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The se−,e+d-pair annihilation is considered in the positron-heliume+fHes2 3Sdg four-body ion, in which the
positron forms a bound state with the helium atom in its lowest triplet statefi.e., in the 23S sL=0d stateg. A
number of bound-state properties of this system have been determined for thee+fHes2 3Sdg ions, where the
`He, 4He, and3He helium nuclei are considered. Some applications related to the positron annihilation in the
e+fHes2 3Sdg ion are also discussed.
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I. INTRODUCTION

As is well known the positrone+ does not form any bound
state with the He atom, if this atom is in its ground singlet
1 1S sL=0d statef1,2g. This follows from the very small di-
pole and quadrupole polarizabilities of the He atom in the
ground 11S sL=0d state. In general, the effective potential
Vsrd of an atom in a nondegenerateS sL=0d state has the
following asymptotic formsat largerd f3g:

Vsrd , −
a1

2r4 − Sa2

2
+ 3b1D 1

r6 + OS 1

r7D , s1d

wherea1, a2, and b1 sb1,0d are the dipole polarizability,
quadrupole polarizability, and nonadiabatic termsor distor-
tion termd, respectively. For the ground 11S sL=0d state of
the helium the atom thea1, a2, andb1 values are small and
the positron cannot form any bound state with such an atom.
The situation, however, changes drastically for the excited
states of the helium atom. In particular, the positron can form
a bound state with the helium atom in its lowest triplet state
for 2 3S sL=0d stateg f4,5g. The arising positron-helium
e+fHes2 3Sdg four-body ion is of considerable interest in nu-
merous applications.

First, note that thee+fHes2 3Sdg ion is an extremely
weakly bound Coulomb four-body system, i.e., the analysis
of its geometry is very interesting. Second, the two-photon
se−,e+d-pair annihilation in some spin states of this positron-
helium ion is strictly prohibited, and therefore only the three-
photon annihilation is possible. In other words, a significant
difference can be found in the lifetimes of different spin
states in thee+fHes2 3Sdg ion. Furthermore, a relatively large
lifetime of the quartet-spin state allows one to discuss a sig-
nificant number of applications, including the positron con-
servation and annihilation from the acceleratedsrelativisticd
positron-helium ions. In addition to this the hyperfine struc-
ture of the considered positron-helium ionse+fHes2 3Sdg is
very interesting. To solve these and other similar problems
one needs to know various bound-state properties of the
positron-helium ions. The main goal of this study is to deter-
mine a large number of bound-state properties of the
positron-heliume+fHes2 3Sdg ion and discuss some applica-
tions of this system related to these−,e+d-pair annihilation.

II. METHOD

The Hamiltonian of the considered positron-helium ion is
written in the formsin atomic units"=1, me=1, ande=1d
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where the notation 1 designates the corresponding helium
nucleussbelow, the`He,3He,4He nuclei are consideredd, the
notation 2 means the positron, while 3 and 4 stand for elec-
trons. The massM means the nuclear mass of the considered
helium isotope. In fact, all our present calculations have been
performed in atomic unitss"=1, me=1, ande=1d. In these
units the following values for the nuclear massesf6,7g were
used in our present calculations:

M3He2+= 5495.8852, M4He2+= 7294.2996 s3d

The numerical values of other physical constants used in this
study have been chosen from Refs.f6,7g.

In this study the wave function of thee+fHes2 3Sdg ion is
approximated by the variational expansion written in the ba-
sis of the six-dimensionalsor four-bodyd Gaussian distribu-
tion originally proposed in Ref.f8g. The variational anzatz of
fully correlated six-dimensionalsor four-bodyd Gaussian dis-
tribution is written in the formf8g

CL=0 = A34o
k=1

N

Ckexps− a12
skdr12

2 − a13
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2

− a24
skdr24

2 − a34
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2 d, s4d

whereCk are the linear variational parameters,ai j
skd are the

nonlinear parameters. The operatorA34 designates the appro-
priate symmetrizersor antisymmetrizerd, i.e., a projection op-
erator which produces the final wave function with the cor-
rect permutation symmetry. In fact, there is only one pair of
identical particlesselectronsd in all systems considered in
this study. Therefore the operatorA34 can be easily con-
structed in each of these cases.
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The appropriate energies and a number of other bound-
state properties determined for thee+f`Hes2 3Sdg,
e+f4Hes2 3Sdg, ande+f3Hes2 3Sdg ions can be found in Table
I. To recalculate the obtained energies from a.u. to MHz and
cm−1 the conversion factors 6.579 683 920 613109 and
2.194 746 306 83107 f6g must be used. As follows from
Table I thee+fHes2 3Sdg ion is a very weakly bound four-
body system. The total energy of this system almost coin-
cides with the corresponding threshold energyEtr
=−2.25 a.u. which corresponds to the dissociation
e+fHes2 3Sdg=Ps+He+ in the case of the helium ion with
infinitely heavy nucleus. Here and below, the notation Ps

designates the neutral two-body systeme+e− sor positronium,
for shortd.

The bound-state properties shown in Table I include the
total E energysin a.u.d, the expectation values of the kinetic
kTl and potentialkVl energies for each of the considered
e+f3Hes2 3Sdg, e+f4Hes2 3Sdg, and e+f`Hes2 3Sdg ions. Note
that our variational energy for thee+f`Hes2 3Sdg ion from
Table I sE=−2.250 593 715 a.u.d is slightly lower than
the corresponding energy determined in Ref.f5g
sE=−2.250 592 4 a.u.d. Thee+f3Hes2 3Sdg ande+f4Hes2 3Sdg
ions were not considered in Ref.f5g. Also, a number of in-
terparticle distanceskr ijl and their powerskr ij

nl swhere n

TABLE I. The expectation values in atomic unitssme=1,"=1,e=1d of some properties for the ground
statessL=0d of the positron-helium ionse+f3Hes2 3Sdg, e+f4Hes2 3Sdg, ande+f`Hes2 3Sdg.

ion e+f3Hes2 3Sdg e+f4Hes2 3Sdg e+f`Hes2 3Sdg

E -2.250227359 -2.250317665 -2.250593715

kTl 2.250241630 2.250331901 2.250607820

kVl -4.500468604 -4.500649181 -4.501201112

xa 0.32566310−5 0.32487310−5 0.32255310−5

kr12l 15.7719062 15.7664035 15.7495907

kr13l 8.04128962 8.03842264 8.02966246

kr23l 9.47212379 9.46941807 9.46115130

kr34l 15.3607970 15.3551045 15.3377112

kr12
2 l 354.93970 354.67545 353.86846

kr13
2 l 174.07621 173.94282 173.53542

kr23
2 l 184.61159 184.47989 184.07772

kr34
2 l 348.16400 347.89724 347.08256

kr12
3 l 10860.14 10848.05 10811.14

kr13
3 l 5366.951 5360.901 5342.417

kr23
3 l 5479.220 5473.173 5454.716

kr34
3 l 10755.99 10743.88 10706.88

kr12
4 l 422650.1 422053.8 420233.9

kr13
4 l 210012.8 209714.9 208805.5

kr23
4 l 212021.6 211723.2 210812.3

kr34
4 l 420889.4 420292.8 418471.9

kr12
−1l 0.09109743 0.09112044 0.09119079

kr13
−1l 1.05231354 1.05237398 1.05255887

kr23
−1l 0.28812206 0.28812935 0.28815161

kr34
−1l 0.10283353 0.10286343 0.10295488

kr12
−2l 0.01170523 0.01171006 0.01172662

kr13
−2l 4.01287782 4.01324438 4.01437300

kr23
−2l 0.24461941 0.24461551 0.24460184

kr34
−2l 0.01747345 0.01748194 0.01751216

k−1/2¹1
2l 2.01290539 2.01309380 2.01367511

k−1/2¹2
2l 0.12021867 0.12021590 0.12020425

k−1/2¹3
2l 1.06482930 1.06492088 1.06520187

kd12l 0.95927310−6 0.95980310−6 0.97023310−6

kd13l 1.272320 1.272491 1.273174

kd23l 0.0187995 0.0187989 0.0188440

kd123l 0.25073310−5 0.25091310−5 0.22981310−5

ax= u1+kVl /2kTlu is the virial parameter which indicates the overall quality of the wave function usedf19g.
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=−2, 21, 1, 2, 3, 4d are presented in Table I. These values
can be used to understand the nontrivial geometry of the
considered weakly bounde+fHes2 3Sdg ions. The expectation
value of interparticle delta functions are also presented in
Table I. Note that all expectation valueskd3,4,. . .l which con-
tain coordinates of both electrons simultaneously equal zero
exactly, since these electrons form the triplet state. This
means that we always havesin our notations the subscripts 3
and 4 designate the electronsd

kd34l = 0, kd134l = 0, kd234l = 0, kd1234l = 0. s5d

These delta functions are not shown in Table I.
Table I also includes the single-particle kinetic energies

Ti = 1/2kpi
2l= 1/2k−¹i

2l expectation values, wherei
=1,2,3s=4d. It follows from Table I that the positron kinetic
energy 1/2kp2

2l is a really small value in comparison with
the single-electron kinetic energy 1/2kp3

2l; 1/2kp4
2l. This

is another indication that thee+f`Hes2 3Sdg, e+f4Hes2 3Sdg,
ande+f3Hes2 3Sdg ions are extremely weakly bound systems
in which the positrone+ moves as an almost free particle.
Note also that some of the properties presented in Table I can
be used to determine a number of other bound-state proper-
ties, e.g., for thekr ik ·r jkl expectation value one finds

kr ik · r jkl =
1

2
skr ik

2 l + kr jk
2 l − kr i j

2ld, s6d

where i Þ j Þk=s1,2,3,4d. Analogous expressions for the
kpi ·p jl expectation values are significantly more complicated
than in the three-body case. The most interesting value, how-
ever, is thekp2·p3l=kp+·p−l expectation value. This value
determines the electron-positron momentum correlation in
the e+fHes2 3Sdg ions. Furthermore, if the expectation value
kp2·p3l is known, then all other interparticle momentum cor-
relations are uniformly determined from the following rela-
tions:

kp1 ·p3l =
1

2
SK−

1

2
¹2

2L −K−
1

2
¹1

2LD + kp2 ·p3l, s7d

kp3 ·p4l =
1

2
SK−

1

2
¹1

2L −K−
1

2
¹2

2LD −K−
1

2
¹3

2L
− 2kp2 ·p3l, s8d

kp1 ·p2l =K−
1

2
¹1

2L +
1

2
K−

1

2
¹3

2L − 2kp2 ·p3l, s9d

where p2, p3, p4, and p1 are the positron, electronssd, and
nuclear momenta, respectively.

Note that thekpi ·p jl expectation values are of interest in a
number of applications. In particular, these values can be
used to evaluate the isotopic shifts in thee+fMHes2 3Sdg ions.
In general, the isotopic shift between the ground-state ener-
gies of the e+f3Hes2 3Sdg and e+f4Hes2 3Sdg ions can be
evaluated as the following expectation valuesin atomic
unitsd:

DE =
1

2S 1

M3He

−
1

M4He
DkCusp2 + p3 + p4d2uCl

= S 1

M3He

−
1

M4He
DS1

2
K−

1

2
¹2

2L +K−
1

2
¹3

2L
+ 2kp2 ·p3l + kp3 ·p4lD , s10d

where the subscripts 3, 4, and 2 are used to designate the
electrons and positron, respectively. This formula exactly co-
incides with the expression for the three-electron atom/ion.
In other words, from this formula one cannot see the explicit
difference between the positron and electron. By generaliz-
ing the Vinti hypervirial theoremf9g to the one-center, three-
electron systems one can reduce this formula to a number of
different forms. Some of these forms show explicitly the
difference between the positron and electrons.

In our present calculations we have used the wave func-
tion, Eq. s4d, with 600 basis functions. To optimize the 6
3600 nonlinear parameters the conjugate direction method
sor Powell’s methodd has been applied. It is also interesting
to note that by using the classical James and Coolidgef10g
variational expansion it is hard to show the boundness of the
e+fHes2 3Sdg ion in those cases when only one exponential
function is used in all basis functionsssee, e.g., Refs.
f11,12gd. The total number of nonlinear parameters in such
cases equals 3. However, with the use of two different expo-
nential functionsssix nonlinear parametersd in two different
families of basis functions this state is certainly bound. These
results will be published elsewhere.

III. HYPERFINE STRUCTURE OF THE POSITRON-
HELIUM IONS

By using our results from Table I one can determine the
hyperfine structure of the considerede+f3Hes2 3Sdg and
e+f4Hes2 3Sdg ions. The hyperfine splitting of the ground
state in thee+fHes2 3Sdg ion is given by the expectation value
of the following operator:

HHF =
8p

3
sm+ ·mNddsr N+d +

8p

3
sm+ ·m−ddsr +−d

+
8p

3
sm− ·mNddsr N−d, s11d

where m+, m−, and mN are the magnetic moments of the
positron, electron, and nucleus, respectively. The Dirac delta
function dsr i jd is determined traditionally, i.e.,dsr i jd=dsr i

−r jd, wherei Þ j =s+,−,Nd. In our present notations the sub-
scriptss1,2, Nd correspond to the indexes 2, 3s;4d, and 1,
respectively. Following Ref.f13g it can be shown that the
spin-space expectation valuekHHFl si.e., spin operatord for
the e+fHes2 3Sdg ion can be represented in the form

dHs = kHHFl = ass+ · I Nd − bsS− ·s+d − csS− · I Nd, s12d

wheres+, S−, andI N are the spin vectors of the positron, two
electronsswhich are already in the triplet stated, and nucleus

POSITRON ANNIHILATION IN THE POSITRON-… PHYSICAL REVIEW A 71, 032506s2005d

032506-3



f13g, respectively. The sum of the first and thirdsi.e., lastd
term in Eq.s12d can be considered as the Fermi-Serge term
in the Hamiltonian of thee+f3Hes2 3Sdg ion. In Eq. s12d the
constantsa, b, and c have the following valuessin atomic
unitsd:

a = Akdsr N+dl =
2p

3
a2gegN

mp
kdsr N+dl, s13d

b = Bkdsr +−dl =
2p

3
a2ge

2kdsr +−dl, s14d

c = Akdsr N−dl =
2p

3
a2gegN

mp
kdsr N−dl, s15d

where a is the fine-structure constant,me and mp are the
electron and proton masses, respectively. Here, we used the
fact that in atomic unitsme=1 and the Bohr magneton equals
1/2 exactly. The fine-structure constanta, proton massmp,
and g factors used in calculations were chosen from Refs.
f6,7g,

a = 7.297 353 083 10−3,

mp = 1836.152 701,

ge = 2.002 319 304 386,

gNs3Hed = 4.255 249 6,

gNs4Hed = 0.

In fact, the hyperfine splitting is traditionally expressed in
MHz. To recalculate the energies from a.u. to MHz
the following conversion factor 6.579 683 920 61
3109sMHz/ a.u.d f6g has been used. Now, one can easily
calculate theA and B constants for thee+f3Hes2 3Sdg and
e+f3Hes2 3Sdg ions,

As3Hed = 3405.210 335 3 MHz,

As4Hed = 0,

Bs3Hed = Bs4Hed = 733 828.145 34 MHz.

By using theA andB coefficients andd-function expectation
values from Table I one easily finds thea, b, andc coeffi-
cients in Eq.s12d

as3Hed = 3.2665 kHz,

as4Hed = 0,

bs3Hed = 13 795.60 MHz,

bs4Hed = 13 795.16 MHz,

cs3Hed = 4332.52 MHz,

cs4Hed = 0.

In turn, these coefficients allow one to determine the actual
hyperfine splitting for different spin states in the
e+f4Hes2 3Sdg ande+f3Hes2 3Sdg ions. It is interesting to note
that the electron-nuclear and electron-positron hyperfine
splittings in thee+f3Hes2 3Sdg ion have the same order of
magnitude, while analogous positron-nuclear splitting is a
very small value which can be always considered as a per-
turbation.

IV. POSITRON ANNIHILATION

Note that the helium atom in the lowest triplet statefor
2 3S sL=0d stateg is a remarkably stable atomic system. At
relatively low densities of upper solar atmosphere the life-
time of the helium atom in its 23S sL=0d state can be in-
credibly largesfrom a few weeks up to four–six monthsd.
This follows from the fact that optical transition from this
state to the ground 11S sL=0d state is strictly forbidden. In
fact, the presence of two groups of series in the optical spec-
trum of helium was the source of long-time confusion, since
spectroscopists believed that they were dealing with the two
different elements, which were named orthohelium and para-
helium, respectively. The parahelium was also often called
asteriumsor nebuliumd. Later, it was shown that helium is
definitely a simple chemical element. The double-helium
mystery was finally solved only around the middle of 1920’s
by Pauli. For our present purposes it is important to note that
the extremely long lifetime of the helium atom in its lowest
2 3S sL=0d state is sufficient to create and observe the
e+fHes2 3Sdg four-body ion. In general, the stability of this
e+fHes2 3Sdg ion sharply depends upon its total spin multi-
plicity.

The total multiplicity of the bounde+fHes2 3Sdg ion can
be determined by using the fact that the two electrons are
already in the triplet state. This means that only doublet and
quartet spin configurations are possible for this ion. The cor-
responding terms occur in the ratio 1:1. The doublet state of
the e+fHes2 3Sdg ion is unstable and rapidly decays by the
Auger transition to the ground 11S sL=0d state of the helium
atom. The kinetic energy of the emitted positron is
<0.7285 eV. The preliminary evaluations indicate that the
Auger transition rate in this case is quite comparable and
even larger than the two-photon annihilation rate. The spin-
averaged two-photon annihilation rateG2g in the
e+fHes2 3Sdg ion which also includes the first-order radiative
correctionf14g can be evaluated as followssfor more details,
see the Appendixd:

G2g = F1 −
a

p
S5 −

p2

4
DGn

2

6
s4pa4ca0

−1dkdsr +−dl < 1.333 674

3 1012kdsr +−dl sec−1, s16d

where a is the fine-structure constantsa<7.297 353 08
310−3d, c is the speed of light sc<2.997 924 58
3108 m sec−1d, and a0 is the Bohr radius sa0

<0.529 177 249310−10 md f6g. Also, in this equationn is
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the total number ofse−,e+d pairs andkdsr +−dl is the expec-
tation value of the electron-positron Dirac delta function.

Note that theG2g rate in Eq.s16d is the value which is
averaged over the initial spin statessi.e., over all multiplici-
ties of the doublet and quartet states in thee+fHes2 3Sdg iond.
In particular, by using the expectation value of thedsr +−d
function from Table Ifkdsr +−dl<1.879 72310−2g it is easy
to obtain thatG2g<2.50693109sec−1, while the lifetime
1/G2g<3.9890310−10sec. In the case of a pure doublet state
one findsG2g=3G2g<7.52073109sec−1. As expected this
G2g value is very close to the annihilation rate of the para-
positronium G2gse+e−d=7.98523109 sec−1. Such a coinci-
dence follows from the fact that the 1s electron of the helium
atom does not contribute significantly to these−,e+d-pair an-
nihilation in thee+fHes2 3Sdg ions. In other words, the anni-
hilation of these−,e+d pair in thee+fHes2 3Sdg ions proceeds
without any substantial contribution from the internal atomic
1s electron. However, as is mentioned above, the two-photon
annihilation in the doublet2SJ=1/2 state of thefe+Hes2 3Sdg
ion always proceeds in competition with the helium-positron
Auger transition.

For the quartet spin state of thee+fHes2 3Sdg ion the situ-
ation differs from the doublet state considered above. In this
case the Auger transition is forbiddenswe assume that there
are no collisions, i.e., the overall atomic density is relatively
lowd. In other words, the decay of the quartet4SJ=3/2 state of
the e+fHes2 3Sdg ion is possible only due to these−,e+d-pair
annihilation. However, it is easy to understand that only the
three-photon annihilation of these−,e+d pair can proceed in
this state. The two-photon annihilation for the tripletse−,e+d
pair is strictly prohibited. For the quartet4SJ=3/2 state the
formula for the three-photon annihilation rate takes the form

G3g =
16sp2 − 9d

9
na5ca0

−1kdsr +−dl

< 1.812 3653 108nkdsr +−dl

< 6.813 483 106 sec−1, s17d

where the total number of the tripletse−,e+d pairs in the
considered casesi.e., n=2d. Also, in this formulaa is the
fine-structure constant andc is the speed of light anda0 is
the Bohr radius. In Eq.s17d the expectation valuekdsr +−dl
<1.879 72310−2 has been used. Again the computedG3g

value is very close to the orthopositronium annihilation rate
G3gse+e−d=7.21123106 sec−1. The spin-averaged three-
photon annihilation rate is G3g= 2/3G3g<4.542 32
3106 sec−1. The lifetime of the quartet4SJ=3/2 state in the
e+fHes2 3Sdg ion is <1/G3g<1.4677310−7 sec, i.e., a rela-
tively large value in comparison to the lifetime of any other
positron containing a few-body system. This allows one to
consider the4SJ=3/2 state of thee+fHes2 3Sdg ion as an ideal
atomic system to keep positrons before these−,e+d-pair an-
nihilation. A few related applications are considered below.

V. APPLICATIONS. DISCUSSION AND CONCLUSION

In general, the4SJ=3/2 state of thee+fHes2 3Sdg ion can be
stabilized only in some combinations of the strong electro-

magnetic fieldssbelow, EM fields, for shortd. If such a stabi-
lizing EM field is rapidly transformed to some destabilizing
field combination, then the annihilation rate in the
e+fHes2 3Sdg ion suddenly increases 300–1000 times. This
means that, in principle, we can observe and controlsat least
partiallyd the g flash at the laboratory conditions. Another
interesting application is related with a possibility to accel-
erate thee+fHes2 3Sdg ions to very largesi.e., relativisticd
energies. In this case, due to the Doppler effect the emitted
annihilationg quanta can be observed as much harderg rays.
Indeed, the observed frequencysv8d of the emittedg quan-
tum is related to the incident frequencysvd of the sameg
quantum by the relation

v8 = gLvs1 − b cosud, s18d

wheregL is the corresponding Lorentzg factor,b=v /c andu
is the angle relative between the emittedg quantum and
direction of v (v is the velocity of the accelerated
e+fHes2 3Sdg ion). By using modern accelerators one can
reachgL=100–1000, i.e., the observed frequencyv8 can be
significantly larger than the incident annihilation frequency
va sva<1.235 589 7231014 MHzd.

Note also that the classicalf15,16g one-photon annihila-
tion of the se−,e+d pair cannot proceed in thee+fHes2 3Sdg
ion. This follows from the fact that the expectation value of
the triple delta functiondsr +−−d;dsr 234d equals zero exactly
in the considerede+fHes2 3Sdg ion f17g. However, the one-
photon annihilation can proceed “at the nuclear surface,”
since the expectation value of the corresponding delta func-
tion dsr 123d is not zerossee Table Id. In general, for the one-
photon annihilation rate in thee+fHes2 3Sdg ion one can write

Gg = Gg
sed + Gg

snd = y
32p2

27
a8ca0

−1kdsr +−−dl + Gg
snd = Gg

snd,

s19d

where Gg
snd,kdsr 123dl is the one-photon annihilation at the

nuclear surface and factory<1 f12g. In contrast with this in
the positronium hydride PsH both channels of one-photon
annihilation are open. In other words, by studying the one-
photon annihilation in thee+fHes2 3Sdg ion one can deter-
mine the internalsnucleard conversion rate for annihilationg
quanta. In the analogous five-bodye+fsLi3+m−de2

−s2 3Sdg sys-
tem such an internal conversion of the annihilationg quanta
can produce the photodetachment of the complex two-body
nucleus Li3+m−. In this case, the annihilation of these−,e+d
pair is followed by the emission of negatively charged muon
m−. The five-body ione+fsLi3+m−de2

−s2 3Sdg with two elec-
trons in the triplet states has the same electronic structure as
thee+fHes2 3Sdg ion considered above. In particular, the pos-
itron can form the bound state with the four-bodysLi3+m−de2

−

quasiatom, if this quasiatom is in its 23S sL=0d stateselec-
tron stated. Note that this five-body ione+fsLi3+m−de2

−s2 3Sdg
has a very complicated hyperfine structure andse−,e+d-pair
annihilation in this ion can be affected by the presence of
negatively charged muonm−. The analysis of the five-body
e+fs6Li3+m−de2

−s2 3Sdg and e+fs7Li3+m−de2
−s2 3Sdg ions is the

goal of our future studies.
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In conclusion, it is important to note that currently the
e+fHes2 3Sdg ion is of significant experimental and theoreti-
cal interest. In particular, the study of these−,e+d-pair anni-
hilation in this system can improve our understanding of
many atomic and QED processes. Furthermore, the analysis
of bound-state properties of this weakly bound four-body
system is a quite complex problem which requires an exten-
sive development of new numerical methods and algorithms.
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APPENDIX

Let us present the formulas which describe the two- and
three-photon annihilation rates of the nonrelativisticse−,e+d

pairs. In general, the two-sG2gd and three-photonsG3gd an-
nihilation rates for the singlet and tripletse−,e+d pairs are
written in the formsf18g

G2g = 4pa4ca0
−1kdsr +−dl < 2.012 3503 1011kdsr +−dl sec−1

sA1d

and

G3g =
16sp2 − 9d

9
a5ca0

−1kdsr +−dl < 5.675 550

3 108kdsr +−dl sec−1, sA2d

respectively. Note that these formulas explicitly contain the
expectation value of the electron-positron delta function
dsr +−d. For the considered positron-containing, many-
electron compounds these expressions must be multiplied by
the total number of the singlet/triplet electron-positron pairs
snd, corresponding statistical weights of the considered
singlet/triplet spin states, and by the factor which includes
the lowest-order radiative correction to the two-photon anni-
hilation ratef14g.
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