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Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities
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Time-dependent density-functional theofyDDFT) employing the exact-exchange functional has been
formulated on the basis of the optimized-effective-potent@EP method of Talman and Shadwick for
second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only
approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions,
was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response
function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact
exchangé TDOEP agree accurately with the corresponding values from time-dependent Hartree-Fock theory,
the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical
asymptotic decay of the exchange potential of most conventional density functionals or from any other mani-
festations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the
absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the
TDOEP.
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I. INTRODUCTION expansion of the exact exchange-correlation functional be
correct through that order. In the SS method, a nonlocal self-
In spite of their remarkable success, Hohenberg-Kdiin  energy operator in the Dyson equation is projected onto a
and Kohn-ShantKs) [2] density-functional theorie®©FT’s)  local operator which is interpreted as the exchange-
have been criticized as not being a constructive theory, ofeorrelation potential in the KS equation. Collectively, these
fering neither analytically nor numerically tractable a path tomethods can be calleab initio DFT [20-23 in distinction to
the exact exchange-correlation functional. However, thisther conventional DFT’s that embrace semiempiricism or
situation has changed dramatically in recent years when aonsystematic approximations.
number of rigorous theoretical approachi8s22] to define The essential features common to alfii initio DFT real-
converging approximations to the exact exchange-correlatioizations are the use of systematic orbital-dependent
functional have been proposed and have become subject exchange-correlation functionals and the locality ansatz of
numerical scrutiny. the correspon_ding. gxchange-correlation potentials. While
One such approach consists of the one-particle KS equdbuch of the simplicity afforded by the conventional, non-

tion with a local, multiplicative exchange-correlation poten-Orbital-dependent functionals may be lostah initio DFT,
tial defined as the functional derivative of a nonlocal orbital-the latter provides a number of critical theoretical and prac-

dependent exchange-correlation functional with respect tgcaila_advantagt;ﬁs Oth?f tlhe fOVTer.tPrlrgrc]:lpally, it tg|ves ﬁn un-
electron density11,16,18—2] The functionals are those es- 2MP!guous theoretical rfoute 1o ihe exact exchange-
tablished inab initio wave function theoryWFT) such as correlation functional. Second, it suggests a spectrum of new,

: useful methods as approximations to the exact exchange-
many-body perturbation theofMBPT) [11,16,18-2p and correlation functional. Third, various analytical conditions

coupled-clustefCC) [21] theory energy functionals. This ap- and theorems that hold generally for KS DFT can be applied
proach therefore makes use of the variational theorem that |8 1.« ~aiculated quantities @b initio DFT (e.g., Janak's
the centerpiece of KS DFT. Others mc!ude the Gbr“ng'l‘evytheorem[m,25 for the ionization potential While the lo-
(GL)h [%,Q]farr:d rSer:atec[SZOrﬁgZ perturbatllon theorcl)es an(:] the cality ansatz has been introduced only to relate these meth-
gﬁt 0 Obt € im' cf ut(a‘kBS eﬂuat|on[5_,7,1h,12.hT € ods to KS DFT, the local correlation potential embeds the
perturbation t eory Invo es.t € .premlset at the exact, re|ation effects into orbitals and orbital energies and
one-electron KS orbitals must give rise to the electron denfhereby can make the convergence of approximatiorebin
sity of the exact many-electron wave function. Accordingly. jniiq DFET potentially more rapid than the corresponding se-
the GL perturbation theory insists that the electron densn)ﬁes inab initio WFT [19-23 (cf. the use of naturdl26] or
from the KS orbitals at a given order of the GL perturbaﬁo”Brueckner[27] orbitals inab initio WFT). However, when
carried through to the exact limigb initio DFT will be as
expensive as the full configuration interaction methodhlof
* Author to whom correspondence should be addressed. Electroninitio WFT, in spite of the opposite assertion often made in
mail: hirata@qtp.ufl.edu favor of exact DFT.
TAlso at the Department of Physics. While the differentab initio DFT methods may give rise
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to slightly different series of approximations to the exactdifferences method applying a small electric field to the mol-
exchange-correlation functional, they invariably derive justecules under study. Unlike this finite-differences method, our
one exchange-only functional, which is the optimized-analytic approach is not limited to a static polarizability.
effective-potentialOEP method introduced by Talman and

Shadwick 28] (see also Ref.29]). Being the exact exchange

in ab initio DFT and the KS counterpart of the Hartree-Fock Il. EXACT-EXCHANGE KS DFT

(HF) theory[30,31], the OEP shares many of the analytical
features of the exact exchange-correlation potef#i2ll The
OEP has the correct - /asymptotic behavior, cancels ex-
actly the self-interaction, exhibits an integer derivative dis- all D

continuity [5,33,34, obeys the exchange virial theorem E(ququw_quUqu):i—M, (1)
[35,36], satisfies the highest occupied molecular orbital q at

(HOMO) condition (Janak’'s theorem etc. The linear-

combination-of-atomic-orbital(LCAO) algorithms of the all

OEP have been developed by Ivanov, Hirata, and Bartlett > DpowDaro = Doros (2)
[37,38 and by Goérling [39], which enabled rigorous q par—d P

exchange-onhab initio DFT calculations on an equal foot- ) . . , —
ing with the conventional Gaussian-basis-set DFRloini- ~ WhereD is a density matrix and is the KS Hamiltonian

tio WFT calculations. This has been extended to excitednatrix, both labeled by spin index The exact-exchange KS
states via the time-dependent DFT formalig#0,41 within ~ Hamiltonian operator is defined as
the adiabatic approximatiofmeaning the neglect of fre- 1 a.B
quency dependence in the functional, in the potential, or in g = - ZV24 V() + 2 f Mdrﬁvo'zp(rl),
the kernel and to electron correlation in the ground state via 2 ' T =1y 7
the second-order MBPT correlation functionab—23. )

In this article, as a part of the ongoing effort to establish
the complete spectrum b initio DFT, we extend the WwhereVg,(r) is a spin-independent external potentialg.,
LCAO algorithms of the OEP method to second-order re-the nuclear potentialp.(r) is the-spin electron density, and
sponses to a frequency-dependent perturbation and assess Vﬁ,gp(r) is the o-spin OEP. The OEP contains only the exact
performance of the OEP for such properties. We derive thexchange part and should be distinguished from correlated
time-dependent density-functional thediyDDFT) [42—-49 OEP considered elsewhere.
employing the OERTDOEP) within the adiabatic approxi- ~ The matrix elements of the OEP are computed by the
mation and apply that to static and dynamic polarizabilities following formula:
which are important properties determining the refractive in- e s
dex, Rayleigh scattering cross sections, Raman intensities,nga =Voue

In the orthonormal, real, canonical KS orbital basis, the
time-dependent KS equation can be written as

etc. In this article, the OEP and TDOEP should be under- occ vir aux(Kl VS )i a0 \)

stood to contain only the exchange component but no corre- -2 > > e oo Pollo (X;l),()\,
lation effects. We adopt the algorithm that guarantees the i a kA gic ~ €ao

correct —1f asymptotic decay of the OEP to ensure the qual- (4)

ity of all orbitals which is vital to properties that probe vir-

tual orbitals. with the three-center overlap integrals involving the ortho-

We will demonstrate that the TDOEP yields the identicalnormal auxiliary basis function§,(r)} being
results as a time-dependent KIFDHF) theory for static and
dynamic polarizabilities of(spin-unpolarizey two-electron . (paqu)=f Poo(1) @ao(F)x(1)dr . (5)
systems and extremely close results for larger systems. This

is congruous to the fact that the HF theory and OEP share th& set of even-tempered primitive Gaussian functions, after
identical exchange energy functional, merely differing in the !

canonical orthogonalization, may be used as the auxiliary

locality qf the exchapge potential in the latier, apd to thefunctions [38]. In Eq. (4), we add and subtract the Slater
expectation that the time dependence of the energies of thef)%tentialvs(r) to ensure the correct ~ Asymptotic decay.

two methods should be simildif not the samgin the adia- S . .
batic approximation. Within the limitation caused by the IackThe Slater potential is defined analytically by

of electron correlation, the TDOEP is therefore as well be- occ 010t [ @iulf2)e(ry)
haved as the TDHF theory and does not suffer from the gross ~ VS(r;) = - >, Z&2ro L j 2710 2 hr,,  (6)
overestimatiorj46,50,5] of polarizabilities by conventional i Pelry) ri=ra

TDDFT caused by the wrong asymptotic behavior of
exchange-correlation potential§2,53 or from any other
manifestation of the incomplete cancellation of the self- s s

interaction error, which includes violation of the size exten- quo:f Ppo( NV @gy(r)dr, (7
sivity [54] in excitation energies and the lack of charge-

transfer separabilit}55]. Previously, Mori-Sanchez, Wu, and where ¢p,(r) is the pth o-spin KS orbital. The matrix in
Yang [56] reported OEP polarizablity by the finite- Eq.(4) is the HF exchange and its elements are given by

with its matrix representation being
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occ

o A-wl B \[(d™\ (h
I'<ia1<r: ; ('a] o’|]o’ao')l (8) B A+ ol d[+w] - h/’ (15)
where the two-electron integrals are, as usual, with
Aciobir= 8 Sandr(€an = i0) + (@i, ll[i.0),  (16)
® (r(r )(P U(r )¢ T(r )QD T(r ) aio,bjr ij YabPor\Cao i ol o T
(paq0'|r7'ST) :JJ . e |r l_ rr | et drldrz'
1 2 (9) Baio,bjT: (ao'i 0'|||ij T)7 (17)

_ _ N _ _ and1lis a unit matrix. Once these equations are solvedifor
The matrixX,, is the auxiliary-basis-set representation of thethe dynamic po|arizabi|ity is read”y evaluated from
o-spin linear response function in the adiabatic ,
a . i vir occ a,8
pproximation—i.e.,

a(-w; +0) == 22 2 3 (hiodie+ha,dis)). (18)
a I o

occ vir

Xo—(r]_,rz) — 22 2 QDiO'(rl)QDaO'(r1)(Pi0'(r2)(10a0'(r2) , (10)

Cic ™ €acr

In the above, we have introduced a shorthand notation of
the sum of two-electron integrals

occ vir

K)o =2S, S, loorlioh) 1) (PolIr 1) = (Poolr S + (Pl ToF IS, (19)
ia fieT fao where the second term
wheree, is the KS orbital energy ofp,(r).
The corresponding energy functional of the OEP method  (p,q,|fo5r.s,) :J f @1 ) @ DTG T 1,1 )
is the HF energy expression. Equatiof) can indeed be
derived as the functional derivative of the energy functional X @p () s (F p)dr 1dr 5 (20)

with respect to electron density, with the constraint that the ) o
potential be local. For spin-unpolarized two-electron sysJnvolves the exchange kernel or the functional derivative of
tems, VO5P=VS and the HF and OEP total energies agreeth® OEP with respect to spin density,
identically. For systems with more than two electrons, the SVOER(r )
OEP total energies are slightly higher than the HF ones, re- 5“—()1
(o r.2

flecting the additional constraint in the variational method.

within the adiabatic approximation. These two-electron inte-
grals are computed, with the aid of the orthonormal auxiliary
basis set, by evaluating the formuil]

f(;'rEP(r l!rZ) = 50'7' (21)

IIl. EXACT-EXCHANGE TDDFT

When we add to the KS HamiltonidB) a time-dependent
perturbation whose matrix elements atg,,{exp(-iwt)
+expliot)} with

aux

(Pl TOErS) = 8y 2 (PG0K)

KN, v

X (X ;—l) K)\(ga))\,u(x (_rl)ﬂv(rosoy) ’ (22)

hpqo: f (Ppo(r)Z(qu'(r)dr (12) .
with
and z being a dipole perturbation operator, the linear time- oce Vir \/OE
dependent respons%;‘;] exp(—iwt)+d[+qz’] expliot) (and also CANEEFD (Kbas + Vbag (i, a,N) (i b, )
higher-order onescan be observed in the density matrix el- T ap (o~ €an)(Eic 800 © 0 T
ementsD,, in Egs. (1) and (2). The amplitudesd of the oce vir £
linear response can be obtained by solving the coupled- 25 (Kijo + Viiy (.a,0)(ay] o)
perturbed or time-dependent OEP equations of the form 0 a Eie—ea) (€ 8a0) okt
vir occ a,3 occ vir (K- 1\ E
(ea0 = 8i0)hie) + haig + 2 2 2 {(@gi ] by —23 Y 8 _TRos (b a \)(i,byu)
b j 7 i ab (Si()'_ 8ao)(8ia_ 8ba')
+ (@gly|lo )i} = wdgiy?, (13 XL (Kiggt VO
e 23y e Ver) b 0,8,
vir occ a,8 i ab (€iy~ €a0) (Eig ~ Eby)
(&1 = £ar)Oare) = Ny = 2 20 2 (0,3, [lj b,)db;e” occ VIt e 4 \jOE
ai o 7 ] +222( ( |aa)( iao )(ia-jo)\)(aojo'lu‘)
i Eigc ™ €ad)\€jo ™ €an
+(i0,l[b sy = wdlie, (14 Uos o e
occ vir (Kip + VS E
where we used the relatiajiT;’]:di[;;’]. These may be trans- +2> > a7 "lag (3yj N (i g o)

lated into a compact matrix linear equation
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TABLE |. The average static polarizability(0) and anisotropy of the static polarizability(0) =27V (ay— ayy)?+ (ayy— a;)*+ (e,
— )22 (in a.u).

System Quantity SVWN BLYP B3LYP SVWN/AC HF OEP Expt.
He? a(0) 1.66 1.57 151 1.39 1.32 1.32 1.38
Ne” a(0) 3.05 3.10 2.88 2.54 2.38 2.37 2.67
Ar® a(0) 12.0 12.1 11.7 12.0 10.7 10.7 11.07
H,¢ a(0) 5.96 5.73 5.59 5.44 5.27 5.27 5.428
FH® a(0) 5.80 5.88 5.562 4.96 4.72 4.70 5.601
N, a(0) 11.7 11.8 115 111 11.0 11.0 11.74
H, 1(0) 1.93 1.95 1.92 1.71 1.87 1.87 2.04
FH® ¥(0) 1.53 1.59 1.57 1.32 1.52 1.50 1.33
N, 1(0) 5.52 5.70 5.69 5.35 6.04 6.02 4.45
®The 128p5d even-tempered basis set with exponent¥21@=6, ...,-5 fors type;n=2, ...,-5 forp type;n=1, ...,-3 ford type).
PThe 1510p7d even-tempered basis set with exponent¥2@=9, ...,-5 fors type;n=4, ...,-5 forp type;n=3, ..., -3 ford type).
“The 1&12p8d even-tempered basis set with exponent¥2i@®=11, ...,-5 fors type;n=6, ...,-5 forp type; n=4, ...,-3 ford type).
“The %6p2d even-tempered basis set with exponent¥21(h=4,...,-4 fors type; n=1,...,-4 forp type; n=0,-1 for d type). The

H-H distance was 0.7461 A.

See footnote d for the hydrogen basis set and footnote f for the fluorine basis set. The F-H distance was 0.9170 A.

"The 149p3d even-tempered basis set with exponent¥21@=8, ..., -5 fors type;n=3, ...,-5 forp type;n=1,0,-1 ford type). The
N-N distance was 1.0976 A.

9Adopted from Refs[60,63.

oce vir (i,b,li,a,) self-interaction in DFT. Accordingly, the degree of overesti-
-2>> T (i g2\ (j sbgat) mation is greater for atomic systems anglthan for FH and

i ab (Eio~ &a0) (8j5 ~ €po) N,, because the low-lying excited states of the former group

occ vir o are invariably of the diffuse, Rydberg type, which are more
-2 (i o]Do2) (i, a,N\) (j bos). sensitive to the potentials in the asymptotic region. Also, the

overestimation is much less for B3LYP, which has 20% of
5 HF exchange that partially alleviates this problem. When the
(23) —1/r tail of the Slater potential is spliced to the SVWN
The derivation of the exact exchange kernel in the adiabati€xchange-correlation potential in the asymptotic regaiter
approximation can be found in R#1]. The fourfold sum- the SVWN potential is shifted down by an adequate amount

mation in Eq.(22) can be carried out stepwise. to ensure the seamless splicinghe resulting SVWN-AC
(AC standing for the asymptotic correctjoreproduces the

experimental data much more accurately, with the exception
IV. RESULTS AND DISCUSSION of FH.
The TDHF and TDOEP methods are free from self-

The Gaussian-basis-set OEP and TDOEP methods haveteraction error. As such, they provide calculated polariz-
been implemented into tiEOLYMER program, employing the  abilities that look more consistent than the TDDfKclud-
combined Colle-Nesb¢b7] andS algorithms outlined above ing TDOEP ones in comparison to the experimental data.
and the trial-vector algorithm of Popé al.[58] to avoid the  The OEP method, having an identical energy functional as
computation and storage of two-electron integrals in the K§he HF method, exhibits essentially the same time-dependent
orbital basis. The other algorithmic details can be found inresponse as HF to the perturbation. The TDOEP polarizabil-
Refs.[38,41]. ities are identical to the TDHF ones for He ang, ldnd they

In the first six rows of Table I, we compiled the static are very closgwithin 1% of each otherfor the other sys-
polarizabilities of He, Ne, Ar, Bl FH, and N (as represen- tems. The TDHF and TDOEP metho@sit not TDDFT with
tative examples of atoms and molecules having either loweonventional local, gradient-corrected, or hybrid functiopals
lying Rydberg or valence excited statesomputed by are the most suitable bases for systematic correlation treat-
TDDFT with local [Slater-Vosko-Wilk-Nusair(SVWN)],  ment for properties within thab initio WFT and DFT frame-
gradient-corrected Becke-Lee-Yang-Par(BLYP)], hybrid  works, respectively.
[Becke3-Lee-Yang-ParfB3LYP)], and asymptotically cor- The last three rows of Table | are the anisotropy of the
rected functionals, by TDHF, and by the TDOEP in conjunc-average static polarizabilities. The calculated values of this
tion with even-tempered Gaussian functions. Generallyquantity do not exhibit a simple pattern, unlike the average
TDDFT with SYWN, BLYP, and B3LYP functionals overes- static polarizabilities themselves, which are uniformly over-
timates the polarizabilities. The cause of this is now wellestimated by TDDFTexcluding the TDOER It appears that
known to be the wrong asymptotic decay of the exchangethe cancellation of errors makes the calculated TDDFT an-
correlation potentials, which is in turn related to the spurioudsotropy better agree with the experimental data. The agree-

ij ab (8ig— 8aa)(81a‘ Epo)
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TABLE II. The average static polarizability and anisotropy of the static polarizability in the sum-over-
states(SO9 approximation(in a.u).

System Quantity SVWN BLYP B3LYP SVWN/AC HF OEP Expt.

He? asod0) 1.81 1.74 1.52 1.53 1.00  1.49 1.38
Ne° asod0) 3.48 3.61 3.08 2.93 197 284 2.67
Ar® as040) 18.0 18.4 15.7 18.0 101 170  11.07
H,¢ as040) 7.31 7.13 6.06 6.73 386 659 5428
FHe as040) 7.36 7.58 6.36 6.34 396 616  5.601
N, asod0) 21.1 21.3 17.8 20.5 111 199  11.74
H, ¥s040) 3.94 3.99 3.15 3.56 160  3.35 2.04
FH® Ys040) 3.28 3.45 2.79 2.79 1.49 2.83 1.33
N,° ¥s040) 19.2 19.8 15.3 19.1 749 171 4.45

¥See the corresponding footnotes of Table I.
bSee the corresponding footnotes of Table I.
“See the corresponding footnotes of Table I.
ISee the corresponding footnotes of Table I.
See the corresponding footnotes of Table I.
'See the corresponding footnotes of Table I.
9Adopted from Refs[60,63.

ment between the TDHF and TDOEP remains very accuratéhe underestimation of the virtual orbital energies, the
Table Il lists the average static polarizabilities and theirSVWN and BLYP values are even greater than the TDOEP
anisotropy within the sum-over-staté809 approximation, or SYWN-AC ones. It may be rationalized that, because the
which is also equivalent to the uncoupled DFT, HF, OEP, etcKS orbital energy differences,,—¢;, are physically inter-
The approximation amounts to neglecting two-electron intepreted as excitation energies, the SOS approximation is
grals in the complete TDDFT, TDHF, or TDOEP equations,physically sounder for TDDFTincluding the TDOER. In
which simplifies the polarizabilities to an analytic form of other words, the SOS approximation in the TDHF theory
v 066 a.g , involves an extra approximation of usieg,— ¢, instead of
: hio €20~ Eiv—(8,8,|i,i,). This argument seems to be supported
asod = w; +©) =22, E 2 (8 only by the results for smaller molecules, whose TDOEP
@t results with and without the SOS approximation agree with
hZ,, each other more accurately.
(24) For the dispersion of dynamic polarizabilities also, the
predicted values from the TDOEP accurately parallel those
Generally, this is a severe approximation, resulting in signififrom the TDHF theory(Table Ill). The two methods agree
cant errors from the corresponding complete TDDFT, TDHF,dentically, as they should, for spin-unpolarized two-electron
or TDOEP solutions. The physical meaning of virtual orbit- systems. The TDOEP and TDHF results are in more uni-
als is different between KS DFTincluding the OEP and formly good agreement with the experimental data, again
HF. All orbitals of KS DFT are generated by the with the exception of FH. The wrong asymptotic behavior in
(N-1)-electron potential with the energy differences be-SVWN and BLYP(and to a lesser degree in B3LYP glso
tween virtual and occupied orbitals being better related tgesults in the overestimation of the dispersion as well as the
excitation energie$59]. In contrast, the HF occupied and absolute values of the dynamic polarizabilities. Conse-
virtual orbitals correspond to qualitatively different poten- quently, the SVWN and BLYP predictions &-4) are sig-
tials: the occupied orbitals to th@N—1)-electron potential nificantly greater than the TDHF or TDOEP values or experi-
and the virtual orbitals to thM-electron potential. Hence the mental data for all but FH. It is remarkable that the
energy differences between HF virtual and occupied orbitalgsymptotic correction is equally effective for the dispersion
are ionization potential minus electron affinity, a quantityof dynamic polarizabilities. The anomaly for FH at the
distinctly different from(generally greater tharexcitation =~ TDHF level has been known and is not due to the insufficient
energies. The diagonal elements of thenatrix in the TDHF  basis set siz¢60]. The closer agreement between SVWN
equation are better approximated by, —¢;,—(a,a,|i,i,) and experimental result &-4) of FH is a coincidence as
rather than bye,,— €, attested to by the corresponding SVWN-AC value that is
Because of this difference, the TDOHRs the exact- closer to the TDHF one.
exchange TDDFY deviates significantly from the TDHF
theory, once the SOS approximation is invoked. Invariably, V. CONCLUSIONS
the TDOEP results become much greater than the TDHF We have presented analytical calculations of static and
ones and are often close to the SVWN-AC values. Owing taynamic polarizabilities applicable to general atomic and

ac” Cicg T W

+ .
€ar " EipT W
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TABLE Ill. The Cauchy moment of the dynamic polarizabili®/—4) = da(w)/d(w?) (in a.u).

System SVWN BLYP B3LYP SVWN/AC HF OEP Expt.
He? 2.4 2.2 2.0 1.6 1.4 1.4 1.6
NeP 4.4 4.8 3.8 2.4 2.1 2.1 3.0
Ar® 36 39 33 36 25 26 29
H, 25 24 22 20 19 19 19.96
FHE 16 17 13 8.9 7.8 7.9 14.40

dSee the corresponding footnotes of Table I.
bSee the corresponding footnotes of Table I.
“See the corresponding footnotes of Table I.
ISee the corresponding footnotes of Table I.
°See the corresponding footnotes of Table I.
fAdopted from Refs[60,63.

molecular systems with an exact exchange functional of KSrom second-order MBPT correlatedb initio DFT [19-22.
DFT through the adiabatic TDOEP formalism. It has beenlt is also essential for locating all excited-state roots of the
shown that the rigorous exchange treatment in the TDOERDOEP with a frequency-dependent kernel as the poles of
and TDHF theory yield polarizabilities that agree closelythe frequency-dependent polarizabiliti¢g1,62. An out-
with each otheftypically within 1%). This is in contrast to standing question is whether dominant two-electron excita-
previous approximate or semiempirical exchange functionalions come into the solution manifolds of the TDOEP by
in TDDFT (such as Slater, Becke88, gtthat generally over- introducing frequency dependence in the kernel.

estimate polarizabilities and their dispersion, sometimes by

100% relative to the TDHF theory. _ ACKNOWLEDGMENTS
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