
Off-shell Jost solution for scattering by a Coulomb field

U. Laha and B. Kundu
Department of Physics, National Institute of Technology, Jamshedpur-831014, India

sReceived 19 February 2004; published 30 March 2005d

A relatively uncomplicated mathematical prescription based on the theory of ordinary differential equations
together with certain properties of higher transcendental functions is used to obtain a useful analytical expres-
sion for thes-wave Coulomb off-shell Jost solution.
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Based on a coordinate-space approachf1g to theT matrix,
Fuda and Whitingf2g have introduced an off-energy-shell
generalization of the Jost function.f3g At an energyE=k2

.0 the Jost functionf,skd is determined by the behavior of
the irregular solutionf,sk,rd of the radial Schrödinger equa-
tion near the origin. The off-shell Jost functionf,sk,qd is
also determined from irregular solution of an inhomogeneous
Schrödinger equation in the same way asf,skd is obtained
from f,sk,rd. Some years ago wef4g derived an expression
for the s-wave Coulomb off-shell Jost solution in terms of
products of confluent hypergeometric functions. This has
been achieved from an integral representation forf,sk,q,rd.

In this paper we shall present a relatively uncomplicated
mathematical prescription based on the theory of ordinary
differential equations together with certain properties of
higher transcendental functions to derive an expression for
the s-wave off-shell Jost solution for scattering by Coulomb
field. Here we omit the subscript,=0. The treatment of
higher partial wave will involve mathematical complication.

The off-shell Jost solutionfsk,q,rd for a spherically sym-
metric potential Vsrd satisfies the Schrödinger-like equation

fd2/dr2 + k2 − Vsrdgfsk,q,rd = sk2 − q2deiqr . s1d

The functionfsk,q,rd has asymptotic normalization

fsk,q,rdr→` , eiqr . s2d

When q= ±k, fsk,q,rd goes over into the two irregular so-
lutions of the Schrödinger equation which enter into the
theory of ordinary Jost functionfskd and we have

fs±k,rd = fsk, ± k,rd. s3d

Equationss2d and s3d hold when the first and second mo-
ments ofVsrd are finite. The Coulomb case needs separate
considerations.

With Vsrd=2kh / r and changing the dependent and inde-
pendent variables in Eq.s1d by substituting

fsk,q,rd = reiqrgsk,q,rd, s4ad

z= − 2ikr , s4bd

we have

fzd2/dz2 + sc − zdd/dz− aggsk,q,zd = − fsk2 − q2d/2ikgerz,

s5d

wherea, c, andr are constants with valuesa=1+ih, c=2,
andr=sk−qd /2k.

The complementary functions of Eq.s5d are given by con-
fluent hypergeometric functions

Fsa,c;zd = Gscd/Gsado
n=0

`

fGsa + ndzng/fGsc + ndGsn + 1dg

s6d

and

F̄sa,c;zd = z1−cFsa − c + 1,2 −c;zd. s7d

Note that, forc=2, F̄ is not an acceptable solution of Eq.

s1d. However,F̄ tends towards the solutionf5g of Eq. s1d
when c approaches 2. In our subsequent discussions we shall
always mean that limit. This is no loss of generalization. See,
for example, the treatment of Coulomb field by Newton.f6g
Another solution of Eq.s1d defined within the framework of
the same limiting procedure is

Csa,c;zd = fGs1 − cd/Gsa − c + 1dgFsa,c;zd

+ fGsc − 1d/GsadgF̄sa,c;zd. s8d

Babisterf7g notes that the particular solution of the inhomo-
geneous confluent hypergeometric equation

fzd2/dz2 + sc − zdd/dz− agy = zs−1 s9d

reads as

ussa,c;zd = zso
n=0

`

fGss + a + ndGssdGss + c − 1dgzn/fGss + ad

3Gss + n + 1dGss + c + ndg

= fzs/sss + c − 1dg2F2s1,s + a;s + 1,s + c;zd.

s10d

Thus the particular solution of Eq.s5d is obtained as
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gpsk,q,zd = − fsk2 − q2d/2ikgo
n=0

`

frn/n ! gun+1s1 + ih,2;zd.

s11d

Combining Eqs.s6d, s8d, ands11d the general solution of Eq.
s5d is written as

gsk,q,zd = AFs1 + ih,2;zd + BCs1 + ih,2;zd

− fsk2 − q2d/2ikgo
n=0

`

frn/n ! gun+1s1 + ih,2;zd.

s12d

Therefore the Jost solution is obtained as

fsk,q,rd = A reikrFs1 + ih,2;− 2ikrd

+ B reikrCs1 + ih,2;− 2ikrd − reikrfsk2 − q2d/2ikg

3o
n=0

`

frn/n ! gun+1s1 + ih,2;− 2ikrd, s13d

with A andB are two arbitrary constants.
The on- and off-shell Jost functionsf,skd and f,sk,qd are

defined byf6g

f,skd = lim
r→0

f,sk,rds− 2ikrd,, ! /s2,d! s14d

and

f,sk,qd = lim
r→0

f,sk,q,rds− 2iqrd,, ! /s2,d ! . s15d

The off-shell Coulomb Jost functionf8g for ,=0 is extremely
simple and is written as

fsk,qd = fsq + kd/sq − kdgih. s16d

Thus the two constantsA and B in Eq. s13d can be deter-
mined by exploiting the values offsk,q,rd at r =0 and`.
Using the boundary condition atr =0 in Eq. s13d, we have

B = − 2ikGs1 + ihdfsq + kd/sq − kdgih. s17d

In the above we have used the fact that limz→0Csa,c;zd
,z1−cfGsc−1d /Gsadg together with Eqs.s15d ands16d. From
Eqs.s13d and s17d we obtain

fsk,q,rd = A reikrFs1 + ih,2;− 2ikrd

− 2ikGs1 + ihdfsq + kd/sq − kdgihreikr

3Cs1 + ih,2;2ikrd − reikrfsk2 − q2d/2ikg

3o
n=0

`

frn/n ! gun+1s1 + ih,2;− 2ikrd. s18d

Evaluation of constantA from the boundary condition asr
→` is rather tricky. To that end Eq.s18d is rewritten in the
form

fsk,q,rd = A reikrFs1 + ih,2;− 2ikrd − 2ikrGs1 + ihd

3fsq + kd/sq − kdgihreikrCs1 + ih,2;2ikrd

+ sk2 − q2dE
0

r

GRsr,r8deiqr8dr8. s19d

The following facts are used in writing Eq.s19d from Eq.
s18d. Hereussa,c;zd is expressed in terms of indefinite inte-

grals f7,8g involving Fs•d andF̄s•d as

ussa,c;zd = 1/sc − 1dfFsa,c;zdE
0

z

ds ss+c−2e−sF̄sa,c;sd

− F̄sa,c;zdE
0

z

ds ss+c−2e−sFsa,c;sdg s20d

and the well-known Coulomb regular Green function

GRsr,r8d = fwsk,rdfsk,r8d − wsk,r8dfsk,rdg/fskd,

= 2ikrr 8eiksr+r8dfF̄s1 + ih,2;− 2ikrd

3Fs1 + ih,2;− 2ikr8d − F̄s1 + ih,2;− 2ikr8d

3Fs1 + ih,2;− 2ikrdg s21d

for r8, r and zero elsewhere, withwsk,rd and fsk,rd, the
regular and irregular Coulomb solutions respectively. Asr
→`, Eq. s19d together with the transposed operator relation

ewsOCd=eCsÕwd, where Õ=O and the differential equa-
tions for GRsr ,r8d ,wsk,rd and fsk,rd yield

A = fisq − kd/s1 + ihdgF„1,ih;2 + ih;sq − kd/sq + kd….
s22d

From Eqs.s13d, s17d, and s22d the desired expression for
fsk,q,rd is obtained as

fsk,q,rd = 2ikGs1 + ihdreikrhfsq − kd/h2kGs2 + ihdjg

3F„1,ih;2 + ih;sq − kd/sq + kd…Fs1 + ih,2;

− 2ikrd

− fsq + kd/sq − kdgihCs1 + ih,2;− 2ikrdj

− reikrfsk2 − q2d/2ikgo
n=0

`

frn/n ! gu

3n+1s1 + ih,2;− 2ikrd. s23d

Using the integral representationsf5,7g of Fs•d andCs•d and
the value ofuss1,2;zd, we have checked that whenh=0,
fsk,q,rd=eiqr. Other useful checks on Eq.s23d consist in
showing that

fsk,q,0d = fsk,qd = fsq + kd/sq − kdgih, s24d

fsk,rd = lim
q→k

fsq − kd/sq + kdgihfeph/2/Gs1 + ihdgfsk,q,rd,

s25d

fsk,q,rdr→` , eiqr . s26d
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The above facts hold when an arbitrary short-range poten-
tial is also added to the Coulomb potential. Therefore, it
seems to be very interesting to have explicit expressions for
off-shell Jost solution andT matrix for motion in the Cou-
lomb plus a rather general short-range interaction. This will
be reported in detail in a subsequent paper.

By using a Sturmian discretization of Coulomb Green’s
function, Dube and Broadf9g have constructed some useful
algorithms to compute the values of the outgoing-wave off-
shell Coulomb functioncs+dsk,q,rd. But our result for
fsk,q,rd and f(k,q) sRef. f8gd can be used to construct an
exact analytical expression forcs+dsk,q,rd. Making use of

cs+dsk,q,rd = f1/2igfhffsk,qd − fsk,− qdg/fskdjfsk,rd

+ hfsk,q,rd − fsk,− q,rdjg, s27d

we have obtained

cs+dsk,q,rd = f1/2ikgreikrFs1 + ih,2;− 2ikrdfsq − kd

3F„1,ih;2 + ih;sq − kd/sq + kd… + sk + qd

3Fs1,ih;2 + ih;sq + kd/sq − kdg

− Imhfsk2 − q2d/2ikgr eikrLr,1s1 + ih,2;− 2ikrdj,

s28d

where

Lr,ssa,c,zd = zso
n=0

`

fGss + a + ndGssdGss + c − 1dg/Gss + ad

3Gss + n + 1dGss + c + ndFsn+1d

3ss,s + c − 1;s + a;rdzn

= o
n=0

`

frn/n ! gus+nsa,c,zd. s29d

HereFsn+1d stands for the firstsn+1d terms of the hypergeo-
metric seriesf5,7g with the given parameters.

Given the expression forcs+dsk,q,rd, one will be in a
position to write an uncomplicated expression for the off-
shell Coulomb T matrix which is expected to circumvent in a
rather natural way the typical difficulties associated with the
derivation f10g of Ts•d from the known expression for the
three-dimensional Coulomb T matrix.f11g
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