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Higher-order C, dispersion coefficients for hydrogen
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The complete set of second-, third-, and fourth-order van der Waals coeffi€ignip to n=32 for the
H(1s)-H(1s) dimer have been determined. They are computed by diagonalizing the nonrelativistic Hamiltonian
for hydrogen to obtain a set of pseudostates that are used to evaluate the appropriate sum rules. A study of the
convergence pattern for< 16 indicates that all th€,— ¢ coefficients are accurate to 13 significant digits. The
relative size of the fourth-orde@if) to the second-orddtf) coefficients is seen to increaseragcreases and
at n=32 the fourth-order term is actually larger.
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I. INTRODUCTION Yoll) = Nar“l exp(— Aar)qui@Z—)l(ZAar), (3)
The long-range interaction between two spherically sym-
metriC atoms can be Written in the general form Where the norma“zation constant iS
V(R — @) = =Vg(R) = Vg(R) = V1o(R) = V131(R) = -,
(1) N = J (20)*"3(n, = £ = ! @
. . . . “ (€+n,+1)!
where the dispersion potentid,(R) of ordern is written as «
V.(R) = Cn (2y  The function LE™2) (2\,r) is an associated Laguerre poly-
. (

R nomial that can be defined in terms of a confluent hypergeo-

The C, parameters are the van der Waals dispersion coeffilnetric function[6] as

cients. The evelin=6,8, .. ) dispersion coefficients are cal-

culated using sum rules derived from second-order perturba- (26+2) _ (n,+€+1)!

tion theory and provide an attractive interaction. The odd Lo -t-1(2\ar) = (n,—€-1)1(2¢ +2)!

(n=11,13,..) terms come from third-order perturbation “

theory and are repulsivel,2]. Contributions from fourth- XM(=(n,=€-1),20+3,2\,1). (5

order perturbation theory start at12[1,3]. All the matrix elements can be written in analytic forms

The dispersion interaction for the simplest system—poyided a common,, is adopted throughout the calculation.
namely, the hydrogen dimer—is only known preciselynto - However, in the present work, the radial wave functions were
=11. The latest calculations by Yan and Dalgath®) [2] ~ pjaced on a numerical grid and all matrix elements computed
repo.rted almost exact values for the second-order even dl%-y Gaussian quadratures. This was done for reasons of con-
persion parameters up fo=16. They also gave almost exact yenpjence as the diagonalization could be done with an exist-
results for the third-order coefficients, uprig'15. However, ing program used in previous calculations of the dispersion
it is known that contributions from fourth-order perturbation parameters and the structures of positronic atbryd. This
theory start ah=12[1,3,4}, so the dispersion potential com- nrogram can achieve close to machine precision in almost all
puted from the YDC, is incomplete fom>11. radial matrix computations.

In this article, the complete set of dispersion parameters (opce the Hamiltonian diagonalization is complete, sum
from Cq to Cy6 is computed by using a large pseudostatejes involving radial matrix elements were used to deter-
expansion to evaluate the appropriate sum rules. The contrinine the dispersion parameters. The specific sum rules used
butions from fourth-order perturbation theory @5 Ci  are those derived by Ovsiannikov, Guilyarovski, and Lo-
andC,g are explicitly included. patko (OGL) [1]. Their expressions are a bit simpler than
Il. CALCULATION OF THE DISPERSION PARAMETERS those developed by other authd®3]. There were some

_ _ N _ _ omissions in their published equatiof®, and a more thor-

All the dispersion coefficients computed in this paperough description of the sum rules is presented here.
were computed by first diagonalizing the nonrelativistic
Hamiltonian in a large basis of orthogonal Laguerre-type or-
bitals (LTO’s) [5] defined by A. Second-order terms

The second-order dispersion coefficients for the-H
system have been determined to high accur0,11,
*Electronic address: jxm107@rsphysse.anu.edu.au even for highn. The working expression adopted for com-
"Electronic address: michael.bromley@cdu.edu.edu putation is
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A+1
c@ - E (2N + 4)!
20T (26, + 1)1(26] + 1)!

E (0,0r“1fi;, €,)%0, 0|r€1||1, D?
(E +Er ZEO) ,

(6)

|1,|

where €;=\+2-¢,. The state vectofi,,€,) represents the

radial part of the statg with orbital angular momenturfi;
and energyE;

(2¢+2)!

T9=240,0rli, 0= - "

. The ground state energy k. The sum rule
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compact expression for the evaluatlorﬂﬁf and in addition
they reported values (It(“) for all possible combinations of
hydrogen and the alkali- metal atoms. Rectifying some omis-
sions in their published equatiofi8], one writes

A
Coli12=baria— > CR +692),+65 (13
\=0
whereN=N\;+\,.
The factorazwe is

A+l

a =3 (2N, + 4)!
20T 220+ D126 + 1))

is a useful diagnostic check of the accuracy of the underlying

discretization of the H spectrum.

B. Third-order terms C,; and C;3

The dispersion coefficieni§,; and C,3 arise from third-

«S (0,0r1iy, €,)%0,0r 3]i1, 1)

, (19
(B, +Ei; - 2Eo)?

P
i1iq

where €,+€;=\+2. The expressmn foa,, .6 iS practically

order perturbation theori—4,13. Close to exact dispersion the same as EqB) for ., the only difference being an

parameters for the H-H system have been publishgz].
The general expression for the third-ord&y, .14 is [1]

G\, €1,€1,€2,€5,k, k)
DI (E l2E1)(|25- -2r—12E1)
Cakaba g1k eh iqifini) 07350, 0

X<01qr€1|ll! l><|11 l|rk1||2!€2><i21€2|r€2|01O>
X(0,00r‘1lig, €141, €1]r3]i5, €5)(i3, €57 2|0, 0),(8)

Cov11=~

with the notatiorEilii=Eil+ Eii being used in the energy de-

nominator. The parametaris defined,

N+8={+k + o+ €+ kK + €, (9)

and all of the angular momentum indices are greater than
(£1+ky+€5)/2, the

zero. Definingd=(¢,+k;+¢,)/2 andJ’ =
coefficientG is defined as

G()\1€L€5_1€21€éaklaki) = ()\ + 4)!A(Jl€11k11€2)
X AW, €1,k €3)B(N, €1,€7)
XB(\, Ky, k) BN, €5,€5),  (10)

where
[2N+4-€,-€)]!
BN\, €1,€5) = 11
b6 == (11)
and
J!

A, €1,k €0) =

23+ D)II- €)1 A=k (I = €)1
(12)

C. Fourth-order contributions to C;, and Cy4

extra factor in the energy denominataompare with Eq.
(10) of [1]].
The factorb,, .1, is more complicated and defined as

Dors12= E E 2 E E

C0.8263 01 05 04 Ky okl kK igidizigigih

LKy IR I L) B
" 26,120012k) 12K 12k 2K 232641
X (£,0k,0/€,0)(¢,0K,0]€10)
X (ks0€40]€,0)(k,0€40|£30)

% (L,0K,0|KO)K,0L50|KO)

€0 Lk K K

X1k, ki Kifi€s €4 Ls

6 € K|t ¢ K
1

. (Eii; — 2B0)(Eip -
X{0,0r i, €)1, €4|r*]i5, €5)
X (i, 5|1 2ig, €3)(is, €5]r
X(0,0rafig, €113, €4lr*i5, ¢5)

X (i, €4]r2]i 5, €54, €4/r3]0,0), (15)

2E0)(E| 3i:/3 - 2Eo)

where Ly=€,+¢], Lg=€3+€;, Ki=ki+k;, and Ky=k;+Kk;.
We uselL=(2L+1). The sums are constrained by the condi-
tion

L, +Ki+Ky+Lg=2\+8. (16)

While €, €], €3, and€} must be greater than 0, it is possible

As far as we know, there have only been two explicitfor ¢, and¢, to be equal to 0. None &, k;, k,, ork; can be

calculations of the fourth-order contribution ©y,. Bukta
and MeatH 3] gave estimates o'.t(lzz) and C(142) for the hydro-

zero. Sincel, and{;, can both be equal to zero, the possibil-
ity of i,,i, both occupying the ground state must be explic-

gen dimer. Ovsiannikoet al. [1] developed a general and itly excluded from the summation.
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TABLE I. The dispersion coefficients for the H—H dimer. All the results in the “Best previous” column comd 2jarcept that foiC

which is taken fron{3]. All values are in atomic units.
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(4)
12

Coefficient 10 LTO’s 15 LTO’s 20 LTO’s Best previous

Ce 6.499 026 705 3305 6.499 026 705 4057 6.499 026 705 4059 6.499 026 705 4058
Cs 124.399 083 58236 124.399 083 58362 124.399 083 58362 124.399 083 58362

Cio 3285.828 414 9425 3285.828 414 9674 3285.828 414 9674 3285.828 414 9674

c 1.21486020896181C°  1.214860208968610°  1.214860208 96868 10°  1.214 860 208 9686 10°

c 6.060 772689 167 10°  6.060772689191%10°  6.060 772689 191x10°  6.060 772 689 192% 10°P

c2 3.937506 3939865 10°  3.937506 3939985 1C°  3.937506393998510°  3.937 506 393 9992 10°

Cu -3474.898 037 8919 ~3474.898 037 8822 -3474.898 037 8822 ~3474.898 037 8822
Cis -3.269869240454810°  -3.26 986 924 0440% 10°  -3.26 986 924 04407 10°  -3.26 986 924 0440% 10°

Cis -2.839558063317810°  -2.839558 0632998 10"  -2.839558 0632997 10’  -2.839 558 063 2998 10

ct 1241.587 803 8317 1241.587 803 8462 1241.587 803 8462 1241.588

c 3.009 63355895781 10°  3.009 6335590038 1°  3.096 633 559 0035 10°

ci 4.745455287 4168 10'  4.745455287408810"  4.745455 287 4078 10/

Ci 1.2272760870002 1C° ~ 1.227276087007%10°  1.227 276 087 007% 10° 1.227 2760% 10°

Cua 6.361736 0450628 10°  6.361736045092810°  6.361 736 045 092% 10°

Cie 4.412051922728210°  4.412051922739810°  4.412 051922 7398 10°

- @ e
®This entry adds the BMC,, to the YD C/.

lll. RESULTS OF THE CALCULATION terms than YD to achieve convergence. YD made the choice
t}‘“:l/(“l) in Eqg. (3) and did not achieve convergence to
the 14th digit place until the dimension of the LTO expan-
S?gon was 50. The present basis with=1.0 achieves the

fame level of convergence with 20 LTO's.

The results of the calculations for the complete set o
dispersion coefficients up t€¢ are given in Table I. The
parameters are given for basis sets with 10, 15, and 20 ba
functions per angular momentum, respectively. The expone
in the LTO was chosen to be=1.0 for all angular momenta.
This choice resulted in much faster convergence of the dis-
persiqn parameters than th".it observeq by Y_an and Dalgamo The only previous explicit calculation of a fourth-order
in their calculations of the third-order dispersion coefﬁments.term was that made by BIf], and the only parameter given

Table | also gives results reported by YD and a single calcu\—NaScfz)_ The OGL[1] estimate oC¥ 1.220% 10F a.u., was

; (4 127
lation of C,, by Bukta and MeattiBM) [3]. made using an approximation to the Green'’s function and so

perfect agreement is not expected. However, the present cal-
culation agrees with the BM calculation 6]‘142) to all digits
d quoted: namely, seven.

; . The number of terms in the sum, E{.5), increases rap-
van and Dalgarnd2] have given values which are con igly asn increases. There are 4 terms tbf‘z), there are 64

verged to better than 15 significant figures. The present ca ) . a9
culations with theN=20 basis are identical to 13 significant ©€MS forCy,, and finally there are 460 terms .

figures. The small differences in the last digit for some of 1he doz‘mnant contribution 16! comes fromby, ,1, with

coefficients arise from minor inaccuracies with the radial ma-96% of Cy coming fromb,. The tendency foby,. to be
trix elements. Hence we conclude that the present calculdhe dominant term ifCﬁf) becomes more pronounced as
tions are numerically reliable and that the pseudostate repréacreases, and fon=16 one hasiblG—C(l‘g|/|C(l‘2| equal to
sentation of the H spectrum is close to converged. 1.2x 1073,

Besides the dispersion coefficients, the sum rule, (EQ. One feature of Table | concerns the relative sizé:ﬁf to
was evaluated and seen to be correct to 12 significant digit@if)_ Forn=12, theCE‘”:Cf) ratio is 1.02%. However, as
for all polarities relevant to the evaluation 6&—0(126). gets larger, the ratio also gets larger. Ferl4 the ratio is

4.97%, while forn=16 the ratio is 12.1%.

C. Fourth-order terms

A. Second-order terms

The calculations onf) do not give new information, an

B. Third-order terms

) . - -
Since the third-order term@f) have already been given D. Dispersion coefficients fom=17

by YD, these calculations merely serve as a test of our nu- Higher-order contributions than fourth-order beginrat
merical procedures. Once again, calculations with the 2&17. There is a fifth-order contribution 16,7 and a sixth-
LTO basis agree with the YD results to 14 significant figures.order contribution toC,g [1]. Estimates ofo) for n=17
It is worth noting that the present results required fewerhave been made by a variety of authptsl1,13-1% How-
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TABLE Il. The n=16 dispersion coefficients for the-HH dimer. All values are in atomic units.

n c? cl c?+cy -

17 2.726 099 88 10°
18 3.234 218 71& 10'° 7.009 061 17% 10° 3.935124 834 1010

19 3.020 900 83% 10!
20 3.278 573 448 10'2 1.083 922 18& 1012 4.362 495 62& 1012

21 3.900 227 98(x 10'3
22 4.021 082 84& 1014 1.83221834% 104 5.853 301 19% 104

23 5.856 636 71X 10'°
24 5.868 996 33% 1016 3.444 924 82K 106 9.313921 156 106

25 1.017 059 25X 10'8
26 1.005 294 993 10'° 7.249 737 286 108 1.730 268 72X 10'°

27 2.028 440 00K 10%°
28 1.996 944 94k 1071 1.709 243 726 10°% 3.706 188 66K 10?1

29 4.613 037 36X 1072
30 4.553 288 866 1073 4.507 006 85% 1023 9.060 295 725 1023

31 1.188 007 684 107°
32 1.181 107 088& 1076 1.325 398 446¢ 1076 2.506 505 534 1026

ever, the only estimate of the third- and fourth-order terms IV. CONCLUSIONS

with n=17 are those of OGL1]. By explicit calculation . . .
ey obtaned =2 739< L6 . wich agrees wih e, T1€ OIS 1P peaneiers (om0 Gt
present more extensive calculation to within 1%. Making an P y 9 9

approximation to the greens function they estima(él@ the H—H dimer. Since the fourth-order contributions were
=3.3x 10° a.u., which is about half the size of the presentInCIUded forCsz Ca4 ANAC,g the adiabatic dispersion inter-

value action can now be regarded as complete up to terms of order
. —16

The dispersion parameters up@g, from the present cal- While the tabulations of dispersion coefficients report

culatlon. are tabulated in Table Il. Th_e reason for taking themany digits, only the first five or so digits can be expected to
C%I)culatlons so far rests in the r(‘i)lat'\(’z? size of o and correspond to the actual coefficients of two real hydrogen
C, terms. Itwas noticed that tH&": C ratio got larger as  atoms. The present data have all been computed in the non-
n increased. So the calculations were extgndeﬁgt;_an Or-  relativistic limit and therefore relativistic corrections to the
der to demonstrate explicitly that tt@;”: C? ratio can ac-  energies and transition moments will alter the dispersion co-
tually become larger than 1.0. efficients in the later digits.

The precision of the entries in Table Il is not as high as  The time taken to evaluate the dispersion coefficients was
those in Table I. The calculations 6" did become more not excessive. For example, a calculation using 20 LTO’s
time consuming as increased. There were 922 064 differenttook about 17 min to determine all terms W@, on a
(€1,kq,€5, ...) combinations by the tima=32 was reached. 850 MHz CPU. Hence the pseudostate method adopted here,
Also the number of radial integrals in E@L5) increases as and in other similar workge.g.,[2,3]), could be used to
Né whereN is the number of LTO’s for any givefi. So the  make explicit calculations of the fifth-order correctionQg,
N=20 calculation is 64 times more intensive than fde and even the sixth-order correction@g[1]. Therefore, it is
=10 calculation. certainly possible with existing technology to determine the

The Cﬁz) and Cf’) entries in Table Il were taken from the complete dispersion interaction for the H—H interaction for
calculation with 15 LTO’s. Thecg“) entries were taken from all terms up to and including,,.

a N=15 calculation up ta=20; thereafter, th&=10 basis
was used. The values @2 agree with those of Thakkar ACKNOWLEDGMENTS
[11] for all ten digits given in Table Il. Comparisons between The authors would like to thank J. C. Nou and C.

N=10 andN=15 calculations foC;” suggest that the con- Hoffman of CDU for workstation support and Professor V.
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about six digits. A similar level of accuracy can be expectechications about the exact form of the fourth-order matrix
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032709-4



HIGHER-ORDERC,, DISPERSION COEFFICIENTS FOR PHYSICAL REVIEW A 71, 032709(2005

[1] V. D. Ovsiannikov, A. V. Guilyarovski, and O. Y. Lopatko, [8] J. Mitroy and M. W. J. Bromley, Phys. Rev. &8, 052714

Mol. Phys. 61, 111(1988. (2003.
[2] . C. Yan and A. Dalgarno, Mol. Phy€6, 863(1999. [9] V. D. Ovsiannikov(private communication
[3] J. F. Bukta and W. J. Meath, Mol. Phy&7, 1235(1974). [10] W. J. Deal, Int. J. Quantum Cheng, 593 (1972.
[4] A. Dalgarno, Adv. Chem. Physl2, 143(1967. [11] A. J. Thakkar, J. Chem. Phy89, 2092(1988.
[5] A. T. Stelbovics, J. Phys. B2, L159(1989. [12] G. P. Arrighini, F. Biondi, and C. Guidotti, Mol. Phys26,
[6] Handbook of Mathematical Functionsedited by M. 1137(1973.
Abramowitz and |. E. Stegun, Natl.Bur. Stand. Appl. Math. [13] R. J. Bell, Proc. Phys. Soc. Londd#6, 239 (1965.
Ser. No. 55U.S. GPO, Washington, DC, 1912 [14] R. J. Bell, Proc. Phys. Soc. Londd¥, 594 (1966.
[7] M. W. J. Bromley and J. Mitroy, Phys. Rev. 85, 012505 [15] A. Koide, W. J. Meath, and A. R. Allnatt, Chem. Phy&8, 105
(2002. (1981).

032709-5



