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Optimal reflection-free complex absorbing potentials for quantum propagation of wave packets
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The conditions for optimal reflection-free complex-absorbing potent@/sP9 are discussed. It is shown
that the CAPs as derived from the smooth-exterior-scaling transformation of the HamilfdniRnys. B31,
1431(1998] serve as optimal reflection-free CAPRF CAPS in wave-packet propagation calculations of
open systems. The initial wave packét(t=0), can be located in the interaction regitas in half collision
experiments where the CAPs have vanished or in the asymptote wﬁ!@@# 0. As we show, the optimal
CAPs can be introduced also in the region where the physical potential has not vanidtedinavoided
reflections due to the use of a finite number of grid poiotsbasis functionsare discussed. A simple way to
reduce the “edge-grid” reflection effect is described.
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I. INTRODUCTION which under specific conditions are similar to the SES CAPs,
by taking another approadiso-called transformative CAP
Only when the CAP is introduced in a region where the
potential energy has vanished, the transformative CAP de-

There is an extensive use in wave-pacldtP) propaga-
tion calculations in complex absorbing potentiaBAPS.

The use of CAP.S In propagation of WP calcula_ltlp_ns IS USUriyeq by Riss and Mey€[r15] is equal to the SES CAP that
ally for half collision experiments where the initial wave

. : . . ; : has been derived analytically without any approximations b
packet is localized in the interaction region where the CA_P%S [14] (in such a caseythe gES CAP an%j tﬁg transformativ)é
'EAP are identical although they look slightly differgn®ur

f“’t’.“ the eldgle t(')f the grf'td asg:lgamed n t?e m(ijterlcaI pr(t)_p main motivation for deriving SES CAPs was to simplify the
gation caiculations. en S are reterred o as oplica,, . ations of resonances positions and widths. However,
potentials. The CAPs are used in very different fields of

: ; this SES CAP has been used also to avoid the artificial re-
physics, chemistry, and technology. See, for example, Calc‘ﬂections from the edge of the grid in wave-packetP)
lations of resonances for CAPs in a nuclear physics proble

rBropagation calculation€ 6]. One may wonder, what is the

[1]|; de|r|V||n? dlffer?ni (ixptres?ctmst that.tslmpln‘y tgebq_l:_me?- need for the transformative CAPs or the SES CAPs since the
cal calculations of state-to-state ransitions probabiliti€s 10k qfq tions can be taken as small as one wishes by introduc-

reactive scattering collisiongor time-independent Hamilto- in . : : s
: X ) g the CAP in the domain where the physical potential is
nians see Ref2] and for time-dependent ones see R&f); zero and by making the CARany CAP soft and long

calculations of complex molecular potential-energy Surface%nough[l?]. The answer to that question is that it is most

?ASAPS (4] tandbmolbecuhlar electror;]l_c Sttl;]d'esl ngrﬁ?b thedesired to avoid the use of long-ranged CAPs which require
Serves 1o absorb chargeé reaching the electrobes large number of basis functions or a large number of grid
'E)oints in heavy duty numerical calculations. For example, in

effort has been taken in developing different types of CAPs ; ;
. propagation calculations of many electron molecular systems
See, for example, Reff6—-12 where recently differenttypes i °hard 16 avoid the introduction of the CAP in the domain

of CAPs were developed. For a most recent review on CAPS . . 1o physical long-range potential is not zero.

see Ref[13]. : : ’
. . Here we want to discuss two types of questions. The first
In 1998 we have derived CAPs by applying the smOOth'type is mathematical-physical questiorise., theoretical

exterior-scaling transformapon(§ES$ to the Ham|lton|§m questions in the sense that we assume that complete basis
[14]. Here we study theonjecturethat the use of exterior- o

i A . . sets are usegdsuch as the following:
scaling or SES similarity transformations produce reflection- (i) What are the properties of reflection-free CARS®
free CAPS(RF CAPS fo_r the WP_p.ropaga}non calcglgtlong. we show here, there are two conditions that should be satis-
As we will show here within the finite basis-set or finite grid fied)

approximations the CAPs are not reflection-free ones. How- (i) Can we introduce the RE CAP in the domain where

evetrr,] ';'S possﬂe to_tsh_owf th?tt_] forta g'\f[ﬁn ?r:;;[e ba5|s/gr|d|the physical potential is not zero and the propagated wave
method a quantity criteria for the strength of th€ NUMErICal,, -yat does not consist of outgoing waves onlf3 we

reflections can be derived. It is important to mention thatp

i . . show, the answer is y@s.
about the same time Riss and May@b] obtained CAPs, (iii) Can the initial state be exponentially localized in the

interaction region, as required in half collision experiments,

where the CAP vanishegThe answer is yek.
* Author to whom correspondence should be addressed: Elec- (iv) Can the initial state be localized in the domain where
tronic address: nimrod@tx.technion.ac.il Veap# 0? (The answer is yes, provided the smooth-exterior
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scaling transformation is applied to the initial state. Depp(r = L,t) =0. (4)

The second type is practical questions. ) .

(i) Are indeed the RF CAPs reflection free in the numeri- 1he CAP is defined such that
cal calculations where a finite number of grid points or a
finite number of basis functions are usg¢@Pe answer is no
since in spite of the complete absorbing of the fast movingand
components of the wave packet still there is an edge-grid R
reflection effect which is associated with the slow moving  |®cap(t) — Peyaclt)| < €in the region wher&/cpp=0.
components of the WP.

(i) Can we minimize the reflections which result from
the use of finite-sized basis/grid methods and hdWfe A common requirement is that
answer is yes, by methods explained in the paper. .

(iii) Can we apply the RF CAPs to many-electron prob- ®y =0 in the region wher¥cap # 0. (7)
lems?(The answer is yes provided the electronic repulsionA
terms, 1/fi-rj|, are modified. This requirement can be
avoided when the ionized electrons are not correlated.

(6)

s a matter of fact, the last condition is too strong and it is
possible to satisfy Eq6) also when the initial state is local-
ized in the region where the CAP gets nonzero values. This
extension will be discussed later.

Il. WHAT ARE THE IDEAL REFLECTION-FREE CAPS ? Short-range CAP&he Saxson-Wood potentjdiave been
used about two decades ago in molecular wave-packet cal-

; . g S ) [:ulations[18]. A CAP which has been used often in the lit-
to solve by introducing a CAP into the Hamiltonian. Using erature [19-34 is Vo=0 for x<x, and Vo=—i\(x-xo)"

the Hermitian quantum mechanics the propagated wWavg, cren=1 2 .8 for x=0. For large values of these

packet is given by CAPs are very similar to the purely imaginary step-type po-
it tential that has been shown above to provide a strong reflec-
Pexaclt) = € Do, @) tion. Regarding the reflections due to the introducing of
In the numerical calculations the propagated wave packetbrupt complex potentials one might be aware of the fact that
is ®punft) # Pexacft). We are looking for numerical methods there are exampleee the review in Re{.13], and refer-
for which ences therein of discontinuous potentials that are con-
structed to avoid reflection, and absorb totally, at single in-
|Ppunlt) = Peyackt)| < €, (2)  cident energies, or in certain momentum intervals, or at a
) . discrete set of energies. Of course they cause reflections at
where e determines the requirement accuracy from the nugther energies. The CAPs that we are looking for are differ-
merical results. Since in the numerical calculations only 8snt gnes. They are energy-independent RF CAPs, and in

finite number of gnd pOintS or a finite number of basis func- princip|e can be chosen to be universal oﬁ%‘, prob'em
tions are used, the available spatial space is not fre@to  jndependent

r=o0 but up tor=L. Therefore accurate results are obtained aAs we will show here it is unlikely to have a universal

as long asPeyac(t) vanishes at=L. By increasing the num- (i e., problem independen€AP for which both Egs(4) and
ber of the grid points or by increasing the number of the(e) are satisfied. Therefore let us first discuss the possibility
basis functions we increase the valuelofThe initial state to satisfy Eq.(6) when the condition given by Eq4) is
®, is a square integrable function. In half collision experi- replaced by a weaker numerical conditiofrcap(t) is a
ments(such in photodissociative or autoionization reactjons square integrable function at any given time, which decays to

the initial WP is localized in the interaction region where zero muchfasterthan the exact solution. Such that within a
| P un(t=0) = Peyac(t=0)| <e. However, as time passes the given time interval

wave packet spreads and only during a given period of time

7, the numerical calculations satisfy the accuracy condition Peap(r =L(M),t<T) <, (8)
stated above. It is important to realize that the value &f
determined by the time it takes for the tail of the wave packe
to reach the edge of spatial spa@e., r=L). In order to
obtain ®@,.{t) within the desired accuracy, one should in- |iI. SES TRANSFORMATIONS AND THE CONDITIONS

crease the number of the used grid/basis points/functions and FOR OPTIMAL REFLECTION-FREE CAPS

thereby increase the value bf The role of the CAP is to , . . . ,
enable one to obtain accurate numerical results in the lim- 1he idea of introducing RF CAPs by using the exterior
ited available spatial space<rcap<L, without the need to scaling or SES methods is clear: the Hamiltonian remains as

increase the number of grid/basis points/functioNamely, itis insi_de the inner r_egion, where the coordin_ates stay on the
real axis. However, it has been shown by Simon that upon

where the value of is determined from the desired accuracy
bf the numerical calculations.

Dpplt) = &1Vt 3) the exterior scaling transformation,
where due to the use of the finite grid/ basis-set numerical F= Text ©)
methods, where inside the inner unscaled region,
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lext=T Whenr < rcap, (10 exp(— ikreyy) = exd — ikcog O)r] exd + ksin(6)r] — o,

and in the external-scaled region, asr —oo. Therefore it is not obvious whether a square inte-
grable WP such asbg.(t)=/"2C(k,t)expikr)dk—0 as
r—o remains square integrable when-rg,, or r —rgeg
the eigenfunctions anmeot equalto eigenfunctions of the un- It has been proven by Moiseyev and Katrj@8] that for
scaled(i.e., Hermitian probleminside the unscaled region sufficiently small values ob, i.e., 6< 6., the eigenfunctions
[35]. For example, for a free particle Hamiltonian the con-of a complex scaled Hamiltonian which are associated with
tinuum eigenfunctions inside the inner unscaled region ar¢he bound states are square integrable. The valug, oe-
given by Apexg-ikexp-ifdr]+A,exd+ikexp-id)r].  pends on the shape of the potenfid8]. Let us assume that
Since the propagated WP can be described as a linear corthe wave packet is a Gaussian, exa?). It is clear that
bination of the eigenfunctions of the complex scaledex- exp(—argxtSEs} remains square integrable provided that
terior scalegl Hamiltonian, it is not clear at all that in this < g,=x/2. When the wave packet is more localized, for ex-
case Eq(6) is satisfiedhere we consider the exterior scaled ample is described as ear"), then §,==/N. Since Gaus-

Hamiltonian asH+Vcap). This result is very confusing since sians form an overcomplete basis set, one might expect that
from numerical propagation calculations we know that insideany square integrable functidmvhich can be expanded in
the inner unscaled region in space, the propagated WP term of the Gaussian basis eemains square integrable
exactly as obtained without the use of exterior scaling. As weafter applying the complex scaling or the SES transforma-
will show below the validity Eq(6) can be easily explained tion.
by association the SES approach with the use of similarity It is easy to prove that the wave packf,.c(t) decays
transformation operators as developed in REf4,36. Us-  exponentially to zero at any given time, provided it is a
ing the SES approach, square integrable function & 0. A proof which holds also

for complex scaled non-Hermitian Hamiltonians is as fol-

r—rsgs= Fy(r), (12

lows: @pyacft+dt) =exp(—iHdt/ %) Peaeft). For sufficiently

where the path in the complex coordinate space is choseg}na” values ofdt exr(—iﬁdt/ﬁ):E ~ (n|)—l(_idt/h)n(|:|)n
such that ' v

Fext=Tcapt (T = rcap)€” Whenr > repp, (11

is a converged serigprovided IH<0). If Dot <t)isa

[Folr) = < ewhenr <rcap (13) square integrable function the(ﬁi)“d)exacgt) is square inte-
and grable as wel[the second derivative of a square integrable
F () function is square integrable and the product of a square
2, d? as r—om, (14) integrable function and a confinédomplex scaledpotential
r is also a square integrable function

Let us summarize the facts we know by naw:when the
initial wave-packetWP) is square integrable the time propa-
gated WP is square integrable as wdill;) the complex

The SES transformations clearly show that E§). can be
satisfied to any desired accuracy. If the SES transformation i

represented by the similarity opera@rthen the propagated J ,ioq s . . . o
. N guare integrable WP remains square integrétble;
wp within the framework of the SES approach is given byy,q complex scaled incoming waves diverge exponentially

SW¥exaclt) Which is equal toWe,,(t) inside the inner region whereas the outgoing waves exponentially decay to Z&p;

[see Eq.(13)] whereS~1. in the absence of a source of particles in infinite large dis-
Let us discuss now the validity of E¢8). Following Si-  tance from the studied system, the asymptote of the propa-

mon’s proof for the exterior scaled potential and following gated WP consists of outgoing waves ofds in half colli-

Moiseyev and Hirschfelder’s proof for general complexsion experimenys From (i)—(iii) it is clear that for the most

scaled transformationg7] (including the SES transforma- general case the square integrable WP,

tions), the complex scaled resonances functions are square o

integrable but the continuum eigenfunctions are not square Doyacll = L,1) :f dKD(k,t)e " + C(k,t)e"]

integrable functions. They are associated with complex ei- 0

genvalues, Eexl(continuunj:kgxgzz[kexp(—i0)]2/2, such

that key rext IN the exterior region is equal to the same value

as obtained in Hermitian quantum mechanics, ke.,(note  remains square integrable,

that a very different result is obtained in the inner region as

— 0 asr — o, (15)

discussed in the previous paragraphherefore the asymp- Deppr =Lyt :f di{ D(k, t)e keodOr gtksin(O)r
tote of the continuum wave functions as obtained after the 0
application of the exterior or SES transformations remain as + C(k,t)gHikeos Orgksin(r] (16)

obtained within the framework of the conventioltiaé., Her-
mitian) quantum-mechanic&aQM) approach. Upon complex
scalingky is rotated into the lower-half compléxplane to
avoid the exponential divergence of the complex scaled inalthough each one of the components of the complex scaled
coming waves associated with real and positive values foincoming waves exponentially diverge. When the condition
the wave vector, i.e., (4) is not satisfied, this facti.e., interference of exponen-

— 0 asr — oo, a7

032716-3



SHEMER, BRISKER, AND MOISEYEV PHYSICAL REVIEW A71, 032716(2009

tially diverged incoming waves results in a square integrable 24 T
function) may introduce some numerical difficulties in the PN
propagation calculations. For overcoming these types of nu- ‘=‘3“1’ A FARN
merical difficulties when long-ranged potentials are used see Po™ / \ / \
the second reference in R¢R9]. 16| ‘\ H 1
When condition(iv) is satisfied(as in all half collision 5 \ ’I
experimentsthen o \ /
o ‘ \ i
Deyaclr = L,1) = f dkC(k,t)e™ — 0 asr — e, o “\ I[
0 /’ |
\ /
\
(18) NHZQM \ /
- . /
and it is easy to see thdi-,p decays faster since 0.0 . A
y CAP Y 60 100 140
o X
Geppr =Lt = f dkC(k,t)etlk coddrgksintor (1 9) ,
0 FIG. 1. The numerical exact propagated wave padkaig

dashed ling Ve, acfx,t=60), and the corresponding wave packet
The fact that within the interval ofcap<<r <L, the propa- (denoted by NH-QM which is defined asV(F g s radX),t=60).
gated WP ®cap(t), decaysfaster than ®g,, (1) is the main  The smooth-exterior-scaling contour is definedFas-x when x|
motivation behind the use of the exterior scaling, smooth<xc,p=90, whereasF,=xexpif) when |x| >xXcap. The initial
exterior complex scaling methods in the numerical propagawave packet is given byP(x,t=0)=(1/5m)Y4exp(-x2/10+ipyx),

tion calculations. wherepy=1.
IV. A QUANTITY CRITERIA FOR THE MEASUREMENT oped in non-Hermitian quantum mechanitsee, for ex-
OF THE STRENGTH OF THE NUMERICAL ample, Ref[36] and references thergirin Fig. 1 the results
REFLECTIONS obtained from two types of propagation calculations are pre-

sented. The long dashed line stands for the numerically exact
calculations ofW,,.(X,t=60), using a fifth-order split op-
erator with —-1008=x<+1000. The full solid line is
|C(k, e ML < ¢, (20) W (F p=0.5rad(X) ,t=60) whereF 4(x) is a smooth exterior scal-
o _ ing function, such thaF ,~x when |x| <Xcap=90, whereas
Ast al:hutpper limit for the accuracy of the calculations ONeE —xexp(if) when |x|>xcap FOr [X| <Xcap WoraclXt
gets tha =60) =~ W(F,(X),t=60). However, it is clearly shown that un-
IC(k,te™ < e. (21 Iikg the exact wave packet which os;illatgs, the smooth ex-
o ) terior scaled wave packeflabeled in Fig. 1 by non-

At t=0 the initial wave packet gets exponentlally small Hermitian quantum-mechanid®IH-QM) approach decays
values atr=L and therefore we can consider it as a cas&g zero asx is rotated into the complex coordinate plane
whereC(k,0)=0. As time passes the wavelet with the largestaroundx=xcap=90.
value ofk (associated with a large velocjtys the first to Following our analysis the propagated wave packet de-
reach the edge of the grid. As one can see from(Ed).the  cays to zero when the contouris smooth exterior scaled
fast moving components of the wave packet are entirely abrotated into the complex coordinate space only within the
sorbed atr=L, due to the use of the complex absorbingtime intervalt<T. The results presente@enoted by NH-
boundary conditions which were introduced by the use of theyM) in Fig. 2 were obtained from numerical calculations
exterior scaling or the SES transformations. For the compogwhere -106<x< +100 (i.e., the box size i4.=200. It is
nents of the wave packet associated with small values of clearly shown that untit<30 the complex scaled wave
the requirement of eXpkL) ~ 0 is satisfied by increasing the packet is practically equal to zero at the edge of the @rid,
value ofL. The propagation calculations using SES transfor-at x=L/2). As time exceeds the value tf T=30 the com-
mations, within the framework of the finite basis-set/grid ap-plex scaled wave packet is reflected from the edge of the
proximations, are accurate as long [&k,t)| gets suffi- grid.
ciently small values. This explains why in Eg. (8) is a
function of time and why the duration of the propagation V. HOW TO REDUCE THE NUMERICAL REFLECTIONS
calculations cannot exceed a given period of tim&henL OF THE SLOW MOVING COMPONENTS OF THE

is held f|x¢d in thg propagation caIcuIafuons. WAVE PACKET FROM THE EDGE OF THE GRID
As an illustrative example we carried out wave-packet

propagation calculations for a one-dimensional Gaussian, Let us propose two different possibilities:
W(x,t=0)=(1/5m) 4exp(-x2/10+ipyx), which is localized (a) Accelerate the slow moving components of the wave
at a potential well embedded in between two identical potenpacket by inducing an external dc fieldquation(21) indi-

tial barriers. This potentialy/(x)=(0.5¢*-0.8) exp(—0.1x?), cates clearly that the numerical reflections from the edge of
has been used before as a test problem for methods devéhe grid are associated with slow moving wavelengths. As

From Eq.(19) a quantity criteria for the strength of the
numerical reflections from the edge of the grid is obtained,
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1.5 T v v 2
L=200 Y
.i:s::iﬁ.ﬁ?‘-’:
sSakapgiihit
i Y
vol FHAEHEH TS
ot a5§.-,:::;;:5::::::::::‘-::: d
A MR HTHECET R o
] A EE L 2
= HRIHH TR =
= FHHH e
[T 4
o8 PR Ne-om
tatdiiaee
ot 1
.: :"; ':E:"H‘” NH_GM/do NH-QM/dc
N 0
0.0 o4 % % 1o
0 50 100 150 200 X
time

. . FIG. 3. The numerical propagated wave packet$=50 as

FIG. 2. The non-Hermitian propagated wave packet which isgpyined when 400 Fourier functions were used as a basis set. The
constructed from 400 Fourler_ basis _functloﬁeng dashed line, reflections from the edge of the grigvhich appear at>30 as
denoted by NH-QNl as a function of time ax=L/2 (edge of the g5 in Fig. 2 are avoided as a dc field is added close to the edge
grid). The propagated wave packet is defined W& ;g 5 (adX of the grid.
=100),t), such thatF,~x when |x| <xcap=90, whereasF,
=xexp(if) when |x| >xcap The initial wave packet is given by o . o .
W(x,t=0)=(1/5m)Yexp(-x2/ 10+ipex), where p,=0. The reflec- NG of the static field reduces this artificial edge-grid reflec-

tions from the edge of the grid as time passes are obtained whée#Pn effect. _ -

t>T=30. The full line stands for the results obtained when a dc  (b) Imposing of outgoing boundary conditioriBhe nu-
field has been introduced close to the edge of the gig;95 and ~ merical edge-grid reflection effect can be reduced by impos-
Egc=2. ing outgoing boundary condition&omplex scaled ones in
our casg It is simple to implement that approach when grid

discussed above, the fast moving components of the wa/&ethods are used,

packet are entirely absorbedratL, due the use of the SES - -

CAPs. A possible solution to this problem is by adding a Depplt + At) = UDcap(t), (23
static field close to the edge of the grid, in order to acceleratg\,hereu(t+At<_t) is the time evolutionNx N matrix and

the slow moving wavelengths which are completely ab- - ,

sorbed by the SES CAPs. The static field is turned on only af'€ ith component 9f the vectabcag(t) is the value of the

the edge of the grid whene=ry. and is given by propagated WP afj; j=1,2,..N grid point. The grids
points are ordered such that| <|r,| < ---|fy_1| <|r\|. The

Edc notation of CAP stands for the use of the exterior or the SES
V, r=rg)=——(—-rq). 22 ) . - .
extad(l = ad 2 (r=Tqo (22 transformations. The outgoing boundary conditions are im-
The value ofr 4. and &y, can be optimized to minimize the 8
effect of the dc field on the WP propagation. An estimate of ’
the error introduced by adding thé,,, 4. potential term to =250
the Hamiltonian can be obtained from the imaginary parts of 45
the bound states calculated for the Hamiltonian which is NH-QW/de
taken asH+Vgy 4ot Veap The evaluation oWeap from the 43
SES transformations will be described in Sec. VI. = NH-QM
Let us return to our illustrative numerical example. The e a2 b

smooth exterior scaled wave packet has been calculated as
described above whefx| <100 (i.e., the box size isL
=200 when V4 dc-potential term was added into the 40|
Hamiltonian. The results presented in Fig(tBe full solid
line denoted by NH-QM/dcclearly show the strong suppres-

. . . 3.8
sion of the reflections from the edge of the grid as the dc 72.2 732 742 75.2
field has been introduced into the Hamiltonian. In Fig. 3 we X

present the numerical results obtained=a250. It is clearly FIG. 4. The propagated wave packetsta?50 as obtained

shown that close to the edge of the grid the dc field inhibitsyhen 400 Fourier functions were used as a basis set, in a compari-
the artificial reflections as appeared in the NH-QM calculason with the numerically exact solution. The propagated wave

tions. Note that as time passes the reflection leads to thgacket as obtained when both the smooth exterior scaling transfor-
distortion of the wave packet also at regions which are quit@nation and the dc field were implemented into the numerical cal-

far from the edge of the grid, as shown in Fig. 4. However, asulations is in a very good agreement with the numerical exact

one can see from the results presented in Fig. 4 the introduselution.
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posed by replacing thith row of the time evolution matrix 24
t=60
N s

Unis 1=1,2,... N by exdi expli 6)k(Fy—Fy-1)]Un_1;- Here 60

we use the fact that thi, ry-1, Fn-» grid points are in the Po™

scaled region wheré— " exp(i ). The wave vectok is de-

termined from the previous time step calculations and from |

the ry_; and thery_, grid points. That is,

. e - PepplMy-1:t)

expiexpliOk(fy-y —fy-2)]=—————. (29
Deaplin-21)

It should be stressed that it is not always true that at a given |

10%y)?

time the tail of the WP is constructed of a single outgoing
wave component. However, this kind of an approximation A
has been found useful in WP propagation calculations of 0G "1 )
various physical problemi39]. 0 , , L\
0 20 60 X 100 140

One should assure that the real part of the wave vectol

gets positive values only. In the one-dimensional case where
equally spaced grid points are used, the application of that FIG. 5. The propagated wave packet as obtained when the time

approach is straightforward. In such a case the modified lagivolution operator has been modified as explained in the[sed
Eq. (25)]. The model Hamiltonian and the initial state are as de-

row of the time evolution matrix is given by
scribed in the caption of Fig. 1. The long dashed line stands for the
Upi(t+ At e t) = Upoq (t+ At t)(I)CAP(rN—lvt) (25) results obtained from numerically exact propagation calculations.
| -1, .
Pear(rn-2t)
Similarly, one can modify alj > j, rows and not only the last inclusion of a CAP which gets nonzero values only in the
one. The assumption is that the vectdys, are all embed- edge of the grid. This SES CAP is a nonlocal operator, since
ded in the asymptote region of the propagated wave packelf. includes terms with the momentum and k|net|p energy op-
This method(applicable to three-dimensional problems aserators. Fpr the sakc_a of a coherent representation of_the sub-
well) to reduce the edge-grid reflection effect is an extensionyecfn\:ve gggﬂi/ des}crlbe gotw th(; SESdCAtPg a;}rg_é).btalned.
variation of Hadley’s original work, where the transparent, '€ o ran_ftorme ime-dependent schrodinger equa-
boundary condition for the beam propagation method wa&©" ¢an be rewritten as
developed[39]. This method does not require the use of 0
CAPs. However, we believe that the use of the exterior or the HeapPear(t) = |E¢CAP(t)a (26)
SES transformation together with the transparent boundary
condition should minimize the numerical reflections from thewhere

edge of the grid. smag
The possibility to impose the outgoing boundary condi- Heap=SHS™, (27)

tion by modifying the time evolution operator as shown in .
(DCAPz Sq)exac(t) = q)exac(Fo(r)at)- (28)

Eq. (25 is illustrated here by applying it to our test-case
problem. The results presented in Fig. 5 clearly show that by .
We have proved before that the SES transformation is

using the method introduced above a similar absorbin } i g -
boundary condition effect—as achieved when the RF cAp$gduivalent to the including of a nonlocal energy-independent,

are added to the Hamiltonian—is obtained. A comparisortniversal(i.e., problem independen€AP [14],
between the results presented in Figs. 5 and 1 shows that the Honp= 0+ AV+\A/RF~CAP’ (29)

RF CAP(Fig. 1) provides better results than those obtained
by imposing the outgoing boundary condition on the propawhere the correction term to the physical potential is given

gated wave packgfig. 5. However, it might be expected by
that similarly to the effect of the dc field described above, the AV = V(F (1) - (), (30)

combination of the two approaches would avoid the reflec-
tions which are obtained after long time propagation. Thisand the nonlocal energy-independent, universal CAP has

study is out of the scope of the present study and requireseen proved to be equal [@4]

further investigation. 5
Vrecap=Vo(r, 0) +V1(r,6)g +V2(r.9)m- (31)

VL. OPTIMAL RF CAPS FROM THE SES The complex functiond/; ; j=0, 1, 2 have vanished in the
TRANSFORMATIONS inner region where <rc,p. They are inverse proportional to

In order to complete the representation of optimal RFthe mass(reduced magsof the particlg¢s) which is (are
CAPs we should show that under well defined specific conabsorbed by th&grcap and are defined gsiote that below
ditions the use of the SES transformation is equivalent to theve use the notatioﬁ((,”)(r) =dFj(r)/dr"] [14]
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ﬁZ 5(F(2)(r))2 45
Vo(r,0) = —————| Fo(r) - —%—|, (32
or.0) 4M(F591>(r>)3[ A N 160
#2F2(r)
Vi(r,0) = ———— (33)
' M(F(r))? =
©
h? ) )
Vo(r, 6) = N[l - (Fm)™. (34)
The initial state is defined as
dy(transformedl= O(F4(r),t=0). (35)
When the initial state is localized in the interaction region _
whereVee cap=0 thend(F ,(r),t=0)=®(r,t=0). In the case FIG. 6. The propagated wave packets=a60 as obtained from

. N s ., conventional and non-Hermitian QM calculations, in a comparison
that the physical potential is a short-range potential it is qQUItE ih the numerically exact solutioflenoted by a long dashed line

obv_lous that the contour of mtegrapcﬁp(r) can pe chosen 1y propagated wave packets denoted by H-QM and NH-QM cor-
to yield AV=0 everywhere at any point in the entire space. Inrespondingly were constructed from the eigenfunctions and eigen-
the case of long-range potential the situation is more compliyajues of the Hermitian and non-Hermitian Hamiltonians when 400
cated[40]. In such a case thaV term in Eq.(29) cannot be  Fourier basis functions were used as a basis set. The NH-QM re-
neglected and the SES RF CAP is equalé+Vggcap and sults obtained when the smooth-exterior-scaling transformation was
seems to be problem dependent. However, for neutral mointroduced(by addingVggcap into the Hermitian Hamiltonian are

ecules ifrcap gets a sufficient large value such that the ion-in a complete agreement with the exact solution when< xcap

ized electrons are in hydrogeniclike orbitals th&W+Ve,p = 90-

can be replaced by a universal potential term-11/F,(r)  gation calculations within the framework of the conventional
+Vgrecap [40]. This approach holds also for many-electron QM, they do not show up in the NH-QM calculations. The
systems where we assume that the ionized electrons are n@fflections appeared in the conventional quantum-mechanical
correlated as they get far away from the atom/molecule/QDcalculations due to the use of the eigenfunctions, which were
In such a case we do not need to replace the two electropbtained within the framework of the box-quantization ap-
repulsion termsr;—j|™* by [F (1) = F4(F)[ ™% proximation, as a basis set. A quasidiscrete continuum rather
Before concluding let us return to our illustrative numeri- than a continuous continuum has been used in the propaga-
cal example. Using 400 Fourier basis functiofwgth the  tion calculations. As one can see from the results presented
box size,L=200 we obtained matrix representations of in Fig. 6 the use of the RF CAP provid&y, onm(-=90<x
the Hermitian Hamiltonian, Ay.ou=-0.502/dx@+(0.52 < +90.1=60)=Weqc(~90<x<+90,=60) (within more
~0.8ex-0.1x9, and also of the non-Hermitian one, than six digits of accuragyin spite of the fact that in the two
~ ~ ~ calculations we have used the same basis functions and the
same number of them the NH-QM calculations provided an

Fy(x) as defined in Refqd14,16 are 9=0.5 rad,)\_=0.9 a.nd accurate propagated wave packet while the conventional cal-
Xcap=90. The two 40X 400 matrices were diagonalized. . |ations are far from convergence.

The eigenvalues and eigenvectors of the Hermitian matrix
are correspondingly given b %"(rea) and C"M. Simi-
larly, E}'"*%(compley and C}'*°" are associated with the

Hni-om=Hu-om* Vrecap The parameters for the function

VII. CONCLUDING REMARKS

eigenvalues and eigenvectors of the non-Hermit@mplex We can summarize it by saying that for the CAPs derived

and symmetrig matrix. The propagated wave packet within from the SES transformatior{d4]: (i) the propagated WP

the framework of H-QM is given by decays faster to zero than the exact solution and therefore at
400 any given time we can use a smaller grid/basis in the numeri-

_ _ oM, H-QM . 2mnx cal calculations when the SES CAPs are introduced into the

Phom(x,h) = ,%e ! % Coi exp( . (39 numerical calculationdji) the SES CAPs can be introduced
also in the region where the interaction potential is active
The propagated wave packet within the framework of the(provided the edge of the grid is in the region where the

NH-QM approach is given by exact WP has outgoing wave components gnlii) the use
400 of SES CAPs enables one to introduce the CAPs also in the
Voux ) =S e My Cmﬂ-QMex%im? _ region where the initial WP does not get zero valu@s;the
i1 P L duration of the WP calculations which provide accurate re-

37) sults(avoiding the numerical reflections from the edge of the

grid) can be easily estimatddee Fig. 3; (v) it is possible to
The results presented in Fig. 6 clearly show that while thereduce the reflections of the slow moving components of the
reflections from the edges of the grid appeared in the propawave packet, either by introducing a dc field in the edge of
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