ/t

Zstd
+ o

n=Q+1

`

2"v
e−2"vn/t

Zstd
.

s8d

Noting thatkEc.m.l=3t ssincekEtotl=3t for a single atom in a
harmonic trapd, and with on=Q+1

` e−2"vn/t<e−2"vQ/tt /2"v,
Eq. s8d becomes

DEsQ,td =
e−2"vQ/t

Zstd
s2"vQ + 4td. s9d

The energy efficiencyEeff, defined as the amount of energy
removed per atom removed, is then given by

EeffsQ,td = 2"vQ + 4t. s10d

SinceQ determines the efficiency of the cooling process, it is
referred to as the cooling parameter. Results from our nu-
merical model indicate that Eq.s10d provides a good esti-
mate of the efficiency.

The time scale for one cooling cycle is determined by the
speed of the adiabatic field ramp. This speed in turn is deter-
mined by the strength of the coupling between the resonance
state and the trap states. The smaller the coupling for an
avoided crossing, the slower is the field ramp required to
maintain adiabaticity. The coupling between the resonance
state and the trap states is related to the resonance width
parameterGE, which can be used in a Landau-Zener estimate
of the transition probabilityf12g,

Ptr > expS−
2

udB/dtu
vGE

udE/dBuD . s11d

Motivated by the possibility of experimentally trapping a
small, deterministic number of atomsf15,16g, we now ex-
plore the experimental feasibility of our cooling scheme. A
Feshbach resonance cooling experiment involves a sequence
of cooling cycles. As discussed above, a single experiment
could result in a heated atom pair, which in turn would be
lost from the trap. To see the effect of multiple field ramps,
Eqs. s7d and s8d can be iterated. For a variety of cooling
efficiency parametersQ, Fig. 3 shows the probability for an
atom pair to remain trapped vs. the average total kinetic en-
ergy sthe energy of both the relative and the c.m. degrees of
freedomd of the two atoms in oscillator units. Included in this
calculation is the probability that the atom pair is in an
s-wave state to begin with, because the field ramp has no

FIG. 2. sColor onlined Illustration of the effect of a single
Feshbach resonance cooling cycle for an atom pair taken from a
thermal distribution withT=1 mK and trapped with frequencyn
=1 MHz. The upper curvesblack lined represents the initial thermal
population distribution, and the lower curve on the left side of the
figure combined with the spike on the right side of the figuresred
lined represents the population distribution after application of one
slow and one fast magnetic ramp. The stateQ shere Q=15d is
indicated. Population initially in a state withn.Q is decreased in
energy by moving it to the next-lowest statessee the inset closeupd.
However, population fromn=Q and nearby states is increased in
energy by being moved to higher states withn<88.
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effect on other partial waves. We assume that rethermaliza-
tion occurs between cooling cycles, which could be ensured
by, for example, introducing a slight anharmonicity into the
trapping potential.sIn the absence of anharmonicity, the rela-
tive and c.m. degrees of freedom would remain uncoupled.d

To be more specific, we consider a crossed-beam optical
dipole trapf17g which offers a good blend of large trap fre-
quencysfor a larges-wave fractiond, isotropy, and anharmo-
nicity sfor rethermalization between the relative and c.m. de-
grees of freedomd. Assuming the dipole trap has an average
frequency ofn=10 kHz and contains two atoms taken from a
source with temperatureT=8 mK skEtotl /"v=100d, we see
from Fig. 3, solid line, that a temperature of 0.16mK
skEtotl /"v=2, both atoms in the ground stated could be

reached 10% of the time by performing fewer than 2000
cooling cycles. For a range in magnetic field for the ramps of
DB<1 G, and using Eq.s11d with Ptr=0.1, we see that such
a series of field ramps could take place in under 1 s. A
perturbative calculation accounting for the trap anharmonic-
ity indicates that rethermalization between the relative and
c.m. degrees of freedom should occur on a time scale com-
parable to a single ramp time for a crossed-beam dipole trap.
This will ensure that the relatives-wave distribution will
rethermalize with each ramp and that the cooling of the rela-
tive coordinate will also cool the c.m. coordinatesboth of
which we have assumed up to this pointd.

Feshbach resonance cooling could also be applied to atom
pairs in an optical lattice. In this case, field ramps could be
performed on the lattice ensemble of atom pairs, with a cer-
tain percentage of sites resulting in cooled pairs, while other
sites will have either zero atoms or onesuncooledd atom. It
may also be possible to prepare the optical lattice by some
other means to have a high probability of exactly double
occupancy at each lattice sitessee, for example, Ref.f18gd.
From such an initial state, a Feshbach resonance cooling
scheme could be used to efficiently cool atom pairs to low-
lying trap states.

In summary, we have developed a two-body theory that
describes how the energy of an atom pair can be reduced.
The resulting cooling scheme, which makes use of Feshbach
resonances, offers a viable means to manipulate small, deter-
ministic numbers of trapped atomsf15,16g with present-day
technology. Since it is not clear at present how efficiently
other cooling methods such as evaporation can be applied to
small atom samples, our proposal may prove quite useful.
Extension of our scheme to atom clouds is possible. This is,
however, beyond the scope of this paper.
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FIG. 3. Probability that a pair of atoms remains trapped vs the
average total kinetic energy of the two atoms in oscillator units
snote thatkBT=kEtotl /6 for two harmonically trapped atomsd. Three
different cooling parameters are used: 2"vQ=5t ssolid lined, 9t
sdashed lined, and 12t sdot-dashed lined. It is assumed that rether-
malization occurs between cooling cyclesssee textd, although this
scheme does not necessarily require it. Inset: probability to remain
trapped vs the number of cooling cycles for the same three cooling
parameters.
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