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Ultracold quantum dynamics: Spin-polarized K+K, collisions
with three identical bosons or fermions
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We have developed a potential-energy surface for spin-polarizé8 KK2(32:) collisions and carried out
guantum dynamical calculations of vibrational quenching at low and ultralow collision energies for both
bosons**K and*!K and fermions*%. At collision energies above about 0.1 mK the quenching rates are well
described by a classical Langevin model, but at lower energies a fully quantal treatment is essential. We find
that for the low initial vibrational state considered héwe=1), the ultracold quenching rates amet substan-
tially suppressed for fermionic atoms. For both bosons and fermions, vibrational quenching is much faster than
elastic scattering in the ultralow-temperature regime. This contrasts with the situation found experimentally for
molecules formed via Feshbach resonances in very high vibrational states.
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[. INTRODUCTION tic collisions that cause trap loss for molecules formed from
bosonic atoms are sometimes suppressed for molecules
Dilute gases of alkali-metal atoms are a rich source oformed from fermionic atom$16-19. At magnetic fields

interesting physical phenomena. Bose-Einstein condensategere the atom-atom scattering length is large and positive
(BECs were created in such gases in 19953] and have (a>100Q,), molecular lifetimes longer than 100 ms can be
been the subject of intense exploration ever since. Furtheachieved. Petrov fermiorgt al.[20] have explained the dif-
possibilities were opened up by the achievement of Fermierence in collisional properties of dimers formed from
degeneracy in 19994]. Among the alkali-metal atoms, bosonic and atoms in terms of the symmetries of the allowed
lithium [3,5] and potassiuni4,6] have a special status be- wave fgnctions. However, their derivation applies only to
cause both bosonic and fermionic isotopes are available arfimers in Feshbach resonance states and not to deeply bound
both Bose-Einstein condensation and Fermi degeneracy hav@olecular states. _ _
been achieved. The present paper will focus on potassium. N @ previous study21], we investigated ultralow energy

In recent years, much interest has focused on the intera€0!lisions between spin-polarized Li atoms ang timers,

tions between atoms and the formation of molecules in ultra?Vith the dimers in low-lying vibrational bound states. Our

cold gases. Donlegt al. [7] showed that it is possible to results showed no systematic differences in vibrational

i , "~ quenching between the bosorild and fermionic®Li cases.
Iﬁ;ri?\gd:‘?;?rzsar?fa?gri?cmtg :t?nrglse:l;jlgr] 5%2?: ir?){hrg?/?c?r?itt;: of This supports the conclusion that the suppression of inelastic

Feshbach H lecules f di thcollisions in the fermionic case requirbsth fermion sym-
a reshbach resonance. However, molecules formed in lﬁetry [20] and the long-range nature of the molecules in
way in an atomic BEC proved to be short-livedith life-

) . Feshbach resonance staf2g].
times of milliseconds _b_ecause of atom-molecule and | the present paper, we study ultralow energy K dél-
molecule-molecule collisiond7-10]: the molecules are jisions involving three equivalent nuclei. We constructadn
formed n the hlgheSt V|brat|0na| state that exists in the tW0'|n|t|o potentia'_energy Surface for the |0west Spin_p0|arized
bOdy potential Well, and any collision that ChangeS the Vibra-e|ectr0nic state of the potassium tr|n‘(d|4A’) and investi-
tional state releases enough energy to eject both collisiogate both bosoni¢**K , 'K) and fermionic(“v%K) cases. We
partners from the trap. perform quantum-mechanical scattering calculations at ener-
In the summer of 2003, Regalt al. [11] succeeded in gies down to 1 nK. Elastic, inelastic, and rearrangement pro-
forming ultracold diatomic molecules in a Fermi-degeneratecesses are considered. Our quantum dynamical results show
gas of “% atoms by ramping the magnetic field through athat, for all three systems, vibrational relaxation is more ef-
Feshbach resonance. Such molecules are composite bosofisient than elastic scattering, as in our previous studies with
However, these too turned out to be short-livéifletime  2°Na[23,24] and®'Li [21]. As in the case of lithium, there
<1 ms9. Finally, at the end of 2003, a long-lived molecular are no systematic differences in quenching rates for potas-
BEC was created using the same technifflg with a dif-  sium dimers formed from bosonic and fermionic atoms.
;g:?nn;d[:ﬁz?r??ﬁgé?:%?;i?([:i?fféh condensates have also been Il. POTENTIAL-ENERGY SURFACE OF K 3(14A§)
The use of fermionic isotopes appears to be crucial for the We have carried ouab initio calculations on K using a
production of long-lived molecular condensates. The inelassingle-reference restricted open-shell varig@b] of the
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coupled-cluster methof®26] with single, double, and nonit- The trimer interaction energyyimer Was calculated at 325
erative triple excitation§RCCSOT)]. We used the small- points on a 3D grid covering the range of interatomic dis-
core ECP10MWB effective core potentidECP) of Lein-  tances from 3.5 to 10.5 A with step 0.5 A. To avoid duplica-
inger et al. [27] together with the medium-sized valence tion, only points withr;,<r;3<r,3 are required. To meet
basis sets of Soldamet al. [28]. The quasirelativistid29]  geometrical constraints, all grid points must satisfy the trian-
ECP treats the & electrons as core and the’Bpf4s elec-  gular inequality [ry,—r,3 <r,3=<ry,+r;5 The distancer,;
trons as valence. The valence basis set for K was used iwas permitted to extend beyond 10.5 A. The final grid con-
uncontracted form. The resulting atomic polarizability sisted of 205C,, points, including 15D5;, points and 120
(294.238) is in excellent agreement with the experimental C.,, points; the latter include 1B..,, points. Each calculation
value[30] (292.8+ 6.333). was carried out using the full symmetry allowed bgLPRO.
For interpolation purposes, the three-atom interaction poThe nonadditive energieg; were extracted from the trimer
tential was decomposed into a sum of additive and nonaddinteraction energies using E(L).
tive contributions, For low-energy scattering calculations it is important to
have an interaction potential that behaves correctly at long
Viime(T12:F23,713) = > Vaimedrij)) + Va(ri2, s 3. (1) range. The RP-RKHS interpolation procedure in one dimen-
i<j sion allows this as decribed above. However, multidimen-
sional RP-RKHS interpolation always gives a potential that
e(f,g(trapolates beyond the points as a simple product of inverse
powers in the different coordinates. The leading long-range

ror in both dimer and trimer calculations. All treb initio i . . .
terms in the nonadditive energy are the third-order dipole-

calculations were performed using theLPRo packagd 32]. i ) . .
: - : _ : dipole-dipole (DDD) [40] and dipole-dipole-quadrupole
The dimer interaction energ¥,ime(r) was first calculated (DDQ) [41] terms given by

on an irregular grid of ;1\2 points at interatomic distances
between 2.1 and 14.0 A. The potential-energy curve was

generated using the modified one-dimensiondlD) VoPD = 32(13'1>11 *3 cosfs §O§¢l cosd,
reciprocal-power reproducing kernel Hilbert spa¢@P- 22313

RKHS) interpolation method33,34]. The interpolation was
done with respect to? using RP-RKHS parametens=2 and
n=3. Beyond 14 A the potential-energy curve was thus ex- VPP = 73 2(W123 + WL+ WAL (4)
trapolated to the form 3 1 ’

The full counterpoise correction of Boys and Berndi®il]
was employed to compensate for basis set superposition

3

and

where
Ce Cg C
Vaimed") == "5 = 75 ~ 10" v o
N _ Wik = W[Q cos¢y — 25 cos Iy + 6 o — ¢y)
The long-range coefficientsg andCg were kept fixed to the JKUKT ]
published values of 3.89710° E, a$ and 4.2<10° E, a3, X(3+5cos 2] (5)

respectively{35,36. The value of the “free” long-range co-
efficient C,o was then determined from the correspondingand ¢, is the bond angle at atoim It may be noted that the
RP-RKHS coefficientd37], and was found to be 2.0243 DDD term vanishes on a seam in the angular space and the
X 10 Ej, aio, which compares very well with 2.0294 DDQ term vanishes at all linear geometry configurations.
X 10 E,, ay° from Ref.[36]. Values ofD,=252.6 cmi* and ~ Damped versions of these terms were therefore subtracted
re=5.79 A calculated from the resulting curve are also infrom the total nonadditive energy,; before interpolation to
good agreement with experimental results &, (D,  give a quantityVs,
=252.74+0.12 ct, r,=5.772%20) A [38,39).

For quantum dynamics calculations, it is very important V5= Va = famf V520 + V5P, (6)
to have a potential-energy function that can be interpolated - @ @
smoothly(and without oscillationsbetweerab initio points. ~ The coefficientsZy;, and Z;;, were taken to be 2.72
Oscillations often arise in low-energy regions if one or moreX 10° Eq a3 and 5.11x 10° E, ag", respectively[42]. The
points have much higher energies than those surrounding@mping function serves to prevent the nonadditive energy
them. Some experimentation was needed to find a coordinagxploding at short range, and was chosen to have a product
system in which interpolation could be carried out withoutform, faamgri2, 123,119 =f(r12)f(r9)f(rys), where
problems. Jacobi and bond-angle/bond-length coordinates

were rejected because they do not lend themselves to sym- f(r)=exd- (kfr —1)?], 0<r<ks (7
metrization, and hyperspherical coordinates proved unsuit-
able because some combinations of grid points produce ge- =1, r=kg (8)

ometries with atoms very close together and correspondingly
high energies. In the end, we chose to calculate the potentialith the cutoff parametek;=8.0 A.

grid in pure bond-length coordinatés;»,r,3,r3;). This has The leading term of the multipole asymptotic expansion
the advantage that points that are related by symmetry hawa V; is the fourth-order dipole-dipole-dipole terf®DDD),
coordinates that are also simply related. which has a more complicatddnfactorizable form [43],
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V2P0 — _ 4_52(3) ‘{ 1+cog ¢, L1t cog ¢,
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1+cog
. b3 _ )
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The Coefficienzf’l)llis not yet known, so this term cannot be
subtracted out. However, the term is negative at all geom-
etries, so it can be eliminated by definin§=gx V;, where

3,.3.3

9= 122313
(1+c08 ¢pp)rag+ (1 +cog grds+ (1 +cod ¢a)rd,
(10
The leading asymptotic term of the functidj now has the

form—constx r;3r53r15 and is suitable for an “isotropic” ex-

trapolation of the type that results from a multidimensional
RP-RKHS interpolation. The functiol was interpolated
using the fully symmetrized 3D RP-RKHS interpolation
method[44]. The interpolation was done with respect to the
reduced coordinatér/S)® and with parameter$=10.0 A,
m=0, n=2 in each interatomic distance. The original poten-
tial is then rebuilt as

1 s
Vg = évg + framd V50D + V5O (12)

The final potential for quartet X Viimer has a global
minimum at —1269 cm' at an equilatera(D5;,) geometry
r15=r13=r»3=5.09 A. There is a shallow secondary mini-
mum at —-565 crit at a linearD.,, geometry withr ,=r;5
=5.68 A. Two cuts through the surface are shown as contour
plots in Fig. 1 for values of the valence angle 60° and 180°.

IIl. QUANTUM SCATTERING THEORY

A. Method

We have performed three-dimensional quantum dynami-
cal calculations for K+K including reactive scattering for

ftotal angula_r momentd=0->5. A_tlme—lnd_ependent formal- FIG. 1. Cuts through the Kquartet surface in valence coordi-
ism (which is the most appropriate choice for ultralow en-,,iq Upper panel: cut for a bond angle of 60°, showing the global
ergy scatteringwas used. The configuration space is dividedyinimum at =1269 et and 5.09 A. Lower panel: cut at collinear

into an inner and an outer region depending on the atoMgeometries; the collinear minimum is at ~565¢mand 5.68 A.
diatom distance. In the inner region, typically for hyperra-contours are labeled in cih

dius smaller thamp,,,,=60a,, we use a formalism based on

body-frame democratic hyperspherical coordindié5s,46|

which has previously proved successful in describing atom- . .

diatom insertion reactions such as(?®)+H,—NH+H fraction of c.onflguratlon space and allow for atom exchange.
[47,48 and Q'D)+H,— OH+H [49,50. These coordinates The scat?enng wave .funct|on is ex.panQed on this set of hy-
were also used in our recent work on Na+Na3,24 and perspherical adiabatic states. This yields a set of close-

Li+Li, [21]. coupling equations, which are solved using the Johnson-
At each hyperradiug, we determine a set of eigenfunc- Manolopoulos log-derivative propagat&1].
tions of a fixed-hyperradius reference Hamiltonigig=T In the outer region, we use the standard Arthurs-Dalgarno

+V by expanding the wave function in a set of pseudohyperformalism[SZJ based on Jacobi coordinates and assume that
spherical harmonics. The reference Hamiltonian incorporatet€ atom-molecule interaction can be described by an isotro-
the kinetic energyT arising from deformation and rotation Pic potentialU(R). We thus assume that no inelastic scatter-
around the axis of least inertia and the potential en&gy  ing occurs in the outer region. The radial channel wave func-
typical set of eigenvalues fors shown in Fig. 2. At small tions in this region are solutions of the equati@m atomic
hyperradius, the adiabatic states in each sector span a largaits)
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FIG. 2. Hyperspherical adiabatic energi@s Kelvin) as a function of the hyperradiysfor 1=0. The white line corresponds to the
energy of the initial statév=1,j=0) of the 39K2 molecule. The inset panel shows the regioa8p < 60a, in expanded form.

1 d®> 1(1+1) k2 modulus of the scattering length and the imaginary part of
(‘ 20 dR + 2uR? +U(R) |F(R) = ZF(R)’ (12 the scattering length,
whereu is the K—K; reduced mass aridandl| are, respec- _ > _ 4w
tively, the channel wave number and the orbital angular mo- oe=4nla’, oq= i m@. (15

mentum quantum number. The potenti?d|R) behaves as-

ymptotically as €K_K2/ R6 with a coefficient Cr, The _elastic and q_uenching rate coefficieK@ andKq are
=9050E,a. Equation(12) is solved by a finite difference obtained by multiplying the cross sections by the atom-
method in the range 60—10 0 The matching of the inner  diatom relative velocityk/ in atomic units,

and outer wave functions is performed on a boundary which Arfal? 4

is a hypersphere of radiys=60a,. This yields the reactance Kg= k, Ko=- o Im(a). (16)

K, scatteringS, and transitionT matrices. M 2

At ultralow collision energy, where only=0 is involved, the
B. Cross sections and Wigner laws elastic rate coefficient vanishes as the collision energy de-
At ultralow energies, foboth bosonic and fermionic sys- créases and the quenching rate coefficient becomes constant.
tems, onlyT; elements with a relative atom-diatom orbital ~ The Wigner threshold I.aw$53] for an orbital angular
angular momentum=0 contribute. We obtain elastic and Momentunt give the following dependences on the collision
guenching cross sections from the diagonal elem@ptef ~ energy for partial elastic and quenching cross sections:
the transitionT matrix,

(TIE -~ Eglou: UIQ -~ E|C—0|1|/2_ 17
a v
o= @\THZ, o= ﬁ(l -11-TiP). (13)  The energy dependence for partial elastic and quenching rate
coefficients is obtained by multiplying these cross sections
The complex scattering length can be written as by (2E;q/ )2,
a= = lim (T“) : (14) Ke ~ Ecoi® Ko~ Ecar (18)
2i k—o\ k

We also need state-to-state cross sections for the calcula-
The elastic and quenching cross sections at threshold cdion of rotational distributions. For partial wavk they are
therefore be written, respectively, in terms of the squaregyenerated from th& matrix using the standard formula,
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@ J+j I+ TABLE |. Channels contributing to partial wave, showing
T . .
i i = ——————— 2]1+1 .., |2 allowed values of the orbital angular momentdinfor a rovibra-
AT (2 + 1)k§j§0( )|:%_j| |’=\§—J’\ Torinail tional state(v,j =0) of **, or !k, molecules formed from bosonic
atoms.
(19
In this paper, we present differential cross sections 0 r 2 3
(DCSs for an atom-diatom system at ultralow collision en- =0 =1 =2 =3
ergy. The state-to-state magnetically averaged DCS is given
by
expansion on a basis of pseudohyperspherical harmonics
doyj—pjr 1 S S (23 with A; symmetry for fermionic nucle{bosonic atomsand
do  4K3(2i + A, symmetry for bosonic nucléfermionic atoms
A2+ |

2

J
+1)d o) Ty oim| (20) D. Partial waves

5 _ _ _ The behavior at the lowest collision energies is more

whered_,  is a Wigner reduced rotation matrix element.  syptle in the molecular case than in the atomic case. In atom-

In Eq. (20), 6., is the scattering angle in the center-of- atom collisions, the fundamental difference between bosons
mass(CM) coordinate systemd,,=0° is defined as the di- and fermions is seen in the behavior of cross sections. For
rection of the CM velocity vector of initial K atoms and two identical spin-polarized bosons, the elastic cross section
corresponds to forward scattering for the K produ@sd becomes constant as the collision energy goes to zero be-
backward scattering for the fproduct3. Backward scatter- cause only the wave (I1=0) contributes. In contrast, for two
ing of the K productsforward scattering for the Kprod-  fermions, the elastic cross section decreases as the collision

ucty thus corresponds t6.,,=180°. energy decreases because there is m@ave and only the
wave (I=1) contributes at ultralow energy.
C. Symmetries In atom-molecule collisions, by contrast; 0 is allowed

We are interested in elastic scattering and vibrational refor bothbosons and fermions. The partial waves are labeled
laxation, which have different roles in the formation and sta-J - WhereJ is the total mechanical angular momentum and
bility of a molecular BEC. Elastic collisions are favorable for IT iS the total parity. For three identical atoms, only one
evaporative cooling towards condensation, whereas inelastRartial wave is involved at ultralow energy- @or bosons
collisions provide a trap loss mechanism. For evaporativénd I for fermions. These both include-0.
cooling, knowledge of the ratio of elastic to nonelastic rate The channels contributing to each partial walleup to
coefficients is crucial. J=3 are shown for bosons in Table I. The total mechanical

Here the system is composed of three indistinguishabl@ngular momenturd=j +1 is the vector sum of the diatomic
atoms®K, 4K, or “K, and the K; potential-energy surface rotational angular momentuinand _the c_)rt_)l_tal9 angula}lrl mo-
is barrierless. We thus have to take into account two differenfi€ntuml. In this study, we consider initial°K, or “,
collisional processes: elastic collision K5(¢, j), and vibra- ~ molecules initially in rovibrational st%ﬁ;zl,J:O), so the
tional relaxation K+K(v,j)—K+K,(u',j’). For this latter ~ Parity IT'is (=1)*'=(-1)!=(=1)’. For ®K,, only oddj is
process, the rovibrational energ ;. of the product mol- ~ allowed so we consider the initial state=1,j=1). The par-
ecule is smaller than that of the initial molecule. tial waves for fermiongwith contributing channels shown in

The complete nuclear permutation group for a systemfable I)) can be separated into two categories depending on
with three identical nuclei isS;. To satisfy the Pauli prin- the lowest value of (or £, which is the projection of the
ciple, the total wave function must havg symmetry for total angular momenturd onto the axis of least inertia in the
bosonic nucle(*K, with 1=4) and A, symmetry for fermi-  corresponding hyperspherical basis)s&he parity-favored
onic nuclei(®K or “XK, both with 1=3/2). The total wave Partial waves includ€)=0 and the parity is the same as for
function is in general a sum of products of electronic, nucleath® boson case. In contrast, for the parity-unfavored partial
spin, and nuclear motion parts. In the present work, all magwaves theQ2=0 component is forbiddefas is the lowest
netic interactions are neglected, so that the electron-spin and
nuclear-spin wave functions are unchanged by the collision. TABLE Il. Channels contributing to partial wave®', showing
We consider three atoms in their stretched spin states, withllowed values of the orbital angular momenturfor a rovibra-
F=F.a=S+| andMg=F, so thatM,=1 and the nuclear-spin tional state(v,j=1) of a 40K2 molecule formed from fermionic
wave function is totally symmetric. For such states, colli-atoms.
sions take place entirely on the quartet surface whose eleé=
tronic wave function depends parametrically on nuclear co- 0" 1 2 37
ordinates with anA, symmetry. In our quantum scattering

. . ; =1 1=0,2 1=1,3 1=2,4
code, we impose boson or fermion symmetry by selecting
pseudohyperspherical harmonics in the basis sets to give the 1* 2° 3*
correct symmetry for the spatial nuclear wave function. The =1 =2 =3

adiabatic states in each sector are obtained by a variational
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value ofl) and the lowest value @ is 1. The parity-favored _to"
and unfavored partial waves have parityl)’ and (-1)%*1, Ng
respectively. g 10712 ;
3
8 10-13 4
E. Convergence and computer requirements §
K+K, collisions are the most difficult and demanding o 101 ]
ever studied in quantum dynamics calculations, because all E
three atoms are heavy and the potential well is deep. Careful Yo
attention has been devoted to the convergence of the calcu- 10° 106 107 10° 105 104 10° 102
lations. There are three crucial parameters for convergence: Collision energy (K)
the sizes of the basis sets, the size of each sector, and the
asymptotic matching distance. FIG. 3. Elastic cross sections fot + %K, (v=1,j=0): partial

First, the number of fixeg-eigenstates included in solv- as solid lines, total as dashed line. Collision energy is in Kelvin.
ing the coupled equations in each sector must be large
enough for convergence. It is essential to include many IV. DYNAMICAL RESULTS AND DISCUSSION
closed channels. For both bosonic and fermionic systems,
this number, which is also the number of coupled equations, The following discussion refers to collisions involving
increases about from 250 fd=0 to 1411 forJ=5. The time K bosons unless otherwise stated.
taken to solve the coupled equations varies, respectively,
from 2 min to 4 h per collision energy on a Power4 P690
IBM computer. The fixegp eigenstates are expanded in a
pseudohyperspherical harmonic basis built from trigonomet- The hyperspherical adiabatic energies for the lowest 250
ric functions, truncated ah ., the maximum value of the hyperspherical states with=0 are shown as a function of
grand angular momentuni ,, varies from 198(867 har-  the hyperradiug in Fig. 2. If we considefK, molecules in
monic9 at small hyperradius to 558625 harmonicsat  their(v=1,j=0) rovibrational state, we have 15 hyperspheri-
large hyperradius. The calculation to build the basis setgal states asymptotically open, and 235 asymptotically
takes 180 h and produces an output binary file of 40 giclosed. There are two minima: the deepest corresponds to the
gabytes which contains all information for the close-couplingequilateral geometry, while the secondary minimum at
code. around 2@, corresponds to the linear geometry. At lajge
Second, the size of each sector must be small enough the hyperspherical adiabatic energies tend to the energies of
give converged results. For both bosons and fermions, tw¢he diatomic molecule K The zero of energy is taken as the
different sector sizes were used: 0.6g5from p dissociation limit to three atoms.
=8.0 to 26.@y and 0.0%, from 268, to the matching dis-
tance 6@,. This yields 1400 sectors, which is about four
times larger than were used for the case of N&8,24].

Third, the matching distancpm,, Where the adiabatic  The fully converged elastic and quenching integral cross
states are projected onto the arrangement channels, must §8ctions and their partial-wave contributions Ifei0 to 5 are
chosen to describe correctly,Knolecules in the vibrational shown in Figs. 3 and 4 for collision energies between 1 nK
states requiredin evenj states for bosons and oddstates  gnd 10 mK. At E.oi=10°K, the elastic cross section is
for fermiong. We have takerpna,=60ap, Which is larger  apout 1.9< 10712 cn¥ whereas the quenching cross section is
than the value of 5§ for the Na case. For bosons, the apout 1.4x 109 cn?. The slope of each partial cross section
hyperspherical wave function was projected onto a set ofs given by the Wigner law§Eq. (17)] at ultralow energy

K, or ™K, rovibrational functions with jna  except for the case of elastic scattering forl, where the
=(76,70,66,60,56,50,42,34,29 rv=0,...,9. Forfer-  dispersion-modified threshold law~ EZ.,, applies. The up-
mions K,  rovibrational  functions  with jna  per limit of the Wigner regime is 0.LK. The minimum in
=(77,71,67,61,55,49,43,35,25,Were used. thel =0 partial elastic cross section neard & arises simply

At collision energies below LK, only the partial wave from a near-zero phase shift in the formula for the elastic
that included =0 contributes to cross sectiof@® for bosons  cross section.
and I for fermions. However, at higher energies, other par-  The quenching cross section for a partial wave with
tial waves contribute. In this work, for the bosonic cases we>0 shows a maximum at a collision energy which is given
have converged the elastic and quenching cross sections fapproximately by the maximum of the effective potential in-
collision energies up to 10 mK by including partial waves upcluding the centrifugal and dispersion terms,
to J=5. Calculations for the fermionic systet’K +*°K , are
converged up to 10@K by including partial waves up to I0+1) Cix
J=2. We have considered only three valueg édr fermions VI(R) = i 2
because the calculations are twice as expensive for fermions 2uR R
as for bosons(because both parity-favored and parity-
unfavored partial waves contribute in the fermion gase The height of the barrier is

A. Hyperspherical adiabatic energies

B. Cross sections and rate coefficients

(21)
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FIG. 4. Quenching cross sections oK+, (v=1,j=0):
partial as solid lines, total as dashed line. Vertical lines correspond FIG. 6. Differential cross section for elastic scattering at®10
to the maxima of the effective potentiadee text for details Col-  (dotted 1ing, 107 K (dashed ling and 102K (solid line). The
lision energy is in Kelvin. large forward scattering at 19K is not completely shown; at zero
degree the DCS value isx310° 12 cné srl.

o Na+nP?

max= 3 320 12 (22)  for bosonic atoms, such experiments were unable to produce
o K—Kz)

a long-lived molecular condensate because of the efficiency
of quenching collisions.

at a distance At high collision energy, when several partial waves are

va involved (I=0-5), the total quenching rate coefficient can be
R = |:6MCK—K2] (29 compared with that given by the classical Langevin capture
M1+ 1) model[54],
_ _ _ _ o _ 3. CY3
The resulting barrier heights are included in Fig. 4. The first KCapturg ) = _Tr( K—K2>E1/6. (24)
vertical line corresponds to tHe=1 partial wave and so on Q 26\ 12

up to thel =5 partial wave. It may be seen that each partial . - . . -
wave has a maximum at an energy slightly higher than the This rate coefficient is shown as a funonn qf coIhgo_n
corresponding/'max At collision energies below the centrifu- energy in Fig. 5. It may be seen that there is semiquantitative
gal barrier, the quenching partial cross sections for dach agrgement blﬁt\_/veen our quagtum Orelsult; gn? thfh ctapture
follow Wigner laws given by Eq(17). Above the centrifugal mode d'?fr coflision energmz above t'h M. e(f)w a enti |
barrier, the quenching probabilities come close to their maxi<'9y: dIferences appear because there are tewer partia
mum value of 1 and the cross sections varfgasbecause of waves and the dynamics must then be described by a full

the k™2 factor in the expression for the cross section. quantum-mechanical treatment.
The total quenching rate coefficient is larger than the elas-
tic rate over a wide range of collision energies, up to 1 mK, C. Differential cross sections

and is three orders of magnitude larger than the elastic rate at

) . : _ Total differential cross sectiorj€q. (20)] for elastic and
1 nK (Fig. 9)._The large quenching rates are_consstgnt W'thquenching processes Witﬁng molecules initially in (v
Eﬁigine)égﬁgzﬁ;;feéhgt lifszﬁﬁar:hmrzcslgﬁgnlcne e:fﬂ%%!sose:- 1,j=0) are shown in Figs. 6 and 7 for collision energies
y ' 107 10% and 102 K. At 107 K, where only thd=0 and 1

10-10 E

Rate coefficient (cm®s™)

Quenching DCS (10"%cm?sr)

101

10° 108 107 10 105 104 103 102 .
Collision energy (K) 0 20 40 60 80 100 120 140 160 180
Scattering angle (degree)

FIG. 5. Total quenching rate coefficients f6K+3%, (v=1,j
=0). The result from the Langevin model is shown as a dotted line. FIG. 7. Differential cross section for vibrational relaxation at
Collision energy is in Kelvin. 1078 K (dotted ling, 10* K (dashed ling and 102 K (solid line).
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—~ 1070 e e e e e e e
2 Quenching
§
= 10
g+ ks
g 3
o = -
%0- § 10721 ——— ®K 4+ ®K,fv=1,j=0)
3 % K + K (v=1,j=1)
‘% [ass 1018 77 “K+‘"K2(v=1,j=0)
°
o

10°  10® 107 10®% 105 104
Collision energy (K)

FIG. 9. Comparison of elastic and quenching rate coefficients
) o ) . for bosons(dashed and dotted lineand fermiongsolid line). Col-
FIG. 8. Rotational distributions as a function of the collision }gign energy is in Kelvin.
energy. The labej’ is the final rotational quantum number %?Kz
(v'=0). Collision energy is in Kelvin.

_ _ _ _ In the ultracold regime, the total rate coefficients are very
partial waves contribute, the elastic and quenching DCS argimilar for the two bosonic systems. However, the rotation-

quasi-isotropic. Below this energinot shown, only thel )y state-resolved cross sectiomot shown hergare differ-
=0 partial wave is involved and so the DCS are fully isotro-gnt and the similarity of the total cross sections and rate

pic. At higher energies, other partial waves contribute anQigefficients is evidently coincidental. Rotational distributions
the DCS depend on the center-of-mass scattering afgle

) ) are sensitive to small changes in the mass and also to small
_For_the elastic prc;;;ess, Fig. 6 skéows that backward ScaE'hanges in the interaction potential as in Na- 2d].
tsechtge rllsn srgagﬁ;ifgrl AtKlrt?hzn :; %a?]hgﬁ(:vérrféi??)ff?g\:vvs;? d Figure 9 shows that the quenching processes are very ef-
Ing | : N . . ficient also for the fermionic system where the partial wave

scattering Is found. Undulations at this energy are simply du?zo is allowed as in bosonic systems. There is only a small

to ?nrig]r?t?;vsteff[ﬁg.behavior of the auenching DCS is IeSSdif'ference between fermions and bosons. Both elastic and

s stematic(Fi’ 7. The angular digtributiong is stronal quenching rate coefficients are slightly smaller for the fermi-
)éake din thegbackwar d dire%tion at 3K whereas the fO%_y onic system than for the bosonic systems. However, the ratio

P e . s 5 of elastic to quenching rate coefficients is nearly the same for

ward scattering is dominant at T0K. In addition, at 10% K bosons and fermions

the quenching DCS presents some oscillations in the side- '

ways scattering with two pronounced maxima at 30°
and 70°.

V. CONCLUSION

D. Final rotational distributions We have performed the first quantum dynamics calcula-

he final ional distribution fof lecules ini tions for K+K; collisions in the energy range 1 nK—-10 mK,
_ The final rotational distribution for"K, molecules ini- qing 5 quartet potential-energy surface for the potassium
tially in (v=1,j=0) is shown in Fig. 8 as a function of the

7 - trimer. We have found that the quenching rate coefficient is
collision energy. At each energy, we have divided each rotag, ch |arger than the elastic rate coefficient at ultralow col-

tionally resolved cross sectit:[nc_orresggnding to a given fi- jision energies. This applies for all three collisions studied
nal rotational quantum numbgf for *°K, (v'=0)] by the /e 3+ B, 4+ 4K, and *K + 4K, where the initial
total _que_nching Cross _section. The sum of the distribu_tiork2 molecules are in thév=1,j=0) rovibrational state for
over j’ gives unity at fixed energy. Becquse cross Se,Ct'O”Bosons or(v=1,j=1) for fermions. Thus K molecules in
obey the Wigner laws$Eq. (17)] the rotational distribution yoqe states are not good candidates to accumulate large den-
bec"".‘es co'nstant in the ultracold regime. The final rot§t|on ities of ultracold molecules or to achieve long-lived molecu-
ftgtijezg IS tne most polpulzted fg 1KmT:' Wherga‘sl lar BEC. For the bosonic systeni&K and *'K), the results
=2,4,6,8 are thenost populated at 10 mK. Figure 8 also ,.¢ qyajitatively similar to those we obtained previously for
shows that only the lowest rotational states are S|gn|f|cantly;3,\|a[23 24 and’Li [21] atoms
populated at all collision energies. The quantum results for quenching rates agree semiquan-
titatively with the Langevin model at high collision energies,
E. Bosons Vs fermions but below 0.1 mK the dynamics is described only by the
quantum theory.

In Fig. 9 we compare the total elastic and quenching rate The study of the fermionic system wiffiK atoms of par-
coefficients in the ultracold regime for the three systemsticular interest, because it has recently been possible to create
3K +3%, or “K+*K,, composed of bosonic atoms and stable molecular BECs diLi, and “%K, [12-15. In these
40 +4% ,, composed of fermionic atoms. experiments, molecules were formed in the highest vibra-
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tional state supported by the potential well and it was found ACKNOWLEDGMENTS
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