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The complete set of second-, third-, and fourth-order van der Waals coefficientsCn up to n=32 for the
Hs1sd-Hs1sd dimer have been determined. They are computed by diagonalizing the nonrelativistic Hamiltonian
for hydrogen to obtain a set of pseudostates that are used to evaluate the appropriate sum rules. A study of the
convergence pattern fornø16 indicates that all theCnø16 coefficients are accurate to 13 significant digits. The
relative size of the fourth-orderCn

s4d to the second-orderCn
s2d coefficients is seen to increase asn increases and

at n=32 the fourth-order term is actually larger.
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I. INTRODUCTION

The long-range interaction between two spherically sym-
metric atoms can be written in the general form

VsR→ `d = − V6sRd − V8sRd − V10sRd − V11sRd − ¯ ,

s1d

where the dispersion potentialVnsRd of ordern is written as

VnsRd =
Cn

Rn . s2d

The Cn parameters are the van der Waals dispersion coeffi-
cients. The evensn=6,8, . . .d dispersion coefficients are cal-
culated using sum rules derived from second-order perturba-
tion theory and provide an attractive interaction. The odd
sn=11,13, . . .d terms come from third-order perturbation
theory and are repulsivef1,2g. Contributions from fourth-
order perturbation theory start atn=12 f1,3g.

The dispersion interaction for the simplest system—
namely, the hydrogen dimer—is only known precisely ton
=11. The latest calculations by Yan and DalgarnosYDd f2g
reported almost exact values for the second-order even dis-
persion parameters up ton=16. They also gave almost exact
results for the third-order coefficients, up ton=15. However,
it is known that contributions from fourth-order perturbation
theory start atn=12 f1,3,4g, so the dispersion potential com-
puted from the YDCn is incomplete forn.11.

In this article, the complete set of dispersion parameters
from C6 to C16 is computed by using a large pseudostate
expansion to evaluate the appropriate sum rules. The contri-
butions from fourth-order perturbation theory toC12, C14,
andC16 are explicitly included.

II. CALCULATION OF THE DISPERSION PARAMETERS

All the dispersion coefficients computed in this paper
were computed by first diagonalizing the nonrelativistic
Hamiltonian in a large basis of orthogonal Laguerre-type or-
bitals sLTO’sd f5g defined by

xasrd = Nar,+1 exps− lardLna−,−1
s2,+2d s2lard, s3d

where the normalization constant is

Na =Îs2lad2,+3sna − , − 1d!
s, + na + 1d!

. s4d

The functionLna−,−1
s2,+2d s2lard is an associated Laguerre poly-

nomial that can be defined in terms of a confluent hypergeo-
metric functionf6g as

Lna−,−1
s2,+2d s2lard =

sna + , + 1d!
sna − , − 1d!s2, + 2d!

3 M„− sna − , − 1d,2, + 3,2lar…. s5d

All the matrix elements can be written in analytic forms
provided a commonla is adopted throughout the calculation.
However, in the present work, the radial wave functions were
placed on a numerical grid and all matrix elements computed
by Gaussian quadratures. This was done for reasons of con-
venience as the diagonalization could be done with an exist-
ing program used in previous calculations of the dispersion
parameters and the structures of positronic atomsf7,8g. This
program can achieve close to machine precision in almost all
radial matrix computations.

Once the Hamiltonian diagonalization is complete, sum
rules involving radial matrix elements were used to deter-
mine the dispersion parameters. The specific sum rules used
are those derived by Ovsiannikov, Guilyarovski, and Lo-
patko sOGLd f1g. Their expressions are a bit simpler than
those developed by other authorsf2,3g. There were some
omissions in their published equationsf9g, and a more thor-
ough description of the sum rules is presented here.

A. Second-order terms

The second-order dispersion coefficients for the HuH
system have been determined to high accuracyf2,10,11g,
even for highn. The working expression adopted for com-
putation is
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C2l+6
s2d = o

,1=1

l+1
s2l + 4d!

s2,1 + 1d!s2,18 + 1d!

3 o
i1,i18

k0,0ur,1ui1,,1l2k0,0ur,18ui18,,18l
2

sEi1
+ Ei18

− 2E0d
, s6d

where ,18=l+2−,1. The state vectorui1,,1l represents the
radial part of the statei1 with orbital angular momentum,1
and energyEi1

. The ground state energy isE0. The sum rule

Ts,d = o
i

k0,0ur,ui,,l2 =
s2, + 2d!
2s2,+1d s7d

is a useful diagnostic check of the accuracy of the underlying
discretization of the H spectrum.

B. Third-order terms C11 and C13

The dispersion coefficientsC11 andC13 arise from third-
order perturbation theoryf1–4,12g. Close to exact dispersion
parameters for the HuH system have been publishedf2g.

The general expression for the third-orderC2l+11 is f1g

C2l+11= − o
,1k1,2

o
,18k18,28

o
i1i18i2i28

Gsl,,1,,18,,2,,28,k1,k18d
sEi1i18

− 2E0dsEi2i28
− 2E0d

3 k0,0ur,1ui1,,1lki1,,1urk1ui2,,2lki2,,2ur,2u0,0l

3k0,0ur,18ui18,,18lki18,,18ur
k18ui28,,28lki28,,28ur

,28u0,0l,s8d

with the notationEi1i18
=Ei1

+Ei18
being used in the energy de-

nominator. The parameterl is defined,

2l + 8 =,1 + k1 + ,2 + ,18 + k18 + ,28 s9d

and all of the angular momentum indices are greater than
zero. DefiningJ=s,1+k1+,2d /2 andJ8=s,18+k18+,28d /2, the
coefficientG is defined as

Gsl,,1,,18,,2,,28,k1,k18d = sl + 4d!AsJ,,1,k1,,2d

3 AsJ8,,18,k18,,28dBsl,,1,,18d

3Bsl,k1,k18dBsl,,2,,28d, s10d

where

Bsl,,1,,2d =
f2sl + 4 −,1 − ,2dg!

sl + 4 −,1 − ,2d!
s11d

and

AsJ,,1,k1,,2d =
J!

s2J + 1d!sJ − ,1d!sJ − k1d!sJ − ,2d!
.

s12d

C. Fourth-order contributions to C12 and C14

As far as we know, there have only been two explicit
calculations of the fourth-order contribution toC12. Bukta
and Meathf3g gave estimates ofC12

s2d andC12
s4d for the hydro-

gen dimer. Ovsiannikovet al. f1g developed a general and

compact expression for the evaluation ofCn
s4d, and in addition

they reported values ofC12
s4d for all possible combinations of

hydrogen and the alkali-metal atoms. Rectifying some omis-
sions in their published equationsf9g, one writes

C2l+12
s4d = b2l+12− o

l1=0

l

C2l1+6
s2d a2l2+6, s13d

wherel=l1+l2.
The factora2l2+6 is

a2l2+6 = o
,1=1

l2+1
s2l2 + 4d!

s2,1 + 1d!s2,18 + 1d!

3 o
i1,i18

k0,0ur,1ui1,,1l2k0,0ur,18ui18,,18l
2

sEi1
+ Ei18

− 2E0d2 , s14d

where,1+,18=l+2. The expression fora2l+6 is practically
the same as Eq.s6d for C2l+6

s2d , the only difference being an
extra factor in the energy denominatorfcompare with Eq.
s10d of f1gg.

The factorb2l+12 is more complicated and defined as

b2l+12= o
,1,,2,,3

o
,18,,28,,38

o
k1,k2,k18,k28

o
K

o
i1i18i2i28i3i38

3F L̂1!K̂1!K̂2!L̂3!

2,1!2,18!2k1!2k18!2k2!2k28!2,3!2,38!
G1/2

3k,10k10u,20lk,180k180u,280l

3kk20,30u,20lkk280,380u,280l

3kL10K10uK0lkK20L30uK0l

35,1 ,18 L1

k1 k18 K1

,2 ,28 K
65k2 k28 K2

,3 ,38 L3

,2 ,28 K
6

3
1

sEi1i18
− 2E0dsEi2i28

− 2E0dsEi3i38
− 2E0d

3k0,0ur,1ui1,,1lki1,,1urk1ui2,,2l

3ki2,,2urk2ui3,,3lki3,,3ur,3u0,0l

3k0,0ur,18ui18,,18lki18,,18ur
k18ui28,,28l

3ki28,,28ur
k28ui38,,38lki38,,38ur

,38u0,0l, s15d

where L1=,1+,18, L3=,3+,38, K1=k1+k18, and K2=k2+k28.

We useL̂=s2L+1d. The sums are constrained by the condi-
tion

L1 + K1 + K2 + L3 = 2l + 8. s16d

While ,1, ,18, ,3, and,38 must be greater than 0, it is possible
for ,2 and,28 to be equal to 0. None ofk1, k18, k2, or k28 can be
zero. Since,2 and,28 can both be equal to zero, the possibil-
ity of i2, i28 both occupying the ground state must be explic-
itly excluded from the summation.
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III. RESULTS OF THE CALCULATION

The results of the calculations for the complete set of
dispersion coefficients up toC16 are given in Table I. The
parameters are given for basis sets with 10, 15, and 20 basis
functions per angular momentum, respectively. The exponent
in the LTO was chosen to bel=1.0 for all angular momenta.
This choice resulted in much faster convergence of the dis-
persion parameters than that observed by Yan and Dalgarno
in their calculations of the third-order dispersion coefficients.
Table I also gives results reported by YD and a single calcu-
lation of C12

s4d by Bukta and MeathsBMd f3g.

A. Second-order terms

The calculations ofCn
s2d do not give new information, and

Yan and Dalgarnof2g have given values which are con-
verged to better than 15 significant figures. The present cal-
culations with theN=20 basis are identical to 13 significant
figures. The small differences in the last digit for some of
coefficients arise from minor inaccuracies with the radial ma-
trix elements. Hence we conclude that the present calcula-
tions are numerically reliable and that the pseudostate repre-
sentation of the H spectrum is close to converged.

Besides the dispersion coefficients, the sum rule, Eq.s7d
was evaluated and seen to be correct to 12 significant digits
for all polarities relevant to the evaluation ofC6–C16

s2d.

B. Third-order terms

Since the third-order termsCn
s3d have already been given

by YD, these calculations merely serve as a test of our nu-
merical procedures. Once again, calculations with the 20
LTO basis agree with the YD results to 14 significant figures.
It is worth noting that the present results required fewer

terms than YD to achieve convergence. YD made the choice
la=1/s,+1d in Eq. s3d and did not achieve convergence to
the 14th digit place until the dimension of the LTO expan-
sion was 50. The present basis withla=1.0 achieves the
same level of convergence with 20 LTO’s.

C. Fourth-order terms

The only previous explicit calculation of a fourth-order
term was that made by BMf3g, and the only parameter given
wasC12

s4d. The OGLf1g estimate ofC12
s4d, 1.2203105 a.u., was

made using an approximation to the Green’s function and so
perfect agreement is not expected. However, the present cal-
culation agrees with the BM calculation ofC12

s4d to all digits
quoted: namely, seven.

The number of terms in the sum, Eq.s15d, increases rap-
idly as n increases. There are 4 terms forC12

s4d, there are 64
terms forC14

s4d, and finally there are 460 terms forC16
s4d.

The dominant contribution toCn
s4d comes fromb2l+12 with

96% of C12
s4d coming fromb12. The tendency forb2l+12 to be

the dominant term inCn
s4d becomes more pronounced asn

increases, and forn=16 one hasub16−C16
s4du / uC16

s4du equal to
1.2310−3.

One feature of Table I concerns the relative size ofCn
s4d to

Cn
s2d. For n=12, theCn

s4d :Cn
s2d ratio is 1.02%. However, asn

gets larger, the ratio also gets larger. Forn=14 the ratio is
4.97%, while forn=16 the ratio is 12.1%.

D. Dispersion coefficients fornÐ17

Higher-order contributions than fourth-order begin atn
=17. There is a fifth-order contribution toC17 and a sixth-
order contribution toC18 f1g. Estimates ofCn

s2d for nù17
have been made by a variety of authorsf1,11,13–15g. How-

TABLE I. The dispersion coefficients for the H–H dimer. All the results in the “Best previous” column come fromf2g except that forC12
s4d

which is taken fromf3g. All values are in atomic units.

Coefficient 10 LTO’s 15 LTO’s 20 LTO’s Best previous

C6 6.499 026 705 3305 6.499 026 705 4057 6.499 026 705 4059 6.499 026 705 4058

C8 124.399 083 58236 124.399 083 58362 124.399 083 58362 124.399 083 58362

C10 3285.828 414 9425 3285.828 414 9674 3285.828 414 9674 3285.828 414 9674

C12
s2d 1.214 860 208 96193105 1.214 860 208 96863105 1.214 860 208 96863105 1.214 860 208 96863105

C14
s2d 6.060 772 689 16713106 6.060 772 689 19173106 6.060 772 689 19173106 6.060 772 689 19213106

C16
s2d 3.937 506 393 98653108 3.937 506 393 99853108 3.937 506 393 99853108 3.937 506 393 99923108

C11 −3474.898 037 8919 −3474.898 037 8822 −3474.898 037 8822 −3474.898 037 8822

C13 −3.269 869 240 45493105 −3.26 986 924 044073105 −3.26 986 924 044073105 −3.26 986 924 044073105

C15 −2.839 558 063 31793107 −2.839 558 063 29983107 −2.839 558 063 29973107 −2.839 558 063 29983107

C12
s4d 1241.587 803 8317 1241.587 803 8462 1241.587 803 8462 1241.588

C14
s4d 3.009 633 558 95703105 3.009 633 559 00353105 3.096 633 559 00353105

C16
s4d 4.745 455 287 41683107 4.745 455 287 40833107 4.745 455 287 40793107

C12 1.227 276 087 00023105 1.227 276 087 00713105 1.227 276 087 00713105 1.227 276093105a

C14 6.361 736 045 06283106 6.361 736 045 09203106 6.361 736 045 09213106

C16 4.412 051 922 72823108 4.412 051 922 73933108 4.412 051 922 73933108

aThis entry adds the BMC12
s4d to the YD C12

s2d.
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ever, the only estimate of the third- and fourth-order terms
with nù17 are those of OGLf1g. By explicit calculation
they obtainedC17

s3d=−2.7393109 a.u., which agrees with the
present more extensive calculation to within 1%. Making an
approximation to the greens function they estimatedC18

s4d

=3.33109 a.u., which is about half the size of the present
value.

The dispersion parameters up toC32 from the present cal-
culation are tabulated in Table II. The reason for taking the
calculations so far rests in the relative size of theCn

s4d and
Cn

s2d terms. It was noticed that theCn
s4d :Cn

s2d ratio got larger as
n increased. So the calculations were extended toC32 in or-
der to demonstrate explicitly that theCn

s4d :Cn
s2d ratio can ac-

tually become larger than 1.0.
The precision of the entries in Table II is not as high as

those in Table I. The calculations ofCn
s4d did become more

time consuming asn increased. There were 922 064 different
s,1,k1,,2, . . .d combinations by the timen=32 was reached.
Also the number of radial integrals in Eq.s15d increases as
N6 whereN is the number of LTO’s for any given,. So the
N=20 calculation is 64 times more intensive than theN
=10 calculation.

The Cn
s2d andCn

s3d entries in Table II were taken from the
calculation with 15 LTO’s. TheCn

s4d entries were taken from
a N=15 calculation up ton=20; thereafter, theN=10 basis
was used. The values ofCn

s2d agree with those of Thakkar
f11g for all ten digits given in Table II. Comparisons between
N=10 andN=15 calculations forCn

s3d suggest that the con-
vergence is slower asn increases and thatC31

s3d is reliable to
about six digits. A similar level of accuracy can be expected
for Cn

s4d and a comparison between theN=10 andN=15
values forC20

s4d gives agreement for the first nine digits.

IV. CONCLUSIONS

The higher-n dispersion parameters fromC11 to C16 have
been computed to an accuracy of 13 significant figures for
the H–H dimer. Since the fourth-order contributions were
included forC12, C14, andC16, the adiabatic dispersion inter-
action can now be regarded as complete up to terms of order
R−16.

While the tabulations of dispersion coefficients report
many digits, only the first five or so digits can be expected to
correspond to the actual coefficients of two real hydrogen
atoms. The present data have all been computed in the non-
relativistic limit and therefore relativistic corrections to the
energies and transition moments will alter the dispersion co-
efficients in the later digits.

The time taken to evaluate the dispersion coefficients was
not excessive. For example, a calculation using 20 LTO’s
took about 17 min to determine all terms upC16 on a
850 MHz CPU. Hence the pseudostate method adopted here,
and in other similar worksse.g., f2,3gd, could be used to
make explicit calculations of the fifth-order correction toC17
and even the sixth-order correction toC18 f1g. Therefore, it is
certainly possible with existing technology to determine the
complete dispersion interaction for the H–H interaction for
all terms up to and includingC22.
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TABLE II. The nù16 dispersion coefficients for the HuH dimer. All values are in atomic units.

n Cn
s2d Cn

s4d Cn
s2d+Cn

s4d –Cn
s3d

17 2.726 099 8893109

18 3.234 218 71631010 7.009 061 1793109 3.935 124 83431010

19 3.020 900 83331011

20 3.278 573 44031012 1.083 922 18831012 4.362 495 62831012

21 3.900 227 98031013

22 4.021 082 84831014 1.832 218 34731014 5.853 301 19531014

23 5.856 636 71231015

24 5.868 996 33531016 3.444 924 82131016 9.313 921 15631016

25 1.017 059 25231018

26 1.005 294 99331019 7.249 737 28631018 1.730 268 72231019

27 2.028 440 00131020

28 1.996 944 94131021 1.709 243 72631021 3.706 188 66731021

29 4.613 037 36231022

30 4.553 288 86631023 4.507 006 85931023 9.060 295 72531023

31 1.188 007 68431025

32 1.181 107 08831026 1.325 398 44631026 2.506 505 53431026
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