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Off-shell Jost solution for scattering by a Coulomb field
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A relatively uncomplicated mathematical prescription based on the theory of ordinary differential equations
together with certain properties of higher transcendental functions is used to obtain a useful analytical expres-
sion for thes-wave Coulomb off-shell Jost solution.
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Based on a coordinate-space apprdddho theT matrix, [zd/dZ + (c - 2)d/dz- a]g(k,q,2) = — [ (K - ¢)/2ik]e™,
Fuda and Whiting[2] have introduced an off-energy-shell 5)
generalization of the Jost functiof3] At an energyE=k?
>0 _the Jost funct_|on‘€(k) IS determmgd by th“e behawor of wherea, ¢, andp are constants with values=1+i», c=2,
the irregular solutiorf,(k,r) of the radial Schroédinger equa- and p=(k-q)/2k.
tion near the origin. The off-shell Jost functidip(k,q) is
also determined from irregular solution of an inhomogeneou
Schrédinger equation in the same wayfa&) is obtained

The complementary functions of E() are given by con-
fluent hypergeometric functions

from f,(k,r). Some years ago wWet] derived an expression %

for the sswave Coulomb off-shell Jost solution in terms of  ¢(a,c;2) =T'(c)/T'(a) >, [T'(a+ nN)Z" /[T (c+nI(n+ 1)]
products of confluent hypergeometric functions. This has n=0

been achieved from an integral representationff@k,q,r). (6)

In this paper we shall present a relatively uncomplicated
mathematical prescription based on the theory of ordinary,q
differential equations together with certain properties of
higher transcendental functions to derive an expression for — _
the sswave off-shell Jost solution for scattering by Coulomb d(ac;zg=z"d(a-c+1,2-c2). (7)
f'.eld' Here_we omit Fhe_ subscript=0. The treatment .Of Note that, forc=2, ® is not an acceptable solution of Eq.
higher partial wave will involve mathematical complication. — )

The off-shell Jost solutiofi(k,q,r) for a spherically sym- (1. However,® tends towards the solutiofb] of Eq. (1)

metric potential \{r) satisfies the Schrodinger-like equation when ¢ approache_s 2 In our subsequent d|scus§|on_s we shall
always mean that limit. This is no loss of generalization. See,

ddr2 + K2 = V() 1fk.a.r) = (K2 = )& . 1 for example, the treatment of Coulomb field by Newtps).
[ (DJfka.r) =( ae @ Another solution of Eq(1) defined within the framework of
The functionf(k,q,r) has asymptotic normalization the same limiting procedure is
f(k,Q, 1), o ~ €. ) W(a,c;z=[I'(1 -c)/I'(a-c+1)]P(a,c;2)

Whenqg=zk, f(k,q,r) goes over into the two irregular so- +[F(c- DT (@]e(a,c;2). (8)

lutions of the Schrddinger equation which enter into the

theory of ordinary Jost functiofik) and we have Babister] 7] notes that the particular solution of the inhomo-

geneous confluent hypergeometric equation
f(xk,r) =f(k, £kr). (3)

[zP/dZ + (c- 2)dldz-aly=2""1 9)
Equations(2) and (3) hold when the first and second mo- reads as
ments ofV(r) are finite. The Coulomb case needs separate
considerations. o
With V(r)=2k#/r and changing the dependent and inde—e (a,c:2) =273 [[(o+a+n () (o +c- D]V (o +a)
pendent variables in Eq1) by substituting 7 n=0
f(k,q,r) = réqrg(k,q,r), (43) XT(oc+n+ DI (c+c+n)]
=[Z’lo(c+c-1)],F,(1,0+a;0+1,0+cC;2).
z=— 2ikr, (4b) (10
we have Thus the particular solution of E¢5) is obtained as
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9p(k,0,2) = = [(K* = q?)/2KK]2 [pVn! 1004a(1 +i7,2;2).
n=0

(11)

Combining Eqs(6), (8), and(11) the general solution of Eq.

(5) is written as

9(k,q,2 =AD(1 +in,2;2 + BV (1 +in,2;2)

= [(€ = /212 [p"N ! 16p.1(1 +i7,2;2).

n=0
(12
Therefore the Jost solution is obtained as
f(k,q,r) = A re"®(1 +i7,2;- 2kr)
+B reé"W(1 +iz,2;- 2kr) - re*(k? - g?)/2ik]

X2, [N 1 10n,0(1 +i9,2;— Zkr),
n=0

(13

with A andB are two arbitrary constants.
The on- and off-shell Jost functiorig(k) and f,(k,q) are
defined by[6]

fo(k) = lim fo(k,r)(- 2ikr)€ 1/(2¢0)! (14
r—0

and

fo(k,q) = lim f,(k,q,r)(- 2iqr)*€ 1/(2¢)! . (15)
r—0

The off-shell Coulomb Jost functidi®] for €=0 is extremely
simple and is written as

f(k,a) =[(a+K/(a-K]1".

Thus the two constantd and B in Eq. (13) can be deter-
mined by exploiting the values df(k,q,r) at r=0 andoe.
Using the boundary condition at0 in Eq.(13), we have

(16)

B=— 2ikT'(1 +i7)[(q+k)/(q-K]". (17)

In the above we have used the fact that,ligW(a,c;2)
~ 7T (c-1)/T(a)] together with Eqs(15) and(16). From
Egs.(13) and(17) we obtain
f(k,q,r) = A re<"®d(1 +i,2;- 2kr)
= 2KL(1 +in)[(q+K)/(q-K)] ek
XW(1+i9,2;2kr) - re (k- g?)/2ik]

[

X 2, [N 1 10n4q(1 +i7,2;= 2kr).
n=0

(18)

Evaluation of constanA from the boundary condition as
— oo is rather tricky. To that end Eq18) is rewritten in the
form
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f(k,q,r) =A re®(1 +i,2;- 2kr) - 2ikrT'(1 +i7)
X[(q+K)/(q-k]7re* " W(1 +in,2;2kr)

+ (K2 - qz)f GR(r,r)e dr’. (19)
0

The following facts are used in writing E¢L9) from Eq.
(18). Hered,(a,c;z) is expressed in terms of indefinite inte-

grals[7,8] involving ®(¢) and cI_>(-) as

0,(a,c;2) = 1/(c- 1)[P(a,c;2) f ds §+°‘2e‘35(a, C;s)
0

z

- a(a,c;z)f ds §7¢ % (a,c;9)] (20)

0

and the well-known Coulomb regular Green function
GR(r,r") =[e(kn)f(k,r) = @k, r") (k) (K),
= 2ikrr '@ dD(1 +i 7, 2; - Akr)
XD(1+i,2;- 2kr') - D(1 +i72;- Akr’)
XD(1+in,2;- 2kr)] (21

for r' <r and zero elsewhere, witlr(k,r) and f(k,r), the
regular and irregular Coulomb solutions respectively.rAs
— o0, Eq. (19) together with the transposed operator relation

f(p(O‘P):f\If(égo), where 0=0 and the differential equa-
tions for GR(r,r"), ¢(k,r) andf(k,r) yield
A=[i(q-K/(L+in)]FLin2+in(q-K/(q+K).
(22)

From Eqgs.(13), (17), and (22) the desired expression for
f(k,q,r) is obtained as

f(k,q,r) = 2ikI'(1 +ipre*{[(q - K)/{2kT'(2 +in)}]
XF(Lin;2+in(q-K/(q+K)D(1 +in2;
— 2ikr)
=[(q+K/(q= K™ (1 +in2;- Akr)}
- re" (k2= gd)/2ik]> [p"n! 16
n=0
Xn+1(1+i7712;_ 2kr). (23

Using the integral representatiof 7] of ®(¢) and¥(e) and
the value of6,(1,2;z), we have checked that when=0,
f(k,q,r)=€9. Other useful checks on E@23) consist in
showing that

f(k,0,0) = f(k ) =[(q+ K/(q-K]7, (24)
flk,r)= |inl[(q —K/(q+K)]Te™?r(L +inlf(ka,r),
q—
(25

F(k, Q) ~ € (26)
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The above facts hold when an arbitrary short-range poten- = Im{[(K? - g?)/2ik]r eikap’1(1 +in,2;- 2kr)},
tial is also added to the Coulomb potential. Therefore, it (29)
seems to be very interesting to have explicit expressions for
off-shell Jost solution and matrix for motion in the Cou- where

lomb plus a rather general short-range interaction. This will o
be reported in detail in a subsequent paper. — 0 ra+ to— +
By using a Sturmian discretization of Coulomb Green'sA""’(a’C’z) z E,m" a+nl(o)l(o+c-DIT(e+a)

function, Dube and BroafP] have constructed some useful
algorithms to compute the values of the outgoing-wave off- XI(e+n+ DI(o+c+nFapy)
shell Coulomb functiony*(k,q,r). But our result for X(a,0+C—1:0+a:p)2"
f(k,q,r) and f(k,q) (Ref. [8]) can be used to construct an
exact analytical expression faf*)(k,q,r). Making use of

Pka,n) =[ 2]k o) = fk,— VR (kr)

[

=2 [pn!16,.n(a,C,2). (29
n=0

HereF .1 stands for the firs(n+1) terms of the hypergeo-

+Hitkan - fk-qni]. @0 metric serieg5,7] with the given parameters.
we have obtained Given the expression fop™(k,q,r), one will be in a
position to write an uncomplicated expression for the off-
PPk q,r) =[1/2ik]re™ D (1 +i7,2; - 2kr)[(q - k) shell Coulomb T matrix which is expected to circumvent in a
. . rather natural way the typical difficulties associated with the
XF(Lin2+inq-Kig+k)+k+q) derivation[10] ofxl'(-) fryopm the known expression for the
XF(L,in;2+in;(q+k/(g-k)] three-dimensional Coulomb T matii%1]
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