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We demonstrate thatVN−M approximation is a good starting point for the configuration interaction calcula-
tions for many-electron atoms and ions.N is the total number of electrons in the neutral atom,M is the number
of valence electrons.VN−M is the self-consistent Hartree-Fock potential for a closed-shell ion with all valence
electrons removed. Using of theVN−M approximation considerably simplifies the many-body perturbation
theory for the core-valence correlations. It makes it easier to include higher-order correlations which often
significantly improves the accuracy of the calculations. Calculations for krypton and barium and their positive
ions are presented for illustration.
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I. INTRODUCTION

Atomic physics is a valuable tool to study many funda-
mental problems. It is used to study parity and time invari-
ance violating interactionsssee, e.g.f1gd, possible variation
of the fundamental constants in quasar absorption spectraf2g
and in present-day experiments by comparing the rates of
different atomic clocksf3g, etc. However, interpretation of
the atomic measurements is often limited by accuracy of
atomic calculations. For example, the accuracy of the most
precise measurements of atomic parity nonconserving effects
sPNCd in atoms which has been achieved for cesium is
0.35%f4g. The accuracy of the best calculations is from 0.5
to 1% f5–8g. The situation is even worse for thallium. Ex-
perimental accuracy of the PNC measurements is 1%f9g
while best theoretical accuracy is from 2.5%f10g to 3%f11g.
On this level of accuracy there is perfect agreement of the
PNC measurements with the standard model and any further
progress would need significant improvement in atomic
theory. There are many other examples where accurate
atomic calculations are needed. These include atomic clocks,
quantum computations, plasma physics, etc. Therefore, it is
worth to study the ways of improving the methods of calcu-
lations.

It is well known that the perturbation theory in residual
Coulomb interaction converge very poorly for many electron
atoms and some all-order technique is needed to achieve
good accuracy of calculations. For atoms with one external
electron above closed shells there are at least two all-order
methods which lead to a fraction of percent accuracy in cal-
culation of the energies as compared to experimental data.
One is an all-order correlation potential methodsalso called
perturbation theory in screened Coulomb interactiond f12g.
Another is linearized coupled cluster approachsCCd f13g.
For atoms with more than one external electron good accu-
racy can be achieved when different methods are combined
to include correlations between valence electrons together
with the core-valence correlations. This can be done by com-
bining configuration interaction method with the many-body

perturbation theorysCI+MBPTd f14g or CC method with the
MBPT f15g or with the CI methodf16g.

The key question in developing of all these methods is
where to start or what potential to chose to generate a com-
plete set of single-electron states. It is well accepted now that
the Hartree-Fock potential is the best choice for the pertur-
bation theory expansion. This is because self-consistency
condition leads to exact cancellation between Coulomb and
potential terms in the residual interaction so that potential
terms are completely eliminated from the perturbation theory
expansion. The natural choice for atoms with one external
electron is theVN−1 Hartree-Fock potential introduced by
Kelly f17g. In the VN−1 approximation the self-consistency
procedure is initially done for a closed-shell positive ion.
States of external electron are then calculated in the field of
frozen core. There is exact cancellation between direct and
exchange self-action terms in the Hartree-Fock potential for
closed shell systems. Therefore, by including self-action, we
can easily see that states in the core and states above core are
calculated in the same potential. Other words,VN−1 potential
generates a complete set of orthogonal single-electron states
which are convenient for use in the perturbation theory ex-
pansion. Using this set in an appropriate all-order method
leads to very good results for a neutral atom in spite of the
fact that the core of the atom is actually the core of a positive
ion.

The VN−1 approximation can also be used for atoms with
more than one external electron. However, in this case the
system ofN−1 electrons is most likely to be an open-shell
system and some averaging procedure is needed to define the
VN−1 potential. Another complication arise when core-
valence correlation are to be included by means of MBPT.
There is no exact cancellation between potential terms any
more. The potential in the effective Hamiltonian is now
VN−M potential, whereM is number of valence electrons and
M .1. Perturbation theory expansion would have terms pro-
portional toVN−M −VN−1. These terms are calledsubtraction
diagramsf14g or D termsf18g. The number of these terms is
larger than number of pure Coulomb terms and this repre-
sents significant complication of the MBPT. These terms can
be totally avoided if calculations from the very beginning are
done in theVN−M potential. However, it is widely believed*Electronic address: V.Dzuba@unsw.edu.au
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that doing calculations for a neutral atom by starting from a
highly charged ion would lead to poor convergence of the
perturbation expansion and poor end results. Indeed, after the
initial Hartree-Fock procedure is done the core is kept frozen
in all consequent calculations. No further perturbation ex-
pansion can change anything in the core, leaving it to be the
core of the highly charged ion.

The purpose of this work is to demonstrate that the core
of the highly charged ion is often not very much different
from the core of neutral atom andVN−M approximation can
be a good approximation for atoms with several valence
electrons. The main gain is total elimination of subtraction
diagrams. This significantly simplifies the perturbation
theory expansion for the core-valence correlations. It is also
much easier to include higher-order core-valence correlations
in the VN−M approximation. Inclusion of higher-order corre-
lations can significantly improve the accuracy of the calcu-
lations.

We consider CI+MBPT calculations for neutral krypton
and barium and their positive ions to illustrate the advantage
of the VN−M approximation.

II. CALCULATIONS

A. Krypton

Let us start our consideration from an extreme case - an
atom with eight valence electrons. The purpose of this ex-

ample is to illustrate that even removal of as many as eight
electrons do not lead to any dramatic changes in the atomic
core andVN−8 approximation is still reasonably good ap-
proximation for the neutral atom as well as for the all chain
of positive ions starting from number of valence electrons
M =1 and up toM =8.

Table I compares core states of KrI and KrIX. Calcula-
tions are done inVN and VN−8 potentials, respectively. We
present singe-electron energies, overage radiusskrld, square
root of overage square radiusskr2l1/2d, position of the maxi-
mum of the wave function(rsfmaxd), the value in the maxi-
mum sfmaxd as well as the range of distances where 80% of
the electron density is locatedsfrom r1 to r2d. It is easy to see
that changing fromVN to VN−8 potential has large effect on
the energies of core states but not on their wave functions.
Indeed, the energy of 3d states change almost two times
while overage radiussor square root of overage square ra-
diusd changes by about 2–3 % only, position of the maximum
does not change at all and the value of the wave function in
the maximum changes by about 1% only.

To understand this behavior one should look at the dis-
tances where electrons are localized. As can be seen from
Table I valence electronss4s and 4pd are localized at signifi-
cantly larger distances than core electrons. There is almost
no overlap between densities of core and valence electrons.
Indeed, 90% of the density of the 4s and 4p electrons are at
distancesr .aB s0.95aB for the 4s state and 1.1aB for the 4p
stated while 90% of the density of the uppermost core state

TABLE I. Parameters of core states of KrI and KrIX satomic unitsd.

State Energy krl kr2l1/2 rsfmaxd fmax r1 r2

Kr I

1s −529.6849 0.0415 0.0481 0.0269 4.3707 0.0151 0.0731

2s −72.0798 0.1827 0.1986 0.1541 2.4630 0.0987 0.2839

2p1/2 −64.8748 0.1574 0.1744 0.1216 2.4476 0.0731 0.2605

2p3/2 −62.8792 0.1613 0.1784 0.1253 2.4283 0.0753 0.2605

3s −11.2245 0.5271 0.5648 0.4704 1.5508 0.3182 0.7794

3p1/2 −8.6199 0.5314 0.5744 0.4577 1.4924 0.3006 0.7996

3p3/2 −8.3128 0.5412 0.5848 0.4704 1.4800 0.3093 0.8202

3d3/2 −3.7776 0.5505 0.6095 0.4098 1.3459 0.2681 0.9072

3d5/2 −3.7268 0.5543 0.6136 0.4098 1.3415 0.2681 0.9072

4s −1.1877 1.6008 1.7136 1.3629 0.8954 0.9535 2.4031

4p1/2 −0.5415 1.9147 2.0711 1.5253 0.7921 1.1037 2.9420

4p3/2 −0.5143 1.9586 2.1196 1.5594 0.7825 1.1037 2.9942

Kr IX

1s −534.8482 0.0415 0.0481 0.0269 4.3708 0.0151 0.0731

2s −77.1131 0.1827 0.1985 0.1541 2.4633 0.0987 0.2839

2p1/2 −69.9296 0.1573 0.1743 0.1216 2.4480 0.0731 0.2605

2p3/2 −67.9321 0.1613 0.1783 0.1253 2.4288 0.0753 0.2605

3s −16.1190 0.5258 0.5630 0.4704 1.5530 0.3182 0.7794

3p1/2 −13.5239 0.5285 0.5706 0.4577 1.4970 0.3006 0.7996

3p3/2 −13.2140 0.5378 0.5805 0.4704 1.4851 0.3093 0.8202

3d3/2 −8.6967 0.5376 0.5918 0.4098 1.3624 0.2605 0.8628

3d5/2 −8.6450 0.5411 0.5955 0.4098 1.3584 0.2681 0.8848
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3d is at r ,0.907aB. This means that valence states can only
create constant field inside the core. For example,

Y0s4sdsrd =E uc4ssr8du2

r.

dr8 < const atr , aB.

Correction to the energy of a core state is given by diagonal
matrix element

den ,E ucnsrdu2Y0srddr.

This matrix element is large.
In contrast, correction to wave function is given by off-

diagonal matrix elements. These matrix elements are small
due to orthogonality of wave functions:

E cnsrd†cmsrdY0srddr < constE cnsrd†cmsrddr = 0.

Figure 1 shows the 3d5/2 radial wave functions of KrI and
Kr IX. One can see that they are almost identical. There is
some difference at large distances due to different energies
fc,exps−Î2ueurdg. This difference has some effect on the
normalization of the wave function leading to small differ-
ence in the maximum. Apart from this the wave functions are
very similar.

We see that the removal of eight valence electrons from
Kr I affects only energies of the core states but not their wave
functions. Obviously, change in the energies affects the
MBPT for the core-valence correlations through the change
in energy denominators. But what is more important is the
absence of the subtraction diagrams which makes the MBPT
to be much more simple. Excitation energies are larger in
Kr IX than in KrI which means that MBPT terms are smaller
and convergence is likely to be better. Therefore, it is natural

to assume that theVN−8 approximation is a good initial ap-
proximation for all krypton ions starting from KrIX and up
to neutral KrI, with number of valence electrons ranges from
none to eight. We have performed the calculations to check
this.

Hartree-Fock energy of the 3d5/2 state of KrIX s8.645
a.u., see Table Id agrees within 2% with the experimental
ionization energy of KrIX s8.488 a.u.f19gd. The difference
should be mostly attributed to the correlations.

We can do much better calculations for KrVIII . It has one
valence electron above closed shells. We calculate its states
in the field of frozen coresVN−8 potentiald in Hartree-Fock
and Brueckner approximations. The latter means that we
modify the HF equations for valence electron by including

correlation potentialŜ sseef20g for detailsd. We calculateŜ
in second order of MBPT. The results are presented in Table
II. As can be seen Hartree-Fock energies differ from experi-
ment by about 1% while inclusion of correlations improves
them significantly brining the agreement to better than 0.1%.

We use the combined CI+MBPT method for ions with
more than one valence electronf14g. Like in standard CI
method the Schrödinger equation is written for the many-
electron wave function of valence electrons

sĤeff − EdC = 0. s1d

C has a form of expansion over single-determinant many-
electron wave functions

C = o
i

ciFisr1,…,rMd. s2d

Ci are constructed from the single-electron valence basis
states calculated in theVN−M potential.E in s1d is the valence
energysenergy needed to remove all valence electrons from
the atomd.

The effective Hamiltonian has the form

Ĥeff = o
i=1

M

ĥ1i + o
iÞ j

M

ĥ2i j , s3d

ĥ1sr id is the one-electron part of the Hamiltonian

ĥ1 = cap + sb − 1dmc2 −
Ze2

r
+ VN−8 + Ŝ1. s4d

Ŝ1 is the second-order correlation potential which was used
for Kr VIII .

ĥ2 is the two-electron part of the Hamiltonian

FIG. 1. Radial wave function of the 3d5/2 state of KrI ssolid
lined and KrIX sdotted lined.

TABLE II. Energy levels of KrVIII scm−1d.

State HF Brueckner Expt.a

4s 1004870 1015504 1014665

4p1/2 862612 871429 870970

4p3/2 852990 861472 861189

4d3/2 635048 640449 640618

4d5/2 633695 639065 639284

aNIST, f19g.

VN−M APPROXIMATION FOR ATOMIC CALCULATIONS PHYSICAL REVIEW A71, 032512s2005d

032512-3



ĥ2 =
e2

ur 1 − r 2u
+ Ŝ2sr1,r2d, s5d

Ŝ2 is the two-electron part of core-valence correlations. It
represents screening of Coulomb interaction between va-

lence electrons by core electrons. We also calculateŜ2 in the

second order of MBPT. The details of the calculation ofŜ1

andŜ2 can be found elsewheref14,21g. Note however that in
contrast to the cited works we now have no subtraction dia-
grams.

Only number of electrons changes in the effective Hamil-
tonian s3d when we move from KrVII sM =2d to Kr I sM
=8d while termsVN−8, Ŝ1, andŜ2 remain exactly the same.

The results for ground state energy of removal all valence
electrons are compared with experiment in Table III. Accu-
racy of calculations for all ions and neutral atom are similar
and always better than 2%.

To compare theVN andVN−8 approximations we have also
performed calculations of the ground state energy of KrI in
VN potential with the same size of the basis set and with
core-valence correlations included in the second order of
MBPT sincluding subtraction diagramsd. The result is
−18.377 a.u. which differs by only 0.5% from the result
obtained inVN−8 potential and by 1.5% from the experiment.

B. Atoms with two valence electrons

The fact thatVN−2 approximation works well for atoms
like Mg, Ca, Ba, etc. is pretty well knownssee, e.g., Ref.
f22gd. In this section we demonstrate that inclusion of the
higher than second-order core-valence correlations can lead
to further significant improvements in accuracy of atomic
calculations. It is much easier to include higher-order corre-
lations in theVN−2 approximation than in any other potential.

We consider barium atom as an example and start calcu-
lations from BaII. Table IV presents HF and Brueckner en-
ergies of BaII together with the experimental values.
Brueckner energies are calculated with the second-order cor-

relation potentialŜs2d and with the all-order correlation po-

tential Ŝs`d. The all-orderŜs`d includes screening of Cou-
lomb interaction and hole-particle interactionssee, e.g.f12gd.

Similar to what happens for alkali atoms, inclusion of higher-
order correlation corrections for BaII reduces the difference
between theoretical and experimental energies from 1–2% to
0.2–0.7%.

Now we are going to use the same correlation potentialŜ1
for the neutral barium. The effective Hamiltonian has the
form similar to s3d

Ĥeff = ĥ1sr1d + h1sr2d + ĥ2sr1,r2d. s6d

One-electron partĥ1 is given by Eq.s4d; two-electron partĥ2

is given by Eq.s5d. For the operatorŜ1 in s4d we use second-

order correlation potentialŜs2d and all-order correlation po-

tential Ŝs`d, the same as for the BaII ion.

We do not include higher-order correlations inŜ2 in

present work. Formally, perturbation expansion for bothŜ
goes over the same orders of MBPT. However, calculations

show that accurate treatment ofŜ1 is usually more important.
Since the aim of present work is to demonstrate the advan-
tages of theVN−M approximation rather than presenting best
possible calculations, neglecting higher-order correlations in

Ŝ2, which has small effect on final results, is justified.
Table V shows the results of calculations for few low

states of BaI in the VN−2 approximation withŜs2d and Ŝs`d

together with the experimental data. One can see that inclu-
sion of the higher-order core-valence correlations do indeed
improve significantly the agreement between theoretical and
experimental data.

It is interesting to note that there is strong correlation
between results for BaI and BaII. In both cases the least
accurate results are for states involvingd electrons. Inclusion
of higher-order core-valence correlations leads to very simi-

lar improvement of results for BaII and BaI. Also, if Ŝ1 is
rescaled to fit the experimental energies of BaII , the agree-
ment between theory and experiment for BaI would also be
almost perfect. This feature can be used to get very accurate
results for negative ions. Experimental results for negative
ions are poor and accurate calculations are difficult. How-
ever, if we start calculations from theVN−M approximation,

include Ŝ for core-valence correlations, rescaleŜ1 to fit
known energies of a positive ion or neutral atom, the results
for a negative ion are also going to be very accurate.

TABLE III. Ground state removal energies of KrVIII to Kr I

sa.u.d.

State Expt.a Calc.

Kr VIII 4s 2S1/2 −4.62317 −4.62699

Kr VII 4s2 1S0 −8.70247 −8.64060

Kr VI 4s24p 2P1/2
o −11.58709 −11.52481

Kr V 4s24p2 3P0 −13.96459 −13.89050

Kr IV 4s24p3 4S3/2
o −15.89375 −15.74736

Kr III 4s24p4 3P2 −17.25163 −17.03929

Kr II 4s24p5 2P3/2
o −18.14684 −17.88392

Kr I 4s24p6 1S0 −18.66132 −18.28761

aNIST, f19g.

TABLE IV. Energy levels of BaII scm−1d.

State HF Ŝs2d Ŝs`d Expt.a

6s 75339 82318 80816 80687

6p1/2 57265 61180 60603 60425

6p3/2 55873 59388 58879 58734

5d3/2 68139 77224 76345 75813

5d5/2 67665 76286 75507 75012

aNIST, f19g.
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C. Atoms with more than two valence electrons

We have demonstrated thatVN−M approximation works
very well for atoms with two and eight valence electrons. In
is natural to expect that there are many similar cases in be-
tween.

However, there is no reason to believe that this approxi-
mation works well for all atoms. There are many cases were
it does not work at all. It depends mostly on the distances
where valence electrons are located rather than on their num-
ber. To check whether theVN−M approximation is a good
approximation for a neutral atom it is usually sufficient to
perform Hartree-Fock calculations for this atom and check
that valence electrons are localized on larger distances than
core electrons. This is usually the case if valence electrons
are ins or p states. In contrast,d and f valence electrons are
localized on distances shorter than the distances of the up-
permost cores andp electrons. Their removal would lead to
significant change in the atomic core which means that the
VN−M approximation is not good for these atoms.

Roughly speaking, theVN−M approximation should work
more or less well for about half of the Periodic Table.

III. CONCLUSION

We have demonstrated that theVN−M approximation in
which initial Hartree-Fock procedure is done for an ion with
all valence electrons removed, is a good starting point for
accurate calculations for many-electron atoms withs and/or
p valence electrons. The main advantage is relatively simple
MBPT for core-valence correlations which makes it easier to
include higher-order core valence correlations and thus im-
prove the accuracy of the calculations.

Considering examples of Kr and Ba we have demon-
strated that removal of as many as eight electrons from initial
HF potential does not compromise the accuracy of the cal-
culations for a neutral atom and that inclusion of the higher-
order core-valence correlations do really lead to significant
improvements of the accuracy of the calculations.
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