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Time-dependent density-functional theorysTDDFTd employing the exact-exchange functional has been
formulated on the basis of the optimized-effective-potentialsOEPd method of Talman and Shadwick for
second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only
approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions,
was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response
function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact
exchangesTDOEPd agree accurately with the corresponding values from time-dependent Hartree-Fock theory,
the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical
asymptotic decay of the exchange potential of most conventional density functionals or from any other mani-
festations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the
absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the
TDOEP.
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I. INTRODUCTION

In spite of their remarkable success, Hohenberg-Kohnf1g
and Kohn-ShamsKSd f2g density-functional theoriessDFT’sd
have been criticized as not being a constructive theory, of-
fering neither analytically nor numerically tractable a path to
the exact exchange-correlation functional. However, this
situation has changed dramatically in recent years when a
number of rigorous theoretical approachesf3–22g to define
converging approximations to the exact exchange-correlation
functional have been proposed and have become subject to
numerical scrutiny.

One such approach consists of the one-particle KS equa-
tion with a local, multiplicative exchange-correlation poten-
tial defined as the functional derivative of a nonlocal orbital-
dependent exchange-correlation functional with respect to
electron densityf11,16,18–21g. The functionals are those es-
tablished inab initio wave function theorysWFTd such as
many-body perturbation theorysMBPTd f11,16,18–20g and
coupled-clustersCCd f21g theory energy functionals. This ap-
proach therefore makes use of the variational theorem that is
the centerpiece of KS DFT. Others include the Görling-Levy
sGLd f8,9g and relatedf20–22g perturbation theories and the
method of the Sham-SchlütersSSd equationf5,7,10,12g. The
GL perturbation theory invokes the premise that the exact
one-electron KS orbitals must give rise to the electron den-
sity of the exact many-electron wave function. Accordingly,
the GL perturbation theory insists that the electron density
from the KS orbitals at a given order of the GL perturbation

expansion of the exact exchange-correlation functional be
correct through that order. In the SS method, a nonlocal self-
energy operator in the Dyson equation is projected onto a
local operator which is interpreted as the exchange-
correlation potential in the KS equation. Collectively, these
methods can be calledab initio DFT f20–23g in distinction to
other conventional DFT’s that embrace semiempiricism or
nonsystematic approximations.

The essential features common to allab initio DFT real-
izations are the use of systematic orbital-dependent
exchange-correlation functionals and the locality ansatz of
the corresponding exchange-correlation potentials. While
much of the simplicity afforded by the conventional, non-
orbital-dependent functionals may be lost inab initio DFT,
the latter provides a number of critical theoretical and prac-
tical advantages over the former. Principally, it gives an un-
ambiguous theoretical route to the exact exchange-
correlation functional. Second, it suggests a spectrum of new,
useful methods as approximations to the exact exchange-
correlation functional. Third, various analytical conditions
and theorems that hold generally for KS DFT can be applied
to the calculated quantities ofab initio DFT se.g., Janak’s
theoremf24,25g for the ionization potentiald. While the lo-
cality ansatz has been introduced only to relate these meth-
ods to KS DFT, the local correlation potential embeds the
correlation effects into orbitals and orbital energies and
thereby can make the convergence of approximations inab
initio DFT potentially more rapid than the corresponding se-
ries in ab initio WFT f19–23g scf. the use of naturalf26g or
Bruecknerf27g orbitals in ab initio WFTd. However, when
carried through to the exact limit,ab initio DFT will be as
expensive as the full configuration interaction method ofab
initio WFT, in spite of the opposite assertion often made in
favor of exact DFT.

While the differentab initio DFT methods may give rise
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to slightly different series of approximations to the exact
exchange-correlation functional, they invariably derive just
one exchange-only functional, which is the optimized-
effective-potentialsOEPd method introduced by Talman and
Shadwickf28g ssee also Ref.f29gd. Being the exact exchange
in ab initio DFT and the KS counterpart of the Hartree-Fock
sHFd theory f30,31g, the OEP shares many of the analytical
features of the exact exchange-correlation potentialf32g. The
OEP has the correct −1/r asymptotic behavior, cancels ex-
actly the self-interaction, exhibits an integer derivative dis-
continuity f5,33,34g, obeys the exchange virial theorem
f35,36g, satisfies the highest occupied molecular orbital
sHOMOd condition sJanak’s theoremd, etc. The linear-
combination-of-atomic-orbitalsLCAOd algorithms of the
OEP have been developed by Ivanov, Hirata, and Bartlett
f37,38g and by Görling f39g, which enabled rigorous
exchange-onlyab initio DFT calculations on an equal foot-
ing with the conventional Gaussian-basis-set DFT orab ini-
tio WFT calculations. This has been extended to excited
states via the time-dependent DFT formalismf40,41g within
the adiabatic approximationsmeaning the neglect of fre-
quency dependence in the functional, in the potential, or in
the kerneld and to electron correlation in the ground state via
the second-order MBPT correlation functionalf19–23g.

In this article, as a part of the ongoing effort to establish
the complete spectrum ofab initio DFT, we extend the
LCAO algorithms of the OEP method to second-order re-
sponses to a frequency-dependent perturbation and assess the
performance of the OEP for such properties. We derive the
time-dependent density-functional theorysTDDFTd f42–49g
employing the OEPsTDOEPd within the adiabatic approxi-
mation and apply that to static and dynamic polarizabilities,
which are important properties determining the refractive in-
dex, Rayleigh scattering cross sections, Raman intensities,
etc. In this article, the OEP and TDOEP should be under-
stood to contain only the exchange component but no corre-
lation effects. We adopt the algorithm that guarantees the
correct −1/r asymptotic decay of the OEP to ensure the qual-
ity of all orbitals which is vital to properties that probe vir-
tual orbitals.

We will demonstrate that the TDOEP yields the identical
results as a time-dependent HFsTDHFd theory for static and
dynamic polarizabilities ofsspin-unpolarizedd two-electron
systems and extremely close results for larger systems. This
is congruous to the fact that the HF theory and OEP share the
identical exchange energy functional, merely differing in the
locality of the exchange potential in the latter, and to the
expectation that the time dependence of the energies of these
two methods should be similarsif not the samed in the adia-
batic approximation. Within the limitation caused by the lack
of electron correlation, the TDOEP is therefore as well be-
haved as the TDHF theory and does not suffer from the gross
overestimationf46,50,51g of polarizabilities by conventional
TDDFT caused by the wrong asymptotic behavior of
exchange-correlation potentialsf52,53g or from any other
manifestation of the incomplete cancellation of the self-
interaction error, which includes violation of the size exten-
sivity f54g in excitation energies and the lack of charge-
transfer separabilityf55g. Previously, Mori-Sánchez, Wu, and
Yang f56g reported OEP polarizablity by the finite-

differences method applying a small electric field to the mol-
ecules under study. Unlike this finite-differences method, our
analytic approach is not limited to a static polarizability.

II. EXACT-EXCHANGE KS DFT

In the orthonormal, real, canonical KS orbital basis, the
time-dependent KS equation can be written as

o
q

all

sFpqsDqrs − DpqsFqrsd = i
]Dprs

]t
, s1d

o
q

all

DpqsDqrs = Dprs, s2d

whereD is a density matrix andF is the KS Hamiltonian
matrix, both labeled by spin indexs. The exact-exchange KS
Hamiltonian operator is defined as

Fs = −
1

2
¹1

2 + Vext.sr 1d + o
t

a,b E rtsr 2d
ur 1 − r 2u

dr 2 + Vs
OEPsr 1d,

s3d

whereVext.sr d is a spin-independent external potentialse.g.,
the nuclear potentiald, rtsr d is thet-spin electron density, and
Vs

OEPsr d is thes-spin OEP. The OEP contains only the exact
exchange part and should be distinguished from correlated
OEP considered elsewhere.

The matrix elements of the OEP are computed by the
following formula:

Vpqs
OEP= Vpqs

S

− 2o
i

occ

o
a

vir

o
k,l

aux
sKias + Vias

S dsisaskdspsqsld
«is − «as

sXs
−1dkl,

s4d

with the three-center overlap integrals involving the ortho-
normal auxiliary basis functionshxksr dj being

spsqskd =E wpssr dwqssr dxksr ddr . s5d

A set of even-tempered primitive Gaussian functions, after
canonical orthogonalization, may be used as the auxiliary
functions f38g. In Eq. s4d, we add and subtract the Slater
potentialVs

Ssr d to ensure the correct −1/r asymptotic decay.
The Slater potential is defined analytically by

Vs
Ssr 1d = − o

i,j

occ
wissr 1dw jssr 1d

rssr 1d E wissr 2dw jssr 2d
ur 1 − r 2u

dr 2, s6d

with its matrix representation being

Vpqs
S =E wpssr dVs

Ssr dwqssr ddr , s7d

wherewpssr d is the pth s-spin KS orbital. The matrixK in
Eq. s4d is the HF exchange and its elements are given by
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Kias = o
j

occ

sis jsu jsasd, s8d

where the two-electron integrals are, as usual,

spsqsurtstd =E E wpssr 1dwqssr 1dwrtsr 2dwstsr 2d
ur 1 − r 2u

dr 1dr 2.

s9d

The matrixXs is the auxiliary-basis-set representation of the
s-spin linear response function in the adiabatic
approximation—i.e.,

Xssr 1,r 2d = 2o
i

occ

o
a

vir
wissr 1dwassr 1dwissr 2dwassr 2d

«is − «as

, s10d

sXsdkl = 2o
i

occ

o
a

vir
sisaskdsisasld

«is − «as

, s11d

where«ps is the KS orbital energy ofwpssr d.
The corresponding energy functional of the OEP method

is the HF energy expression. Equations4d can indeed be
derived as the functional derivative of the energy functional
with respect to electron density, with the constraint that the
potential be local. For spin-unpolarized two-electron sys-
tems, Vs

OEP=Vs
S and the HF and OEP total energies agree

identically. For systems with more than two electrons, the
OEP total energies are slightly higher than the HF ones, re-
flecting the additional constraint in the variational method.

III. EXACT-EXCHANGE TDDFT

When we add to the KS Hamiltonians3d a time-dependent
perturbation whose matrix elements arehpqshexps−ivtd
+expsivtdj with

hpqs =E wpssr dzwqssr ddr s12d

and z being a dipole perturbation operator, the linear time-
dependent responsedpqs

f−vg exps−ivtd+dpqs
f+vg expsivtd sand also

higher-order onesd can be observed in the density matrix el-
ementsDpqs in Eqs. s1d and s2d. The amplitudesd of the
linear response can be obtained by solving the coupled-
perturbed or time-dependent OEP equations of the form

s«as − «isddais
f−vg + hais + o

b

vir

o
j

occ

o
t

a,b

hsasisuuu jtbtddbjt
f−vg

+ sasisuuubt jtddbjt
f+vgj = vdait

f−vg, s13d

s«is − «asddais
f+vg − hias − o

b

vir

o
j

occ

o
t

a,b

hsisasuuu jtbtddbjt
f−vg

+ sisasuuubt jtddbjt
f+vgj = vdait

f+vg, s14d

where we used the relationdais
f+vg=dias

f−vg. These may be trans-
lated into a compact matrix linear equation

SA − v1 B

B A + v1
DSdf−vg

df+vg D = − Sh

h
D , s15d

with

Aais,bjt = di jdabdsts«as − «itd + sasisuuu jtbtd, s16d

Bais,bjt = sasisuuubt jtd, s17d

and1 is a unit matrix. Once these equations are solved ford,
the dynamic polarizability is readily evaluated from

as− v; + vd = − 2o
a

vir

o
i

occ

o
s

a,b

(haisdais
f−vg+haisdais

f+vg). s18d

In the above, we have introduced a shorthand notation of
the sum of two-electron integrals

spsqsuuurtstd = spsqsurtstd + spsqsufst
OEPurtstd, s19d

where the second term

spsqsufst
OEPurtstd =E E wpssr 1dwqssr 1dfst

OEPsr 1,r 2d

3wrtsr 2dwstsr 2ddr 1dr 2 s20d

involves the exchange kernel or the functional derivative of
the OEP with respect to spin density,

fst
OEPsr 1,r 2d = dst

dVs
OEPsr 1d

drtsr 2d
, s21d

within the adiabatic approximation. These two-electron inte-
grals are computed, with the aid of the orthonormal auxiliary
basis set, by evaluating the formulaf41g

spsqsufst
OEPurtstd = dst o

k,l,m,n

aux

spsqskd

3sXs
−1dklsgsdlmsXs

−1dmnsrsssnd,s22d

with

sgsdlm = − 2o
i

occ

o
a,b

vir
sKbas + Vbas

OEPd
s«is − «asds«is − «bsd

sisasldsisbsmd

+ 2o
i,j

occ

o
a

vir
sKij s + Vij s

OEPd
s«is − «asds« js − «asd

sisasldsas jsmd

− 2o
i

occ

o
a,b

vir
sKias + Vias

OEPd
s«is − «asds«is − «bsd

sbsasldsisbsmd

− 2o
i

occ

o
a,b

vir
sKias + Vias

OEPd
s«is − «asds«is − «bsd

sisbsldsbsasmd

+ 2o
i,j

occ

o
a

vir
sKias + Vias

OEPd
s«is − «asds« js − «asd

sis jsldsas jsmd

+ 2o
i,j

occ

o
a

vir
sKias + Vias

OEPd
s«is − «asds« js − «asd

sas jsldsis jsmd
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− 2o
i,j

occ

o
a,b

vir sisbsu jsasd
s«is − «asds« js − «bsd

sisaslds jsbsmd

− 2o
i,j

occ

o
a,b

vir sis jsubsasd
s«is − «asds« js − «bsd

sisaslds jsbsmd.

s23d

The derivation of the exact exchange kernel in the adiabatic
approximation can be found in Ref.f41g. The fourfold sum-
mation in Eq.s22d can be carried out stepwise.

IV. RESULTS AND DISCUSSION

The Gaussian-basis-set OEP and TDOEP methods have
been implemented into thePOLYMER program, employing the
combined Colle-Nesbetf57g andSalgorithms outlined above
and the trial-vector algorithm of Popleet al. f58g to avoid the
computation and storage of two-electron integrals in the KS
orbital basis. The other algorithmic details can be found in
Refs.f38,41g.

In the first six rows of Table I, we compiled the static
polarizabilities of He, Ne, Ar, H2, FH, and N2 sas represen-
tative examples of atoms and molecules having either low-
lying Rydberg or valence excited statesd computed by
TDDFT with local fSlater-Vosko-Wilk-Nusair sSVWNdg,
gradient-correctedfBecke-Lee-Yang-ParrsBLYPdg, hybrid
fBecke3-Lee-Yang-ParrsB3LYPdg, and asymptotically cor-
rected functionals, by TDHF, and by the TDOEP in conjunc-
tion with even-tempered Gaussian functions. Generally,
TDDFT with SVWN, BLYP, and B3LYP functionals overes-
timates the polarizabilities. The cause of this is now well
known to be the wrong asymptotic decay of the exchange-
correlation potentials, which is in turn related to the spurious

self-interaction in DFT. Accordingly, the degree of overesti-
mation is greater for atomic systems and H2 than for FH and
N2, because the low-lying excited states of the former group
are invariably of the diffuse, Rydberg type, which are more
sensitive to the potentials in the asymptotic region. Also, the
overestimation is much less for B3LYP, which has 20% of
HF exchange that partially alleviates this problem. When the
−1/r tail of the Slater potential is spliced to the SVWN
exchange-correlation potential in the asymptotic regionsafter
the SVWN potential is shifted down by an adequate amount
to ensure the seamless splicingd, the resulting SVWN-AC
sAC standing for the asymptotic correctiond reproduces the
experimental data much more accurately, with the exception
of FH.

The TDHF and TDOEP methods are free from self-
interaction error. As such, they provide calculated polariz-
abilities that look more consistent than the TDDFTsexclud-
ing TDOEPd ones in comparison to the experimental data.
The OEP method, having an identical energy functional as
the HF method, exhibits essentially the same time-dependent
response as HF to the perturbation. The TDOEP polarizabil-
ities are identical to the TDHF ones for He and H2, and they
are very closeswithin 1% of each otherd for the other sys-
tems. The TDHF and TDOEP methodssbut not TDDFT with
conventional local, gradient-corrected, or hybrid functionalsd
are the most suitable bases for systematic correlation treat-
ment for properties within theab initio WFT and DFT frame-
works, respectively.

The last three rows of Table I are the anisotropy of the
average static polarizabilities. The calculated values of this
quantity do not exhibit a simple pattern, unlike the average
static polarizabilities themselves, which are uniformly over-
estimated by TDDFTsexcluding the TDOEPd. It appears that
the cancellation of errors makes the calculated TDDFT an-
isotropy better agree with the experimental data. The agree-

TABLE I. The average static polarizabilityas0d and anisotropy of the static polarizabilitygs0d=2−1/2hsaxx−ayyd2+sayy−azzd2+sazz

−axxd2j1/2 sin a.u.d.

System Quantity SVWN BLYP B3LYP SVWN/AC HF OEP Expt.g

Hea as0d 1.66 1.57 1.51 1.39 1.32 1.32 1.38

Neb as0d 3.05 3.10 2.88 2.54 2.38 2.37 2.67

Arc as0d 12.0 12.1 11.7 12.0 10.7 10.7 11.07

H2
d as0d 5.96 5.73 5.59 5.44 5.27 5.27 5.428

FHe as0d 5.80 5.88 5.52 4.96 4.72 4.70 5.601

N2
f as0d 11.7 11.8 11.5 11.1 11.0 11.0 11.74

H2
d gs0d 1.93 1.95 1.92 1.71 1.87 1.87 2.04

FHe gs0d 1.53 1.59 1.57 1.32 1.52 1.50 1.33

N2
f gs0d 5.52 5.70 5.69 5.35 6.04 6.02 4.45

aThe 12s8p5d even-tempered basis set with exponents 10n/2 sn=6, . . . ,−5 fors type; n=2, . . . ,−5 forp type; n=1, . . . ,−3 ford typed.
bThe 15s10p7d even-tempered basis set with exponents 10n/2 sn=9, . . . ,−5 fors type; n=4, . . . ,−5 forp type; n=3, . . . ,−3 ford typed.
cThe 17s12p8d even-tempered basis set with exponents 10n/2 sn=11, . . . ,−5 fors type; n=6, . . . ,−5 forp type; n=4, . . . ,−3 ford typed.
dThe 9s6p2d even-tempered basis set with exponents 10n/2 sn=4, . . . ,−4 fors type; n=1, . . . ,−4 for p type; n=0,−1 for d typed. The
H-H distance was 0.7461 Å.
eSee footnote d for the hydrogen basis set and footnote f for the fluorine basis set. The F-H distance was 0.9170 Å.
fThe 14s9p3d even-tempered basis set with exponents 10n/2 sn=8, . . . ,−5 fors type; n=3, . . . ,−5 forp type; n=1,0,−1 ford typed. The
N-N distance was 1.0976 Å.
gAdopted from Refs.f60,63g.
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ment between the TDHF and TDOEP remains very accurate.
Table II lists the average static polarizabilities and their

anisotropy within the sum-over-statessSOSd approximation,
which is also equivalent to the uncoupled DFT, HF, OEP, etc.
The approximation amounts to neglecting two-electron inte-
grals in the complete TDDFT, TDHF, or TDOEP equations,
which simplifies the polarizabilities to an analytic form of

aSOSs− v; + vd = 2o
a

vir

o
i

occ

o
s

a,b S hais
2

«as − «is − v

+
hais

2

«as − «is + v
D . s24d

Generally, this is a severe approximation, resulting in signifi-
cant errors from the corresponding complete TDDFT, TDHF,
or TDOEP solutions. The physical meaning of virtual orbit-
als is different between KS DFTsincluding the OEPd and
HF. All orbitals of KS DFT are generated by the
sN−1d-electron potential with the energy differences be-
tween virtual and occupied orbitals being better related to
excitation energiesf59g. In contrast, the HF occupied and
virtual orbitals correspond to qualitatively different poten-
tials: the occupied orbitals to thesN−1d-electron potential
and the virtual orbitals to theN-electron potential. Hence the
energy differences between HF virtual and occupied orbitals
are ionization potential minus electron affinity, a quantity
distinctly different from sgenerally greater thand excitation
energies. The diagonal elements of theA matrix in the TDHF
equation are better approximated by«as−«is−sasas u isisd
rather than by«as−«is.

Because of this difference, the TDOEPsas the exact-
exchange TDDFTd deviates significantly from the TDHF
theory, once the SOS approximation is invoked. Invariably,
the TDOEP results become much greater than the TDHF
ones and are often close to the SVWN-AC values. Owing to

the underestimation of the virtual orbital energies, the
SVWN and BLYP values are even greater than the TDOEP
or SVWN-AC ones. It may be rationalized that, because the
KS orbital energy differences«as−«is are physically inter-
preted as excitation energies, the SOS approximation is
physically sounder for TDDFTsincluding the TDOEPd. In
other words, the SOS approximation in the TDHF theory
involves an extra approximation of using«as−«is instead of
«as−«is−sasas u isisd. This argument seems to be supported
only by the results for smaller molecules, whose TDOEP
results with and without the SOS approximation agree with
each other more accurately.

For the dispersion of dynamic polarizabilities also, the
predicted values from the TDOEP accurately parallel those
from the TDHF theorysTable IIId. The two methods agree
identically, as they should, for spin-unpolarized two-electron
systems. The TDOEP and TDHF results are in more uni-
formly good agreement with the experimental data, again
with the exception of FH. The wrong asymptotic behavior in
SVWN and BLYP sand to a lesser degree in B3LYP alsod
results in the overestimation of the dispersion as well as the
absolute values of the dynamic polarizabilities. Conse-
quently, the SVWN and BLYP predictions ofSs−4d are sig-
nificantly greater than the TDHF or TDOEP values or experi-
mental data for all but FH. It is remarkable that the
asymptotic correction is equally effective for the dispersion
of dynamic polarizabilities. The anomaly for FH at the
TDHF level has been known and is not due to the insufficient
basis set sizef60g. The closer agreement between SVWN
and experimental result ofSs−4d of FH is a coincidence as
attested to by the corresponding SVWN-AC value that is
closer to the TDHF one.

V. CONCLUSIONS

We have presented analytical calculations of static and
dynamic polarizabilities applicable to general atomic and

TABLE II. The average static polarizability and anisotropy of the static polarizability in the sum-over-
statessSOSd approximationsin a.u.d.

System Quantity SVWN BLYP B3LYP SVWN/AC HF OEP Expt.g

Hea aSOSs0d 1.81 1.74 1.52 1.53 1.00 1.49 1.38

Neb aSOSs0d 3.48 3.61 3.08 2.93 1.97 2.84 2.67

Arc aSOSs0d 18.0 18.4 15.7 18.0 10.1 17.0 11.07

H2
d aSOSs0d 7.31 7.13 6.06 6.73 3.86 6.59 5.428

FHe aSOSs0d 7.36 7.58 6.36 6.34 3.96 6.16 5.601

N2
f aSOSs0d 21.1 21.3 17.8 20.5 11.1 19.9 11.74

H2
d gSOSs0d 3.94 3.99 3.15 3.56 1.60 3.35 2.04

FHe gSOSs0d 3.28 3.45 2.79 2.79 1.49 2.83 1.33

N2
e gSOSs0d 19.2 19.8 15.3 19.1 7.49 17.1 4.45

aSee the corresponding footnotes of Table I.
bSee the corresponding footnotes of Table I.
cSee the corresponding footnotes of Table I.
dSee the corresponding footnotes of Table I.
eSee the corresponding footnotes of Table I.
fSee the corresponding footnotes of Table I.
gAdopted from Refs.f60,63g.
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molecular systems with an exact exchange functional of KS
DFT through the adiabatic TDOEP formalism. It has been
shown that the rigorous exchange treatment in the TDOEP
and TDHF theory yield polarizabilities that agree closely
with each otherstypically within 1%d. This is in contrast to
previous approximate or semiempirical exchange functionals
in TDDFT ssuch as Slater, Becke88, etc.d that generally over-
estimate polarizabilities and their dispersion, sometimes by
100% relative to the TDHF theory.

Apart from offering a stable method for computing polar-
izabilities at the exact exchangeab initio DFT, this LCAO
Gaussian-basis-set algorithm of the TDOEP will serve as the
key methodological development for the future extension to
the inexpensive inclusion of electron correlation to properties
through correlated orbitals and orbital energies obtained

from second-order MBPT correlatedab initio DFT f19–22g.
It is also essential for locating all excited-state roots of the
TDOEP with a frequency-dependent kernel as the poles of
the frequency-dependent polarizabilitiesf61,62g. An out-
standing question is whether dominant two-electron excita-
tions come into the solution manifolds of the TDOEP by
introducing frequency dependence in the kernel.
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