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The conditions for optimal reflection-free complex-absorbing potentialssCAPsd are discussed. It is shown
that the CAPs as derived from the smooth-exterior-scaling transformation of the HamiltonianfJ. Phys. B31,
1431 s1998dg serve as optimal reflection-free CAPssRF CAPsd in wave-packet propagation calculations of
open systems. The initial wave packet,Fst=0d, can be located in the interaction regionsas in half collision

experimentsd where the CAPs have vanished or in the asymptote whereV̂CAPÞ0. As we show, the optimal
CAPs can be introduced also in the region where the physical potential has not vanished. The unavoided
reflections due to the use of a finite number of grid pointssor basis functionsd are discussed. A simple way to
reduce the “edge-grid” reflection effect is described.
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I. INTRODUCTION

There is an extensive use in wave-packetsWPd propaga-
tion calculations in complex absorbing potentialssCAPsd.
The use of CAPs in propagation of WP calculations is usu-
ally for half collision experiments where the initial wave
packet is localized in the interaction region where the CAPs
have vanished. The role of the CAPs is to avoid the reflection
from the edge of the grid as obtained in the numerical propa-
gation calculations. Often CAPs are referred to as optical
potentials. The CAPs are used in very different fields of
physics, chemistry, and technology. See, for example, calcu-
lations of resonances for CAPs in a nuclear physics problem
f1g; deriving different expressions that simplify the numeri-
cal calculations of state-to-state transitions probabilities for
reactive scattering collisionssfor time-independent Hamilto-
nians see Ref.f2g and for time-dependent ones see Ref.f3gd;
calculations of complex molecular potential-energy surfaces
by CAPs f4g; and molecular electronic studies where the
CAP serves to absorb charge reaching the electrodesf5g.
Besides the use of CAPs in the numerical calculations an
effort has been taken in developing different types of CAPs.
See, for example, Refs.f6–12g where recently different types
of CAPs were developed. For a most recent review on CAPs
see Ref.f13g.

In 1998 we have derived CAPs by applying the smooth-
exterior-scaling transformationssSESsd to the Hamiltonian
f14g. Here we study theconjecturethat the use of exterior-
scaling or SES similarity transformations produce reflection-
free CAPssRF CAPsd for the WP propagation calculations.
As we will show here within the finite basis-set or finite grid
approximations the CAPs are not reflection-free ones. How-
ever, it is possible to show that for a given finite basis/grid
method a quantity criteria for the strength of the numerical
reflections can be derived. It is important to mention that
about the same time Riss and Mayerf15g obtained CAPs,

which under specific conditions are similar to the SES CAPs,
by taking another approachsso-called transformative CAPd.
Only when the CAP is introduced in a region where the
potential energy has vanished, the transformative CAP de-
rived by Riss and Meyerf15g is equal to the SES CAP that
has been derived analytically without any approximations by
us f14g sin such a case the SES CAP and the transformative
CAP are identical although they look slightly differentd. Our
main motivation for deriving SES CAPs was to simplify the
calculations of resonances positions and widths. However,
this SES CAP has been used also to avoid the artificial re-
flections from the edge of the grid in wave-packetsWPd
propagation calculationsf16g. One may wonder, what is the
need for the transformative CAPs or the SES CAPs since the
reflections can be taken as small as one wishes by introduc-
ing the CAP in the domain where the physical potential is
zero and by making the CAPsany CAPd soft and long
enoughf17g. The answer to that question is that it is most
desired to avoid the use of long-ranged CAPs which require
a large number of basis functions or a large number of grid
points in heavy duty numerical calculations. For example, in
propagation calculations of many electron molecular systems
it is hard to avoid the introduction of the CAP in the domain
where the physical long-range potential is not zero.

Here we want to discuss two types of questions. The first
type is mathematical-physical questionssi.e., theoretical
questions in the sense that we assume that complete basis
sets are usedd, such as the following:

sid What are the properties of reflection-free CAPs?sAs
we show here, there are two conditions that should be satis-
fied.d

sii d Can we introduce the RF CAP in the domain where
the physical potential is not zero and the propagated wave
packet does not consist of outgoing waves only?sAs we
show, the answer is yes.d

siii d Can the initial state be exponentially localized in the
interaction region, as required in half collision experiments,
where the CAP vanishes?sThe answer is yes.d

sivd Can the initial state be localized in the domain where
VCAPÞ0? sThe answer is yes, provided the smooth-exterior
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scaling transformation is applied to the initial state.d
The second type is practical questions.
sid Are indeed the RF CAPs reflection free in the numeri-

cal calculations where a finite number of grid points or a
finite number of basis functions are used?sThe answer is no
since in spite of the complete absorbing of the fast moving
components of the wave packet still there is an edge-grid
reflection effect which is associated with the slow moving
components of the WP.d

sii d Can we minimize the reflections which result from
the use of finite-sized basis/grid methods and how?sThe
answer is yes, by methods explained in the paper.d

siii d Can we apply the RF CAPs to many-electron prob-
lems?sThe answer is yes provided the electronic repulsion
terms, 1/urWi −rW ju, are modified. This requirement can be
avoided when the ionized electrons are not correlated.d

II. WHAT ARE THE IDEAL REFLECTION-FREE CAPS ?

First, we should describe the numerical problem we want
to solve by introducing a CAP into the Hamiltonian. Using
the Hermitian quantum mechanics the propagated wave
packet is given by

Fexactstd = e−iĤt/"F0. s1d

In the numerical calculations the propagated wave packet
is FnumstdÞFexactstd. We are looking for numerical methods
for which

uFnumstd − Fexactstdu , e, s2d

wheree determines the requirement accuracy from the nu-
merical results. Since in the numerical calculations only a
finite number of grid points or a finite number of basis func-
tions are used, the available spatial space is not fromr =0 to
r =` but up tor =L. Therefore accurate results are obtained
as long asFexactstd vanishes atr ùL. By increasing the num-
ber of the grid points or by increasing the number of the
basis functions we increase the value ofL. The initial state
F0 is a square integrable function. In half collision experi-
mentsssuch in photodissociative or autoionization reactionsd
the initial WP is localized in the interaction region where
uFnumst=0d−Fexactst=0d u ,e. However, as time passes the
wave packet spreads and only during a given period of time
t, the numerical calculations satisfy the accuracy condition
stated above. It is important to realize that the value oft is
determined by the time it takes for the tail of the wave packet
to reach the edge of spatial spacesi.e., r =Ld. In order to
obtain Fnumstd within the desired accuracy, one should in-
crease the number of the used grid/basis points/functions and
thereby increase the value ofL. The role of the CAP is to
enable one to obtain accurate numerical results in the lim-
ited available spatial space, rø rCAP,L, without the need to
increase the number of grid/basis points/functions. Namely,

FCAPstd = e−isĤ+V̂CAPdt/"F0, s3d

where due to the use of the finite grid/ basis-set numerical
methods,

FCAPsr ù L,td = 0. s4d

The CAP is defined such that

V̂CAP= 0 as rø rCAP, L s5d

and

uFCAPstd − Fexactstdu , e in the region whereV̂CAP= 0.

s6d

A common requirement is that

F0 = 0 in the region whereV̂CAPÞ 0. s7d

As a matter of fact, the last condition is too strong and it is
possible to satisfy Eq.s6d also when the initial state is local-
ized in the region where the CAP gets nonzero values. This
extension will be discussed later.

Short-range CAPssthe Saxson-Wood potentiald have been
used about two decades ago in molecular wave-packet cal-
culationsf18g. A CAP which has been used often in the lit-
erature f19–34g is V0=0 for x,x0 and V0=−ilsx−x0dn

where n=1, 2, …8 for xù0. For large values ofn these
CAPs are very similar to the purely imaginary step-type po-
tential that has been shown above to provide a strong reflec-
tion. Regarding the reflections due to the introducing of
abrupt complex potentials one might be aware of the fact that
there are examplesssee the review in Ref.f13g, and refer-
ences thereind of discontinuous potentials that are con-
structed to avoid reflection, and absorb totally, at single in-
cident energies, or in certain momentum intervals, or at a
discrete set of energies. Of course they cause reflections at
other energies. The CAPs that we are looking for are differ-
ent ones. They are energy-independent RF CAPs, and in
principle can be chosen to be universal onessi.e., problem
independentd.

As we will show here it is unlikely to have a universal
si.e., problem independentd CAP for which both Eqs.s4d and
s6d are satisfied. Therefore let us first discuss the possibility
to satisfy Eq.s6d when the condition given by Eq.s4d is
replaced by a weaker numerical condition:FCAPstd is a
square integrable function at any given time, which decays to
zero muchfaster than the exact solution. Such that within a
given time interval

FCAP„r = LsTd,t , T… ø e, s8d

where the value ofe is determined from the desired accuracy
of the numerical calculations.

III. SES TRANSFORMATIONS AND THE CONDITIONS
FOR OPTIMAL REFLECTION-FREE CAPS

The idea of introducing RF CAPs by using the exterior
scaling or SES methods is clear: the Hamiltonian remains as
it is inside the inner region, where the coordinates stay on the
real axis. However, it has been shown by Simon that upon
the exterior scaling transformation,

r → rext, s9d

where inside the inner unscaled region,
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rext= r whenr ø rCAP, s10d

and in the external-scaled region,

rext= rCAP+ sr − rCAPdeiu whenr . rCAP, s11d

the eigenfunctions arenot equalto eigenfunctions of the un-
scaledsi.e., Hermitiand problem inside the unscaled region
f35g. For example, for a free particle Hamiltonian the con-
tinuum eigenfunctions inside the inner unscaled region are
given by Ainexpf−ikexps−iudrg+Aoutexpf+ikexps−iudrg.
Since the propagated WP can be described as a linear com-
bination of the eigenfunctions of the complex scaledsor ex-
terior scaledd Hamiltonian, it is not clear at all that in this
case Eq.s6d is satisfiedshere we consider the exterior scaled

Hamiltonian asĤ+V̂CAPd. This result is very confusing since
from numerical propagation calculations we know that inside
the inner unscaled region in space, the propagated WP is
exactly as obtained without the use of exterior scaling. As we
will show below the validity Eq.s6d can be easily explained
by association the SES approach with the use of similarity
transformation operators as developed in Refs.f14,36g. Us-
ing the SES approach,

r → rSES; Fusrd, s12d

where the path in the complex coordinate space is chosen
such that

uFusrd − r u ø e whenr , rCAP s13d

and

Fusrd
r

→ eiu as r → `. s14d

The SES transformations clearly show that Eq.s6d can be
satisfied to any desired accuracy. If the SES transformation is

represented by the similarity operatorŜ, then the propagated
WP within the framework of the SES approach is given by

ŜCexactstd which is equal toCexactstd inside the inner region

fsee Eq.s13dg whereŜ,1.
Let us discuss now the validity of Eq.s8d. Following Si-

mon’s proof for the exterior scaled potential and following
Moiseyev and Hirschfelder’s proof for general complex
scaled transformationsf37g sincluding the SES transforma-
tionsd, the complex scaled resonances functions are square
integrable but the continuum eigenfunctions are not square
integrable functions. They are associated with complex ei-
genvalues, Eextscontinuumd=kext

2 /2=fk exps−iudg2/2, such
that kext rext in the exterior region is equal to the same value
as obtained in Hermitian quantum mechanics, i.e.,k r snote
that a very different result is obtained in the inner region as
discussed in the previous paragraphd. Therefore the asymp-
tote of the continuum wave functions as obtained after the
application of the exterior or SES transformations remain as
obtained within the framework of the conventionalsi.e., Her-
mitiand quantum-mechanicalsQMd approach. Upon complex
scalingkext is rotated into the lower-half complexk plane to
avoid the exponential divergence of the complex scaled in-
coming waves associated with real and positive values for
the wave vector, i.e.,

exps− ikrextd = expf− ikcossudrg expf+ ksinsudrg → `,

as r →`. Therefore it is not obvious whether a square inte-
grable WP such asFexactstd=e−`

+`Csk,tdexpsikrddk→0 as
r →` remains square integrable whenr → rext or r → rSES.
It has been proven by Moiseyev and Katrielf38g that for
sufficiently small values ofu, i.e., u,uc, the eigenfunctions
of a complex scaled Hamiltonian which are associated with
the bound states are square integrable. The value ofuc de-
pends on the shape of the potentialf38g. Let us assume that
the wave packet is a Gaussian, exps−ar2d. It is clear that
exps−arext,SES

2 d remains square integrable provided thatu
øuc=p /2. When the wave packet is more localized, for ex-
ample is described as exps−arNd, thenuc=p /N. Since Gaus-
sians form an overcomplete basis set, one might expect that
any square integrable functionswhich can be expanded in
term of the Gaussian basis setd remains square integrable
after applying the complex scaling or the SES transforma-
tion.

It is easy to prove that the wave packetFexactstd decays
exponentially to zero at any given time, provided it is a
square integrable function att=0. A proof which holds also
for complex scaled non-Hermitian Hamiltonians is as fol-

lows: Fexactst+dtd=exps−iĤdt/"dFexactstd. For sufficiently

small values ofdt, exps−iĤdt/"d=on=0sn! d−1s−idt /"dnsĤdn

is a converged seriessprovided ImĤø0d. If Fexactst8ø td is a

square integrable function thensĤdnFexactstd is square inte-
grable as wellfthe second derivative of a square integrable
function is square integrable and the product of a square
integrable function and a confinedscomplex scaledd potential
is also a square integrable functiong.

Let us summarize the facts we know by now:sid when the
initial wave-packetsWPd is square integrable the time propa-
gated WP is square integrable as well;sii d the complex
scaled square integrable WP remains square integrable;siii d
the complex scaled incoming waves diverge exponentially
whereas the outgoing waves exponentially decay to zero;sivd
in the absence of a source of particles in infinite large dis-
tance from the studied system, the asymptote of the propa-
gated WP consists of outgoing waves onlysas in half colli-
sion experimentsd. From sid–siii d it is clear that for the most
general case the square integrable WP,

Fexactsr ù L,td =E
0

`

dkfDsk,tde−ikr + Csk,tde+ikrg

→ 0 asr → `, s15d

remains square integrable,

FCAPsr ù L,td =E
0

`

dkfDsk,tde−ikcossudre+ksinsudr

+ Csk,tde+ikcossudre−ksinsudrg s16d

→ 0 asr → `, s17d

although each one of the components of the complex scaled
incoming waves exponentially diverge. When the condition
s4d is not satisfied, this factsi.e., interference of exponen-
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tially diverged incoming waves results in a square integrable
functiond may introduce some numerical difficulties in the
propagation calculations. For overcoming these types of nu-
merical difficulties when long-ranged potentials are used see
the second reference in Ref.f29g.

When conditionsivd is satisfiedsas in all half collision
experimentsd then

Fexactsr ù L,td =E
0

`

dkCsk,tde+ikr → 0 asr → `,

s18d

and it is easy to see thatFCAP decays faster since

FCAPsr ù L,td =E
0

`

dkCsk,tde+ik cossudre−k sinsudr . s19d

The fact that within the interval ofrCAP, r øL, the propa-
gated WP,FCAPstd, decaysfaster than Fexactstd is the main
motivation behind the use of the exterior scaling, smooth-
exterior complex scaling methods in the numerical propaga-
tion calculations.

IV. A QUANTITY CRITERIA FOR THE MEASUREMENT
OF THE STRENGTH OF THE NUMERICAL

REFLECTIONS

From Eq.s19d a quantity criteria for the strength of the
numerical reflections from the edge of the grid is obtained,

uCsk,tde−ksinsudLu ø e. s20d

As an upper limit for the accuracy of the calculations one
gets that

uCsk,tde−kLu ø e. s21d

At t=0 the initial wave packet gets exponentially small
values atr ùL and therefore we can consider it as a case
whereCsk,0d=0. As time passes the wavelet with the largest
value of k sassociated with a large velocityd is the first to
reach the edge of the grid. As one can see from Eq.s21d the
fast moving components of the wave packet are entirely ab-
sorbed atr =L, due to the use of the complex absorbing
boundary conditions which were introduced by the use of the
exterior scaling or the SES transformations. For the compo-
nents of the wave packet associated with small values ofk,
the requirement of exps−kLd,0 is satisfied by increasing the
value ofL. The propagation calculations using SES transfor-
mations, within the framework of the finite basis-set/grid ap-
proximations, are accurate as long asuCsk,tdu gets suffi-
ciently small values. This explains whyL in Eq. s8d is a
function of time and why the duration of the propagation
calculations cannot exceed a given period of timeT whenL
is held fixed in the propagation calculations.

As an illustrative example we carried out wave-packet
propagation calculations for a one-dimensional Gaussian,
Csx,t=0d=s1/5pd1/4exps−x2/10+ip0xd, which is localized
at a potential well embedded in between two identical poten-
tial barriers. This potential,Vsxd=s0.5x2−0.8d exps−0.1x2d,
has been used before as a test problem for methods devel-

oped in non-Hermitian quantum mechanicsssee, for ex-
ample, Ref.f36g and references thereind. In Fig. 1 the results
obtained from two types of propagation calculations are pre-
sented. The long dashed line stands for the numerically exact
calculations ofCexactsx,t=60d, using a fifth-order split op-
erator with −1000øxø +1000. The full solid line is
C(Fu=0.5 radsxd ,t=60) whereFusxd is a smooth exterior scal-
ing function, such thatFu,x when uxu ,xCAP;90, whereas
Fu=xexpsiud when uxu .xCAP. For uxu ,xCAP Cexactsx,t
=60d<C(Fusxd ,t=60). However, it is clearly shown that un-
like the exact wave packet which oscillates, the smooth ex-
terior scaled wave packetflabeled in Fig. 1 by non-
Hermitian quantum-mechanicssNH-QMd approachg decays
to zero asx is rotated into the complex coordinate plane
aroundx=xCAP=90.

Following our analysis the propagated wave packet de-
cays to zero when the contourx is smooth exterior scaled
srotatedd into the complex coordinate space only within the
time interval tøT. The results presentedsdenoted by NH-
QMd in Fig. 2 were obtained from numerical calculations
where −100øxø +100 si.e., the box size isL=200d. It is
clearly shown that untiltø30 the complex scaled wave
packet is practically equal to zero at the edge of the gridsi.e.,
at x=L /2d. As time exceeds the value oft=T;30 the com-
plex scaled wave packet is reflected from the edge of the
grid.

V. HOW TO REDUCE THE NUMERICAL REFLECTIONS
OF THE SLOW MOVING COMPONENTS OF THE
WAVE PACKET FROM THE EDGE OF THE GRID

Let us propose two different possibilities:
sad Accelerate the slow moving components of the wave

packet by inducing an external dc field.Equations21d indi-
cates clearly that the numerical reflections from the edge of
the grid are associated with slow moving wavelengths. As

FIG. 1. The numerical exact propagated wave packetslong
dashed lined, Cexactsx,t=60d, and the corresponding wave packet
sdenoted by NH-QMd which is defined asC(Fu=0.5 radsxd ,t=60).
The smooth-exterior-scaling contour is defined asFu,x when uxu
,xCAP;90, whereasFu=xexpsiud when uxu .xCAP. The initial
wave packet is given byCsx,t=0d=s1/5pd1/4exps−x2/10+ip0xd,
wherep0=1.
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discussed above, the fast moving components of the wave
packet are entirely absorbed atr =L, due the use of the SES
CAPs. A possible solution to this problem is by adding a
static field close to the edge of the grid, in order to accelerate
the slow moving wavelengths which are completely ab-
sorbed by the SES CAPs. The static field is turned on only at
the edge of the grid wherer ù rdc and is given by

Vext−dcsr ù rdcd = −
Edc

2
sr − rdcd. s22d

The value ofrdc andEdc can be optimized to minimize the
effect of the dc field on the WP propagation. An estimate of
the error introduced by adding theVext−dc potential term to
the Hamiltonian can be obtained from the imaginary parts of
the bound states calculated for the Hamiltonian which is

taken asĤ+Vext−dc+V̂CAP. The evaluation ofV̂CAP from the
SES transformations will be described in Sec. VI.

Let us return to our illustrative numerical example. The
smooth exterior scaled wave packet has been calculated as
described above whenuxu ø100 si.e., the box size isL
=200d when Vext−dc dc-potential term was added into the
Hamiltonian. The results presented in Fig. 2sthe full solid
line denoted by NH-QM/dcd clearly show the strong suppres-
sion of the reflections from the edge of the grid as the dc
field has been introduced into the Hamiltonian. In Fig. 3 we
present the numerical results obtained att=250. It is clearly
shown that close to the edge of the grid the dc field inhibits
the artificial reflections as appeared in the NH-QM calcula-
tions. Note that as time passes the reflection leads to the
distortion of the wave packet also at regions which are quite
far from the edge of the grid, as shown in Fig. 4. However, as
one can see from the results presented in Fig. 4 the introduc-

ing of the static field reduces this artificial edge-grid reflec-
tion effect.

sbd Imposing of outgoing boundary conditions.The nu-
merical edge-grid reflection effect can be reduced by impos-
ing outgoing boundary conditionsscomplex scaled ones in
our cased. It is simple to implement that approach when grid
methods are used,

FW CAPst + Dtd = UFW CAPstd, s23d

whereUst+Dt← td is the time evolutionN3N matrix and

the j th component of the vectorFW CAPstd is the value of the
propagated WP atrW j; j =1,2, . . .N grid point. The grids
points are ordered such thaturW1u ø urW2u ø ¯ urWN−1u ø urWNu. The
notation of CAP stands for the use of the exterior or the SES
transformations. The outgoing boundary conditions are im-

FIG. 2. The non-Hermitian propagated wave packet which is
constructed from 400 Fourier basis functionsslong dashed line,
denoted by NH-QMd as a function of time atx=L /2 sedge of the
gridd. The propagated wave packet is defined asC(Fu=0.5 radsx
=100d ,t), such that Fu,x when uxu ,xCAP;90, whereasFu

=xexpsiud when uxu .xCAP. The initial wave packet is given by
Csx,t=0d=s1/5pd1/4exps−x2/10+ip0xd, where p0=0. The reflec-
tions from the edge of the grid as time passes are obtained when
t.T;30. The full line stands for the results obtained when a dc
field has been introduced close to the edge of the grid,xdc=95 and
Edc=2.

FIG. 3. The numerical propagated wave packets att=250 as
obtained when 400 Fourier functions were used as a basis set. The
reflections from the edge of the gridswhich appear att.30 as
shown in Fig. 2d are avoided as a dc field is added close to the edge
of the grid.

FIG. 4. The propagated wave packets att=250 as obtained
when 400 Fourier functions were used as a basis set, in a compari-
son with the numerically exact solution. The propagated wave
packet as obtained when both the smooth exterior scaling transfor-
mation and the dc field were implemented into the numerical cal-
culations is in a very good agreement with the numerical exact
solution.
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posed by replacing theNth row of the time evolution matrix
UN,i; i =1,2, . . . ,N by expfi expsiudkWsrWN−rWN−1dgUN−1,i. Here
we use the fact that therWN, rWN−1, rWN−2 grid points are in the
scaled region whererW→ rW expsiud. The wave vectorkW is de-
termined from the previous time step calculations and from
the rWN−1 and therWN−2 grid points. That is,

expfiexpsiudkWsrWN−1 − rWN−2dg =
FCAPsrWN−1,td
FCAPsrWN−2,td

. s24d

It should be stressed that it is not always true that at a given
time the tail of the WP is constructed of a single outgoing
wave component. However, this kind of an approximation
has been found useful in WP propagation calculations of
various physical problemsf39g.

One should assure that the real part of the wave vector
gets positive values only. In the one-dimensional case where
equally spaced grid points are used, the application of that
approach is straightforward. In such a case the modified last
row of the time evolution matrix is given by

UN,ist + Dt ← td = UN−1,ist + Dt ← td
FCAPsrN−1,td
FCAPsrN−2,td

. s25d

Similarly, one can modify allj . jc rows and not only the last
one. The assumption is that the vectorsrW j. jc

are all embed-
ded in the asymptote region of the propagated wave packet.
This methodsapplicable to three-dimensional problems as
welld to reduce the edge-grid reflection effect is an extension/
variation of Hadley’s original work, where the transparent
boundary condition for the beam propagation method was
developedf39g. This method does not require the use of
CAPs. However, we believe that the use of the exterior or the
SES transformation together with the transparent boundary
condition should minimize the numerical reflections from the
edge of the grid.

The possibility to impose the outgoing boundary condi-
tion by modifying the time evolution operator as shown in
Eq. s25d is illustrated here by applying it to our test-case
problem. The results presented in Fig. 5 clearly show that by
using the method introduced above a similar absorbing
boundary condition effect—as achieved when the RF CAPS
are added to the Hamiltonian—is obtained. A comparison
between the results presented in Figs. 5 and 1 shows that the
RF CAPsFig. 1d provides better results than those obtained
by imposing the outgoing boundary condition on the propa-
gated wave packetsFig. 5d. However, it might be expected
that similarly to the effect of the dc field described above, the
combination of the two approaches would avoid the reflec-
tions which are obtained after long time propagation. This
study is out of the scope of the present study and requires
further investigation.

VI. OPTIMAL RF CAPS FROM THE SES
TRANSFORMATIONS

In order to complete the representation of optimal RF
CAPs we should show that under well defined specific con-
ditions the use of the SES transformation is equivalent to the

inclusion of a CAP which gets nonzero values only in the
edge of the grid. This SES CAP is a nonlocal operator, since
it includes terms with the momentum and kinetic energy op-
erators. For the sake of a coherent representation of the sub-
ject we briefly describe how the SES CAPs are obtained.

The SES transformed time-dependent Schrödinger equa-
tion can be rewritten as

HCAPFCAPstd = i
]

]t
FCAPstd, s26d

where

HCAP= ŜĤŜ−1, s27d

FCAP= ŜFexactstd = Fexact„Fusrd,t…. s28d

We have proved before that the SES transformation is
equivalent to the including of a nonlocal energy-independent,
universalsi.e., problem independentd CAP f14g,

HCAP= Ĥ + DV + V̂RF-CAP, s29d

where the correction term to the physical potential is given
by

DV = V„Fusrd… − Vsrd, s30d

and the nonlocal energy-independent, universal CAP has
been proved to be equal tof14g

V̂RF-CAP= V0sr,ud + V1sr,ud
]

]r
+ V2sr,ud

]2

]r2 . s31d

The complex functionsVj ; j =0, 1, 2 have vanished in the
inner region wherer , rCAP. They are inverse proportional to
the masssreduced massd of the particlessd which is sared
absorbed by theV̂RF-CAP and are defined asfnote that below
we use the notationFu

sndsrd;dFu
nsrd /drng f14g

FIG. 5. The propagated wave packet as obtained when the time
evolution operator has been modified as explained in the textfsee
Eq. s25dg. The model Hamiltonian and the initial state are as de-
scribed in the caption of Fig. 1. The long dashed line stands for the
results obtained from numerically exact propagation calculations.
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V0sr,ud =
"2

4M„Fu
s1dsrd…3FFu

s3dsrd −
5„Fu

s2dsrd…2

2Fu
s1dsrd G , s32d

V1sr,ud =
"2Fu

s2dsrd
M„Fu

s1dsrd…3 , s33d

V2sr,ud =
"2

2M
f1 − „Fu

s1dsrd…−2g. s34d

The initial state is defined as

F0stransformedd = F„Fusrd,t = 0…. s35d

When the initial state is localized in the interaction region

whereV̂RF-CAP=0 thenF(Fusrd ,t=0)=Fsr ,t=0d. In the case
that the physical potential is a short-range potential it is quite
obvious that the contour of integrationFusrd can be chosen
to yield DV=0 everywhere at any point in the entire space. In
the case of long-range potential the situation is more compli-
catedf40g. In such a case theDV term in Eq.s29d cannot be

neglected and the SES RF CAP is equal toDV+V̂RF-CAP and
seems to be problem dependent. However, for neutral mol-
ecules ifrCAP gets a sufficient large value such that the ion-

ized electrons are in hydrogeniclike orbitals thenDV+V̂CAP
can be replaced by a universal potential term 1/r −1/Fusrd
+V̂RF-CAP f40g. This approach holds also for many-electron
systems where we assume that the ionized electrons are not
correlated as they get far away from the atom/molecule/QD.
In such a case we do not need to replace the two electron
repulsion termsurWi −rW ju−1 by uFusrWid−FusrW jdu−1.

Before concluding let us return to our illustrative numeri-
cal example. Using 400 Fourier basis functionsswith the
box size, L=200d we obtained matrix representations of

the Hermitian Hamiltonian, ĤH-QM=−0.5d2/dx2+s0.5x2

−0.8dexps−0.1x2d, and also of the non-Hermitian one,

ĤNH-QM=ĤH-QM+V̂RF-CAP. The parameters for the function
Fusxd as defined in Refs.f14,16g are u=0.5 rad,l=0.9 and
xCAP=90. The two 4003400 matrices were diagonalized.
The eigenvalues and eigenvectors of the Hermitian matrix

are correspondingly given byEj
H-QMsreald andCW j

H-QM. Simi-

larly, Ej
NH-QMscomplexd and CW j

NH-QM are associated with the
eigenvalues and eigenvectors of the non-Hermitianscomplex
and symmetricd matrix. The propagated wave packet within
the framework of H-QM is given by

CH-QMsx,td = o
j=1

400

e− iEj
H-QMto

n

Cn,j
H-QMexpSi

2pnx

L
D . s36d

The propagated wave packet within the framework of the
NH-QM approach is given by

CNH-QMsx,td = o
j=1

400

e− iEj
NH-QMto

n

Cn,j
NH-QMexpSi

2pnx

L
D .

s37d

The results presented in Fig. 6 clearly show that while the
reflections from the edges of the grid appeared in the propa-

gation calculations within the framework of the conventional
QM, they do not show up in the NH-QM calculations. The
reflections appeared in the conventional quantum-mechanical
calculations due to the use of the eigenfunctions, which were
obtained within the framework of the box-quantization ap-
proximation, as a basis set. A quasidiscrete continuum rather
than a continuous continuum has been used in the propaga-
tion calculations. As one can see from the results presented
in Fig. 6 the use of the RF CAP providesCNH-QMs−90,x
, +90,t=60d=Cexacts−90,x, +90,t=60d swithin more
than six digits of accuracyd. In spite of the fact that in the two
calculations we have used the same basis functions and the
same number of them the NH-QM calculations provided an
accurate propagated wave packet while the conventional cal-
culations are far from convergence.

VII. CONCLUDING REMARKS

We can summarize it by saying that for the CAPs derived
from the SES transformationsf14g: sid the propagated WP
decays faster to zero than the exact solution and therefore at
any given time we can use a smaller grid/basis in the numeri-
cal calculations when the SES CAPs are introduced into the
numerical calculations;sii d the SES CAPs can be introduced
also in the region where the interaction potential is active
sprovided the edge of the grid is in the region where the
exact WP has outgoing wave components onlyd; siii d the use
of SES CAPs enables one to introduce the CAPs also in the
region where the initial WP does not get zero values;sivd the
duration of the WP calculations which provide accurate re-
sultssavoiding the numerical reflections from the edge of the
gridd can be easily estimatedssee Fig. 3d; svd it is possible to
reduce the reflections of the slow moving components of the
wave packet, either by introducing a dc field in the edge of

FIG. 6. The propagated wave packets att=60 as obtained from
conventional and non-Hermitian QM calculations, in a comparison
with the numerically exact solutionsdenoted by a long dashed lined.
The propagated wave packets denoted by H-QM and NH-QM cor-
respondingly were constructed from the eigenfunctions and eigen-
values of the Hermitian and non-Hermitian Hamiltonians when 400
Fourier basis functions were used as a basis set. The NH-QM re-
sults obtained when the smooth-exterior-scaling transformation was

introducedsby addingV̂RF-CAP into the Hermitian Hamiltoniand, are
in a complete agreement with the exact solution whenuxu ,xCAP

;90.
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the grid or by imposing outgoing boundary conditions on the
propagated WP.svid The SES CAPs are indeed the optimal
reflection-free caps, RF CAPS, for wave-packet propagation
calculations.
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