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The Lamb shift in muonic hydrogen continues to be a subject of experimental and theoretical investigation.
Here my older work on the subject is updated to provide a complementary calculation of the energies of the
2p-2s transitions in muonic hydrogen.
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I. INTRODUCTION

The energy levels of muonic atoms are very sensitive to
effects of quantum electrodynamicssQEDd, nuclear struc-
ture, and recoil, since the muon is about 206 times heavier
than the electronf1g. In view of a proposed measurement of
the Lamb shift in muonic hydrogenf2g, an improved theo-
retical analysis seems to be desirable. Since the first theoret-
ical analysisf3g, the subject of the Lamb shiftsthe 2p-2s
transitiond in light muonic atoms has been investigated with
increasing precision by a number of authorsf4–10g. The
present paper provides an independent recalculation of some
of the most important effects, including hyperfine structure,
and a new calculation of some terms that were omitted in the
most recent literature, such as the virtual Delbrück effect
f11g. An alternative calculation of the relativistic recoil cor-
rection is presented.

In the numerical calculations the fundamental constants
from the CODATA 1998f12g are used: i.e.,a−1, "c, mm,
me, and mu=137.035 999 8, 197.326 96 MeV fm,
105.658 357 MeV, 0.510 998 9 MeV, and 931.4940 MeV, re-
spectively. The changes in these constants in the CODATA
2002 compared with CODATA 1998 are too small to make
any relevant difference in the results.

II. VACUUM POLARIZATION

The most important QED effect for muonic atoms is the
virtual production and annihilation of a singlee+e− pair It has
as a consequence an effective interaction of orderaZa which
is usually called the Uehling potentialf13,14g. This interac-
tion describes the most important modification of Coulomb’s
law. Numerically it is so important that it should not be
treated using perturbation theory; instead the Uehling poten-
tial should be added to the nuclear electrostatic potential be-
fore solving the Dirac equation. However, a perturbative
treatment is also useful in the case of very light atoms, such
as hydrogen.

Unlike some other authors, we prefer to use relativistic
sDiracd wave functions to describe the muonic orbit. This is
more exact, and as will be seen below, it makes a difference
for at least the most important contributions. The wave func-
tions are given in the book of Akhiezer and Berestetskiif15g
and will not be given here. In perturbation theory, the energy
shift due to an effective potentialDV is given by

DEnk =
1

2p2E
0

`

q2dqDVsqdE
0

`

drj0sqrdfFnk
2 + Gnk

2 g, s1d

whereFnk andGnk are the small and large components of the
wave function,n is the principal quantum number, andk is
equal to −s,+1d if j = , + 1

2 and +, if j = ,−1
2. DVsqd is the

Fourier transform of the physical potential:

DVsqd = 4pE
0

`

r2j0sqrdDVsrddr, s2d

DVsrd =
1

2p2E
0

`

q2j0sqrdDVsqddq. s3d

As is well known f1g, the Uehling potential in momentum
space is given by

VUehlsqd = −
4asaZd

3
GEsqdFsfd = − 4psaZdGEsqdU2sqd,

where GE is the proton charge form factor,
sinhsfd=q/ s2med, and

Fsfd =
1

3
+ fcoth2sfd − 3gf1 + f cothsfdg, s4d

U2sqd is defined inf1g. The vacuum polarization corrections
were calculated in momentum space; formulass124d, s125d,
ands127d of f1g are completely equivalent tos200d in f10g. If
the correction to the transition 2p1/2-2s1/2 is calculated in
lowest-order perturbation theory using nonrelativistic point
Coulomb wave functions, the result is 205.0074 meV, in
agreement with other authorsf10g.

The same procedure was used to calculate the two-loop
corrections; the corresponding diagrams were first calculated
by Källen and Sabryf16g. The Fourier transform of the cor-
responding potential is given inf1,4g. The result for a point
nucleus is 1.5080 meV.

In momentum space including the effect of nuclear size
on the Uehling potential is trivial, since the corresponding
expression forDVsqd is simply multiplied by the form factor.
The numbers obtained were the same for a dipole form factor
and for a Gaussian form factor, provided the parameters were
adjusted to reproduce the experimental rms radius of the pro-
ton. The correction can be regarded as taking into account
the effect of finite nuclear size on the virtual electron-
positron pair in the loop. The contribution of the Uehling
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potential to the 2p-2s transition is reduced by 0.0081 meV
with a proton radius of 0.862 fmf17g and by 0.0085 meV
with a proton radius of 0.880 fmf18g. This result is consis-
tent with the number given inf10g fEq. s266dg. More recent
values for the proton radius have been given by Sickf19g
s0.895±0.018 fmd and in the newest CODATA compilation
f20g s0.875±0.007 fmd.

The numerical values given below were calculated as the
expectation value of the Uehling potential using point
Coulomb-Dirac wave functions with reduced mass.

Point nucleus Rp=0.875 fm

2p1/2-2s1/2 2p3/2-2s1/2 2p1/2-2s1/2 2p3/2-2s1/2

Uehling 205.0282 205.0332 205.0199 205.0250

Kaellen-
Sabry

1.50814 1.50818 1.50807 1.50811

The effect of finite proton size calculated here can be
parametrized as −0.0109kr2l. However, higher iterations can
change these results. For a very crude estimate, one can scale
previous results for heliumf5g and assume that the ratio of
nonperturbative to perturbative contributions was the same,
giving a contribution of 0.175 meV.

The contributions due to two and three iterations have
been calculated byf8,23g, respectively, giving a total of
0.151 meV. An additional higher iteration including finite
size and vacuum polarization is given in Ref.f8g fEqs.s66d
ands67dg and Ref.f10g fEqs.s264d ands268dg. These amount
to −0.0164kr2l. The best way to calculate this would be an
accurate numerical solution of the Dirac equation in the com-
bined Coulomb plus Uehling potential.

The mixed muon-electron vacuum polarization correction
was recalculated and gave the same result as obtained
previously: namely, 0.000 07 meVf10,21g.

The Wichmann-Krollf22g contribution was calculated us-
ing the parametrization for the potential given inf1g. The
result obtaineds−0.001 03 meVd is consistent with that
given in f10g, but not with that given inf8g.

The equivalent potential for the virtual Delbrück effect
was recomputed from the Fourier transform given inf11,1g.
The resulting potential was checked by reproducing previ-
ously calculated results for the 2s-2p transition in muonic
helium and the 3d-2p transitions in muonic Mg and Si. The
result for hydrogen is +s0.001 35±0.000 15d meV. As in the
case of muonic helium, this contribution very nearly cancels
the Wichmann-Kroll contribution. The contribution corre-
sponding to three photons to the muon and one to the proton
should be analogous to the light-by-light contribution to the
muon anomalous moment; to my knowledge, the corre-
sponding contribution to the muon form factor has
never been calculated. It will be comparable to the
other light-by-light contributions. For an estimate, the cor-
rection to the Lamb shift due to the contribution to the
anomalous magnetic moment was calculated; it amounts to
s2d0.000 02 meV; the contribution to the muon form factor
is one of the most significant unknown corrections.

The sixth-order vacuum polarization corrections to the
Lamb shift in muonic hydrogen have been calculated by Ki-
noshita and Niof23g. Their result for the 2p-2s transition is

DEs6d = 0.120045saZd2mrSa

p
D3

< 0.00761 meV.

It is entirely possible that the as-yet uncalculated light-by-
light contribution will give a comparable contribution.

The hadronic vacuum polarization contribution has been
estimated by a number of authorsf10,24,25g. It amounts to
about 0.012 meV. One point that should not be forgotten
about the hadronic VP correction is the fact that the sum rule
or dispersion relation that everyonesincluding myselfd used
does not take into account the fact that the protonsnucleusd
can in principle interact strongly with the hadrons in the
virtual hadron loop. This is irrelevant for the anomalous
magnetic moment but probably not for muonic atoms. An
estimation of this effect appears to be extremely difficult and
could easily change the correction by up to 50%. Eideset al.
f10g point out that the graph related to hadronic vacuum
polarization can also contriibute to the measured value of the
nuclear charge distributionsand polarizabilityd. It is not easy
to determine where the contribution should be assigned.

III. FINITE NUCLEAR SIZE AND NUCLEAR
POLARIZATION

The main contribution due to finite nuclear size has been
given analytically to ordersaZd6 by Friar f26g. The main
result is

DEns= −
2aZ

3
SaZmr

n
D3Fkr2l −

aZmr

2
kr3ls2d

+ saZd2sFREL+ mr
2FNRdG , s5d

where kr2l is the mean-square radius of the proton. For
muonic hydrogen, the coefficient of kr2l is
5.1975smeV fm−2d, giving an energy shiftsfor the leading
termd of 3.862±0.108 meV if the proton rms radius is
0.862±0.012 fm. The shift is 4.163±0.188 meV if the pro-
ton rms radius is 0.895±0.018 fm, and 3.979±0.076 meV if
the proton rms radius of 0.875±0.007 fm.

The second term in Eq.s5d contributes20.0232 meV for
a dipole form factor and20.0212 meV for a Gaussian form
factor. The parameters were fitted to the proton rms radius.
This can be written as −0.0347kr2l3/2 or 0.0317kr2l3/2, re-
spectively. This differs slightly from the value given by Pa-
chucki f9g. The model dependence introduces an uncertainty
of about 60.002 meV. The remaining terms contribute
0.00046 meV. This estimate includes all of the terms given in
f26g, while other authorsf9g give only some of them. Clearly
the neglected terms are not negligible. There is also a con-
tribution of −3310−6 meV to the binding energy of the 2p1/2
level and a recoil correction of 0.012 meV to the binding
energy of the 2s level.

As mentioned previously, the finite-size contri-
butions to vacuum polarization can be parametrized as
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−0.0109kr2l−0.0164kr2l, giving a total of −0.0273kr2l or
20.0209s6d meV if the proton radius is 0.875 fm.

The contribution due to nuclear polarization has been cal-
culated by Rosenfelderf27g to be 0.017±0.004 meV and by
Pachuki f9g to be 0.012±0.002 meV. Other calculations
f28,29g give intermediate valuess0.013 meV and 0.016 meV,
respectivelyd. The value appearing in Table I is an average of
the three most recent values, with the largest quoted uncer-
tainty, which is probably underestimated.

IV. RELATIVISTIC RECOIL

As is well known, the center-of-mass motion can be sepa-
rated exactly from the relative motion only in the nonrelativ-
istic limit. Relativistic corrections have been studied by
many authors and will not be reviewed here. The relativistic
recoil corrections summarized inf1g include the effect of
finite nuclear size to leading order inmm /mN properly.

Up to now this method has been used to treat recoil cor-
rections to vacuum polarization only in the context of exten-
sive numerical calculations that include the Uehling potential
in the complete potential, as described inf1g. They can be
included explicitly, as a perturbation correction to point Cou-
lomb values. Recall thatsto leading order in 1/mNd, the en-
ergy levels are given by

E = Er −
B0

2

2mN
+

1

2mN
khsrd + 2B0P1srdl, s6d

where Er is the energy level calculated using the reduced
mass andB0 is the unperturbed binding energy. Also

hsrd = − P1srdSP1srd +
1

r
Q2srdD −

1

3r
Q2srdfP1srd + Q4srd/r3g.

s7d

Here

P1srd = 4paZE
r

`

r8rsr8ddr8 = − Vsrd − rV8srd,

Q2srd = 4paZE
0

r

r82rsr8ddr8 = r2V8srd,

Q4srd = 4paZE
0

r

r84rsr8ddr8. s8d

An effective charge densityrVP for vacuum polarization
can be derived from the Fourier transform of the Uehling
potential. Recall thatsfor a point nucleusd

VUehlsrd = −
aZ

r

2a

3p
x1s2merd = − saZd

2a

3p
E

1

`

dz
sz2 − 1d1/2

z2

S1 +
1

2z2DS 2

p
E

0

` q2j0sqrd
q2 + 4me

2z2dqD ,

wherexnsxd is defined inf1g. In momentum space, the Fou-
rier transform of¹2V is obtained by multiplying the Fourier

transform ofV by −q2. Note that using the normalizations of
f1,6g, one has¹2V=−4paZr wherer is the charge density.
One then obtains

4prVPsrd =
2a

3p
E

1

`

dz
sz2 − 1d1/2

z2 S1 +
1

2z2D
3S 2

p
E

0

` q4j0sqrd
q2 + 4me

2z2dqD
=

2

p
E

0

`

q2U2sqd j0sqrddq, s9d

whereU2sqd is defined inf1g. It is also easy to show that

dVUehl

dr
= +

aZ

r

2a

3p
F1

r
x1s2merd + 2mex0s2merdG

= −
1

r
VUehlsrd + saZd

2a

3p

2me

r
x0s2merd.

Keeping only the Coulomb and Uehling potentials, one
finds

P1srd = − aZ
2a

3p
s2medx0s2merd,

Q2srd = aZS1 +
2a

3p
fx1s2merd + s2merdx0s2merdgD ,

Q4srd = aZ
2a

3p
E

1

`

dz
sz2 − 1d1/2

z2 S1 +
1

2z2DS 2

p
DE

0

` 1

q2 + 4me
2z2

3
f6qr − sqrd3gcossqrd + f3sqrd2 − 6gsinsqrd

q
dq,

where xnsxd is defined in f1g. Corrections due to finite
nuclear size can be included when a model for the charge
distribution is given. This done by Friarf26g sand confirmed
independently for two different model charge distributionsd;
the contribution due to finite nuclear size to the recoil cor-
rection for the binding energy of the 2s level is20.013 meV.
The factor 1/mn is replaced by 1/smm+mNd, also consistent
with the calculations presented inf26g.

Since vacuum polarization is assumed to be a relatively
small correction to the Coulomb potential, it will be suffi-
cient to approximateQ2srd by aZ/ r. After some algebra, one
can reduce the expectation values to single integrals:

kP1srdl = 2meaZ
2a

3p
E

1

` sz2 − 1d1/2

z
S1 +

1

2z2D
3S sazd2 − az+ 1

s1 + azd5 d,0 +
1

s1 + azd5d,1Ddz, s10d
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KaZ

r
P1srdL = − saZd3mrme

2a

3p
E

1

` sz2 − 1d1/2

z
S1 +

1

2z2D
3S2sazd2 + 1

2s1 + azd4d,0 +
1

2s1 + azd4d,1Ddz, s11d

with a=2me/ saZmrd. When Eq. s10d is multiplied by
−2B0/ smm+mNd this results in a shift of20.000 15 meV for
the 2s state and of20.000 01 meV for the 2p state, and
when Eq.s11d is multiplied by 1/smm+mNd this results in a
shift of 0.004 89 meV for the 2s state and of 0.000 17 meV
for the 2p state. These expectation values also appear when
vacuum polarization is included in the Breit equationf31g.

Finally,

K aZ

3r4Q4srdL = −
saZd4mr

2

6

2a

3p
E

1

` sz2 − 1d1/2

z2 S1 +
1

2z2D
3HF−

6

az
S2 + az

1 + az
−

2

az
lns1 + azdD

+
3sazd2 + 2az− 1

s1 + azd3 +
3 + az

4s1 + azd4Gd,0

+
1 − 3az− 2sazd2

4s1 + azd4 d,1Jdz. s12d

When multiplied by 1/smm+mNd this results in a shift of
0.002 475 meV for the 2s state and of 0.000 238 meV for the
2p-state.

Combining these expectation values according to Eqs.s6d
and s7d, one finds a contribution to the 2p-2s transition of
20.004 19 meV. To obtain the full relativistic and recoil cor-
rections, one must add the difference between the expecta-
tion values of the Uehling potential calculated with relativ-
istic and nonrelativistic wave functions, giving a total
correction of 0.0166 meV. This is in fairly good agreement
with the correction of 0.0169 meV calculated by Veitia and
Pachuckif31g, using a generalization of the Breit equation
f32g which is similar to that given inf6g. The treatment pre-
sented here has the advantage of avoiding second order per-
turbation theory.

The review by Eideset al. f10g gives a better version of
the two-photon recoilfEq. s136dg than was available for the
review by Borie and Rinkerf1g. Evaluating this expression
for muonic hydrogen gives a contribution of20.044 97 meV
to the 2p-2s transition. Higher-order radiative recoil correc-
tions give an additional contribution of20.00 96 meVf10g.
However, some of the contributions to the expressions given
in f10g involve logarithms of the mass ratiomm /mN. Loga-
rithms can only arise in integrations in the region frommm to
mN; in this region, the effect of the nuclear form factor
should not be neglected. Pachuckif8g has estimated a finite-
size correction to this of about 0.02 meV, which seems to be
similar to the term proportional tokr3ls2d given in Eq.s5d as
calculated in the external field approximation by Friarf26g.
This two-photon correction requires further investigation. In
particular, the parametrization of the form factors used in any
calculation should reproduce the correct proton radius.

An additional recoil correction for states with,Þ0 has
been given byf32g ssee alsof10gd. It is

DEn,,,j =
saZd4mr

3

2n3mN
2 s1 − d,0dS 1

ks2 , + 1dD . s13d

When evaluated for the 2p states of muonic hydrogen, one
finds a contribution to the 2p-2s transition energy of 0.0575
meV for the 2p1/2 state and20.0287 meV for the 2p3/2 state.

V. MUON LAMB SHIFT

For the calculation of muon self-energy and vacuum po-
larization, the lowest-ordersone-loop approximationd contri-
bution is well known, at least in perturbation theory. Includ-
ing also muon vacuum polarizations0.0168 meVd and an
extra term of ordersZad5 as given inf10g,

DE2s =
asaZd5mm

4
S mr

mm
D3S139

64
+

5

96
− lns2dD ,

which contributes20.004 43 meV, one finds a contribution
of 20.667 88 meV for the 2s1/2-2p1/2 transition and
20.650 31 meV for the 2s1/2-2p3/2 transition.

A misprint in the evaluation of the contribution of the
higher-order muon form factorsscontributing to the fourth-
order termsd has been corrected. The extra electron loop con-
tribution to F2s0d is should be 1.094 26sa /pd2. This repro-
duces the correct coefficient ofsa /pd2 from the muon
sg-2d analyses. This is 0.7658, which is equal to
1.094 26–0.328 48.

The fourth-order electron loopsf30g dominate the fourth-
order contributions20.001 69 meV and20.001 64 meV, re-
spectivelyd. The rest is the same as for the electronf1g. The
contribution of the electron loops alone is20.001 68 meV
for the 2s1/2-2p1/2 transition and20.001 59 meV for the
2s1/2-2p3/2 transition.

Pachuki f8g has estimated an additional contribution of
20.005 meV for a contribution corresponding to a vacuum
polarization insert in the external photon.

VI. SUMMARY OF CONTRIBUTIONS

Using the fundamental constants from the CODATA 1998
f12g one finds the transition energies in meV in Table I. Here
the main vacuum polarization contributions are given for a
point nucleus, using the Dirac equation with reduced mass.
Some uncertainties have been increased from the values
given by the authors, as discussed in the text.

In the case of the muon Lamb shift, the numbers in Table
II are for the 2s1/2-2p1/2 transition. The corresponding num-
bers for the 2s1/2-2p3/2 transition are20.650 31 meV and
20.001 64 meV, respectively.

A. Fine structure of the 2p state

There are two possible ways to calculate the fine struc-
ture. One is to start with the point Dirac value, include the
contribution due to vacuum polarization, as calculated above,
as well as the spin-orbit splittingscomputed perturbativelyd
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due to the muon’s anomalous magnetic moment, and recoil
as given by Eq.s13d. The results are summarized in Table II.

An alternative method is to use the formalism given inf6g
sand elsewhere see, e.g.f10,32gd which gives the energy shift
as the expectation value of

−
1

r

dV

dr
·

1 + am + sam + 1/2dmN/mm

mNmm

LW · sW m. s14d

Note that

1

mNmm

+
1

2mm
2 =

1

2mr
2 −

1

2mN
2 ,

so that the terms not involvingam in the spin-orbit contribu-
tion are really the Dirac fine structure plus the Barker-Glover
correctionfEq. s13dg.

The Uehling potential has to be included in the potential
Vsrd. For states with,.0 in light atoms and neglecting the
effect of finite nuclear size, we may take

1

r

dV

dr
=

aZ

r3 F1 +
2a

3p
E

1

` sz2 − 1d1/2

z2 S1 +
1

2z2D
3s1 + 2merzde−2merzdzG , s15d

which is obtained from the Uehling potentialf13,14g by dif-
ferentiation. Then, assuming that it is sufficient to use non-
relativistic point Coulomb wave functions for the 2p state,
one finds

K 1

r3L
2p

→ K 1

r3L
2p

s1 + «2pd,

where

«2p =
2a

3p
E

1

` sz2 − 1d1/2

z2 S1 +
1

2z2DS 1

s1 + azd2 +
2az

s1 + azd3Ddz,

s16d

with a=2me/ saZmrd. The result for the fine structure is

− saZd4mr
3

n3s2 , + 1dkS 1

mNmm

+
1

2mm
2 +

am

mmmr
Ds1 + «2pd, s17d

where«2p is given by Eq.s16d. In this case, the terms involv-
ing am in the expression for the muon Lamb shift are in-
cluded and should not be double counted. With a numerical
value of«2p=0.000 365, one finds a contribution of 0.003 05
meV scompared with 0.005 meV using Dirac wave func-
tionsd.

Numerically, the terms not involvingam give a contribu-
tion of 8.3291 meV and the contribution fromam gives a
contribution of 0.0176 meV, for a total of 8.3467 meV, in
good agreement with Eq.s80d of f8g. When the vacuum po-
larization correction is added, the result is only very slightly
different from the Dirac value of 8.352 meV. The contribu-
tion due to the anomalous magnetic moment of the muon is
the same in both cases.

TABLE I. Contributions to the muonic hydrogen Lamb shift.
The proton radius is taken fromf20g. The various contributions are
discussed in the text.

Contribution ValuesmeVd UncertaintysmeVd

Uehling 205.0282

Källen-Sabry 1.5081

Wichmann-Kroll 20.00103

Virt. Delbrueck 0.00135 0.00015

Mixed mu-e VP 0.00007

Hadronic VP 0.011 0.002

Sixth orderf23g 0.00761

Recoil f10g fEq. s136dg 20.04497

Recoil, higher orderf10g 20.0096

Recoil, finite sizef26g 0.013 0.001

Recoil correction to VPf1g 20.0041

Additional recoil f32g 0.0575

Muon Lamb shift

Second order 20.66788

Fourth order 20.00169

Nuclear sizesRp=0.875 fmd 0.007 fm

Main correctionf26g 23.979 0.076

Order saZd5 0.0232 0.002

Order saZd6 20.0005

Correction to VP 20.0083

Polarizationf9g 0.015 0.004

Other snot checkedd
VP iterationsf8g 0.151

VP insertion in self energyf8g 20.005

Additional size for VPf10g 20.0128

TABLE II. Contributions to the fine structure of the 2p state in
muonic hydrogen.

Es2p3/2d-Es2p1/2d smeVd

Dirac 8.41564

Uehling sVPd 0.0050

Källen-Sabry 0.00004

Anomalous momentam

Second order 0.01757

Higher orders 0.00007

Recoil fEq. s13dg 20.0862

Total fine structure 8.352
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In both cases one should include theB2/2MN-type correc-
tion to the fine structurefsee f10g, Eq. s38dg. This is tiny
s5.7310−6 meVd and is not included in the table. Friarf26g
has given expressions for the energy shifts of the 2p states
due to finite nuclear size. These were calculated and found to
give a negligible contributions3.1310−6meVd to the fine
structure of the 2p state.

VII. HYPERFINE STRUCTURE

The hyperfine structuresHFSd is calculated in the same
way as was done in earlier workf6,7g, but with improved
accuracy. Most of the formalism and results are similar to
those given byf8g.

A. 2p state

The hyperfine structure of the 2p state is given byf6g sF
is the total angular momentum of the stated

1

4mmmN
K1

r

dV

dr
L

2p
s1 + kpdF2s1 + xdd j j 8„FsF + 1d − 11/4…

+ 6ĵ ĵ8„CF1s1 + amd − 2s1 + xd…H, F 1
1
2

1
2 j

JH, F 1
1
2

1
2 j8

JG ,

s18d

where ĵ =Î2j +1, the 6j symbols are defined inf33g, CF1
=dF1−2dF0−s1/5ddF2, and

x =
mms1 + 2kpd
2mNs1 + kpd

represents a recoil correction due to Thomas precession
f6,32g. The same correction due to vacuum polarizationfEq.
s16dg should be applied to the HFS shifts of the 2p states, as
well as to the spin-orbit term.

As has been known for a long timef6–8g, the states with
total angular momentumF=1 are a superposition of the
states withj =1/2 andj =3/2. Let the finestructure splitting
be denoted byd=E2p3/2−E2p1/2, and let

b =
saZd4mr

3

3mmmN
s1 + kpd

andb8=bs1+«2pd.
The energy shifts of the 2p states with total angular mo-

mentumF snotation2F+1Ljd are then given in Table III where

D = d − b8sx − amd/16,

R2 = fd − b8s1 + 7x/8 + am/8d/6g2 + sb8d2s1 + 2x − amd2/288

shere d=8.352 meVd. Some minor errors inf6g have been
corrected. These numbers differ slightly from those given in
Ref. f10g.

B. 2s state

The basic hyperfine splitting of the 2s state is given by

DnF =
saZd4mr

3

3mmmN
s1 + kpds1 + amd = bs1 + amd = 22.8332 meV

fsee, for examplef10g, Eqs.s271d ands277dg. As was shown
in f6,10g, the energy shift of the 2s state is given by

DE2s = DnFs1 + «VP + «vertex+ «Breit + «FS,recdfdF1 − 3dF0g/4.

s19d

Here f34g

«vertex=
2asaZd

3
Slns2d −

13

4
D = − 1.363 10−4

and ff10g, Eq. s277dg

«Breit =
17saZd2

8
= 1.133 10−4.

The vacuum polarization correction has two contributions.
One of these is a result of a modification of the magnetic
interaction between the muon and the nucleus and is given
by sseef7gd

«VP1 =
4a

3p2E
0

`

r2drSRnssrd
Rnss0dD

2E
0

`

q4j0sqrdGMsqddq

3E1
` sz2 − 1d1/2

z2 S1 +
1

2z2D dz

4me
2fz2 + sq/2med2g

.

s20d

One can do two of the integrals analytically and obtains for
2s statefwith a=2me/ saZmrd and sinhsfd=q/ s2med=K /ag

«VP1 =
4a

3p2E
0

` K2

s1 + K2d2FsfdGMsaZmrKddK

3F2 −
7

s1 + K2d
+

6

s1 + K2d2G , s21d

whereFsfd is known from the Fourier transform of the Ue-
hling potential and is given by Eq.s4d.

The other contribution, as discussed byf34,35g, arises
from the fact that the lower-energy hyperfine state, being
more tightly bound, has a higher probability of being in a
region where the vacuum polarization is large. This results in
an additional energy shift of

TABLE III. Hyperfine structure of the 2p state in muonic
hydrogen.

State Energy Energy in meV

1p1/2 2b8s2+x+amd /8 25.971
3p1/2 sD−Rd /2 1.846
3p3/2 sD+Rd /2 6.376
5p3/2 d+b8s1+5x/4−am /4d /20 9.624
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2E VUehlsrdc2ssrddMc2ssrdd3r .

Following Ref.f34g with y=saZmr /2dr, one has

dMc2ssrd = 2mmDnFc2ss0dS 2

aZmr
D2

exps− yd

3Fs1 − ydflns2yd + gg +
13y − 3 − 2y2

4
−

1

4y
G

sg is Euler’s constantd, and

c2ssrd = c2ss0ds1 − ydexps− yd.

One finds after a lengthy integration

«VP2 =
16a

3p2E
0

` dK

1 + K2GEsaZmrKdFsfd

3H1

2
−

17

s1 + K2d2 +
41

s1 + K2d3 −
24

s1 + K2d4

+
lns1 + K2d

1 + K2 F2 −
7

s1 + K2d
+

6

s1 + K2d2G
+

tan−1sKd
K

F1 −
19

2s1 + K2d
+

20

s1 + K2d2 −
12

s1 + K2d3GJ .

s22d

Sternheimf35g denotes the two contributions bydM anddE,
respectively. An alternative expression, obtained by assum-
ing a point nucleus, using Eq.s131d from f1g for the Uehling
potential, and doing the integrations in a different order, is

«VP2 =
16a

3p
E

1

` sz2 − 1d1/2

z2 S1 +
1

2z2D 1

s1 + azd2

3Faz

2
−

1

1 + az
+

23

8s1 + azd2 −
3

2s1 + azd3

+ lns1 + azdS1 −
2

1 + az
+

3

2s1 + azd2DG dz, s23d

with a=2me/ saZmrd. Both methods give the same result.
In the case of ordinary hydrogen, each of these contrib-

utes 3a2/8=1.997310−5. The accuracy of the numerical in-
tegration was checked by reproducing these results. One can
thus expect that the muonic vacuum polarization will con-
tribute 3a2/4.4310−5, as in the case of normal hydrogen.
This amounts to an energy shift of 0.0009 meV. Contri-
butions due to the weak interaction or hadronic vacuum po-
larization should be even smaller. For muonic hydrogen,
one obtains «VP1=0.002 11 and «VP2=0.003 25 for a
point nucleus. Including the effect of the proton size
fwith GEsqd=GMsqd as a dipole form factorg reduces these
numbers to 0.002 06 and 0.003 21, respectively. For the
case of muonic3He f7g, the corresponding numbers are
«VP1=0.002 86 and«VP2=0.004 76. The contribution to the

hyperfine splitting of the 2s state is then 0.0470 meV
+0.0733 meV=0.1203 meVs0.1212 meV if muonic vacuum
polarization is includedd. The combined Breit and vertex cor-
rections reduce this value to 0.1207 meVs0.1226 meV if the
proton form factors are not taken into accountd.

The contribution to the hyperfine structure from the two-
loop diagrams f16g can be calculated by replacing
U2saZmrKd=sa /3pdFsfd by U4saZmrKd sas given inf1,4gd
in Eqs. s21d and s22d. The resulting contributions are
1.64310−5 and 2.46310−5, respectively, giving a total shift
of 0.0009 meV.

The correction due to finite size and recoil have been
given inf8g as20.145 meV, while a value of20.152 meV is
given in f38g. Referencef8g also gives a correction as calcu-
lated by Zemachf36g equal to20.183 meV. This correction
is equal to

«Zem= − 2aZmrkrls2d,

where krls2d is given in f6,26,37g. Using the valuekrls2d
=1.086±0.012 fm fromf37g gives «Zem=−0.00702 and a
contribution of of20.1742 meV to the hyperfine splitting of
the 2s state. Including this, but not other recoil corrections,
to the hyperfine structure of the 2s state gives a total splitting
of 22.7806 meV. Additional higher-order corrections calcu-
lated in Ref.f38g amount to a total of20.0003 meV and are
not included here.

VIII. SUMMARY OF CONTRIBUTIONS
AND CONCLUSIONS

The most important contributions to the Lamb shift in
muonic hydrogen, including hyperfine structure, have been
independently recalculated. A calculation of some terms that
were omitted in the most recent literature, such as the virtual
Delbrück effectf11g and an alternative calculation of the
relativistic recoil correction, have been presented.

Numerically the results given in Table I add up to a total
correction of f206.032s6d−5.225kr2l+0.0347kr2l3/2g meV
=202.055±0.12 meVsfor the value of the proton radius
from f20gd. As is well known, most of the uncertainty arises
from the uncertainty in the proton radius.

However, the contribution of the light-by-light graph to
the muon form factor has not yet been calculated. Also, since
mm /mp =0.1126 is much larger thanaZ, it is possible that
recoil corrections of higher order in the mass ratio, which
have never been calculated, could be significant at the level
of the expected experimental accuracy of about 0.01 meV. In
particular, the two-photon recoil corrections, including finite
nuclear size, should be recalculated to resolvessmalld incon-
sistencies among various theoretical results.

ACKNOWLEDGMENTS

The author wishes to thank M. Eides, E.-O. Le Bigot, and
F. Kottmann for extensive email correspondence regarding
this work.

LAMB SHIFT IN MUONIC HYDROGEN PHYSICAL REVIEW A 71, 032508s2005d

032508-7



f1g E. Borie and G. A. Rinker, Rev. Mod. Phys.54, 67 s1982d.
f2g F. Kottmannet al., Hyperfine Interact.138, 55 s2001d.
f3g A. di Giacomo, Nucl. Phys. B11, 411 s1969d.
f4g E. Borie, Z. Phys. A275, 347 s1975d.
f5g E. Borie and G. A. Rinker, Phys. Rev. A18, 324 s1978d.
f6g E. Borie, Z. Phys. A278, 127 s1976d.
f7g E. Borie, Z. Phys. A297, 17 s1980d.
f8g K. Pachucki, Phys. Rev. A53, 2092s1996d.
f9g K. Pachucki, Phys. Rev. A60, 3593s1999d.

f10g M. I. Eides, H. Grotch, and V. A. Selyuto, Phys. Rep.342, 63
s2001d.

f11g E. Borie, Nucl. Phys. A267, 485 s1976d.
f12g P. J. Mohr and B. N. Taylor, Rev. Mod. Phys.72, 351 s2000d.
f13g E. A. Uehling, Phys. Rev.48, 55 s1935d.
f14g R. Serber, Phys. Rev.48, 49 s1935d.
f15g A. I. Akhiezer and V. B. Berestetskii,Quantum Electrodynam-

ics sWiley Interscience, New York, 1965d.
f16g G. Källen and A. Sabry, K. Dan. Vidensk. Selsk. Mat. Fys.

Medd. 29, No. 17 s1955d.
f17g G. G. Simonet al., Nucl. Phys. A 333, 38 s1980d.
f18g R. Rosenfelder, Phys. Lett. B479, 381 s2000d.
f19g I. Sick, Phys. Lett. B576, 62 s2003d.
f20g P. J. Mohr and B. N. Taylor, Rev. Mod. Phys.sto be pub-

lishedd.

f21g E. Borie, Helv. Phys. Acta48, 671 s1975d.
f22g E. H. Wichmann and N. M. Kroll, Phys. Rev.101, 843s1956d.
f23g T. Kinoshita and M. Nio, Phys. Rev. Lett.82, 3240s1999d.
f24g E. Borie, Z. Phys. A302, 187 s1981d.
f25g J. L. Friar, J. Martorell, and D. W. L. Sprung, Phys. Rev. A59,

4061 s1999d.
f26g J. L. Friar, Ann. Phys.sN.Y.d 122, 151 s1979d.
f27g R. Rosenfelder, Phys. Lett. B463, 317 s1999d.
f28g S. A. Srartsevet al., Sov. J. Nucl. Phys.12, 33 s1976d.
f29g R. N. Faustov and A. P. Martynenko, inQuantum Electrody-

namics and Physics of the Vacuum, QED 2000, AIP Conf.
Proc. 564, 277 s2001d.

f30g R. Barbieri, M. Caffo, and E. Remiddi, Lett. Nuovo Cimento
Soc. Ital. Fis.7, 60 s1973d.

f31g A. Veitia and K. Pachucki, Phys. Rev. A69, 042501s2004d.
f32g E. H. Barker and N. M. Glover, Phys. Rev.99, 317 s1955d.
f33g A. R. Edmonds,Angular Momentum in Quantum Mechanics

sPrinceton University Press, Princeton, 1960d.
f34g S. J. Brodsky and G. W. Erickson, Phys. Rev.148, 26 s1966d.
f35g M. M. Sternheim, Phys. Rev.138, B430 s1965d.
f36g A. C. Zemach, Phys. Rev.104, 1771s1956d.
f37g J. L. Friar and I. Sick, Phys. Lett. B579, 285 s2004d.
f38g A. P. Martynenkosunpublishedd.

E. BORIE PHYSICAL REVIEW A 71, 032508s2005d

032508-8


