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We have developed a potential-energy surface for spin-polarized Ks2Sd+K2s3Su
+d collisions and carried out

quantum dynamical calculations of vibrational quenching at low and ultralow collision energies for both
bosons39K and 41K and fermions40K. At collision energies above about 0.1 mK the quenching rates are well
described by a classical Langevin model, but at lower energies a fully quantal treatment is essential. We find
that for the low initial vibrational state considered heresv=1d, the ultracold quenching rates arenot substan-
tially suppressed for fermionic atoms. For both bosons and fermions, vibrational quenching is much faster than
elastic scattering in the ultralow-temperature regime. This contrasts with the situation found experimentally for
molecules formed via Feshbach resonances in very high vibrational states.
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I. INTRODUCTION

Dilute gases of alkali-metal atoms are a rich source of
interesting physical phenomena. Bose-Einstein condensates
sBECsd were created in such gases in 1995f1–3g and have
been the subject of intense exploration ever since. Further
possibilities were opened up by the achievement of Fermi
degeneracy in 1999f4g. Among the alkali-metal atoms,
lithium f3,5g and potassiumf4,6g have a special status be-
cause both bosonic and fermionic isotopes are available and
both Bose-Einstein condensation and Fermi degeneracy have
been achieved. The present paper will focus on potassium.

In recent years, much interest has focused on the interac-
tions between atoms and the formation of molecules in ultra-
cold gases. Donleyet al. f7g showed that it is possible to
form dimers of bosonic atoms such as85Rb by magnetic
tuning from an atomic to a molecular state in the vicinity of
a Feshbach resonance. However, molecules formed in this
way in an atomic BEC proved to be short-livedswith life-
times of millisecondsd because of atom-molecule and
molecule-molecule collisionsf7–10g: the molecules are
formed in the highest vibrational state that exists in the two-
body potential well, and any collision that changes the vibra-
tional state releases enough energy to eject both collision
partners from the trap.

In the summer of 2003, Regalet al. f11g succeeded in
forming ultracold diatomic molecules in a Fermi-degenerate
gas of 40K atoms by ramping the magnetic field through a
Feshbach resonance. Such molecules are composite bosons.
However, these too turned out to be short-livedslifetime
,1 msd. Finally, at the end of 2003, a long-lived molecular
BEC was created using the same techniquef12g with a dif-
ferent Feshbach resonance. Such condensates have also been
formed from dimers of6Li f13–15g.

The use of fermionic isotopes appears to be crucial for the
production of long-lived molecular condensates. The inelas-

tic collisions that cause trap loss for molecules formed from
bosonic atoms are sometimes suppressed for molecules
formed from fermionic atomsf16–19g. At magnetic fields
where the atom-atom scattering length is large and positive
sa.1000a0d, molecular lifetimes longer than 100 ms can be
achieved. Petrov fermionicet al. f20g have explained the dif-
ference in collisional properties of dimers formed from
bosonic and atoms in terms of the symmetries of the allowed
wave functions. However, their derivation applies only to
dimers in Feshbach resonance states and not to deeply bound
molecular states.

In a previous studyf21g, we investigated ultralow energy
collisions between spin-polarized Li atoms and Li2 dimers,
with the dimers in low-lying vibrational bound states. Our
results showed no systematic differences in vibrational
quenching between the bosonic7Li and fermionic6Li cases.
This supports the conclusion that the suppression of inelastic
collisions in the fermionic case requiresboth fermion sym-
metry f20g and the long-range nature of the molecules in
Feshbach resonance statesf22g.

In the present paper, we study ultralow energy K+K2 col-
lisions involving three equivalent nuclei. We construct anab
initio potential-energy surface for the lowest spin-polarized
electronic state of the potassium trimers14A28d and investi-
gate both bosonics39K, 41Kd and fermionics40Kd cases. We
perform quantum-mechanical scattering calculations at ener-
gies down to 1 nK. Elastic, inelastic, and rearrangement pro-
cesses are considered. Our quantum dynamical results show
that, for all three systems, vibrational relaxation is more ef-
ficient than elastic scattering, as in our previous studies with
23Na f23,24g and 6,7Li f21g. As in the case of lithium, there
are no systematic differences in quenching rates for potas-
sium dimers formed from bosonic and fermionic atoms.

II. POTENTIAL-ENERGY SURFACE OF K 3„14A28…

We have carried outab initio calculations on K3 using a
single-reference restricted open-shell variantf25g of the
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coupled-cluster methodf26g with single, double, and nonit-
erative triple excitationsfRCCSDsTdg. We used the small-
core ECP10MWB effective core potentialsECPd of Lein-
inger et al. f27g together with the medium-sized valence
basis sets of Soldánet al. f28g. The quasirelativisticf29g
ECP treats the 1s2 electrons as core and the 3s2 3p6 4s elec-
trons as valence. The valence basis set for K was used in
uncontracted form. The resulting atomic polarizability
s294.2a0

3d is in excellent agreement with the experimental
value f30g s292.8±6.1a0

3d.
For interpolation purposes, the three-atom interaction po-

tential was decomposed into a sum of additive and nonaddi-
tive contributions,

Vtrimersr12,r23,r13d = o
i, j

Vdimersr ijd + V3sr12,r23,r13d. s1d

The full counterpoise correction of Boys and Bernardif31g
was employed to compensate for basis set superposition er-
ror in both dimer and trimer calculations. All theab initio
calculations were performed using theMOLPROpackagef32g.

The dimer interaction energyVdimersrd was first calculated
on an irregular grid of 42 points at interatomic distances
between 2.1 and 14.0 Å. The potential-energy curve was
generated using the modified one-dimensionals1Dd
reciprocal-power reproducing kernel Hilbert spacesRP-
RKHSd interpolation methodf33,34g. The interpolation was
done with respect tor2 using RP-RKHS parametersm=2 and
n=3. Beyond 14 Å the potential-energy curve was thus ex-
trapolated to the form

Vdimersrd = −
C6

r6 −
C8

r8 −
C10

r10 . s2d

The long-range coefficientsC6 andC8 were kept fixed to the
published values of 3.8973103 Eh a0

6 and 4.23105 Eh a0
8,

respectivelyf35,36g. The value of the “free” long-range co-
efficient C10 was then determined from the corresponding
RP-RKHS coefficientsf37g, and was found to be 2.0243
31010 Eh a0

10, which compares very well with 2.0294
31010 Eh a0

10 from Ref. f36g. Values ofDe=252.6 cm−1 and
re=5.79 Å calculated from the resulting curve are also in
good agreement with experimental results on39K2 sDe
=252.74±0.12 cm−1, re=5.7725s20d Å f38,39gd.

For quantum dynamics calculations, it is very important
to have a potential-energy function that can be interpolated
smoothlysand without oscillationsd betweenab initio points.
Oscillations often arise in low-energy regions if one or more
points have much higher energies than those surrounding
them. Some experimentation was needed to find a coordinate
system in which interpolation could be carried out without
problems. Jacobi and bond-angle/bond-length coordinates
were rejected because they do not lend themselves to sym-
metrization, and hyperspherical coordinates proved unsuit-
able because some combinations of grid points produce ge-
ometries with atoms very close together and correspondingly
high energies. In the end, we chose to calculate the potential
grid in pure bond-length coordinatessr12,r23,r31d. This has
the advantage that points that are related by symmetry have
coordinates that are also simply related.

The trimer interaction energyVtrimer was calculated at 325
points on a 3D grid covering the range of interatomic dis-
tances from 3.5 to 10.5 Å with step 0.5 Å. To avoid duplica-
tion, only points withr12ø r13ø r23 are required. To meet
geometrical constraints, all grid points must satisfy the trian-
gular inequality ur12−r13uø r23ø r12+r13. The distancer23
was permitted to extend beyond 10.5 Å. The final grid con-
sisted of 205C2v points, including 15D3h points and 120
C`v points; the latter include 15D`h points. Each calculation
was carried out using the full symmetry allowed byMOLPRO.
The nonadditive energiesV3 were extracted from the trimer
interaction energies using Eq.s1d.

For low-energy scattering calculations it is important to
have an interaction potential that behaves correctly at long
range. The RP-RKHS interpolation procedure in one dimen-
sion allows this as decribed above. However, multidimen-
sional RP-RKHS interpolation always gives a potential that
extrapolates beyond the points as a simple product of inverse
powers in the different coordinates. The leading long-range
terms in the nonadditive energy are the third-order dipole-
dipole-dipole sDDDd f40g and dipole-dipole-quadrupole
sDDQd f41g terms given by

V3
DDD = 3Z111

s3d 1 + 3 cosf3 cosf1 cosf2

r12
3 r23

3 r13
3 s3d

and

V3
DDQ = Z112

s3d sW123+ W231+ W312d, s4d

where

Wijk =
3

16r jk
4 r ik

4 r ij
3 f9 cosfk − 25 cos 3fk + 6 cossfi − f jd

3s3 + 5 cos 2fkdg s5d

andfi is the bond angle at atomi. It may be noted that the
DDD term vanishes on a seam in the angular space and the
DDQ term vanishes at all linear geometry configurations.
Damped versions of these terms were therefore subtracted
from the total nonadditive energyV3 before interpolation to
give a quantityV38,

V38 = V3 − fdampfV3
DDD + V3

DDQg. s6d

The coefficientsZ111
s3d and Z112

s3d were taken to be 2.72
3105 Eh a0

9 and 5.113106 Eh a0
11, respectively f42g. The

damping function serves to prevent the nonadditive energy
exploding at short range, and was chosen to have a product
form, fdampsr12,r23,r13d= fsr12dfsr23dfsr13d, where

fsrd = expf− sk3/r − 1d2g, 0 , r , k3 s7d

=1, r ù k3 s8d

with the cutoff parameterk3=8.0 Å.
The leading term of the multipole asymptotic expansion

of V38 is the fourth-order dipole-dipole-dipole termsDDDDd,
which has a more complicatedsunfactorizabled form f43g,

QUÉMÉNERet al. PHYSICAL REVIEW A 71, 032722s2005d

032722-2



V3
DDDD = −

45

64
Z1111

s3d F1 + cos2 f1

r12
6 r13

6 +
1 + cos2 f2

r12
6 r23

6

+
1 + cos2 f3

r13
6 r23

6 G . s9d

The coefficientZ1111
s3d is not yet known, so this term cannot be

subtracted out. However, the term is negative at all geom-
etries, so it can be eliminated by definingV39=g3V38, where

g =
r12

3 r23
3 r13

3

s1 + cos2 f1dr23
6 + s1 + cos2 f2dr13

6 + s1 + cos2 f3dr12
6 .

s10d

The leading asymptotic term of the functionV39 now has the
form—const3 r12

−3r23
−3r13

−3 and is suitable for an “isotropic” ex-
trapolation of the type that results from a multidimensional
RP-RKHS interpolation. The functionV39 was interpolated
using the fully symmetrized 3D RP-RKHS interpolation
methodf44g. The interpolation was done with respect to the
reduced coordinatesr /Sd3 and with parametersS=10.0 Å,
m=0, n=2 in each interatomic distance. The original poten-
tial is then rebuilt as

V3 =
1

g
V39 + fdampfV3

DDD + V3
DDQg. s11d

The final potential for quartet K3, Vtrimer, has a global
minimum at −1269 cm−1 at an equilateralsD3hd geometry
r12=r13=r23=5.09 Å. There is a shallow secondary mini-
mum at −565 cm−1 at a linearD`h geometry withr12=r13
=5.68 Å. Two cuts through the surface are shown as contour
plots in Fig. 1 for values of the valence angle 60° and 180°.

III. QUANTUM SCATTERING THEORY

A. Method

We have performed three-dimensional quantum dynami-
cal calculations for K+K2 including reactive scattering for
total angular momentaJ=0–5. A time-independent formal-
ism swhich is the most appropriate choice for ultralow en-
ergy scatteringd was used. The configuration space is divided
into an inner and an outer region depending on the atom-
diatom distance. In the inner region, typically for hyperra-
dius smaller thanrmax=60a0, we use a formalism based on
body-frame democratic hyperspherical coordinatesf45,46g
which has previously proved successful in describing atom-
diatom insertion reactions such as Ns2Dd+H2→NH+H
f47,48g and Os1Dd+H2→OH+H f49,50g. These coordinates
were also used in our recent work on Na+Na2 f23,24g and
Li+Li 2 f21g.

At each hyperradiusr, we determine a set of eigenfunc-
tions of a fixed-hyperradius reference HamiltonianH0=T
+V by expanding the wave function in a set of pseudohyper-
spherical harmonics. The reference Hamiltonian incorporates
the kinetic energyT arising from deformation and rotation
around the axis of least inertia and the potential energyV. A
typical set of eigenvalues for K3 is shown in Fig. 2. At small
hyperradius, the adiabatic states in each sector span a large

fraction of configuration space and allow for atom exchange.
The scattering wave function is expanded on this set of hy-
perspherical adiabatic states. This yields a set of close-
coupling equations, which are solved using the Johnson-
Manolopoulos log-derivative propagatorf51g.

In the outer region, we use the standard Arthurs-Dalgarno
formalismf52g based on Jacobi coordinates and assume that
the atom-molecule interaction can be described by an isotro-
pic potentialUsRd. We thus assume that no inelastic scatter-
ing occurs in the outer region. The radial channel wave func-
tions in this region are solutions of the equationsin atomic
unitsd

FIG. 1. Cuts through the K3 quartet surface in valence coordi-
nates. Upper panel: cut for a bond angle of 60°, showing the global
minimum at −1269 cm−1 and 5.09 Å. Lower panel: cut at collinear
geometries; the collinear minimum is at −565 cm−1 and 5.68 Å.
Contours are labeled in cm−1.
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S−
1

2m

d2

dR2 +
lsl + 1d
2mR2 + UsRdDFsRd =

k2

2m
FsRd, s12d

wherem is the K–K2 reduced mass andk and l are, respec-
tively, the channel wave number and the orbital angular mo-
mentum quantum number. The potentialUsRd behaves as-
ymptotically as −CK–K2

/R6 with a coefficient CK–K2
=9050Eha0

6. Equations12d is solved by a finite difference
method in the range 60–10 000a0. The matching of the inner
and outer wave functions is performed on a boundary which
is a hypersphere of radiusr=60a0. This yields the reactance
K, scatteringS, and transitionT matrices.

B. Cross sections and Wigner laws

At ultralow energies, forboth bosonic and fermionic sys-
tems, onlyTii elements with a relative atom-diatom orbital
angular momentuml =0 contribute. We obtain elastic and
quenching cross sections from the diagonal elementsTii of
the transitionT matrix,

sE =
p

k2uTii u2, sQ =
p

k2s1 − u1 − Tii u2d. s13d

The complex scattering length can be written as

a =
1

2i
lim
k→0

STii

k
D . s14d

The elastic and quenching cross sections at threshold can
therefore be written, respectively, in terms of the square

modulus of the scattering length and the imaginary part of
the scattering length,

sE = 4puau2, sQ = −
4p

k
Imsad. s15d

The elastic and quenching rate coefficientsKE and KQ are
obtained by multiplying the cross sections by the atom-
diatom relative velocity,k/m in atomic units,

KE =
4puau2

m
k, KQ = −

4p

m
Imsad. s16d

At ultralow collision energy, where onlyl =0 is involved, the
elastic rate coefficient vanishes as the collision energy de-
creases and the quenching rate coefficient becomes constant.

The Wigner threshold lawsf53g for an orbital angular
momentuml give the following dependences on the collision
energy for partial elastic and quenching cross sections:

sE
l , Ecoll

2l , sQ
l , Ecoll

l−1/2. s17d

The energy dependence for partial elastic and quenching rate
coefficients is obtained by multiplying these cross sections
by s2Ecoll /md1/2,

KE
l , Ecoll

2l+1/2, KQ
l , Ecoll

l . s18d

We also need state-to-state cross sections for the calcula-
tion of rotational distributions. For partial waveJ, they are
generated from theT matrix using the standard formula,

FIG. 2. Hyperspherical adiabatic energiessin Kelvind as a function of the hyperradiusr for V=0. The white line corresponds to the
energy of the initial statesv=1,j =0d of the 39K2 molecule. The inset panel shows the region 58a0,r,60a0 in expanded form.
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sv j→v8 j8 =
p

s2j + 1dkv j
2 o

J=0

`

s2J + 1d o
l=uJ−j u

J+j

o
l8=uJ−j8u

J+j8

uTv8 j8l8,v jl
J u2.

s19d

In this paper, we present differential cross sections
sDCSsd for an atom-diatom system at ultralow collision en-
ergy. The state-to-state magnetically averaged DCS is given
by

dsv j→v8 j8

dv
=

1

4kv j
2 s2j + 1d o

m,m8
Uo

J

s2J

+ 1ddm8,m
J sucmdTv8 j8m8,v jm

J U2
, s20d

wheredm8,m
J is a Wigner reduced rotation matrix element.

In Eq. s20d, ucm is the scattering angle in the center-of-
masssCMd coordinate system.ucm=0° is defined as the di-
rection of the CM velocity vector of initial K atoms and
corresponds to forward scattering for the K productssand
backward scattering for the K2 productsd. Backward scatter-
ing of the K productssforward scattering for the K2 prod-
uctsd thus corresponds toucm=180°.

C. Symmetries

We are interested in elastic scattering and vibrational re-
laxation, which have different roles in the formation and sta-
bility of a molecular BEC. Elastic collisions are favorable for
evaporative cooling towards condensation, whereas inelastic
collisions provide a trap loss mechanism. For evaporative
cooling, knowledge of the ratio of elastic to nonelastic rate
coefficients is crucial.

Here the system is composed of three indistinguishable
atoms39K, 40K, or 41K, and the K3 potential-energy surface
is barrierless. We thus have to take into account two different
collisional processes: elastic collision K+K2sv , jd, and vibra-
tional relaxation K+K2sv , jd→K+K2sv8 , j8d. For this latter
process, the rovibrational energyEv8,j8 of the product mol-
ecule is smaller than that of the initial molecule.

The complete nuclear permutation group for a system
with three identical nuclei isS3. To satisfy the Pauli prin-
ciple, the total wave function must haveA1 symmetry for
bosonic nucleis40K, with I =4d andA2 symmetry for fermi-
onic nuclei s39K or 41K, both with I =3/2d. The total wave
function is in general a sum of products of electronic, nuclear
spin, and nuclear motion parts. In the present work, all mag-
netic interactions are neglected, so that the electron-spin and
nuclear-spin wave functions are unchanged by the collision.
We consider three atoms in their stretched spin states, with
F=Fmax=S+ I andMF=F, so thatMI = I and the nuclear-spin
wave function is totally symmetric. For such states, colli-
sions take place entirely on the quartet surface whose elec-
tronic wave function depends parametrically on nuclear co-
ordinates with anA2 symmetry. In our quantum scattering
code, we impose boson or fermion symmetry by selecting
pseudohyperspherical harmonics in the basis sets to give the
correct symmetry for the spatial nuclear wave function. The
adiabatic states in each sector are obtained by a variational

expansion on a basis of pseudohyperspherical harmonics
with A1 symmetry for fermionic nucleisbosonic atomsd and
A2 symmetry for bosonic nucleisfermionic atomsd.

D. Partial waves

The behavior at the lowest collision energies is more
subtle in the molecular case than in the atomic case. In atom-
atom collisions, the fundamental difference between bosons
and fermions is seen in the behavior of cross sections. For
two identical spin-polarized bosons, the elastic cross section
becomes constant as the collision energy goes to zero be-
cause only thes wavesl =0d contributes. In contrast, for two
fermions, the elastic cross section decreases as the collision
energy decreases because there is nos wave and only thep
wave sl =1d contributes at ultralow energy.

In atom-molecule collisions, by contrast,l =0 is allowed
for both bosons and fermions. The partial waves are labeled
JP, whereJ is the total mechanical angular momentum and
P is the total parity. For three identical atoms, only one
partial wave is involved at ultralow energy: 0+ for bosons
and 1− for fermions. These both includel =0.

The channels contributing to each partial waveJP up to
J=3 are shown for bosons in Table I. The total mechanical
angular momentumJ= j + l is the vector sum of the diatomic
rotational angular momentumj and the orbital angular mo-
mentum l. In this study, we consider initial39K2 or 41K2
molecules initially in rovibrational statesv=1,j =0d, so the
parity P is s−1d j+l =s−1dl =s−1dJ. For 40K2, only odd j is
allowed so we consider the initial statesv=1,j =1d. The par-
tial waves for fermionsswith contributing channels shown in
Table IId can be separated into two categories depending on
the lowest value ofl sor V, which is the projection of the
total angular momentumJ onto the axis of least inertia in the
corresponding hyperspherical basis setd. The parity-favored
partial waves includeV=0 and the parity is the same as for
the boson case. In contrast, for the parity-unfavored partial
waves theV=0 component is forbiddensas is the lowest

TABLE I. Channels contributing to partial wavesJP, showing
allowed values of the orbital angular momentuml for a rovibra-
tional statesv , j =0d of 39K2 or 41K2 molecules formed from bosonic
atoms.

0+ 1− 2+ 3−

l =0 l =1 l =2 l =3

TABLE II. Channels contributing to partial wavesJP, showing
allowed values of the orbital angular momentuml for a rovibra-
tional statesv , j =1d of a 40K2 molecule formed from fermionic
atoms.

0+ 1− 2+ 3−

l =1 l =0,2 l =1,3 l =2,4

1+ 2− 3+

l =1 l =2 l =3
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value ofld and the lowest value ofV is 1. The parity-favored
and unfavored partial waves have paritys−1dJ and s−1dJ+1,
respectively.

E. Convergence and computer requirements

K+K2 collisions are the most difficult and demanding
ever studied in quantum dynamics calculations, because all
three atoms are heavy and the potential well is deep. Careful
attention has been devoted to the convergence of the calcu-
lations. There are three crucial parameters for convergence:
the sizes of the basis sets, the size of each sector, and the
asymptotic matching distance.

First, the number of fixed-r eigenstates included in solv-
ing the coupled equations in each sector must be large
enough for convergence. It is essential to include many
closed channels. For both bosonic and fermionic systems,
this number, which is also the number of coupled equations,
increases about from 250 forJ=0 to 1411 forJ=5. The time
taken to solve the coupled equations varies, respectively,
from 2 min to 4 h per collision energy on a Power4 P690
IBM computer. The fixed-r eigenstates are expanded in a
pseudohyperspherical harmonic basis built from trigonomet-
ric functions, truncated atLmax, the maximum value of the
grand angular momentum.Lmax varies from 198s867 har-
monicsd at small hyperradius to 558s6625 harmonicsd at
large hyperradius. The calculation to build the basis sets
takes 180 h and produces an output binary file of 40 gi-
gabytes which contains all information for the close-coupling
code.

Second, the size of each sector must be small enough to
give converged results. For both bosons and fermions, two
different sector sizes were used: 0.025a0 from r
=8.0 to 26.0a0 and 0.05a0 from 26a0 to the matching dis-
tance 60a0. This yields 1400 sectors, which is about four
times larger than were used for the case of Na3 f23,24g.

Third, the matching distancermax, where the adiabatic
states are projected onto the arrangement channels, must be
chosen to describe correctly K2 molecules in the vibrational
states requiredsin even j states for bosons and oddj states
for fermionsd. We have takenrmax=60a0, which is larger
than the value of 50a0 for the Na3 case. For bosons, the
hyperspherical wave function was projected onto a set of
39K2 or 41K2 rovibrational functions with jmax
=s76,70,66,60,56,50,42,34,24,2d for v=0, . . . ,9. For fer-
mions 40K2, rovibrational functions with jmax
=s77,71,67,61,55,49,43,35,25,7d were used.

At collision energies below 1mK, only the partial wave
that includesl =0 contributes to cross sectionss0+ for bosons
and 1− for fermionsd. However, at higher energies, other par-
tial waves contribute. In this work, for the bosonic cases we
have converged the elastic and quenching cross sections for
collision energies up to 10 mK by including partial waves up
to J=5. Calculations for the fermionic system40K+ 40K2 are
converged up to 100mK by including partial waves up to
J=2. We have considered only three values ofJ for fermions
because the calculations are twice as expensive for fermions
as for bosonssbecause both parity-favored and parity-
unfavored partial waves contribute in the fermion cased.

IV. DYNAMICAL RESULTS AND DISCUSSION

The following discussion refers to collisions involving
39K bosons unless otherwise stated.

A. Hyperspherical adiabatic energies

The hyperspherical adiabatic energies for the lowest 250
hyperspherical states withV=0 are shown as a function of
the hyperradiusr in Fig. 2. If we consider39K2 molecules in
their sv=1,j =0d rovibrational state, we have 15 hyperspheri-
cal states asymptotically open, and 235 asymptotically
closed. There are two minima: the deepest corresponds to the
equilateral geometry, while the secondary minimum at
around 20a0 corresponds to the linear geometry. At larger,
the hyperspherical adiabatic energies tend to the energies of
the diatomic molecule K2. The zero of energy is taken as the
dissociation limit to three atoms.

B. Cross sections and rate coefficients

The fully converged elastic and quenching integral cross
sections and their partial-wave contributions forl =0 to 5 are
shown in Figs. 3 and 4 for collision energies between 1 nK
and 10 mK. At Ecoll=10−9 K, the elastic cross section is
about 1.9310−12 cm2 whereas the quenching cross section is
about 1.4310−9 cm2. The slope of each partial cross section
is given by the Wigner lawsfEq. s17dg at ultralow energy
except for the case of elastic scattering forl .1, where the
dispersion-modified threshold lawsE

l ,Ecoll
3 applies. The up-

per limit of the Wigner regime is 0.1mK. The minimum in
the l =0 partial elastic cross section near 10−2 K arises simply
from a near-zero phase shift in the formula for the elastic
cross section.

The quenching cross section for a partial wave withl
.0 shows a maximum at a collision energy which is given
approximately by the maximum of the effective potential in-
cluding the centrifugal and dispersion terms,

VlsRd =
lsl + 1d
2mR2 −

CK−K2

R6 . s21d

The height of the barrier is

FIG. 3. Elastic cross sections for39K+ 39K2 sv=1,j =0d: partial
as solid lines, total as dashed line. Collision energy is in Kelvin.

QUÉMÉNERet al. PHYSICAL REVIEW A 71, 032722s2005d

032722-6



Vmax
l =

flsl + 1dg3/2

3m3/2s6CK−K2
d1/2 s22d

at a distance

Rmax
l = F6mCK−K2

lsl + 1d
G1/4

. s23d

The resulting barrier heights are included in Fig. 4. The first
vertical line corresponds to thel =1 partial wave and so on
up to thel =5 partial wave. It may be seen that each partial
wave has a maximum at an energy slightly higher than the
correspondingVmax

l . At collision energies below the centrifu-
gal barrier, the quenching partial cross sections for eachl
follow Wigner laws given by Eq.s17d. Above the centrifugal
barrier, the quenching probabilities come close to their maxi-
mum value of 1 and the cross sections vary asE−1 because of
the k−2 factor in the expression for the cross section.

The total quenching rate coefficient is larger than the elas-
tic rate over a wide range of collision energies, up to 1 mK,
and is three orders of magnitude larger than the elastic rate at
1 nK sFig. 9d. The large quenching rates are consistent with
recent experiments that create molecules in atomic Bose-
Einstein condensates by Feshbach resonance tuningf7–10g;

for bosonic atoms, such experiments were unable to produce
a long-lived molecular condensate because of the efficiency
of quenching collisions.

At high collision energy, when several partial waves are
involvedsl =0–5d, the total quenching rate coefficient can be
compared with that given by the classical Langevin capture
model f54g,

KQ
capturesEd =

3p

21/6SCK−K2

1/3

m1/2 DE1/6. s24d

This rate coefficient is shown as a function of collision
energy in Fig. 5. It may be seen that there is semiquantitative
agreement between our quantum results and the capture
model for collision energies above 0.1 mK. Below that en-
ergy, differences appear because there are fewer partial
waves and the dynamics must then be described by a full
quantum-mechanical treatment.

C. Differential cross sections

Total differential cross sectionsfEq. s20dg for elastic and
quenching processes with39K2 molecules initially in sv
=1,j =0d are shown in Figs. 6 and 7 for collision energies
10−6, 10−4, and 10−2 K. At 10−6 K, where only thel =0 and 1

FIG. 4. Quenching cross sections for39K+ 39K2 sv=1,j =0d:
partial as solid lines, total as dashed line. Vertical lines correspond
to the maxima of the effective potentialssee text for detailsd. Col-
lision energy is in Kelvin.

FIG. 5. Total quenching rate coefficients for39K+ 39K2 sv=1,j
=0d. The result from the Langevin model is shown as a dotted line.
Collision energy is in Kelvin.

FIG. 6. Differential cross section for elastic scattering at 10−6 K
sdotted lined, 10−4 K sdashed lined, and 10−2 K ssolid lined. The
large forward scattering at 10−2 K is not completely shown; at zero
degree the DCS value is 3310−12 cm2 sr−1.

FIG. 7. Differential cross section for vibrational relaxation at
10−6 K sdotted lined, 10−4 K sdashed lined, and 10−2 K ssolid lined.
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partial waves contribute, the elastic and quenching DCS are
quasi-isotropic. Below this energysnot shownd, only the l
=0 partial wave is involved and so the DCS are fully isotro-
pic. At higher energies, other partial waves contribute and
the DCS depend on the center-of-mass scattering angleucm.

For the elastic process, Fig. 6 shows that backward scat-
tering is smaller at 10−4 K than at 10−6 K, whereas forward
scattering is similar. At 10−2 K, an enhancement of forward
scattering is found. Undulations at this energy are simply due
to a rainbow effect.

In contrast, the behavior of the quenching DCS is less
systematic sFig. 7d. The angular distribution is strongly
peaked in the backward direction at 10−2 K whereas the for-
ward scattering is dominant at 10−4 K. In addition, at 10−2 K
the quenching DCS presents some oscillations in the side-
ways scattering with two pronounced maxima at 30°
and 70°.

D. Final rotational distributions

The final rotational distribution for39K2 molecules ini-
tially in sv=1,j =0d is shown in Fig. 8 as a function of the
collision energy. At each energy, we have divided each rota-
tionally resolved cross sectionfcorresponding to a given fi-
nal rotational quantum numberj8 for 39K2 sv8=0dg by the
total quenching cross section. The sum of the distribution
over j8 gives unity at fixed energy. Because cross sections
obey the Wigner lawsfEq. s17dg the rotational distribution
becomes constant in the ultracold regime. The final rotational
state j8=8 is the most populated at 1 nK whereasj8
=2,4,6,8 are themost populated at 10 mK. Figure 8 also
shows that only the lowest rotational states are significantly
populated at all collision energies.

E. Bosons vs fermions

In Fig. 9 we compare the total elastic and quenching rate
coefficients in the ultracold regime for the three systems:
39K+ 39K2 or 41K+ 41K2, composed of bosonic atoms and
40K+ 40K2, composed of fermionic atoms.

In the ultracold regime, the total rate coefficients are very
similar for the two bosonic systems. However, the rotation-
ally state-resolved cross sectionssnot shown hered are differ-
ent and the similarity of the total cross sections and rate
coefficients is evidently coincidental. Rotational distributions
are sensitive to small changes in the mass and also to small
changes in the interaction potential as in Na+Na2 f24g.

Figure 9 shows that the quenching processes are very ef-
ficient also for the fermionic system where the partial wave
l =0 is allowed as in bosonic systems. There is only a small
difference between fermions and bosons. Both elastic and
quenching rate coefficients are slightly smaller for the fermi-
onic system than for the bosonic systems. However, the ratio
of elastic to quenching rate coefficients is nearly the same for
bosons and fermions.

V. CONCLUSION

We have performed the first quantum dynamics calcula-
tions for K+K2 collisions in the energy range 1 nK–10 mK,
using a quartet potential-energy surface for the potassium
trimer. We have found that the quenching rate coefficient is
much larger than the elastic rate coefficient at ultralow col-
lision energies. This applies for all three collisions studied
here,39K+ 39K2,

41K+ 41K2, and40K+ 40K2, where the initial
K2 molecules are in thesv=1,j =0d rovibrational state for
bosons orsv=1,j =1d for fermions. Thus K2 molecules in
these states are not good candidates to accumulate large den-
sities of ultracold molecules or to achieve long-lived molecu-
lar BEC. For the bosonic systemss39K and 41Kd, the results
are qualitatively similar to those we obtained previously for
23Na f23,24g and7Li f21g atoms.

The quantum results for quenching rates agree semiquan-
titatively with the Langevin model at high collision energies,
but below 0.1 mK the dynamics is described only by the
quantum theory.

The study of the fermionic system with40K atoms of par-
ticular interest, because it has recently been possible to create
stable molecular BECs of6Li2 and 40K2 f12–15g. In these
experiments, molecules were formed in the highest vibra-

FIG. 8. Rotational distributions as a function of the collision
energy. The labelj8 is the final rotational quantum number of39K2
sv8=0d. Collision energy is in Kelvin.

FIG. 9. Comparison of elastic and quenching rate coefficients
for bosonssdashed and dotted linesd and fermionsssolid lined. Col-
lision energy is in Kelvin.

QUÉMÉNERet al. PHYSICAL REVIEW A 71, 032722s2005d

032722-8



tional state supported by the potential well and it was found
that inelastic collisions were suppressed by Pauli blocking
f20g. Our result shows that for40K2 molecules in the initial
vibrational statesv=1, there is no suppression of the quench-
ing process.

Calculations with potassium atoms in higher vibrational
states for both bosonic and fermionic systems are in
progress. Future studies involving mixed collisions, i.e., with
two different isotopes of potassium, are also planned.
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