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We present a statistical fragmentation study of the C5, C7, and C9 carbon clusters using the Metropolis
Monte Carlo and Weisskopf methods. We show that inclusion of several isomeric forms as well as rotational
effects is essential to reproduce the experimental observations. We have found that, for cluster excitation
energies around 10 eV, several fragmentation channels are efficiently populated, but the dominant one always
corresponds to Cn−3/C3. For high enough excitation energies, we observe first-order phase transitions corre-
sponding to a complete breakup of the cluster.
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I. INTRODUCTION

Fragmentation is the dominant deexcitation channel of
highly excited carbon clustersf1,2g. Thus the analysis of the
different dissociation channels can provide information on
the stability of these clusters as well as on the dynamics of
the excitation processf3–5g. In the particular case of small
carbon clusters, fragmentation has been studied using differ-
ent experimental approaches. The unimolecular decay of Cn

+

formed in a direct vaporization source has been extensively
studied by Radiet al. f6–8g. Photofragmentation experi-
ments of jet-cooled cationic clusters have been performed by
Geusicet al. f9–11g and by Bouyeret al. f12g. Fragmentation
of Cn

+ clusters has been also investigated in collision in-
duced dissociationsCIDd experimentsf13,14g and through
mass-analyzed ion kinetic energy spectrasMIKESd f15–17g.
In addition, fragmentation of negatively charged Cn

– clusters
have been studied in CIDf18g and in surface-induced disso-
ciation sSIDd experimentsf19g. In these experiments, the
loss of neutral C3 has been found to be the dominant disso-
ciation process for both positive and negative cluster ions.

Although charged carbon clusters have been extensively
studied, the experimental information for fragmentation of
neutral carbon clusters is scarce. Choiet al. f20g have studied
photodissociation of linear neutral carbon clusters. Chabotet
al. f21g have performed experiments in which excited neutral
clusters are produced by electron capture in fast Cn

++He
collisions. In the latter experiments, the decay of the excited
cluster leads to a large number of fragmentation channels.
The corresponding branching ratios were quantitatively de-
termined for sizes up ton=9.

When clusters are excited by laser pulses, fast electrons or
fast heavy particles, the excitation process is much faster
than the internal motion of the cluster nuclei. Thus the exci-
tation energy is redistributed among the cluster vibrational
degrees of freedom well after the electronic excitation has
taken place. Consequently, one can treat cluster fragmenta-
tion as a postcollisional process. Most previous works have
described the time evolution of the excited clusters by means
of molecular dynamicssMDd methodsf22g. In these meth-
ods, a critical aspect is the description of the atom-atom in-
teractions that govern the nuclear dynamics. This can be

done by means ofsid simple analytical two-body interaction
potentials orsii d ab initio interaction potentials obtained on
the “fly” f23g. The second approach is very much limited by
cluster size. However, we know from previous studies that
the dynamical evolution of a complicated many-body system
is mainly guided by the accessible phase spacef24g. Thus a
statistical treatment may explain the outcome of such frag-
mentation reactions. This is particularly important for large
systems, since statistical methods are computationally much
cheaper than MD methods.

In this work we have adapted two statistical methods,
initially proposed to study fragmentation of hot atomic metal
clustersf25,26g, to investigate fragmentation of highly ex-
cited small neutral carbon clusters. The first method is the
microcanonical Metropolis Monte CarlosMMMC d method,
which consists in partitioning the mass, charge, total energy,
total linear, and angular momenta of the systemsconserved
in the microcanonical approachd among all possible final
channels with probabilities governed by considerations of
maximum entropy. The second method considers a sequen-
tial evaporation chain with rate constants calculated within
the statistical Weisskopf theory. The basic ingredients of both
methods are binding energies, geometries, vibrational fre-
quencies, and rotational constants of any possible fragment.
This information must be extracted fromab initio quantum
chemistry calculations. Although several authors have stud-
ied the properties of small carbon clustersf27–35g, the quan-
titative information available in the literature has been ob-
tained at different levels of theorysseef36g and references
thereind. To avoid possible inconsistencies due to the use of
different ab initio methods and to evaluate the missing pa-
rameters, we have consistently calculated all microscopic
properties using the same level of theory for all possible
fragments.

In a recent Letterf5g we have used the results of MMMC
calculations to extract the energy distribution of Cn neutral
carbon clusters produced by charge transfer reactions in Cn

+

collision experiments. This combination of experimental
measurements with theory allows one to extract information
on the collision dynamics that would be extremely difficult
to obtain from theory or experiment alone. In this work we
will focus our attention on the fragmentation process itself,
irrespective of the excitation mechanism that leads to frag-
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mentation, as well as on the details of the present implemen-
tation of the MMMC method. In particular, we will analyze
under which circumstances a statistical treatment based on
the ergodic assumption is meaningful to analyze fragmenta-
tion observed in a finite time intervalsthe time of flight of
the experimentsd. Furthermore, we will discuss to what ex-
tent the different microscopic properties of the Cn clusters
affect the different fragmentation pathways as well as the
possibility to observe phase transitions when the Cn excita-
tion energy is varied. The present MMMC calculations
slightly improve on those reported inf5g since statistical
weights due to electronic orbital degeneracies are taken into
account.

The paper is organized as follows. In the next two sec-
tions we explain in detail our implementation of the MMMC
and Weisskopf methods to investigate fragmentation of small
carbon clusters. In Sec. IV we summarize the theory and
results of the quantum chemistry calculations that provide
the necessary microscopic information to apply the above
statistical methods. In Sec. V we present and discuss our
results for the fragmentation of C5, C7, and C9 clusters. We
analyze in detail the influence of the different microscopic
properties as well as the validity conditions of such theoret-
ical treatments. A brief summary of the comparison between
the calculated branching ratios and those recently measured
by Martinet et al. f5g will be given in Sec. VI. We end the
paper with some conclusions in Sec. VII. Atomic units are
used throughout unless otherwise specified.

II. THE MICROCANONICAL METROPOLIS
MONTE CARLO METHOD

The MMMC method was originally developed for the
study of thermodynamics in nuclear physicsf37g and has
been successfully applied to study fragmentation of hot
metal clustersf25g. The basic idea of the method is to move
in phase space until a region of maximum entropy is reached.
Then a physical observable is measured by performing a sta-
tistical average in this region. This method considers the sys-
tem in internal thermodynamic equilibrium and, therefore, it
cannot provide information on the time evolution of the sys-
tem. In our implementation of the MMMC method we allow
for all possible decay channels under the constraint of con-
servation of mass, charge, energy, linear momentum, and an-
gular momentum.

A. The microcanonical ensemble

The physical quantity we are interested in is the statistical
average of an observableF over the microcanonical en-
semble

kFl =

E
V8

Fsx8dwsx8ddx8

E
V8

wsx8ddx8

, s1d

wherex8 represents a statesalso called a configuration or a
pointd in phase spaceV8, wsx8d /eV8 wsx8ddx8 is the prob-

ability distribution of the microcanonical ensemble, andZ
=eV8 wsx8ddx8 is the partition function. In our model, a
phase space pointx8 is defined as

x8 = ˆNf ;hNj,Zj,Sej,Oej,Gjj j=1
Nf ;hr jj j=1

Nf ;hp jj j=1
Nf ;

hf jj j=1
Nf ;hl jj j=1

Nf ;hEv j
* j j=1

Nf
‰, s2d

whereNf is the number of fragments,hNj ,Zj ,Sej,Oej,Gjj j=1
Nf

is the mass, the charge, the electronic spin, the electronic
orbital degeneracy and the geometrysatomic, linear or cy-
clicd of each fragment with the constraintsmass and charge
conservationd

o
j=1

Nf

Nj = NT,

o
j=1

Nf

Zj = ZT. s3d

The initial cluster hasNT carbon atoms and a net chargeZT

sin this section the notation CNT

ZT will be usedd. r j is the posi-
tion schosen such that fragments do not overlap each other;
see Sec. II B 2d, p j is the linear momentum,f j are the rota-
tional angles that determine the space orientations2 for a
linear molecule and 3 for nonlinear speciesd, l j is the angular
momentum, andEv j

* is the internal vibrational excitation en-
ergy of the fragment labeledj . In the present study, all frag-
ments are neutralsZj =0 for all jd and are assumed to be in
their electronic ground state.

In the microcanonical ensemble the total energy of the
system is conserved and is fixed to beE0 with

E0 = EC + Eb + Ev
* + Kt + Kr ,

EC = o
j,i

ZiZj

ur i − r ju
,

Eb = o
j=1

Nf

Ebj,

Ev
* = o

j=1

Nf

Ev j
* ,

Kt = o
j=1

Nf p j
2

2mj
,

Kr = o
j=1

Nf So
n=1

frj ln j
2

2In j
D , s4d

whereEC is the total Coulomb interaction energy between
the fragments, i.e., zero in the present application,Ebj is the
total electronic energy,p j

2/2mj the translational kinetic en-
ergy sKtd, on=1

frj ln j
2 /2In j the rotational kinetic energysKrd, f rj
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the number of rotational degrees of freedom,11 mj the mass,
and In j the principal moment of inertian of fragmentj .

B. The microcanonical weights

In the microcanonical ensemble, the total energy, total
linear momentum and total angular momentum are constant.
Furthermore, due to the finite size of the system, the total
number of atoms and the charge are fixed by the initial clus-
ter sizesNTd and net chargesZTd. Consequently, the micro-
canonical weight is given byf25g

wsx8ddx8 = dsE − E0ddsP − P0ddsL − L 0d

3 dsN − NTddsZ − ZTddx8, s5d

where

P = o
j

Nf

p j s6d

and

L = o
j

Nf

l j + o
j

Nf

sr j − Rc.m.d 3 sPj − P0d. s7d

L 0 and P0 are, respectively, the cluster initial total angular
momentum and linear momentum.Rc.m. denotes the position
of the center of mass of the system. According to the defini-
tion s2d, the volume element of the phase space is expressed
as

dx8 = Sp
j=1

Nf d3r jd
3p j

s2p"d3 DSp
j=1

Nf dfrjf jd
frj l j

s2p"d frjsrj

D
3 Sp

j=1

Nf

rv jsEv j
* ddEv j

* D , s8d

where srj is the symmetry number of the fragmentj ssee
Sec. II B 1d andrv jsEv j

* d is the density of vibrational states of
the fragmentj at energyEv j

* . It is also worth noting thatp j is
the conjugated variable ofr j andl j the conjugated variable of
f j. The statistical average defined in Eq.s1d can now be
written more explicitly as

kFl =
1

Z o
Nf=1

NT

wNZsNfdFo
i

NGS

wesGi,Sei,Oeid

3E Fsx8ddsE − E0ddsP − P0ddsL − L 0d

3 hsr 1,r 2 . . . r Nf
dp

j i=1

Nf d3r j i
d3p j i

s2p"d3

3 p
j i=1

Nf dfrj if j i
dfrj il j i

s2p"d frj isrj i

p
j i=1

Nf

rv jsEv j i
* ddEv j i

* G , s9d

whereNGS is the number of channels for a given number of

fragmentsNf sincluding all possible geometries and spin
multiplicitiesd, wNZ is the number of ordered partitions of a
cluster ofNT atoms and chargeZT into Nf fragmentsfit re-
sults from integration of thedsN−NTd anddsZ−ZTd terms in
Eq. s5dg f38g

wNZsNfd =
1

Nf!
SNT − 1

Nf − 1
DSZT + Nf − 1

Nf − 1
D ,

we is the degeneracy of the electronic ground state

wesGi,Sei,Oeid = p
j=1

Nf

s2Sej + 1dOej, s10d

andhsr 1. . .r Nf
d is a factor that takes into account the overlap

in space of the fragmentsssee Sec. II B 2d. The indexi in Eq.
s9d is a short notation foriNf

whereNf runs from 1 toNT.
According to Eqs.s1d and s9d, the weightw can be split

into the following factors:

w = o
Nf=1

NT

wNZsNfdo
i

wei
wfi

wri
wqi

wpli
. s11d

1. The weight wf

This weight factor due to the angular part of the eigen-
rotation of the fragments is given by

wf = p
j=1

Nf E dfrjf j

s2p"d frjsrj
. s12d

If we consider fragments with linear and cyclic geometry
ssingle atom fragments are not included because they do not
have rotational structured we have

wf = p
j=1

Nl E d2f j

s2p"d2srj
p
i=1

Nc E d3fi

s2p"d3sri
, s13d

where Nl is the number of linear fragments andNc is the
number of fragments with cyclic geometry.sri is the sym-
metry number of the fragmenti. This quantity is introduced
in statistical mechanics in order to reduce the rotational en-
tropy of symmetric molecules and depends on the symmetry
group f39g ssee also Table Id. The integration of Eq.s13d
leads to

wf = S 1

sr
l DNlHp

i=1

Nc S 1

sri
DJS 1

p
DNc+NlS1

"
D3Nc+2Nl

. s14d

The symmetry number for linear fragments ofD`h symmetry
is sr

l =2.

2. The weight wr

In using the MMMC model we must simulate the acces-
sible phase-space corresponding to fragments whose mutual
interactionsVan der Waals forces and exchange of atomsd is
negligible. Thus we simulate the fragmenting configurations
within a spherical volume of radiusRsys=r fNT, where r f
=2 Å. This volume is large enough to contain all isomeric

1For a single carbon atom,f rj =0, since this fragment is considered
as a particle with no internal rotational structure.
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TABLE I. Mass table:j is the fragment’s label;N is the cluster size;G indicates the geometrysA, atomic specie;L, linear geometry;C,

cyclic geometryd and the symmetry;Se;2Se+1 is the electronic spin multiplicity;Oe is the electronic orbital multiplicity;sr is the

symmetry number appearing in the weight factor due to the eigenrotation of the fragmentssseef39gd; E+ZPE is the electronic energy

obtained at the CCSDsTd /6–311+Gs3dfd level over the B3LYP geometry and the zero point energy correction obtained at the

B3LYP/6–311+Gs3dfd; n̄ is the geometrical average of the vibrational frequencies given byspi=1
fv j ni j d1/fv j where fv j is the number of

vibrational degrees of freedomsfv j =3Nj −5 for linear species andfv j =3Nj −6 for cyclic speciesd; I1, I2, andI3 are the principal moments of

inertia;R is the radius of the fragment defined as half the largest distance between two C cluster atoms;D is the lowest dissociation energy

corresponding to the fission channel with labelssl ,kd. Finally, lnsrd is related to thewq factor with r j =Dfv j−1/ (Gsfv jdn̄ j
fv j).

j N G Se Oe sr E+ZPE sa.u.d n̄seVd I1/m0 sÅ2d I2/m0 sÅ2d I3/m0 sÅ2d RsÅd DseVd sl ,kd lnsrd

1 1 A 1 5 0 −37.72589 0.000000 0.0000 0.0000 0.0000 0.76720 0.00000 0.00000

2 1 A 3 3 0 −37.77917 0.000000 0.0000 0.0000 0.0000 0.76720 0.00000 0.00000

3 2 LsD`hd 1 1 2 −75.77837 0.232200 2.7764 2.7764 0.0000 0.62350 5.98737s2,2d 3.24981

4 2 LsD`hd 3 2 2 −75.75791 0.209800 3.0233 3.0233 0.0000 0.65050 5.43062s2,2d 3.25365

5 3 LsD`hd 1 1 2 −113.82422 0.049062 11.8262 11.8262 0.0000 1.28700 7.25679s2,3d 19.29329

6 3 LsD`hd 3 2 2 −113.74810 0.047823 11.8891 11.8891 0.0000 1.29000 5.18544s2,3d 18.05127

7 3 CsC2vd 1 1 2 −113.78543 0.176400 2.8124 4.1746 6.9870 0.88300 6.20125s2,3d 10.67926

8 3 CsD3hd 3 1 6 −113.79267 0.161110 3.3192 3.3192 6.6384 0.78700 6.39826s2,3d 11.04509

9 4 LsD`hd 1 1 2 −151.76200 0.067399 30.1371 30.1371 0.0000 1.95050 4.31603s2,5d 24.32874

10 4 LsD`hd 3 1 2 −151.73920 0.068026 30.0438 30.0438 0.0000 1.94950 3.69561s2,5d 23.17758

11 4 CsD2hd 1 1 4 −151.78067 0.099871 3.9768 10.8631 14.8399 1.23300 4.82407s2,5d 20.08692

12 4 CsD2hd 3 1 4 −151.74738 0.089866 4.4024 10.1261 14.5285 1.19100 3.91820s2,5d 19.47235

13 5 LsD`hd 1 1 2 −189.81595 0.066190 58.4789 58.4789 0.0000 2.56000 5.80587s3,5d 34.13635

14 5 LsD`hd 3 2 2 −189.73064 0.078498 58.3638 58.3638 0.0000 2.55000 3.48445s3,5d 27.32531

15 5 CsCsd 1 1 1 −189.64652 0.137100 8.3280 14.8329 22.9043 1.33200 1.19541s3,5d 10.96461

16 5 CsC2d 3 1 1 −189.70491 0.093690 6.9822 17.7999 23.9031 1.45100 2.78429s3,5d 22.00066

17 6 LsD`hd 1 1 2 −227.77243 0.063565 103.1003 103.1003 0.0000 3.21550 3.37397s5,5d 34.13085

18 6 LsD`hd 3 1 2 −227.77657 0.064024 102.9515 102.9515 0.0000 3.21350 3.48662s5,5d 34.46429

19 6 CsD3hd 1 1 6 −227.79560 0.111200 17.9057 17.9160 35.8216 1.46380 4.00446s5,5d 27.90159

20 6 CsC2vd 3 1 2 −227.70536 0.098552 16.2726 21.4667 37.7393 1.56460 1.54888s5,5d 17.95206

21 7 LsD`hd 1 1 2 −265.80739 0.061928 162.9505 162.9501 0.0000 3.83300 5.51035s5,11d 46.62335

22 7 LsD`hd 3 2 2 −265.73061 0.058380 165.1399 165.1399 0.0000 3.85650 3.42104s5,11d 39.94042

23 7 CsC2vd 1 1 2 −265.78847 0.090119 22.6989 33.2893 55.9883 1.67900 4.99551s5,11d 37.67528

24 7 CsC2vd 3 1 2 −265.76765 0.077859 24.4609 33.4754 57.9363 1.71200 4.42896s5,11d 38.06315

25 8 LsD`hd 1 1 2 −303.77373 0.059952 245.5097 245.5097 0.0000 4.48450 4.56671s5,13d 48.82201

26 8 LsD`hd 3 1 2 −303.77354 0.060272 245.2952 245.2952 0.0000 4.48250 4.55992s5,13d 48.69259

27 8 CsC4hd 1 1 8 −303.78713 0.084327 40.3222 40.3222 80.6444 1.83700 5.00256s5,13d 42.82220

28 8 CsD4hd 3 1 8 −303.76604 0.077042 39.9843 40.0037 79.9880 1.83000 4.34923s5,13d 41.92940

29 9 LsD`hd 1 1 2 −341.80020 0.059335 348.2156 348.2156 0.0000 5.10648 6.00668s5,19d 59.24780

30 9 LsD`hd 3 1 2 −341.76339 0.054610 351.4200 351.4200 0.0000 5.13403 1.91333s5,19d 35.90483

31 9 CsCsd 3 1 1 −341.79248 0.069421 56.0323 57.1993 112.4990 2.03993 2.59147s5,19d 36.67573

32 9 CsCsd 3 3 1 −341.78741 0.073154 55.2419 58.2259 113.4680 2.04124 2.28561s5,19d 32.93837
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forms of the CNT
cluster and all its fragments, since the di-

ameter of the sphere is roughly four times larger than the
length of the CNT

cluster in its linear configuration. The
quantityRsys is called the freeze-out radius. We want to men-
tion in advance that the results of our calculations are prac-
tically independent ofRsys provided it is large enough to
contain all fragmentsse.g., we have found that the results are
practically the same forr f =1 Åd.

The weight factorwr is related to the spatial occupation of
the fragments. It is defined as the accessible volume for each
fragment and can be expressed as

wr = p
j=1

Nf E
Vj

hsr 1,r 2, . . . ,r Nf
d

1

s2p"d3d3r j , s15d

where

hsr 1,r 2, . . . ,r Nf
d = H1, r lk = ur l − r ku ù Rl + Rk,l Þ k,

0, otherwise.

s16d

The factorh is introduced in order to avoid the overlapping
between two fragments. The fragment’s radius,Rl, is defined
as half the largest distance between two cluster atomsssee
Table Id. Vj is the volume that thej th fragment can occupy in
the empty freeze-out volumeVj =

4
3psRsys−Rjd3.

This weight plays a very important role in the fragmenta-
tion of multiply charged clusters because the Coulomb en-
ergy s4d strongly depends on the fragments positionsssee
Ref. f40g for detailsd. This is not the case in the present
application to neutral clusters because the Coulomb interac-
tion is zero.

3. The weight wq

The weightwq takes into account the vibrational excita-
tions and is given by

wq = p
j=1

Nf E rv jsEv j
* ddEv j

* . s17d

In this work, we have assumed that the internal excitation of
the clusters is well described within a classical harmonic
model. By using this approximation we do not take into ac-
count vibrational anharmonicities which can be important for
high excitation energies. The sampling of the excitation en-
ergies requires the knowledge of the vibrational level density
of each fragmentrv jsEv j

* d, which is given by the density of
states of afv j-dimensional harmonic oscillator

rv jsEv j
* d =

sEv j
* d fv j−1

Gsfv jdpi=1

fv j shni jd
, s18d

where G is Euler’s gamma function,fv j is the number of
vibrational degrees of freedom of fragmentj , andni j is the
frequency of itsith vibrational mode.

4. The weight wpl

The weightwpl is given by

wpl =E p
j=1

Nf

dfrj l jp
j=1

Nf

d3p jdsL − L 0ddsP − P0ddsE − E0d.

s19d

For the sake of simplicity, we will assume that, initially, the
cluster does not rotatesL 0=0d and is at restsP0=0d. Never-
theless, a major difficulty remains: the second term in Eq.s7d
shows that the fragments’ positions and linear momenta are
correlatedsin other words, it is not possible to choose inde-
pendently these variablesd. To keep the advantage of a fast
numerical scheme, we have made the additional assumption
that the second term in Eq.s7d is zero. Then the computation
of wpl reduces to the evaluation of the following expression:

wpl =E d3p1d
3p2 . . .d3pNf

dfr1l1d
fr2l2 . . .dfrNflNf

3 dSo
j

l jDdSo
j

p jDdsE − E0d. s20d

Let E08 be the total kinetic energy availablestranslational plus
rotationald

E08 = E0 − sEC + EB + Ev
*d = Kt + Kr . s21d

It can be shown that the weightwpl can be written asf25g

wpl = p
j=1

Nf−1

p
m=1

frj+3HS 2

lm j
D1/2JE08

sa−1dpa

Gsad
, s22d

with

a =
1

2
S3Nf − 3 + o

j=1

Nf−1

f rjD s23d

and

lm j = mj
−1 + SmNf

+ o
l=1

j−1

mlD−1

, m = 1,2,3

=I m−3,j
−1 + SIm−3,Nf

+ o
l=1

j−1

Im−3,lD−1

,

m = 4, . . . ,f rj + 3. s24d

It is worth noticing that for cyclic fragments, Eq.s22d is
equivalent to Eq.s51d of Ref. f25g.

C. Microcanonical Metropolis sampling

In standard statistical mechanics, microcanonical equilib-
rium means that every accessible phase-space cellj j at a
fixed energyE0 and other conserved quantitiesse.g., linear
momentum, angular momentum, etc.d is equally populated.
The main idea of the method is that one does not sample all
the states uniformlysas in ordinary Monte Carlo calcula-
tionsd, but one moves in small steps towards the most impor-
tant region of the phase space, i.e., the part having the high-
est values for the weightw.

The Metropolis algorithm allows one to move in phase
spaceV8 according to the following proceduref41g. First a

STATISTICAL FRAGMENTATION OF SMALL NEUTRAL… PHYSICAL REVIEW A 71, 033202s2005d

033202-5



configurationjn is randomly chosen inV8. By changing only
a few degrees of freedom, a trial statejt is generated and the
relative weight P=wjt

/wjn
is computed. Then a random

numberpP f0,1g is sampled from a uniform distribution and
the statejn is accepted ifpøP. In this casejn+1=jt. Other-
wise, if p.P, the old statejn is recorded as a new statesi.e.,
jn+1=jnd and a new trial state is computed again. This pro-
cedure is repeated many times and the resulting path for the
accepted configurations is called a Markov chain. This pro-
cedure has been successfully used to study nuclear fragmen-
tation problemsf37g as well as fragmentation of hot atomic
metal clustersf25g.

Displacements along the Markov chain are done accord-
ing to the following step sequence.

Step 1.The excitation energy of each fragment is sampled
according to a uniform distribution from 0 up to the lowest
dissociation energyDj of the corresponding clusterssee
Table Id. Then the weightwq is changed. Furthermore, since
E08 depends on the total excitation energyfsee Eq.s21dg, the
weight wpl is also changed.

Step 2.The positionr j of each fragment is changed one
by one. Thus,wr is modified as well asE08 andwpl through
EC in Eq. s21d. For neutral or singly charged initial clusters
this step is skipped.

Step 3.The compositionsNj ,Zjd of two successive frag-
ments is changed. The two fragments are combined, adding
the mass and the charge, and are split again in a new way.
Then, the geometry,Gj, the electronic spin,Sej, and the or-
bital degeneracy,Oej, of the two fragments are sampled ran-
domly among the allowed values included in the mass table.
Finally the positions and the excitation energies of the new
fragments are modified. In this step, the weightswpl, wr, wf,
we, andwq are modified. If there is only one fragment, the
geometry, the electronic spin and the electronic orbital mo-
mentum of the cluster are randomly chosen.wpl, wf, andwe
are modified.

Step 4.The number of fragmentsNf is changed by ±1.
This is done by either splitting one fragment into two or by
combining two fragments into one. Again the positions, the
excitation energies, the geometries, the electronic spins and
orbital momenta of these fragments are renewed. The
weightswpl, wr, wf, wq, we, andwNZ are changed.

In steps 1 to 4 some of the weights are changed. As men-
tioned above, acceptance or rejection of the new state is de-
cided according to the value ofP=wnew/wold. In each step,
energy conservationsimposed by the microcanonical en-
sembled is checked.

Once the region of maximum weight has been reached,
the statistical expectation value of the observableF is ob-
tained:

kFl = o
j=1

N

Fj/N, s25d

whereFj denotes the values ofF at the phase-space pointsj j
along the Markov chain andN is the number of cyclessi.e.,
the number of times the above four steps are completedd. In
this average, the initial cycles in the Markov chain must be
discarded because they do not lie in the region of maximum

weight. Since the number of such cycles is not knowna
priori , one must check invariance of this average for several
choices of the initial number of cycles.

D. Caloric curve

The shape of the caloric curvestemperature versus the
total energy of the systemd provides the best signature of a
phase transition of first or second orderf42–45g in a finite
system. Although temperature does not have a well-defined
role in a microcanonical ensemble, we will follow common
usage and compute an effective temperature using the stan-
dard definition in terms of the microcanonical entropyS and
the total energyE0, namely

1

T
=

]S

]E0
=

] ln Z
]E0

=Ka − 1

E08
L , s26d

whereZ is defined after Eq.s1d, a is given in Eq.s23d , and
E08 is the total translational plus rotational kinetic energyssee
Sec. II B 4d. When all fragments are either linear or cyclic,
the above equation takes the form

1

T
=K f tr − 2

2E08
L , s27d

where f tr is the total number of translational-rotational de-
grees of freedom given byf tr =3Nf +o j=1

Nf frj −5 and f tr

=3Nf +o j=1
Nf frj −6, respectively.

In general, this definition of the effective temperature as a
derivative of the microcanonical entropy is not equivalent to
the definition in terms of the mean kinetic energy per cluster
degree of freedomf46g. However, due to our neglect of
crossed terms in the definition of the system total energys4d
and the statistical weights11d, we do not expect the present
results to differ significantly from those obtained from the
kinetic energy definition of temperature.

III. THE TIME-DEPENDENT WEISSKOPF
EVAPORATION MODEL

As mentioned above, the MMMC method considers the
system in internal thermodynamic equilibriumsergodic as-
sumptiond and, therefore, it can only provide information for
t=`. In most experimental worksf47g, however, branching
ratios are determined a few nanoseconds after cluster excita-
tion. This is the typical time of flight for the fragments to
reach the detector. For metal clusters excited in slow colli-
sions with atomic targets, the ergodic assumption is not ful-
filled f26,48g. This is because the resulting fragments reach
the detector before they can use all the available energy.
Carbon clusters are usually excited by fast projectiles or en-
ergetic laser pulses, which means that there is more energy
available compared to the cluster dissociation energy. There-
fore, one can expect a more rapid decay of the parent cluster
and, therefore, a better fulfillment of the ergodic assumption
at the ns scale. To check this assumption under realistic ex-
perimental conditions, we have adapted the rate equation
model previously introduced by Hervieuxet al. f26g in
which dissociation rate constants are obtained within the sta-
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tistical method of Weisskopf. Integration of the correspond-
ing set of time dependent equations will show us the range of
validity of the MMMC method in this case.

The model assumes that the initial excitation energy leads
to a sequential evaporation of different fragments. Evaluation
of the rate constants for monomer and dimer evaporation
using the Weisskopf theory has been described in detail in
f26g. As the results of the next section will show, trimer
evaporation is also extremely important in fragmentation of
C7 and C9. This possibility has not been considered in pre-
vious applications of the Weisskopf formalism.

A. Rate constants

The rate constant for monomer evaporation is given by

kN,1sEN
* d =

m1

"3p2E
0

EN
* −DN,1 re,1re,N−1

re,N

3
rn,N−1sEN

* − DN,1 − ed
rn,NsEN

* d
ssedede, s28d

wherem1 is the mass of the evaporated atom,EN
* is the ex-

citation energy of a cluster of sizeN, DN,1 is the energy
required to evaporate a monomer,s is the cluster geometri-
cal cross section that, in the classical Weisskopf model, is
given bys=pR2 whereR is the cluster radiusssee Table Id,
re,i is the electronic density of statesre,i =s2Sei+1dOei, and
rn,i is the vibrational density of states. The latter has been
evaluated in the harmonic approximation using Eq.s18d. The
average kinetic energy of the evaporated monomer is

ēN,1 =
1

kN,1

m1

"3p2E
0

EN
* −DN,1 re,1re,N−1

re,N

3
rn,N−1sEN

* − DN,1 − ed
rn,NsEN

* d
ssede2de s29d

and the average excitation energy for the daughter cluster

ĒN−1
* = EN

* − ēN,1. s30d

The rate constant for dimer evaporation is given by

kN,2sEN
* d =

m2

"3p2

1

"vd
E

0

a

dxE
0

EN
* −DN,2−x re,2re,N−2

re,N

3
rn,N−2sEN

* − DN,2 − e− xd
rn,NsEN

* d
ssedede, s31d

wherem2 is the reduced mass of the evaporated dimer,DN,2
is the energy required to evaporate a dimer, and

a = HEN
* − DN,2 if EN

* − DN,2 ø D2,1,

D2,1 if EN
* − DN,2 . D2,1,

where D2,1 is the dimer dissociation energy. The average
kinetic energy and the average vibrational energy of the
evaporated dimer are given by

ēN,2 =
1

kN,2

m2

"3p2

1

"vd
E

0

a

dxE
0

EN
* −DN,2−x re,2re,N−2

re,N

3
rn,N−2sEN

* − DN,2 − e− xd
rn,NsEN

* d
ssede2de s32d

and

x̄N,2 =
1

kN,2

m2

"3p2

1

"vd
E

0

a

xdxE
0

EN
* −DN,2−x re,2re,N−2

re,N

3
rn,N−2sEN

* − DN,2 − e− xd
rn,NsEN

* d
ssedede, s33d

wherevd is the classical harmonic frequency of the dimer.
The average excitation energy of the daughter cluster is de-
fined as

ĒN−2
* = EN

* − ēN,2 − x̄N,2. s34d

Finally, the rate constant for trimer evaporation is given
by

kN,3 =
m3

p2"3E
0

b

dxE
0

EN
* −DN,3−x re,3re,N−3

re,N

3
rn,3sxdrn,N−3sEN

* − DN,3 − e− xd
rn,NsEN

* d
ssedede, s35d

wherem3 is the reduced mass of the evaporated trimer,DN,3
is the energy required to evaporate a trimer, and

b = HEN
* − DN,3 if EN

* − DN,3 ø D3,1,

D3,1 if EN
* − DN,3 . D3,1.

The average kinetic and vibrational energies of the evapo-
rated trimer are

ēN,3 =
1

kN,3

m3

p2"3E
0

b

dxE
0

EN
* −DN,3−x re,3re,N−3

re,N

3
rn,3rn,N−3sEN

* − EN,3 − e− xd
rn,NsEN

* d
ssede2de s36d

and

x̄N,3 =
1

kN,3

m3

p2"3E
0

b

xdxE
0

EN
* −DN,3−x re,3re,N−3

re,N

3
rn,3rn,N−3sEN

* − EN,3 − e− xd
rn,NsEN

* d
ssedede, s37d

respectively. The average excitation energy of the daughter
cluster is

ĒN−3
* = EN

* − ēN,3 − x̄N,3. s38d

In all the above formulas, rotation of the different fragments
is not taken into account.

B. Sequential model of evaporation

We illustrate our procedure for the case of C5 fragmenta-
tion. In this case, sequential evaporation follows this scheme:
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s39d

where the rate constantkN,i
skd along the pathskd is evaluated as

explained abovesfor simplicity, fragmentation steps leading
to the complete atomization of cluster have been omitted
from the diagramd. The corresponding system of rate equa-
tions is

dn5
s5d

dt
= − n5

s5dsk5,1
s5d + k5,2

s5dd, s40d

dn4
s5–1d

dt
= n5

s5dk5,1
s5d − n4

s5–1dsk4,1
s5–1d + k4,2

s5–1dd, s41d

dn3
s5–2d

dt
= n5

s5dk5,2
s5d − n3

s5–2dk3,1
s5–2d, s42d

dn3
s5–1–1d

dt
= n4

s5–1dk4,1
s5–1d − n3

s5–1–1dk3,1
s5–1–1d, s43d

dn2
s5–1–2d

dt
= n4

s5–1dk4,2
s5–1d, s44d

dn2
s5–2–1d

dt
= n3

s5–2dk3,1
s5–2d, s45d

dn2
s5–1–1–1d

dt
= n3

s5–1–1dk3,1
s5–1–1d, s46d

whereni
skd is the number of fragments of sizei along the path

skd fsee Eq.s39dg. Integration of these equations up tot
= tTOF, wheretTOF is the experimental time of flight, is done
analytically.

In the case of C7, the number of fragmentation paths and,
therefore, of rate equations, is much larger. However, the
procedure is totally equivalent to that for C5 and will be
omitted for the sake of conciseness. In view of the results
presented in the following sections, we have found it unnec-
essary to apply this formalism to C9.

IV. AB INITIO STRUCTURE CALCULATIONS

The basic ingredients of the statistical models used in this
paper are the geometries, the harmonic frequencies, and the

binding energies of all the fragments. In the Metropolis
Monte Carlo simulations, the rotational constants are also
needed. To obtain this information for all possible fragments,
we have applied the density functional theorysDFTd using a
hybrid B3LYP functional for exchange and correlation. This
DFT approach combines the Becke’s three parameter nonlo-
cal hybrid exchange potentialf49g with the nonlocal correla-
tion functional of Lee, Yang, and Parrf50g. The geometries
of the Cn clusterssnø9d have been optimized by using the
6–311+Gs3dfd basis set. We have considered linear and cy-
clic isomers and singlet and triplet spin multiplicities. The
harmonic vibrational frequencies of the different species
have been calculated at the same level of theory. The B3LYP
functional has been proved to be a good choice for the de-
scription of carbon clustersf51g. In the case of small carbon
clusters, the calculated geometries and the vibrational fre-
quencies are very close to those obtained at higher levels of
calculationf28,29,52g.

The electronic and binding energies have been obtained
with the coupled cluster theory CCSDsTd /6–311+Gs3dfd,
which includes all single and double excitations, as well as
triple excitations in a perturbative wayf53g, and made use of
the B3LYP optimized geometry. The electronic energies ob-
tained at this level of theory have been corrected with the
zero point energysZPEd values obtained from the DFT vi-
brational analysis. All calculations have been performed with
the Gaussian-98programf54g.

In Table I we show the results of the electronic structure
calculations for neutral carbon clusters from C1 up to C9
considering linear and cyclic geometries and singlet and trip-
let spin multiplicities for each conformer. In this table the
electronic energy at the CCSDsTd /6–311+Gs3dfd level of
theory including the ZPE correction is shown as well as
other variables introduced in the dynamical calculations. In
particular, the table includes the geometrical average of the
harmonic frequencies and the principal moments of inertia
I1, I2, and I3 of the fragment. The cluster radiusR has been
defined as half the largest distance between two C atoms in a
given fragment. The table also includes the dissociation en-
ergy D corresponding to the lowest fission channel. The last
column in this table is lnsrd, wherer j =Dfv j−1/ (Gsfv jdn̄ j

fv j);
this value is an indication of the weightwq. This table,
known as the mass table, includes all the required data for
the statistical calculations.

In agreement with previous theoretical calculationsf29g,
the most stable Cn isomersn=3, 5, 7, and 9d corresponds to
the linear isomer with singlet spin multiplicity. However, the
ground state of the C4, C6, and C8 clusters is still an open
question. In agreement with previous resultsf27,31g, our
coupled cluster calculations for C4 predict the cyclic struc-
ture as the most stable one, but multireference configuration
interaction calculationssMRCId f33g shows that the ground
state of C4 corresponds to a triplet linear structure with an
energy 4.1 kcal/mol below the cyclic one. Previous theoret-
ical results for C6 and C8 f30,32,34,35g lead to identical con-
clusions: multireference calculations predict the cyclic struc-
ture to be the most stable one while the coupled cluster
theory predicts the opposite. In practice, both isomeric forms
slinear and cyclicd are nearly degenerate. In our MMMC
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simulations, we have introducedall isomeric formsslinear
and cyclic geometries and singlet and triplet multiplicitiesd
for Cn sn=2–9d. Therefore, all species that can play an im-
portant role in fragmentation are taken into account.

V. RESULTS AND DISCUSSION

We first present our results for the fragmentation branch-
ing ratios of C5. The excited C5 cluster may follow seven
fragmentation channelsfsee Eq. s39dg: C4/C, C3/C2,
C3/C/C; C2/C2/C; C2/C/C/C; C/C/C/C/C. Figure 1
shows the corresponding fragmentation probabilities as func-
tions of cluster excitation energy obtained from MMMC
simulations. These results are close to those reported inf5g.
The C5 cluster does not dissociate up to 6 eV. In the range of
excitation energy,6–15 eV, the C3/C2 channel is dominant
in agreement with previous photodissociationf20g and colli-
sion induced dissociationf21g experiments. As already men-
tioned, C3 loss is also the most probable process in fragmen-
tation of positively and negatively charged carbon clusters
f6–19g. The other competing channel leading to two frag-
mentssC4/Cd has a negligible probability in the whole en-
ergy range. Since the C3/C2 channel requires less energy
than the C4/C one, we can conclude that it is the high sta-
bility of C3 that governs the observed decay in this energy
region. From 15 to 22 eV, only the two channels leading to
three fragments play a significant role: C3/2C and 2C2/C.
The four fragment channel C2/3C appears at 20 eV and is
the dominant one at 23 eV. The C5 cluster is completely
broken in 5Csfive fragment channeld at 25 eV. When the
number of fragments change from one to two and from four
to five the variation in the branching ratios is drastic. This
variation is smoother in the energy region from 10–25 eV.
This fact shows that not only energy considerations, but also
entropy factors are important to describe fragmentation. This
is also one of the reasons why the probability to observe the
C4/C channel is practically zero even at high excitation en-
ergies where more than two fragments are produced.

We have analyzed the isomer composition in the domi-
nant fragmentation channels. This is shown in Fig. 2. Al-
though we have run our simulations taking the linear singlet
C5 isomer as the starting point, the isomer analysis just be-
low the lowest dissociation threshold reveals a mixture of
four species:,25% linear singlet,,25% linear triplet,
,25% cyclic singlet, and,25% cyclic tripletsnot shown in
the figured. We have checked that starting the simulations
with a different C5 isomer barely changes these percentages.
The isomer analysis corresponding to the C3/C2 channel is
shown in Fig. 2. Dashed and dotted lines reproduce the
C3/C2 and C3/C/C channel probabilities shown in Fig. 1.
Our results point out that only the linear C3 isomers play a
significant role in both channels. Cyclic isomeric forms of C3
are never observed. Isomers with singlet multiplicities are
more important in the low energy regions of the C3/C2 and
C3/C/C channels, while isomers with triplet multiplicities
are relevant at higher energies. In particular, the two maxima
observed in the C3/C/C probability are due to the smooth
transition from a dominant singlet linear structure to a domi-
nant triplet linear structure. The analysis of the different C2
isomers shown in the bottom of the figure reveals that the
triplet multiplicity is dominant except between 5 and 7 eV.
Although not shown in the figure, a similar analysis shows
that atomic carbon always appears with dominant triplet
multiplicity.

As explained above, the MMMC results are obtained un-
der the assumption of internal thermodynamic equilibrium.
However, we would like to compare our results with experi-
mental branching ratios obtained in collision experiments

FIG. 1. sColor onlined Fragmentation of C5 from MMMC simu-
lations. Channel probabilities as functions of excitation energy.

FIG. 2. sColor onlined Isomer analysis of the C3/C2, C3/C/C,
and C2/C2/C channels in C5 fragmentation. Discontinuous lines
represent channel probabilities. LS, linear singlet; LT, linear triplet;
CS, cyclic singlet; CT, cyclic triplet.
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with a time of flight sTOFd of ,180 nsf21g. In order to be
confident that the experimental conditions are compatible
with the assumption of internal thermodynamic equilibrium,
we have performed time dependent Weisskopf simulations as
described in Sec. III. To simplify the latter calculations we
have only considered the dominant isomeric species. Accord-
ing to the analysis presented in Fig. 2, these are linear struc-
tures with either singlet or triplet spin multiplicity. We have
performed our calculations for two values of the TOF: the
experimental values180 nsd and TOF=̀ . The results are
shown in Figs. 3sad and 3sbd. The most significant difference
between both figures is a small shiftsless than 1 eVd in the
appearance of the C5→C3+C2 path. Therefore, we can con-
clude that the experimental conditions off5,21g are compat-
ible with the use of MMMC method to analyze the observed
fragmentation. However, if we compare the probabilities cal-
culated with the Weisskopf method at TOF=` with those
obtained with the MMMC methodsFig. 1d, we can see sig-
nificant discrepancies. For instance, the C4/C channel does
not appear in the MMMC calculations, while it has a sub-
stantial probability in the Weisskopf calculations between 10
and 12 eV. Although the treatment of the vibrational density
of states in both methods is identical, rotational effects have
been excluded in our implementation of the Weisskopf
method. To check if this is the origin of the discrepancy, we
have carried out MMMC simulations in which all rotational
factors have been excluded from the corresponding statistical
weights. The results of these MMMC simulations are shown
in Fig. 4. These results agree reasonably well with those
obtained with the Weisskopf method at TOF=` ssee Fig. 3d.
This proves that rotational effects play a very important role

in the fragmentation process and that our previous conclu-
sion, namely that the experimental conditions are compatible
with the use of MMMC method, is still valid.

In the case of C7, the number of fragmentation channels is
fifteen. The results of the MMMC simulations are shown in
Fig. 5; they are close to those reported inf5g. Fragmentation
is observed above 6 eV. As for C5, the dominant dissociation
channel at low energies is Cn−3/C3. Nevertheless, in the en-
ergy range 6–13 eV, the C5/C2 channel is also observed and
competes efficiently with the C4/C3 channel. The probability
of the C6/C channel is practically zero. The high stability of
C3 explains the large probabilities of all fragmentation chan-
nels that contain this cluster. For example, in the energy re-
gion where three fragment channels appears,14–25 eVd,
only those containing C3 are visible: C3/C3/C and
C3/C2/C2. These two channels are in strong competition
around 20 eV. There is almost no trace of the C5/C/C and
C4/C2/C channels. Above 25 eV dissociation channels with

FIG. 3. sColor onlined Time dependent Weisskopf calculations
of C5 fragmentation forsad TOF=2310−7 s andsbd TOF=`.

FIG. 4. sColor onlined MMMC simulation for C5 fragmentation
without rotational effects.

FIG. 5. sColor onlined Fragmentation of C7 from MMMC simu-
lations. Channel probabilities as functions of excitation energy.
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four, five, and six fragments present maximum probabilities
between 20 and 70%. The C7 cluster is completely broken
into seven carbon atoms at,40 eV. Although fragmentation
of C7 is more complicated than that of C5, we see again that
decay channels leading to C3 are favored. The absence of the
C6/C, C5/C/C, C4/C2/C, . . . , channels at high energies is
again due to entropic factors.

In this case, we have also analyzed the isomer composi-
tion of the dominant fragmentation channels. The results are
shown in Fig. 6. Discontinuous lines represent the channel
probabilities given in Fig. 5. The composition of the parent
cluster before fragmentationsnot shown in the figured is
,25% for each possible structureslinear or cyclic geometry
with singlet or triplet spin multiplicityd. For the C4/C3 chan-
nel we see that the peak at,7 eV is due to the dominance of
the C4 cyclic form with singlet spin multiplicity. C3 linear
isomers successively appear as the energy increases, being
the singlet isomer the most important one. This result shows
the importance of including all possible isomers in the simu-
lation, especially when they are energetically degenerate as
for the linear and cyclic structures of C4. The C3 isomer
analysis in the same channel shows that the cyclic structures
do not play any role in the fragmentation and that the linear
isomer with singlet multiplicity is the dominant structure.
The composition study of the C5/C2 channelsnot shown in
the figured indicates that the C5 cluster has always linear
geometry and singlet multiplicity, however Fig. 6 shows that
singlet and the triplet species compete for C2. The C3/C3/C
probability exhibits a shoulder at 22 eV. This can be well
understood by examination of the C3 isomer composition:
Figure 6 shows that the probabilities associated with the sin-
glet and triplet linear structures of C3 meet at this energy.
Atomic carbon produced in this channel correspond to the

triplet multiplicity. In the case of the C3/C2/C2 channel, the
asymmetric shape of the corresponding probability is again
due to the competition between the singlet and triplet linear
structures of C3 sthey meet at,22 eVd. The singlet isomer
appears at lower excitation energies while the triplet one be-
comes dominant at higher energies. The C2 analysis shows
that the triplet isomer is the dominant one in this channel.

We have also carried out time dependent fragmentation
calculations for C7 based on the Weisskopf theory. In these
calculations we have only considered the most stable isomer
for each fragment. The results are shown in Fig. 7. We can
see that the results for the experimental value of the TOF
s,200 nsd and TOF=̀ are very similar. The only difference
is a shift of,2 eV in the C4/C3 threshold. So, as for C5, the
use of the MMMC method is compatible with the experi-
mental conditions.

We move now to the C9 cluster. In this case, there are
thirty fragmentation channels. The results obtained with the
MMMC simulations are shown in Fig. 8. These results differ
somewhat from those reported inf5g for a large number of
fragments but are very close to them for excitation energies
below 20 eV. As in previous cases, the most favorable dis-
sociation channels involve C3 formation, for example, C6/C3
and C3/C3/C3. In this case, many fragmentation channels
compete efficiently in the energy range up to the total atomi-
zation of the cluster at,53 eV. We have also checked that
inclusion of rotational effects is essential in this case since,
by removing these effects from the corresponding weights,
we obtain quite different results. For example, C8/C would
appear as a dominant channel while it is not observed in
experimentsssee belowd.

The isomer analysis for the dominant fragmentation chan-
nels is shown in Fig. 9. In the C6/C3 channel, the dominant
species are the triplet linear structure of C6 and the singlet
linear structure of C3. The latter is also the dominant struc-

FIG. 6. sColor onlined Isomer analysis of the dominant dissocia-
tion channels in C7 fragmentation. Discontinuous lines represent
channel probabilities. Labels as defined in Fig. 2.

FIG. 7. sColor onlined Weisskopf calculations for C7 fragmen-
tation usingsad TOF=2310−7 s andsbd TOF=`.
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ture in the C3/C3/C3 and the 2C3/C2/C channels, although
the triplet linear structure has some relevance in the high
energy parts of these channels. As in the cases discussed
above, the C9 channel is almost a statistical mixture of the
four isomers included in our simulations. Also, the dominant
form of C2 is the linear triplet one.

A common feature in the three systems is the dominance
of the linear fragmentssLT and LSd with respect to the cyclic
ones. This is because the weightwq, which measures the
accessible vibrational states, is always larger for the linear
species than for the cyclic ones. This is illustrated in the last
column of Table I, which gives the logarithm of the density

of vibrational states at an energyD. Cyclic structures have a
lower value of the density of states because, in general, they
are more rigid than the linear ones and, therefore, they have
a larger average vibrational frequencysseen̄ column in Table
Id. The importance of including rotational effects to correctly
reproduce the fragmentation branching ratiosssee our previ-
ous discussion on Fig. 4d is the consequence of the dominant
role of the linear structures. Cyclic species are closer to a
spherical shape and, consequently, rotation about different
directions in space does not introduce significant effects.

Figure 10 shows the variation of the effective temperature
as a function of the cluster excitation energy for the three
cases investigated here. The behavior of these caloric curves
is monotonous except in the regions where new decay chan-
nels are open. The observed “plateaus” and oscillations can
be interpreted as the signature of first order phase transitions.
For C5, phase transitions are very marked at all intermediate
steps of the fragmentation process. In all cases, the phase
transitions are more apparent when total atomization of the
parent cluster is produced. The latter process occurs around
T=0.4 eV, which is close to the boiling temperature of mac-
roscopic liquid carbon:Tb=0.44 eV. Phase transitions asso-
ciated with partial fragmentation of the parent cluster are
apparent due to the finite size of the system: the larger the
cluster, the closer to the infinite size behavior.

The slope of the curves shown in Fig. 10 is usually inter-
preted as the inverse of the cluster heat capacity. It can be
seen that, in short ranges of temperature in the region of
phase transitions, the heat capacity can be negative. This
effect, which cannot occur in bulk matter, has been recently
observed in several experiments on alkalif42,55g and hydro-

FIG. 8. sColor onlined Fragmentation of C9 from MMMC simu-
lations. Channel probabilities as functions of excitation energy.

FIG. 9. sColor onlined Isomer analysis of the dominant dissocia-
tion channels in C9 fragmentation. Discontinuous lines represent
channel probabilities. Labels as defined in Fig. 2.

FIG. 10. sColor onlined Effective temperature as a function of
excitation energysleft y axisd. Discontinuous lines represent chan-
nel probabilitiessright y axisd.
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genf43,44g clusters, and has been explained in terms of two
effective temperatures corresponding to solid and liquid ag-
gregate statesf46,56g. The present results suggest that nega-
tive heat capacities are a general feature of any cluster un-
dergoing a phase transitionf57g.

VI. COMPARISON WITH EXPERIMENT

Very recently, fragmentation of neutral Cn clusters sn
=5,7,9d has been investigated experimentallyf5g. In these
experiments, neutral Cn clusters were produced by charge
transfer in fast collisions of Cn

+ ions with a helium gas. The
neutral species formed immediately after the collision are
electronically excited, which induces fragmentation. The
measured branching ratios are shown in Fig. 11. The main
problem in these experiments is that the excitation energy
resulting from the collision is unknown. This is a very im-
portant limitation to understand the observed fragmentation
because, as shown in the previous section, the fragmentation
branching ratios strongly depend on the excitation energy.
Nevertheless, a qualitative inspection of Fig. 11 shows that,
in agreement with our theoretical findings, fragmentation
channels leading to C3 are strongly favored. Comparison of
these results with our MMMC simulations of Figs. 1, 5, and
8 shows that, for the three systems investigated in this work,
theory and experiment are compatible if one assumes that the
energy distribution of the neutral cluster just after the colli-
sion has a maximum around 10 eV and a width of the order

of 10 eV. A more careful comparison between theory and
experiment has been reported in Ref.f5g, where the calcu-
lated probabilities were convoluted using an empirical func-
tion for the energy distribution. The latter function was cho-
sen to give the best fit of the experimental datasseef5g for
detailsd. We have repeated this procedure here. The results of
such convolutions are shown in Fig. 11. They are practically
undistinguishable from those reported inf5g. As can be seen,
the general agreement with experiment is good. The most
visible discrepancies are obtained for C9, in particular for the
C6/C3 channel that is overestimated. As in Ref.f5g, an im-
portant conclusion of this comparison is that the energy dis-
tribution is practically identical for the three systems C5, C7,
and C9. This is relevant because the three fits were per-
formed separately. Moreover, this is consistent with the con-
ditions used in the experiments. Indeed the collision velocity
and the cluster initial temperature are nearly the same in the
three experiments and, therefore, one would expect a similar
collisional excitation of the neutral Cn clusters formed in the
charge transfer reaction.

VII. CONCLUSIONS

We have applied the microcanonical Metropolis Monte
Carlo sMMMC d and the time dependent Weisskopf methods
to investigate fragmentation of highly excited small neutral
carbon clusters, namely C5, C7, and C9. The necessary mi-
croscopic information required to apply both methods has
been obtained from state-of-the-artab initio quantum chem-
istry calculations. In these calculations all possible fragmen-
tation channels, including different isomeric formsslinear
and cyclicd and spin multiplicities have been considered. By
comparing results of the MMMC and Weisskopf methods,
we have checked that, for the present applications, the as-
sumption of internal thermodynamic equilibriumsa neces-
sary condition to apply the MMMC methodd is well fulfilled
when the time of flight for detection of the different frag-
ments is of order of a few nanoseconds or larger. The analy-
sis of the different isomeric forms included in the MMMC
calculations illustrates that competition between different
structures of a given fragment is possible and affects the
observed branching ratios. We have also demonstrated that
inclusion of rotational effects is crucial to obtain a reason-
able description of the fragmentation process.

For the three systems investigated here, we have found
that channels leading to the formation of C3 play a dominant
role, in particular the Cn−3/C3 channel is always dominant
for a range of excitation energies that goes from the corre-
sponding dissociation threshold up to the energy region
where fragmentation into three or more species is possible.
Among the different isomeric forms of C3, the linear struc-
ture is the most important one. We have compared our cal-
culated branching ratios with the experimental results of
Martinet et al. f5g, who have studied fragmentation of ex-
cited neutral Cn clusters produced in the charge transfer re-
action Cn

++He→Cn+He+. The agreement between theory
and experiment is reasonably good provided that the theoret-
ical branching ratios are convoluted with a Cn energy distri-
bution centered at around 10 eV. Since the result of the con-

FIG. 11. sColor onlined Branching ratios for deexcitation of C5,
C7, and C9 clusters. Full circles: experiment; open squares: convo-
lution of the theoretical branching ratios with the energy distribu-
tions given in Ref.f5g. For C9, the figure does not include channels
leading to five or more fragments because the corresponding ratios
are smaller than 1%.
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volution is very sensitive to the form of this energy
distribution, we conclude that combination of experimental
measurements with accurate statistical fragmentation simula-
tions can provide a reasonable estimation of the cluster en-
ergy distribution just after the collision.

An interesting prediction of the present study is the exis-
tence of phase transitions. These phase transitions could be
observed in experiments like those reported inf5g by varying
the cluster excitation energy. This can be done, for instance,
by using different values of the impact velocity. So far, all
experiments have been performed at a fixed or nearly fixed
impact velocity of 2.6 a.u., which leads to an energy deposit
of around 10 eV. Our simulations have shown that there is a
correspondence between impact velocity and excitation en-
ergy. As can be seen in Fig. 10, an energy of 10 eV is too
low to observe phase transitionssthey are only visible at
around 20 eV and aboved. Thus, a broad range of impact
velocities should be considered in the experiments in order to
observe this phenomenon.

Despite the successful application of the present MMMC
model to understand fragmentation of small carbon clusters,
several improvements can still be done to gain in accuracy.
First, one should introduce vibrational anharmonicities,

which might be important at high excitation energies. Sec-
ond, the model should account for spin conservation, which
has been ignored to simplify the evaluation of the statistical
average given in Eq.s9d. Finally, the approximations per-
formed to evaluate the weightwpl should be checked in more
detail by comparing the results of our model with an “exact”
phase space theory or molecular dynamics simulations for a
small systemf58g. Although we do not expect significant
changes, introduction of these refinements might account for
the remaining discrepancies with experiment. Work along
these lines is in progress in our laboratory.
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