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Statistical fragmentation of small neutral carbon clusters
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We present a statistical fragmentation study of the G;, and G carbon clusters using the Metropolis
Monte Carlo and Weisskopf methods. We show that inclusion of several isomeric forms as well as rotational
effects is essential to reproduce the experimental observations. We have found that, for cluster excitation
energies around 10 eV, several fragmentation channels are efficiently populated, but the dominant one always
corresponds to C3/Cs. For high enough excitation energies, we observe first-order phase transitions corre-
sponding to a complete breakup of the cluster.
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[. INTRODUCTION done by means dfi) simple analytical two-body interaction
potentials or(ii) ab initio interaction potentials obtained on
Fragmentation is the dominant deexcitation channel othe “fly” [23]. The second approach is very much limited by
highly excited carbon clustef4,2]. Thus the analysis of the cluster size. However, we know from previous studies that
different dissociation channels can provide information onthe dynamical evolution of a complicated many-body system
the stability of these clusters as well as on the dynamics o6 mainly guided by the accessible phase sfg2éé Thus a
the excitation procesgs—5]. In the particular case of small Statistical treatment may explain the outcome of such frag-
carbon clusters, fragmentation has been studied using diffeff€ntation reactions. This is particularly important for large
ent experimental approaches. The unimolecular decay, bf C systems, since statistical methods are computationally much
formed in a direct vaporization source has been extensivelfj‘heaper than MD methods.

studied by Radiet al. [6—8]. Photofragmentation experi- . In this work we have adapted two statistical methods,
. o initially proposed to study fragmentation of hot atomic metal
ments of jet-cooled cationic clusters have been performed b

X X c\.’lusters[25,2€], to investigate fragmentation of highly ex-
Geu5|+cet al.[9-11] and by Bouyept al.[;2]. Fra?gme”FaF'O”_ cited small neutral carbon clusters. The first method is the
of C,” clusters has been also investigated in collision in-

: " - microcanonical Metropolis Monte CarldMMC) method,
duced dissociationCID) experiments13,14 and through  \hich consists in partitioning the mass, charge, total energy,

mass-analyzed ion kinetic energy spedWKES) [15-17.  tota] linear, and angular momenta of the syst@mnserved
In addition, fragmentation of negatively chargeg@lusters i the microcanonical approactamong all possible final
have been studied in CIPL8] and in surface-induced disso- channels with probabilities governed by considerations of
ciation (SID) experiments[19]. In these experiments, the maximum entropy. The second method considers a sequen-
loss of neutral G has been found to be the dominant disso-tial evaporation chain with rate constants calculated within
ciation process for both positive and negative cluster ions. the statistical Weisskopf theory. The basic ingredients of both
Although charged carbon clusters have been extensivelgnethods are binding energies, geometries, vibrational fre-
studied, the experimental information for fragmentation ofquencies, and rotational constants of any possible fragment.
neutral carbon clusters is scarce. Capal.[20] have studied This information must be extracted froab initio quantum
photodissociation of linear neutral carbon clusters. Chabot chemistry calculations. Although several authors have stud-
al. [21] have performed experiments in which excited neutralied the properties of small carbon clustg2§—35, the quan-
clusters are produced by electron capture in fast+Ge titative information available in the literature has been ob-
collisions. In the latter experiments, the decay of the excitedained at different levels of theorisee[36] and references
cluster leads to a large number of fragmentation channelgherein. To avoid possible inconsistencies due to the use of
The corresponding branching ratios were quantitatively dedifferent ab initio methods and to evaluate the missing pa-
termined for sizes up ta=9. rameters, we have consistently calculated all microscopic
When clusters are excited by laser pulses, fast electrons @roperties using the same level of theory for all possible
fast heavy particles, the excitation process is much fastedragments.
than the internal motion of the cluster nuclei. Thus the exci- In a recent Lettef5] we have used the results of MMMC
tation energy is redistributed among the cluster vibrationatalculations to extract the energy distribution qf Qeutral
degrees of freedom well after the electronic excitation hagarbon clusters produced by charge transfer reactions in C
taken place. Consequently, one can treat cluster fragmentaellision experiments. This combination of experimental
tion as a postcollisional process. Most previous works haveneasurements with theory allows one to extract information
described the time evolution of the excited clusters by meanen the collision dynamics that would be extremely difficult
of molecular dynamic§MD) methods[22]. In these meth- to obtain from theory or experiment alone. In this work we
ods, a critical aspect is the description of the atom-atom inwill focus our attention on the fragmentation process itself,
teractions that govern the nuclear dynamics. This can berespective of the excitation mechanism that leads to frag-
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mentation, as well as on the details of the present implemerability distribution of the microcanonical ensemble, a#d
tation of the MMMC method. In particular, we will analyze =[, w(x’)dx’ is the partition function. In our model, a
under which circumstances a statistical treatment based gshase space point is defined as

the ergodic assumption is meaningful to analyze fragmenta-

tion observed in a finite time intervéthe time of flight of X" ={N;;{N;, Zj, S Oejy Gl iy {r s {pih s

the experimenjs Furthermore, we will discuss to what ex- [N (AN ANy 2)

tent the different microscopic properties of thg Custers e

affect the different fragmentation pathways as well as theyhereN; is the number of fragmentﬂ\'j,Zj,Saj,Oej,Gj}szfl
possibility to observe phase transitions when theefcita- s the mass, the charge, the electronic spin, the electronic
tion energy is varied. The present MMMC calculations grhital degeneracy and the geometatomic, linear or cy-

slightly improve on those reported i[5] since statistical ciic) of each fragment with the constraifhass and charge
weights due to electronic orbital degeneracies are taken intggnservation

account.

The paper is organized as follows. In the next two sec- N
tions we explain in detail our implementation of the MMMC > N; =Nr,
and Weisskopf methods to investigate fragmentation of small =1
carbon clusters. In Sec. IV we summarize the theory and
results of the quantum chemistry calculations that provide N
the necessary microscopic information to apply the above > Zj=7. 3)
statistical methods. In Sec. V we present and discuss our =1
;S;;S;ef?:] tggt;??gemﬁﬂggcgﬁiﬁear&?ﬁec?eﬂijsr:ﬁéf{):gﬁpicThe initial cluster has\; carbon atoms and a net charge
properties as well as the validity conditions of such theoret—(.In this section the notatlon@wnl be used. r; is the posi- ]
ical treatments. A brief summary of the comparison betweer " (chosen such _that frz_jlgments do not overlap each other;
g€ Sec. I B 2 p; is the linear momentumy; are the rota-

the calculated branching ratios and those recently measur . |
g y Ional angles that determine the space orientat@rfor a

by Martinetet al. [5] will be given in Sec. VI. We end the . . L
paper with some conclusions in Sec. VII. Atomic units areIInear molecule apd_ 3 for _nonllnear_speqldgs thg ar]gular
used throughout unless otherwise specified. momentum, ande,; is the internal vibrational excitation en-
ergy of the fragment labeled In the present study, all frag-
ments are neutrglZ;=0 for all j) and are assumed to be in
Il. THE MICROCANONICAL METROPOLIS their electronic ground state.
MONTE CARLO METHOD In the microcanonical ensemble the total energy of the

The MMMC method was originally developed for the system is conserved and is fixed to Bgwith

study of thermodynamic;s in nuclear physi&y] a_nd has Ey=Ec+Ep+E +K +K;,
been successfully applied to study fragmentation of hot

metal cluster$25]. The basic idea of the method is to move

in phase space until a region of maximum entropy is reached. ZZ;

. . ) Ec= ,
Then a physical observable is measured by performing a sta- c il
tistical average in this region. This method considers the sys-
tem in internal thermodynamic equilibrium and, therefore, it N
cannot provide information on the time evolution of the sys- E,=SE,
tem. In our implementation of the MMMC method we allow b -1 bj»
for all possible decay channels under the constraint of con-
servation of mass, charge, energy, linear momentum, and an- Ny
gular momentum. - «
E,=2E,,
i=1
A. The microcanonical ensemble
The physical quantity we are interested in is the statistical N _pf_
average of an observable over the microcanonical en- Kt:Z om’
semble =1 =0
Ne / fi
F(x")w(x')x’ K _2f< ; I_ZJ_) @
Q' r— ’
(Fy= : (1) =1 \ =1 21y
f , w(x")dx’ whereE¢ is the total Coulomb interaction energy between

the fragments, i.e., zero in the present applicatigy,is the
wherex’ represents a stat@lso called a configuration or a total electronic energyp]?/ 2m; the translational kinetic en-
point) in phase spac€’, w(x')/[o w(x')dx’ is the prob- ergy(K,), ='i I2-/2IV1 the rotational kinetic energgK,), f

v=1 "vj
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the number of rotational degrees of freedblmr,]j the mass, fragmentsN; (including all possible geometries and spin

andl,; the principal moment of inertia of fragmentj. multiplicities), wy; is the number of ordered partitions of a
, ) , cluster of Ny atoms and chargg; into N; fragmentg[it re-
B. The microcanonical weights sults from integration of th&(N-Ny) and 8(Z-Z-) terms in

In the microcanonical ensemble, the total energy, totaEq. (5)] [38]
linear momentum and total angular momentum are constant.
Furthermore, due to the finite size of the system, the total Wya(Ny) = L(NT‘ 1)<ZT+ N¢ = 1),
number of atoms and the charge are fixed by the initial clus- Nef ANg— 1 Ne—1
ter size(Ny) and net chargéZ;). Consequently, the micro-

. W, is th ner f the electronic groun
canonical weight is given by25] . IS the degeneracy of the electronic ground state

Ni
WX)dx" = XE = Eg) (P = Po) AL ~L.o) We(Gi, i Oei) = [ (28 + 1O, (10)
X 8(N=Np)&(Z-Zpdx', (5) i=1
where and7(r.. 'er) is a factor that takes into account the overlap
in space of the fragmentsee Sec. Il B 2 The index in Eq.
Ni (9) is a short notation fory whereN; runs from 1 toNy.
P= 2 Pj (6) According to Egs(1) and(9), the weightw can be split
) into the following factors:
and Ny
Ny N w= >, wyz(Np) > We W Wy Wq Wp . (11
L=2 1j+ 2 (rj=Rem) X (P~ Py). 7) N=1 i
J J
Lo and P, are, respectively, the cluster initial total angular 1. The weight w,

momentum and linear momentulR,. , denotes the position

of the center of mass of the system. According to the defini- Thls weight factor due_ o _the angular part of the eigen-
. X rgtatlon of the fragments is given by
tion (2), the volume element of the phase space is expresse

as N¢ dfrjd"
Wy = . (12
dx’ = <1'if[ dgrjdgpj)<1’\—li dfrj ¢jdfrj|j ) ¢ i1 (27Tﬁ)f”0'rj
i=1 (2h)* J\j=1 (Zﬂ'ﬁ)f”ffrj If we consider fragments with linear and cyclic geometry

(single atom fragments are not included because they do not

Nf B
« (H P, (EZJ)dE::j)r (8) have rotational structuyave have
=1 N, 2 N 3
d°¢; d>
i - w, =11 — I f . (19
where gy; is the symmetry number of the fragmepi(see é o (277?1)20”- L1 ) (@),

Sec.1IB)) andpvj(E:j) is the density of vibrational states of
the fragmenj at energ)E;j. It is also worth noting thap; is  whereN; is the number of linear fragments am is the
the conjugated variable of andl; the conjugated variable of number of fragments with cyclic geometry,; is the sym-
¢;. The statistical average defined in EG) can now be metry number of the fragmenmt This quantity is introduced

written more explicitly as in statistical mechanics in order to reduce the rotational en-
LM Nes tropy of symmetric molecules and depends on the symmetry
(Fy= e D WNZ(Nf)[E Wo(Gi,Su Ou) Igro(ljjp [39] (see also Table)l The integration of Eq(13)
Ne=1 [ eads to
N
1 N c 1 1 NN 1 3N +2N,
XJF(x’)5(E—EO)5(P—PO)6(L—Lo) w¢:<—|> H(—) (—) (—) . (19
Oy i=1 \ i ™ h
N¢ d3r' d3 . .
< ) i;97Pj; The symmetry number for linear fragmentsf,, symmetry
AT et (27h)3 is 0'|r=2.
Ny d'riigpy dlrill Ny 2. The weight w

X h (EdE ] , 9
=1 (2ah) iy, jglp”‘( )9 © In using the MMMC model we must simulate the acces-
sible phase-space corresponding to fragments whose mutual

interaction(Van der Waals forces and exchange of atbias

negligible. Thus we simulate the fragmenting configurations
'For a single carbon atorfi; =0, since this fragment is considered Within a spherical volume of radiuRs,s=r¢Nr, wherery

as a particle with no internal rotational structure. =2 A. This volume is large enough to contain all isomeric

whereNgg is the number of channels for a given number of
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TABLE |. Mass tablejj is the fragment’s labelN is the cluster sizeG indicates the geometr§A, atomic speciet, linear geometryC,
cyclic geometry and the symmetry;S,=2S.+1 is the electronic spin multiplicityD, is the electronic orbital multiplicity;o, is the
symmetry number appearing in the weight factor due to the eigenrotation of the fragfeeef89]); E+ZPE is the electronic energy
obtained at the CCSD)/6-311+G3df) level over the B3LYP geometry and the zero point energy correction obtained at the
B3LYP/6-311+@G3df); v is the geometrical average of the vibrational frequencies givemﬂﬁgavij)l’fvi where f,; is the number of
vibrational degrees of freedoff,;=3N; -5 for linear species anf};=3N;—-6 for cyclic specieks |5, |5, andl; are the principal moments of
inertia; R is the radius of the fragment defined as half the largest distance between two C clusteDatsiiige lowest dissociation energy
corresponding to the fission channel with lab@l). Finally, In(p) is related to thew, factor with pj=vai’1/(F(fvj)?jfvi).

i N G S. O, o E+ZPE(au) weV) Ii/mg (A% 1Liimg (A% 13/mg (A% R(A) D(eV) (I,k) In(p)

1 1 A 1 5 0 -37.72589  0.000000 0.0000 0.0000 0.0000 0.76720 0.00000 0.00000
1 A 3 3 O -37.77917  0.000000 0.0000 0.0000 0.0000 0.76720 0.00000 0.00000

3 2 LMDy 1 1 2 =75.77837  0.232200 2.7764 2.7764 0.0000 0.62350 5.9&737 3.24981
4 LD,y 3 2 =75.75791  0.209800 3.0233 3.0233 0.0000 0.65050 5.4@)B2 3.25365
5 3 LMD,y 1 1 2 -113.82422 0.049062 11.8262 11.8262 0.0000 1.28700 7.23699 19.29329
6 3 LMD,y 3 2 2 -113.74810 0.047823 11.8891 11.8891 0.0000 1.29000 5.18%}4 18.05127
7 3 CC,y 1 1 2 -113.78543 0.176400 2.8124 4.1746 6.9870 0.88300 6.2135 10.67926
8 3 C(Dz) 3 1 6 -113.79267 0.161110 3.3192 3.3192 6.6384 0.78700 6.32326 11.04509
9 4 LD,) 1 1 2 -151.76200 0.067399 30.1371 30.1371 0.0000 1.95050 4.3268)3 24.32874
10 4 L(D.,) 3 1 2 -151.73920 0.068026 30.0438 30.0438 0.0000 1.94950 3.62391 23.17758
11 4 CD,) 1 1 4 -151.78067 0.099871 3.9768 10.8631 14.8399 1.23300 4.824)7 20.08692
12 4 C(D,y) 3 1 4 -151.74738 0.089866 4.4024 10.1261 145285 1.19100 3.92830 19.47235
13 5 L(D,) 1 1 2 -189.81595 0.066190 58.4789 58.4789 0.0000 2.56000 5.865B7 34.13635
14 5 L(D.,,) 3 2 2 -189.73064 0.078498 58.3638 58.3638 0.0000 2.55000 3.48&)5 27.32531
15 5 CCy 1 1 1 -189.64652 0.137100 8.3280 14.8329 22,9043 1.33200 1.19%}1 10.96461
16 5 C(Cy) 3 1 1 -189.70491 0.093690 6.9822 17.7999 23,9031 1.45100 2.18429 22.00066
17 6 L(MD., 1 1 2 -227.77243 0.063565 103.1003  103.1003 0.0000 3.21550 3.333p7 34.13085
18 6 L({D., 3 1 2 -227.77657 0.064024 102.9515 102.9515 0.0000 3.21350 3.4B@pH2 34.46429
19 6 CDsy) 1 1 6 -227.79560 0.111200 17.9057 17.9160 35.8216  1.46380 4.084&16 27.90159
20 6 C(Cp,) 3 1 2 -—-227.70536 0.098552 16.2726 21.4667 37.7393 1.56460 1.588B8 17.95206
21 7 LD,y 1 1 2 -265.80739 0.061928 162.9505 162.9501 0.0000 3.83300 5.53(35 46.62335
22 7 LMD,y 3 2 2 -265.73061 0.058380 165.1399  165.1399 0.0000 3.85650 3.4310% 39.94042
23 7 C(Cy) 1 1 2 -265.78847 0.090119 22.6989 33.2893 55.9883 1.67900 4.9953]1 37.67528
24 7 C(Cy,) 3 1 2 -265.76765 0.077859  24.4609 33.4754 57.9363 1.71200 4.438956 38.06315
25 8 LMD,y 1 1 2 -303.77373 0.059952 2455097  245.5097 0.0000  4.48450 4.5688L 48.82201
26 8 LMD,y 3 1 2 -303.77354 0.060272 245.2952  245.2952 0.0000  4.48250 4.559% 48.69259
27 8 C(Cyp) 1 1 8 —-303.78713 0.084327  40.3222 40.3222 80.6444  1.83700 5.0825p 42.82220
28 8 C(Dgqy) 3 1 8 -303.76604 0.077042 39.9843 40.0037 79.9880 1.83000 4.3892 41.92940
29 9 LMD,y 1 1 2 -341.80020 0.059335 348.2156  348.2156 0.0000 5.10648 6.09A®B 59.24780
30 9 LMD,y 3 1 2 -341.76339 0.054610 351.4200 351.4200 0.0000 5.13403 1.9333B 35.90483
3. 9 C(C) 3 1 1 -341.79248 0.069421 56.0323 57.1993 112.4990 2.03993 2.5914F 36.67573
32 9 CC) 3 3 1 -341.78741 0.073154 55.2419 58.2259 113.4680 2.04124 2.288@L 32.93837
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forms of the G, cluster and all its fragments, since the di- Nt Ny

ameter of the sphere is roughly four times larger than the W= I1 dffJIjH d®p;8(L —Lo) 8P~ Po) AE - Ey).
length of the G cluster in its linear configuration. The =1 =1

quantityRgsis called the freeze-out radius. We want to men- (19

tion in advance that the results of our calculations are PraCz o\ the sake of simplicity. we will assume that. initially. the
tically independent ofRs,s provided it is large enough to plicity, ! Y

contain all fragmentge.g., we have found that the results arefAuTter does rjot (;F;]E?‘(él‘tozo) and 'Str? t res(Pod::)). Ngv;r-
practically the same for,=1 A). eless, a major difficulty remains: the second term in(Zp.

The weight factow, is related to the spatial occupation of shows that the fragments’ positions and linear momenta are

the fragments. It is defined as the accessible volume for eac rrelated(in other vv_ords, it is not possible to choose inde-
fragment and can be expressed as pendently these variablesTo keep the advantage of a fast

numerical scheme, we have made the additional assumption

N 1 that the second term in E€/) is zero. Then the computation
w,=]1 p(ry,ro, ... ’er)(2—77h)3d3rj' (15  of wy, reduces to the evaluation of the following expression:
i=1Jv
Where Wp| = j d3p1d3p2 . d3prdfr1| ldfr2|2 . df”\‘flr\If

1, r|k:|r|_rk|>R|+Rk,|¢k,
0, otherwise.

(o .. ,er)z{ X 5<Ej |j)5<2j pj)é(E—Eo). (20)

et E; be the total kinetic energy availahfeganslational plus
(18) | 6t E be the total kineti ilabteanslational pl
The factorz is introduced in order to avoid the overlapping rotationa)

between two fragments. The fragment’s radigg,is defined E}=Eo— (Ec+Eg+ EZ) “K +K,. (21)

as half the largest distance between two cluster at(s®s
Table ). V; is the volume that th¢th fragment can occupy in It can be shown that the weighty can be written a$25]

the empty freeze-out volumé, =3 m(Rg,sR)°. N1 £, 43 1)
. . . . ) ] 2 1/2 g/le™D) o
This weight plays a very important role in the fragmenta wy = I1 11 0 (22)
tion of multiply charged clusters because the Coulomb en- P = QW [(a)

ergy (4) strongly depends on the fragments positigese )
Ref. [40] for detail9. This is not the case in the present With

application to neutral clusters because the Coulomb interac- 1 Ni-1
tion is zero. a=3 3N;-3+ > fij (23)
j=1
3. Th ight
e weight vy and
The weightw, takes into account the vibrational excita- -1\ -1
tions and is given b _
g yN )\}’«j:mjl+(me+§m|) ’ /1':11213
f =
wy=I1 | p,(E,)dE,;. (17) - )
J:]- ] 1 1
. . . = g + 2 sy |
In this work, we have assumed that the internal excitation of mm3l i i
the clusters is well described within a classical harmonic
model. By using this approximation we do not take into ac- =4, ... fi+3. (24)

count vibrational anharmonicities which can be important for
high excitation energies. The sampling of the excitation enit is worth noticing that for cyclic fragments, E@22) is
ergies requires the knowledge of the vibrational level densityequivalent to Eq(51) of Ref.[25].

of each fragmenpvj(E:j), which is given by the density of
states of & ,;-dimensional harmonic oscillator

5\
(EUJ) vl !

C. Microcanonical Metropolis sampling

In standard statistical mechanics, microcanonical equilib-
(18 rium means that every accessible phase-spaceécet a
I(f _)vaj (h __)’ ) fixed energyE, and other conserved quantitiés.g., linear

v/ L=y () momentum, angular momentum, ¢t equally populated.
The main idea of the method is that one does not sample all
the states uniformlyas in ordinary Monte Carlo calcula-
tions), but one moves in small steps towards the most impor-
tant region of the phase space, i.e., the part having the high-
est values for the weight.

The Metropolis algorithm allows one to move in phase
The weightw,, is given by space()’ according to the following procedufdl]. First a

ij(E;j)=

whereI' is Euler’s gamma functionf,; is the number of
vibrational degrees of freedom of fragmgntand v;; is the
frequency of itsith vibrational mode.

4. The weight wy
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configuration&, is randomly chosen if)’. By changing only  weight. Since the number of such cycles is not knoavn

a few degrees of freedom, a trial stdtés generated and the priori, one must check invariance of this average for several
relative WeightH=w§t/W§n is computed. Then a random choices of the initial number of cycles.

numberp [0, 1] is sampled from a uniform distribution and

the statef, is accepted ip=<II. In this caset,,,=&. Other- D. Caloric curve

wise, if p>11, the old state, is recorded as a new stdiee., )
&.1=£) and a new trial state is computed again. This pro- The shape of the caloric cur¢éemperature versus the

cedure is repeated many times and the resulting path for t@tal energy of the systenprovides the best signature of a
accepted configurations is called a Markov chain. This proPhase transition of first or second ordd—43 in a finite
cedure has been successfully used to study nuclear fragme#¥Stém. Although temperature does not have a well-defined
tation problemg37] as well as fragmentation of hot atomic role in a microcanonical ensemble, we will follow common

metal clusterg25]. usage and compute an effective temperature using the stan-
Displacements along the Markov chain are done accorgdard definition in terms of the microcanonical entrdpgnd
ing to the following step sequence. the total energyEy, namely
Step 1.The excitation energy of each fragment is sampled 1 4SS dnz <a_ 1>
according to a uniform distribution from 0 up to the lowest == = =), (26)
dissociation energyD; of the corresponding clusteisee T JdE  JE Eo

T:f1ble ). Then the weightv, i_s changed. Furthermore, since \yhere 2 is defined after Eq(1), « is given in Eq.(23) , and
Eq depends on the total excitation eneigge Eq.(21)], the E, is the total translational plus rotational kinetic enefgge

weightwy, is also changed. _ Sec. Il B 4. When all fragments are either linear or cyclic,
Step 2.The positionr; of each fragment is changed one e ghove equation takes the form

by one. Thusw, is modified as well ag&; andw,, through

Ec in Eqg. (21). For neutral or singly charged initial clusters 1 [fe-2 27)

this step is skipped. T 2E) |’ (

Step 3.The composition(N;,Z;) of two successive frag- _ _ _
ments is changed. The two fragments are combined, addin‘ghefe fy is the total pumber of transla"glonal—rotatlonal de-
the mass and the charge, and are split again in a new wagrees OL freedom given by, =3N;+2i; ;=5 and fy
Then, the geometryG;, the electronic spinS,;, and the or-  =3N;+; f,;=6, respectively. _
bital degeneracyQy;, of the two fragments are sampled ran-  In general, this definition of the effective temperature as a
domly among the allowed values included in the mass tablederivative of the microcanonical entropy is not equivalent to
Finally the positions and the excitation energies of the nevhe definition in terms of the mean kinetic energy per cluster
fragments are modified. In this step, the weights w;, w,, ~ degree of freedonj46]. However, due to our neglect of
we, andw, are modified. If there is only one fragment, the crossed terms in the definition of the system total ené4gy
geometry, the electronic spin and the electronic orbital moand the statistical weightl1), we do not expect the present
mentum of the cluster are randomly choses,, w,, andw, results to differ significantly from those obtained from the
are modified. kinetic energy definition of temperature.

Step 4.The number of fragmenthl; is changed by +1.
This is done by either splitting one fragment into two or by
combining two fragments into one. Again the positions, the
excitation energies, the geometries, the electronic spins and
orbital momenta of these fragments are renewed. The As mentioned above, the MMMC method considers the
weightswy, Wy, Wy, Wg, We, andwy; are changed. system in internal thermodynamic equilibriugargodic as-

In steps 1 to 4 some of the weights are changed. As mersumption and, therefore, it can only provide information for
tioned above, acceptance or rejection of the new state is dé=«. In most experimental workigt7], however, branching
cided according to the value df=w,q,/Wyq4. In each step, ratios are determined a few nanoseconds after cluster excita-
energy conservatiofimposed by the microcanonical en- tion. This is the typical time of flight for the fragments to
sembleg is checked. reach the detector. For metal clusters excited in slow colli-

Once the region of maximum weight has been reachedsions with atomic targets, the ergodic assumption is not ful-
the statistical expectation value of the observables ob-  filled [26,48. This is because the resulting fragments reach
tained: the detector before they can use all the available energy.
Carbon clusters are usually excited by fast projectiles or en-
ergetic laser pulses, which means that there is more energy
available compared to the cluster dissociation energy. There-
fore, one can expect a more rapid decay of the parent cluster
whereF; denotes the values & at the phase-space poiris  and, therefore, a better fulfillment of the ergodic assumption
along the Markov chain anM is the number of cyclef.e., at the ns scale. To check this assumption under realistic ex-
the number of times the above four steps are completed perimental conditions, we have adapted the rate equation
this average, the initial cycles in the Markov chain must bemodel previously introduced by Hervieugt al. [26] in
discarded because they do not lie in the region of maximunwhich dissociation rate constants are obtained within the sta-

IIl. THE TIME-DEPENDENT WEISSKOPF
EVAPORATION MODEL

N
(Fy= X FjiN, (25)
j=1
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tistical method of Weisskopf. Integration of the correspond- 1 opy En-Dn 2% Pe2Pen-2
ing set of time dependent equations will show us the range of en,2 k 13 2ho J f
validity of the MMMC method in this case. N2 d

The model assumes that the initial excitation energy leads P, N—z(EN -Dy2-€e-X)
to a sequential evaporation of different fragments. Evaluation ' (E*') o(e)e’de (32
of the rate constants for monomer and dimer evaporation PrNtEN
using the Weisskopf theory has been described in detail imnd
[26]. As the results of the next section will show, trimer
evaporation is also extremely important in fragmentation of Yoo = 1 ke f JEN N2 PeoPeN-2
C, and G,. This possibility has not been considered in pre- “ Ky, kn 2 A3 fraog PeN
vious applications of the Weisskopf formalism.

PVN Z(EN Dno—€-X)
A. Rate constants p,n(EN)

The rate constant for monomer evaporation is given by Wherewg is the classical harmonic frequency of the dimer.
The average excitation energy of the daughter cluster is de-

o(e)ede (33

EN-Dn.t Pe.1PeN-1 fined as
kN 1(EN)_ ﬁgﬂz — . _
Pen En-2=En—en2 ™ Xn2 (34)
pyn-1(Ey—Dni—€) o(e)ede (28) Finally, the rate constant for trimer evaporation is given
pV,N(EN) by

where u, is the mass of the evaporated atdg, is the ex- oo M f b f ENDNE™X pe3Pen-3
citation energy of a cluster of sizN, Dy is the energy mh3 PeN
required to evaporate a monomerjs the cluster geometri- .
cal cross section that, in the classical Weisskopf model, is x Pv3(X)p,n-3(Ey—Dnz—e—X) (e)ede (35)

given by o=mR? whereR is the cluster radiugsee Table), p,N(EN)
pe; is the electronic density of stateg;=(2S,+1)O;, and i ,
pyi is the vibrational density of states. The latter has beel)_{"hre]re'““?’ is the red_ucgd mass of the evaporated dt”'ﬁwg
evaluated in the harmonic approximation using 8@). The 'S the energy required to evaporate a trimer, an

average kinetic energy of the evaporated monomer is ET\I — Dy if E*N -Dyn3s=<Dsy,
— _ 1 m EN"DN1 P 10en-1 D31 It En~Dng>Dsy-
en.1 kNlﬁ 372 ), PeN The average kinetic and vibrational energies of the evapo-
( ) rated trimer are
n-1(Exy—Dyi—€
- (E, ;\l’l o(e)e'de (29) 1 s J JEN DN Pg 3PeN-3
Py NEN kNgﬂ'Zﬁ

and the average excitation energy for the daughter cluster

By~ Ens-e-x
 Prapuna(En~ Eng )g(e)ezde (36)

E\l—lz En—eni- (30 pun(Ey)
The rate constant for dimer evaporation is given by and
E -D X J fEN DN3XPe3PeN3
NTON,27X Pg 2P N3 =
) = s [ o[ et e
o PraPun- s(En—Enz—€-X)
_o(Ey,—Dyo—€—X o(e)ede (37)
x LasedEn = Dny )a(e)ede (3 Pun(ER)

E*
Prn(EN) respectively. The average excitation energy of the daughter

where u, is the reduced mass of the evaporated dirbgy, ~ cluster is
is the energy required to evaporate a dimer, and

En-3= En— €z = Xua- (38)
. En—Dn2 if Ey=Dn2<Dyy, In all the above formulas, rotation of the different fragments
D, if EL -Dpn2> Dy, is not taken into account.
where D, ; is the dimer dissociation energy. The average B. Sequential model of evaporation
kinetic energy and the average vibrational energy of the We illustrate our procedure for the case of ftagmenta-
evaporated dimer are given by tion. In this case, sequential evaporation follows this scheme:
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E5-1-1)

C3+C+C21 5 (Cy+3C

5-1

Cy+C

Cs Co+Cy+C—> -
X(sl
5.2
1(5-2)

03+CQ—E>C2+C+CQ—-——>

(39)

where the rate constah:ﬂ,‘)i along the patttk) is evaluated as

explained abovéfor simblicity, fragmentation steps leading
to the complete atomization of cluster have been omitte

PHYSICAL REVIEW A 71, 033202(2005

binding energies of all the fragments. In the Metropolis
Monte Carlo simulations, the rotational constants are also
needed. To obtain this information for all possible fragments,
we have applied the density functional thedBFT) using a
hybrid B3LYP functional for exchange and correlation. This
DFT approach combines the Becke’s three parameter nonlo-
cal hybrid exchange potentipd9] with the nonlocal correla-
tion functional of Lee, Yang, and PaB0]. The geometries
of the G, clusters(n<9) have been optimized by using the
6—311+@G3df) basis set. We have considered linear and cy-
clic isomers and singlet and triplet spin multiplicities. The
harmonic vibrational frequencies of the different species
have been calculated at the same level of theory. The B3LYP
functional has been proved to be a good choice for the de-
scription of carbon clustef$1]. In the case of small carbon
clusters, the calculated geometries and the vibrational fre-
quencies are very close to those obtained at higher levels of
é:alculation[28,29,52.

The electronic and binding energies have been obtained

from the diagram The corresponding system of rate equa-ith the coupled cluster theory CCSD)/6—311+G3d#),

tions is

dnéS) 5)(1,(5 5
L ) (40)
anS—l) 5),(5 5-1)(5-1) , 1(5-1
g SR kY, @D
dn2 oy (5
T NPk, - 2k, (42)
dnP12 ) (5 1D (51—
I e, (4
dn>-1-2
_Zdt =n kY, (44)
dn>—2-2
—Zdt =n$2k5T2, (45)
dn(25—1—1—1 o
— =R (46)

wheren™ is the number of fragments of siz@long the path
(k) [see EQ.(39)]. Integration of these equations up to

=tror Wheretrog is the experimental time of flight, is done

analytically.
In the case of € the number of fragmentation paths an

therefore, of rate equations, is much larger. However, th

procedure is totally equivalent to that for; @nd will be

essary to apply this formalism togC

IV. AB INITIO STRUCTURE CALCULATIONS

which includes all single and double excitations, as well as
triple excitations in a perturbative wa$3], and made use of
the B3LYP optimized geometry. The electronic energies ob-
tained at this level of theory have been corrected with the
zero point energyZPE) values obtained from the DFT vi-
brational analysis. All calculations have been performed with
the Gaussian-9gorogram[54].

In Table | we show the results of the electronic structure
calculations for neutral carbon clusters from @ to G
considering linear and cyclic geometries and singlet and trip-
let spin multiplicities for each conformer. In this table the
electronic energy at the CC$D)/6-311+@G3df) level of
theory including the ZPE correction is shown as well as
other variables introduced in the dynamical calculations. In
particular, the table includes the geometrical average of the
harmonic frequencies and the principal moments of inertia
I, I,, andl; of the fragment. The cluster radilshas been
defined as half the largest distance between two C atoms in a
given fragment. The table also includes the dissociation en-
ergy D corresponding to the lowest fission channel. The last
column in this table is Ifp), where p;=D"i™/(I'(f,;)vo);
this value is an indication of the weighw,. This table,
known as the mass table, includes all the required data for
the statistical calculations.

In agreement with previous theoretical calculati¢gg],
the most stable Cisomer(n=3, 5, 7, and ®corresponds to
the linear isomer with singlet spin multiplicity. However, the
ground state of the £ Cg, and G clusters is still an open

g Question. In agreement with previous resyl®¥,31], our

oupled cluster calculations for,Qredict the cyclic struc-
ure as the most stable one, but multireference configuration

omitted for the sake of conciseness. In view of the resulté.mer""ction calculationéMRCI) [33] shows that the ground

presented in the following sections, we have found it unnecs:

state of G corresponds to a triplet linear structure with an
energy 4.1 kcal/mol below the cyclic one. Previous theoret-
ical results for G and G [30,32,34,3%lead to identical con-
clusions: multireference calculations predict the cyclic struc-
ture to be the most stable one while the coupled cluster

The basic ingredients of the statistical models used in thisheory predicts the opposite. In practice, both isomeric forms
paper are the geometries, the harmonic frequencies, and tklnear and cycli¢c are nearly degenerate. In our MMMC
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FIG. 1. (Color onling Fragmentation of €from MMMC simu- A 20 [
lations. Channel probabilities as functions of excitation energy. L
0
. . . . . . PR T T T [T TR TR TR T [T TR TR TN TN AT TR TR T S N N
simulations, we have introduceall isomeric forms(linear 3 1'0 15 20 53
and cyclic geometries and singlet and triplet multiplicﬁi_es Excitation Energy (V)
for C, (n=2-9. Therefore, all species that can play an im-
portant role in fragmentation are taken into account. FIG. 2. (Color onling Isomer analysis of the £C,, C3/C/C,
and G/C,/C channels in g fragmentation. Discontinuous lines
V. RESULTS AND DISCUSSION represent channel probabilities. LS, linear singlet; LT, linear triplet;

CS, cyclic singlet; CT, cyclic triplet.

We first present our results for the fragmentation branch-
ing ratios of G. The excited G cluster may follow seven We have analyzed the isomer composition in the domi-
fragmentation channel§see Eq. (39)]: C,/C, G;/C,  nant fragmentation channels. This is shown in Fig. 2. Al-
C3/CIC; GJIC,/C; G/CICIC; C/CICICIC.Figure 1  though we have run our simulations taking the linear singlet
shows the corresponding fragmentation probabilities as funoc; isomer as the starting point, the isomer analysis just be-
tions of cluster excitation energy obtained from MMMC |ow the lowest dissociation threshold reveals a mixture of
simulations. These results are close to those report¢d]in  four species:~25% linear singlet,~25% linear triplet,
The G cluster does not dissociate up to 6 eV. In the range 0f-25% cyclic singlet, and-25% cyclic triplet(not shown in
excitation energy~6-15 eV, the G/C, channel is dominant the figurg. We have checked that starting the simulations
in agreement with previous photodissociat|/@d] and colli-  with a different G isomer barely changes these percentages.
sion induced dissociatiof21] experiments. As already men- The isomer analysis corresponding to thg/C, channel is
tioned, G loss is also the most probable process in fragmenshown in Fig. 2. Dashed and dotted lines reproduce the
tation of positively and negatively charged carbon clustersC,;/C, and G/C/C channel probabilities shown in Fig. 1.
[6-19. The other competing channel leading to two frag-Our results point out that only the linea Gomers play a
ments(C,/C) has a negligible probability in the whole en- significant role in both channels. Cyclic isomeric forms gf C
ergy range. Since the J0C, channel requires less energy are never observed. Isomers with singlet multiplicities are
than the G/C one, we can conclude that it is the high sta-more important in the low energy regions of the/C, and
bility of C3 that governs the observed decay in this energyC,;/C/C channels, while isomers with triplet multiplicities
region. From 15 to 22 eV, only the two channels leading toare relevant at higher energies. In particular, the two maxima
three fragments play a significant role;/QC and 2G/C.  observed in the € C/C probability are due to the smooth
The four fragment channel JL3C appears at 20 eV and is transition from a dominant singlet linear structure to a domi-
the dominant one at 23 eV. ThesCluster is completely nant triplet linear structure. The analysis of the differept C
broken in 5C(five fragment channglat 25 eV. When the isomers shown in the bottom of the figure reveals that the
number of fragments change from one to two and from fouttriplet multiplicity is dominant except between 5 and 7 eV.
to five the variation in the branching ratios is drastic. ThisAlthough not shown in the figure, a similar analysis shows
variation is smoother in the energy region from 10—-25 eV.that atomic carbon always appears with dominant triplet
This fact shows that not only energy considerations, but alseultiplicity.
entropy factors are important to describe fragmentation. This As explained above, the MMMC results are obtained un-
is also one of the reasons why the probability to observe theer the assumption of internal thermodynamic equilibrium.
C,4/C channel is practically zero even at high excitation en-However, we would like to compare our results with experi-
ergies where more than two fragments are produced. mental branching ratios obtained in collision experiments
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< i L‘}f FIG. 4. (Color onling MMMC simulation for G; fragmentation
S 40 T . without rotational effects.
£ - o
20 - o 1 ) ) )
. 5 N 1 in the fragmentation process and that our previous conclu-
0 ) ) ) | . . sion, namely that the experimental conditions are compatible
0 5 10 15 20 25 30 with the use of MMMC method, is still valid.
Excitation Eneray(eV) In the case of & the number of fragmentation channels is

fifteen. The results of the MMMC simulations are shown in
FIG. 3. (Color onling Time dependent Weisskopf calculations 19- 5; they are close to those reported & Fragmentation
of Cs fragmentation forl@ TOF=2x 1077 s and(b) TOF=x, is observed above 6 eV. As for;CGhe dominant dissociation
channel at low energies is,G/Cs;. Nevertheless, in the en-
with a time of flight(TOF) of ~180 ns[21]. In order to be ergy range 6,_.13 ev, t.he5m2 channel is also observed_ gnd
confident that the experimental conditions are compatibl&CMPetes efficiently with the £C; channel. The probability
with the assumption of internal thermodynamic equilibrium,Of the CG_/C channel is practlga!ly zero. The high Stab'"ty of
we have performed time dependent Weisskopf simulations as3 €XPlains the large probabilities of all fragmentation chan-
described in Sec. Ill. To simplify the latter calculations we n_els that contain this cluster. For example, in the energy re-
have only considered the dominant isomeric species. Accordlion Where three fragment channels appeaf4-25 eV,
ing to the analysis presented in Fig. 2, these are linear stru@"ly_those containing £ are visible: G/C5/C and
tures with either singlet or triplet spin multiplicity. We have C3/C2/C. These two channels are in strong competition
performed our calculations for two values of the TOF: the@round 20 eV. There is almost no trace of thg €/C and
experimental valug180 ng and TOF=¢. The results are C,4/C,/C channels. Above 25 eV dissociation channels with
shown in Figs. 8) and 3b). The most significant difference
between both figures is a small shifess than 1 eYin the """"7C
appearance of thefS» C;+C, path. Therefore, we can con- 100
clude that the experimental conditions[&f21] are compat-
ible with the use of MMMC method to analyze the observed
fragmentation. However, if we compare the probabilities cal-

culated with the Weisskopf method at TO#=with those Q
obtained with the MMMC methodFig. 1), we can see sig- I 60 .
nificant discrepancies. For instance, thg/ € channel does %
not appear in the MMMC calculations, while it has a sub- & a0l |

stantial probability in the Weisskopf calculations between 10 Q%
and 12 eV. Although the treatment of the vibrational density

of states in both methods is identical, rotational effects have 20
been excluded in our implementation of the Weisskopf
method. To check if this is the origin of the discrepancy, we

have carried out MMMC simulations in which all rotational 0 ]
factors have been excluded from the corresponding statistice o g 0 15 30 35 30 35 40 s
weights. The results of these MMMC simulations are shown Excitation Energy (eV)

in Fig. 4. These results agree reasonably well with those

obtained with the Weisskopf method at TO# £see Fig. 3. FIG. 5. (Color onling Fragmentation of €from MMMC simu-

This proves that rotational effects play a very important rolelations. Channel probabilities as functions of excitation energy.
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tion channels in € fragmentation. Discontinuous lines represent tation using(@ TOF=2x10""s and(b) TOF=c=.

channel probabilities. Labels as defined in Fig. 2. triplet multiplicity. In the case of the §C,/C, channel, the

asymmetric shape of the corresponding probability is again

four, five, and six fragments present maximum probabilitiesdue to the competition between the singlet and triplet linear
between 20 and 70%. The;Cluster is completely broken structures of G (they meet at~22 eV). The singlet isomer
into seven carbon atoms at40 eV. Although fragmentation appears at lower excitation energies while the triplet one be-
of C; is more complicated than that of;Gve see again that comes dominant at higher energies. Theaalysis shows
decay channels leading to;@re favored. The absence of the that the triplet isomer is the dominant one in this channel.
Ce/C, Gs/C/C, GJ/C,/C, ..., channels at high energies is We have also carried out time dependent fragmentation
again due to entropic factors. calculations for G based on the Weisskopf theory. In these

In this case, we have also analyzed the isomer composfalculations we have only considered the most stable isomer
tion of the dominant fragmentation channels. The results aréor each fragment. The results are shown in Fig. 7. We can
shown in Fig. 6. Discontinuous lines represent the channedee that the results for the experimental value of the TOF
probabilities given in Fig. 5. The composition of the parent(~200 ng and TOF=c are very similar. The only difference
cluster before fragmentatiofnot shown in the figureis is a shift of~2 eV in the G/C; threshold. So, as for{the
~25% for each possible structu@@near or cyclic geometry use of the MMMC method is compatible with the experi-
with singlet or triplet spin multiplicity. For the G/C; chan-  mental conditions.
nel we see that the peak-af7 eV is due to the dominance of ~ We move now to the gcluster. In this case, there are
the G, cyclic form with singlet spin multiplicity. G linear  thirty fragmentation channels. The results obtained with the
isomers successively appear as the energy increases, beikdIMC simulations are shown in Fig. 8. These results differ
the singlet isomer the most important one. This result showsomewhat from those reported [i] for a large number of
the importance of including all possible isomers in the simufragments but are very close to them for excitation energies
lation, especially when they are energetically degenerate dselow 20 eV. As in previous cases, the most favorable dis-
for the linear and cyclic structures of,CThe G isomer  sociation channels involveGormation, for example, £ Cs
analysis in the same channel shows that the cyclic structuremd G/C;/Cs. In this case, many fragmentation channels
do not play any role in the fragmentation and that the lineacompete efficiently in the energy range up to the total atomi-
isomer with singlet multiplicity is the dominant structure. zation of the cluster at-53 eV. We have also checked that
The composition study of the0C, channel(not shown in inclusion of rotational effects is essential in this case since,
the figure indicates that the Lcluster has always linear by removing these effects from the corresponding weights,
geometry and singlet multiplicity, however Fig. 6 shows thatwe obtain quite different results. For examplgy/C would
singlet and the triplet species compete for The G/C;/C  appear as a dominant channel while it is not observed in
probability exhibits a shoulder at 22 eV. This can be wellexperimentysee below.
understood by examination of the; @Gsomer composition: The isomer analysis for the dominant fragmentation chan-
Figure 6 shows that the probabilities associated with the sinrels is shown in Fig. 9. In the {LC; channel, the dominant
glet and triplet linear structures of;Gneet at this energy. species are the triplet linear structure of &d the singlet
Atomic carbon produced in this channel correspond to thdinear structure of @ The latter is also the dominant struc-
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ture in the G/C3/C; and the 2G/C,/C channels, although 02k AN A "'C s
the triplet linear structure has some relevance in the high “I “s,{ l';,“ J\'“"; 9
energy parts of these channels. As in the cases discussed 0'00 10 20 30 40 50 o0
above, the @ channel is almost a statistical mixture of the Excitation Energy (¢V)
four isomers included in our simulations. Also, the dominant ) . )
form of C, is the linear triplet one. FIG. 10. (Color onling Effective temperature as a function of

A common feature in the three systems is the dominanchcitation gpgrg)(_left y axi_s). Discontinuous lines represent chan-
of the linear fragment&.T and LS with respect to the cyclic €' Probabilities(right y axis).
ones. This is because the weight, which measures the
accessible vibrational states, is always larger for the line
species than for the cyclic ones. This is illustrated in the la
column of Table I, which gives the logarithm of the density

of vibrational states at an enery Cyclic structures have a
a(ower value of the density of states because, in general, they
S - :
are more rigid than the linear ones and, therefore, they have
a larger average vibrational frequensger column in Table
I). The importance of including rotational effects to correctly

100 ,‘-*:~C6/C3 ' ' C, Iéomer Alllalysis— reproduce the fragmentation branching rati®se our previ-
FoA . ous discussion on Fig.)4s the consequence of the dominant
~ 80 - L T role of the linear structures. Cyclic species are closer to a
‘3\; 60'_ LT | ] spherical shape and, consequently, rotation about different
= i l directions in space does not introduce significant effects.
g a0} - Figure 10 shows the variation of the effective temperature
£ L LS ; as a function of the cluster excitation energy for the three
20 - — cases investigated here. The behavior of these caloric curves
w T is monotonous except in the regions where new decay chan-
o nels are open. The observed “plateaus” and oscillations can
100 | CJC, ______ 3C, C, Isomer Analysis_ be interpreted as the signature of first order phase transitions.
L N 2c/C/C 1 For G, phase transitions are very marked at all intermediate
\ 3.2 i
80 - RS steps of the fragmentation process. In all cases, the phase
S transitions are more apparent when total atomization of the
2 60 parent cluster is produced. The latter process occurs around
% 40 i T=0.4 eV, which is close to the boiling temperature of mac-
g i roscopic liquid carbonT,=0.44 eV. Phase transitions asso-
= ok ciated with partial fragmentation of the parent cluster are
. J apparent due to the finite size of the system: the larger the
0 | , | ) ) cluster, the closer to the infinite size behavior.

The slope of the curves shown in Fig. 10 is usually inter-
5 10 15 20 25 30 35 . ;
Excitation Energy (€V) preted as the inverse of the cluster heat capacity. It can be
seen that, in short ranges of temperature in the region of
FIG. 9. (Color onling Isomer analysis of the dominant dissocia- phase transitions, the heat capacity can be negative. This
tion channels in g fragmentation. Discontinuous lines represent effect, which cannot occur in bulk matter, has been recently
channel probabilities. Labels as defined in Fig. 2. observed in several experiments on alkdR,55 and hydro-
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of 10 eV. A more careful comparison between theory and

wfF W & & &L 5
30k © %r Sm 8m o 8?, ] experiment has been reported in R&], where the calcu-
ek g S a0 h lated probabilities were convoluted using an empirical func-
b c tion for the energy distribution. The latter function was cho-
[ 5 sen to give the best fit of the experimental detae[5] for
0r o - ® ] detail. We have repeated this procedure here. The results of
or , T 1 ! L T ? such convolutions are shown in Fig. 11. They are practically
s —,———— undistinguishable from those reported &]. As can be seen,
S10F 20 S0V QU JUQ VLY U] the general agreement with experiment is good. The most
7] o v S d T wmg e d RF 2w < .. . . . h
S8 OJUTER FOIRITIT ] visible discrepancies are obtained foy, @ particular for the
2 60F © J o - Cs/C5 channel that is overestimated. As in RES], an im-
o0 [ ] ] : . . . .
2 a0} C portant conclusion of this comparison is that the energy dis
< wlno g 7] tribution is practically identical for the three systems C;,
§ oL ™ . & s o] so s sy T and G. This is relevant because the three fits were per-
M ' — — ' formed separately. Moreover, this is consistent with the con-
100 r——— R NNENETTR ditions used in the experiments. Indeed the collision velocity
80 Smg%ogmqhg«;mg 5«%2 QQSNQMBNBN- and the cluster initial temperature are nearly the same in the
60 F Cooe % “ 5"%%8“‘_' three experiments and, therefore, one would expect a similar
ok O collisional excitation of the neutral lusters formed in the
N= - o C charge transfer reaction.
20Fx - = 9
o =8 D*nﬁuﬁ n!!*ﬂ-*

- VII. CONCLUSIONS
Fragmentation Channel

We have applied the microcanonical Metropolis Monte
FIG. 11. (Color onling Branching ratios for deexcitation ofsC  Carlo (MMMC) and the time dependent Weisskopf methods
C;, and G clusters. Full circles: experiment; open squares: convoto investigate fragmentation of highly excited small neutral
lution of the theoretical branching ratios with the energy distribu-carbon clusters, namelysCC,, and G. The necessary mi-
tions given in Ref[5] For Gg, the figure does not include channels Croscopic information required to app|y both methods has
leading to five or more fragments because the corresponding ratiqgeen obtained from state-of-the-att initio quantum chem-
are smaller than 1%. istry calculations. In these calculations all possible fragmen-
tation channels, including different isomeric fornigear
gen[43,44 clusters, and has been explained in terms of twaand cyclio and spin multiplicities have been considered. By
effective temperatures corresponding to solid and liquid ageomparing results of the MMMC and Weisskopf methods,
gregate states16,56. The present results suggest that negawe have checked that, for the present applications, the as-
tive heat capacities are a general feature of any cluster ursumption of internal thermodynamic equilibriufa neces-
dergoing a phase transitidb7]. sary condition to apply the MMMC methods well fulfilled
when the time of flight for detection of the different frag-
ments is of order of a few nanoseconds or larger. The analy-
sis of the different isomeric forms included in the MMMC
Very recently, fragmentation of neutral,&lusters(n  calculations illustrates that competition between different
=5,7,9 has been investigated experimentd}. In these structures of a given fragment is possible and affects the
experiments, neutral Lclusters were produced by charge observed branching ratios. We have also demonstrated that
transfer in fast collisions of C ions with a helium gas. The inclusion of rotational effects is crucial to obtain a reason-
neutral species formed immediately after the collision areable description of the fragmentation process.
electronically excited, which induces fragmentation. The For the three systems investigated here, we have found
measured branching ratios are shown in Fig. 11. The maithat channels leading to the formation of @lay a dominant
problem in these experiments is that the excitation energyole, in particular the @ 3/Cs; channel is always dominant
resulting from the collision is unknown. This is a very im- for a range of excitation energies that goes from the corre-
portant limitation to understand the observed fragmentatioisponding dissociation threshold up to the energy region
because, as shown in the previous section, the fragmentatiavhere fragmentation into three or more species is possible.
branching ratios strongly depend on the excitation energyAmong the different isomeric forms of Cthe linear struc-
Nevertheless, a qualitative inspection of Fig. 11 shows thature is the most important one. We have compared our cal-
in agreement with our theoretical findings, fragmentationculated branching ratios with the experimental results of
channels leading to Lare strongly favored. Comparison of Martinet et al. [5], who have studied fragmentation of ex-
these results with our MMMC simulations of Figs. 1, 5, andcited neutral G clusters produced in the charge transfer re-
8 shows that, for the three systems investigated in this workaction G,*+He— C,+He". The agreement between theory
theory and experiment are compatible if one assumes that ttend experiment is reasonably good provided that the theoret-
energy distribution of the neutral cluster just after the colli-ical branching ratios are convoluted with g énergy distri-
sion has a maximum around 10 eV and a width of the ordebution centered at around 10 eV. Since the result of the con-

VI. COMPARISON WITH EXPERIMENT
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volution is very sensitive to the form of this energy which might be important at high excitation energies. Sec-
distribution, we conclude that combination of experimentalond, the model should account for spin conservation, which
measurements with accurate statistical fragmentation simularas been ignored to simplify the evaluation of the statistical
tions can provide a reasonable estimation of the cluster emverage given in Eq(9). Finally, the approximations per-
ergy distribution just after the collision. formed to evaluate the weiglat, should be checked in more
An interesting prediction of the present study is the exis-detail by comparing the results of our model with an “exact’
tence of p_hase trgnsitions_,. These phase transitions _couId %ase space theory or molecular dynamics simulations for a
observed in experiments like those reportefihby varying  gmgaji system[58]. Although we do not expect significant
the cluster excitation energy. This can be done, for instanC&anges; introduction of these refinements might account for

by using dtlffehrent \éalues offthe ngpa;ct \f/_elog|ty. SO f?r,f.allt e remaining discrepancies with experiment. Work along
experiments have been performed at a fixed or nearly fixeg . .."\inas is in progress in our laboratory.

impact velocity of 2.6 a.u., which leads to an energy deposi
of around 10 eV. Our simulations have shown that there is a
correspondence between impact velocity and excitation en-
ergy. As can be seen in Fig. 10, an energy of 10 eV is too
low to observe phase transitiorfthey are only visible at This work has been supported by the DSpain, Project
around 20 eV and aboyeThus, a broad range of impact Nos. BQU2001-0147, BQU2003-00894, and BFM2003-
velocities should be considered in the experiments in order t600194. We also thank the CCC-UANCentro de Compu-
observe this phenomenon. tation Cientifica de la Universidad Autonoma de Madlrfior

Despite the successful application of the present MMMCits generous allocation of computer time. One of the authors
model to understand fragmentation of small carbon clustergS.D-T) is grateful for the hospitality at the GONLO group
several improvements can still be done to gain in accuracyat the Institut de Physique et Chimie des Matériaux de Stras-
First, one should introduce vibrational anharmonicities,bourg(CNRS.
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