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We investigate entanglement properties of multipartite states under the influence of decoherence. We show
that the lifetime ofsdistillabled entanglement for Greenberger-Horne-ZeilingersGHZd -type superposition
states decreases with the size of the system, while for a class of other states—namely, all graph states with
constant degree—the lifetime is independent of the system size. We show that these results are largely inde-
pendent of the specific decoherence model and are in particular valid for all models which deal with individual
couplings of particles to independent environments, described by some quantum optical master equation of
Lindblad form. For GHZ states, we derive analytic expressions for the lifetime of distillable entanglement and
determine when the state becomes fully separable. For all graph states, we derive lower and upper bounds on
the lifetime of entanglement. The lower bound is based on a specific distillation protocol, while upper bounds
are obtained by showing that states resulting from decoherence in general become nondistillable or even
separable after a finite time. This is done using different methods, namely,sid the map describing the decoher-
ence processse.g., the action of a thermal bath on the systemd becomes entanglement breaking,sii d the
resulting state becomes separable, andsiii d the partial transposition with respect to certain partitions becomes
positive. To this aim, we establish a method to calculate the spectrum of the partial transposition for all mixed
states which are diagonal in a graph-state basis. We also consider entanglement between different groups of
particles and determine the corresponding lifetimes as well as the change of the kind of entanglement with
time. This enables us to investigate the behavior of entanglement under rescaling and in the limit of large
number of particlesN→`. Finally we investigate the lifetime of encoded quantum superposition states and
show that one can define an effective time in the encoded system which can be orders of magnitude smaller
than the physical time. This provides an alternative view on quantum error correction and examples of states
whose lifetime of entanglementsbetween groups of particlesd in fact increases with the size of the system.
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I. INTRODUCTION

Since the early days of quantum mechanics, entanglement
has remained at the focus of interest. While entangled states
of microscopic samples of matter—such as a few atoms or
ions in a trap—can nowadays be prepared and studied in the
laboratoryf1g, the question whether entanglement can persist
on a macroscopicsi.e., classicald scale is still the subject of
an ongoing debate. The puzzling consequences of such mac-
roscopic entanglement—highlighted in the notorious gedan-
ken experiment known as “Schrödinger’s cat”f2g by
Schrödinger in 1935—and thesas it seemsd absence of en-
tanglement in macroscopic objects and hence in our “classi-
cal world” suggests a mechanism which prevents the persis-
tence of entanglement on a macroscopic scale. It is often
argued that decoherence, i.e., interaction of a system with
uncontrollable degrees of freedom of some environmentf3g,
provides a way to understand the absence of entanglement on
a macroscopic scale. In particular, the decoherence rate is
believed to grow linearly with the size of the system which
would predict a rapid decay of entanglement for systems
consisting of many particles.

Such an argument can easily seen to be valid for certain
entangled states, e.g., superposition states of the form

uGHZl ; 1/Î2su0l^N + u1l^Nd, s1d

also called Greenberger-Horne-ZeilingersGHZd states which
are states ofN spins or qubits, that interact with uncontrol-

lable degrees of freedom of the environment, e.g., described
by a heat bath. GHZ states can be viewed as simple models
of Schrödinger cat states and are in fact sometimes called cat
states. For GHZ states, one can indeed show that ifk is the
decoherence rate of a single qubit, then the rate at which the
N-qubit state decoheres is given bykN. However, the obser-
vation that multipartite entanglement becomes more fragile
with the size of the system is valid for this specific state only,
anda priori it is not clear whether a similar conclusion can
be drawn for other multipartite entangled states.

Moreover, the decoherence rate does not provide com-
plete information about entanglement properties of a system.
In the last few years a theory of entanglement has emerged,
which allows for a more sophisticated and detailed investi-
gation of the effect of decoherence on the entanglement
properties of a multiparticle entangled state. Quite recently,
we have shown in Ref.f4g that for GHZ states not only does
the decoherence rate show a scaling behavior with the sys-
tem size, but also the lifetime of distillable entanglement
fthat is, the time after whichsdistillabled entanglement dis-
appears from a system subjected to decoherenceg in fact de-
creases with increasing number of particlesN, confirming the
previous reasoning. On the other hand, we have also shown
in Ref. f4g that for a class of other genuine multiparticle
entangled states, most notably cluster statesf5g, the lifetime
of distillable entanglement does not depend on the number of
particlesN and thus the size of the system. This is in sharp
contrast to the behavior of GHZ states and shows that genu-
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ine macroscopic entanglement can indeed persist on time
scales which are independent of the size of the system.

While the investigation in Ref.f4g was limited to a spe-
cific decoherence model corresponding in physical terms to
individual coupling of particles to a thermal reservoir in the
infinite-temperature limit, we will show in this article that
these observations are largely independent of the specific
model of decoherence. In particular, a similar scaling behav-
ior of the lifetime of N-party distillable entanglement with
the size of the system is obtained for all decoherence models
dealing with a coupling of each particle to its own environ-
ment sor heat bathd, e.g., described by a quantum optical
master equation of Lindblad form. The results can even be
extended to collectivesfinite-ranged couplings of particles to
the environment. While for GHZ states we provide analytic
results for the lifetime ofsdistillabled entanglement, we cal-
culate upper and lower bounds on the lifetime for all states
which belong to the family of graph statesf5,6g. The lower
bound is based on an explicit entanglement distillation pro-
tocol, while upper bounds are obtained by three different
methods. Using the first method we show that the completely
positive map describing the decoherence process becomes
entanglement breakingf7g after a finite time. This implies
that all initially entangled states become separable and thus
the lifetime of all kinds of entanglement is finite. The second
method is more specific to graph states and shows that graph
states suffering from decoherence become separable after a
finite time. This is done by using a dynamical description of
graph states and by showing that the generating operations
become separable. The third method is based on the partial
transposition criterion and evaluates when the partial trans-
position with respect to a certain partition becomes positive.
To this aim, we develop a method to calculate the spectrum
of the partial transposed operatorrTS for any subsetS of
parties and all density operatorsr which are diagonal in a
basis constituted by orthogonal graph states.

We also consider entanglement betweenM groups of par-
ticles, i.e., partitions of the system intoM parts. Each of the
groups may consist of several particles, which are then con-
sidered as a single subsystem with a higher-dimensional state
space. We analytically determine the lifetime of distillable
entanglement betweenM groups of particles for arbitrary
partitionings for GHZ states and again derive lower and up-
per bounds for all graph states. In this way we study the
change of the kind of entanglement with time and, e.g., show
for GHZ states that the effective size of entanglement, i.e.,
the maximum number of entangled subsystems, decreases
with time and entanglement eventually becomes bipartite be-
fore it vanishes completely. If we associate a specific spatial
distribution with the particles, e.g., spins distributed on a
lattice, one can choose certain partitionings that correspond
to a rescaling of the size of the subsystem, as it is used in
statical physics. We study in particular the behavior of dis-
tillable entanglement under coarsening of the partitions, that
is, under rescaling of the size of the subsystem in the
asymptotic limit N→`. For cluster statessand all other
graph states with constant degreed we show that the lifetime
of distillable entanglement is largely independent ofN and
thus the same on all scales. For GHZ states, however, we
find that whenever the size of the subsystems is finite, dis-

tillable entanglement vanishes after an arbitrary short time
on all scales. Only if the size of the subgroups become mac-
roscopic themselvessin the sense thatN systems are divided
into a fixed numberM of cells whose sizeN/M grows to
infinity as N→`d the lifetime of distillable entanglement
sbetween theM cells of macroscopic sized becomes finite
and scales to leading order as 1/skMd. We also consider the
lifetime of encoded entangled states. When considering en-
tanglement properties between groups of particles where
each group constitutes a logical qubit of asconcatenatedd
quantum error correction code, one can define an effective
time for the encoded system that incorporates the error cor-
rection procedure. The effective time can be orders of mag-
nitude smaller than the physical time. In this way one can
show that the lifetime of entanglement between groups of
particles can even increase with the size of the system.

The paper is organized as follows. In Sec. II we introduce
decoherence models—most notably individual coupling of a
single particle to a reservoir described by a quantum optical
master equation of Lindblad form as well as Pauli
channels—which we deal with throughout the paper. In Sec.
III we introduce basic concepts of entanglement theory. In
particular, we review the concepts of separability and distill-
ability in multiparticle systems as well as the partial transpo-
sition criterion. We also define the lifetime of entanglement
with respect to certain partitionings of the system. In Sec. IV
we determine the lifetime ofN-party distillable entanglement
of GHZ states for decoherence described by depolarizing
channelsf4g as well as general quantum optical channels. In
Sec. V we first review the concept of graph statesf6g in Sec.
V A, and then derive lower and upper bounds on the lifetime
of N-party distillable entanglement for graph states subjected
to decoherence. We generalize our results to weighted graph
states in Sec. VI. In Sec. VII we consider entanglement be-
tween groups of particles for GHZ states and determine the
lifetime of encoded entangled states in Sec. VII C. We sum-
marize and conclude in Sec. VIII, while some technical de-
tails, e.g., regarding the partial transposition criterion and the
corresponding upper bound on the lifetime for mixed states
which are diagonal in a graph-state basis, can be found in the
Appendixes.

II. DECOHERENCE MODELS

We consider a single two-level systemsqubitd coupled to
an environment which is described by a thermal reservoir.
The evolution of this qubit is governed by a general quantum
optical master equation of Lindblad form

]

]t
r = − ifH,rg + Lr, s2d

whereH describes the coherent evolution while incoherent
processes are described by the superoperatorL. We have

Lr = −
B

2
s1 − sdfs+s−r + rs+s− − 2s−rs+g −

B

2
sfs−s+r

+ rs−s+ − 2s+rs−g −
2C − B

8
f2r − 2szrszg, s3d

with s± ;s1/2d ssx± isyd and 2CùB. While the parameters
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B,C give the decay rate of inversion and polarization,
s[ f0,1g depends on the temperatureT of the bath. More
preciselys=limt→`ks1+szd /2lt, wheres=1/2 corresponds to
T=`. It is straightforward to solve this master equationf8g.
We consider the caseH=0, i.e., solely decoherence. The
eigenoperators and corresponding eigenvalues ofL can
readily be determined and one finds

Lsx = − Csx, s4d

Lsy = − Csy, s5d

Lsz = − Bsz, s6d

Ls̃0 ; L1

2
f1 + s2s− 1dszg = 0. s7d

For r;rs0d= 1
21+aW ·sW =s̃0+axsx+aysy+faz−s2s−1d /2gsz,

we have that

rstd ; eLtrs0d = s̃0 + e−Ctsaxsx + aysyd

+ e−Btfaz − s2s− 1d/2gsz. s8d

Equivalently, one can describe the resulting completely
positive mapsCPMd Et with rstd;Etr as follows:

Etr = o
j=0

3

l jstds jrs j + mstdfszr1 + 1rsz − isxrsy + isyrsxg,

s9d

with

l0std =
1

4
s1 + 2e−Ct + e−Btd, s10d

l1std = l2std =
1

4
s1 − e−Btd, s11d

l3std =
1

4
s1 − 2e−Ct + e−Btd, s12d

mstd =
2s− 1

4
s1 − e−Btd. s13d

In Sec. V C we will discuss the entanglement properties of
this map and show thatsexcept for some singular casesd it
becomes entanglement breaking after some finite time. For
s=1/2 andB=C;k, Eq. s9d describes the coupling of the
particle to a thermal bath in the large-T limit equivalent to a
so-called depolarizing channelswhite noised:

Dr = pstdr +
1 − pstd

4 o
j=0

3

s jrs j with pstd = e−kt. s14d

For B=0, C;k, and arbitrarys, Eq.s9d describes instead the
coupling of the particle to a reservoir, which is equivalent to
a dephasing or phase flip channel:

Dr = pstdr +
1 − pstd

2
sr + s3rs3d with pstd = e−kt.

s15d

Finally, choosings=1 andB=2C;k, one obtains the decay
channelspure dampingd

Dr = E1rE1
† + E2rE2

†, s16d

with the Kraus operatorsE1= s 1
0

0
Î1−g

d and E2= s 0
0

Îg
0

d. Here
gstd=1−e−kt denotes the decay rate for the decay from level
u1l into level u0l.

For a system consisting of several particles, we shall be
interested in the effect of decoherence on the entanglement
properties of this system. We consider as a decoherence
model individual coupling of each of the qubits to a thermal
bath, where the evolution of thekth qubit is described by the
map Ek given by Eq.s9d with Pauli operatorss j acting on
qubit k. We will be interested in the evolution of a given pure
stateuCl of N qubits under this decoherence model. That is,
the initial stateuCl suffers from decoherence and evolves in
time to a mixed staterstd given by

rstd ; E1E2¯ENuClkCu. s17d

In the following we will also consider decoherence due to
individual noise processes of the particles described by some
Pauli channel:

Dr = o
i=0

3

pistdsirsi with So
i=0

3

pistd = 1D , s18d

which are of particular interest in quantum information
theory, especially in the study of fault-tolerance of quantum
computation. This class contains, for example,s1d for p0
=s1+3pd /4 andp1=p2=p3=s1−pd /4 the above depolarizing
channel;s2d for pi =li the quantum optical channel according
to Eq. s9d with m=0 ss= 1

2
d; s3d for p0=s1+pd /2, p1=p2=0,

and p3=s1−pd /2 the above dephasing channel;s4d for p0

=s1+pd /2, p2=p3=0, andp1=s1−pd /2 the bit-flip channel.
In the remainder of the paper, we will analyze the time

dependence of the entanglement properties of the decohered
state rstd for different initial statesuCl. The depolarizing
channel is of particular interest, since the decohered state due
to an arbitrary noise channel can be further depolarized to
some state, which might also be obtained by some depolar-
izing channel. Moreover, among the stated noise models the
depolarizing channel is the only channel, that is basis inde-
pendent, i.e., invariant under unitary transformations. We
will frequently use the Pauli channel and will describe the
entanglement properties ofrstd in terms of the parameterspi.
Nevertheless one has to keep in mind that the time depen-
dence itself is already included in the parameterspi =pistd.

III. SEPARABILITY, DISTILLABILITY, AND LIFETIME
OF N-PARTY ENTANGLEMENT

For the lifetime of entanglement it is not only necessary to
specify the underlying decoherence model, but also the very
notion of multiparticle entanglement itself. This is mainly
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due to the fact that multiparty entanglement is a subtle issue
in quantum information theoryssee, e.g.,f9,11gd. Apart from
some special cases, the existence of an entanglement mea-
sure that is satisfying for information theoretic purposes as
well as applicable and calculable for mixed states is still an
open problem. In the following we will therefore concentrate
on the discussion of two qualitative entanglement criteria.
Throughout the paper we will considerN two-level systems
squbitsd with corresponding Hilbert spaceH=sC2d^N. TheN
particles are distributed amongN parties 1,… ,N. Starting
with a pure GHZ or graph state we will consider in Secs. IV
and V theN-party separability and distillability properties of
the decohered staterstd fsee Eq.s17dg.

On the one side of the scale the staterstd can still be
N-party distillable entangled, as is the case for the corre-
sponding pure states in question. Hereby we callrstd N-party
distillable if any other trueN-party entangled stateuFl can
be obtainedsdistilledd asymptotically from multiple copies of
r under local operations and classical communication
sLOCCd f10,11g:

r^k ——→
LOCC

uFlkFu. s19d

We remark that in the multicopy case all trueN-party en-
tangled states are equivalent since they can be transformed
into each other by LOCC. That is, the condition that any true
N-party entangled state can be created can be replaced by the
condition that someN-party entangled state, e.g., the initial
pure state, can be created. Disregarding the practicability of
the underlying distillation protocol, the staterstd is then as
useful as any other entangled state and therefore can in prin-
ciple be regarded as a universal resource for quantum infor-
mation processing such as quantum communication.

On the other end of the scale,rstd might have also be-
come completely separable or classical in the sense that it
can be described by a classical mixture of product states, i.e.,
r is N-party separable, if

rstd = o
k

pkrk
s1d

^ rk
s2d

^ ¯ ^ rk
sNd. s20d

If a state is completely separable, it is no longer entangled
whatsoever. In between these two extremal cases,rstd can
contain different types ofblockwise entanglement, which we
will discuss in more detail in Sec. VII. There we will con-
sider different partitionings of particles intoM groups sM
øNd, where each group forms a subsystem with a higher-
dimensional state space and consists of several particles.
M-party distillability (separability)can then be definedwith
respect to a given partitioningin a similar way, where the
notion of local operation has to be adapted accordingly.
Moreover we will callrstd M-party distillable, if there exists
at least one partitioning with respect to whichrstd is M-party
distillable.

Based on the notion ofM-party separability and distill-
ability, one can define the lifetime of entanglement. An
N-party stateuClkCu which is subjected to decoherence for
time t evolves into a mixed staterstd. The lifetime ofN-party
distillable entanglement is given by the time after which the

staterstd becomes non-N-party distillable. This implies that
lower bounds on the lifetime of distillable entanglement can
be obtained by showing that the staterstd is distillable, while
an upper bound can be obtained by proving nondistillability
of rstd. When considering partitions of the system intoM
groups, the lifetime ofM-party entanglement with respect to
a given partition is defined accordingly. We refer to the life-
time of M-party entanglement as the time after whichrstd is
nondistillable with respect toall M -party partitions. In a
similar way, one can define a lifetime with respect to the
separability properties ofrstd.

In order to determine entanglement properties of the
mixed states in question, we will continuously make use of
the partial transposition criterionf12,13g, an entanglement
criterion which provides necessary conditions for distillabil-
ity and separability. The partial transposition is defined for
bipartite systems only, while a system can in general consist
of several parties. Making use of the concept of partitionings
of the system, in particular considering all bipartitionings,
one can use the partial transposition criteria also for multi-
partite states. LetA denote a subset ofm partiesk1,… ,km. In
general, given an operatorX acting onCdA ^ CdB, we define
the partial transpose ofX with respect to the first subsystem
in the basishu1l , u2l ,… , udAlj, XTA, as follows:

XTA ; o
i,j=1

dA

o
k,l=1

dB

ki,kuXu j ,llu j ,klki,l u. s21d

A Hermitian operatorX has a nonpositivespositived partial
transposesNPTd fsPPTdg if XTA is not positivespositived, re-
spectively. That is,XTA is NPT if there exist someuCl such
that kCuXTAuCl,0.

The positivity of the operatorrTA gives a necessary crite-
rion for separability, whereas the nonpositivity ofrTA is nec-
essary for the distillability of the density operatorr. In par-
ticular, if a bipartite density operator is PPT, then it is
certainly not distillablef12g. This impliesf11g that if a mul-
tiparticle density operatorr is PPT with respect to at least
one bipartite partition, thenr is certainly notN-party distill-
able. On the other hand, positivity of all bipartite partitions is
a necessary condition forN-party separability. In the case of
two-dimensional systemsC2 ^ C2 the PPTsNPTd criterion is
necessary and sufficient for separability sdistillabilityd
f13,14g. A detailed discussion of the application of the partial
transposition criteria to multipartite systems can be found in
Ref. f11g.

IV. LIFETIME OF N-PARTY ENTANGLEMENT
IN GHZ STATES

We start by considering the lifetime ofN-qubit GHZ
states

uGHZl = s1/Î2dsu0l^N + u1l^Nd. s22d

These states are special examples of states that maximally
violate multipartite Bell inequalitiesf15g. GHZ states have
also become an interesting resource for multiparty quantum
communication, e.g., in the context of secret sharing and
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secure function evaluationf16g. Moreover they can be used
to improve frequency standardsf17g. For the class ofN-party
GHZ states the lifetime of most of the above entanglement
properties can be determined analytically.

A. Large-T limit of reservoir

We start by reviewing the results off4g and consider a
model of decoherence with individual coupling of each of
the particles to a thermal reservoir in the large-T limit. The
process for a single qubit is described by Eq.s14d and cor-
responds to white noise with time-dependent parameterp
;pstd=e−kt wherek is a coupling constant. That is, we con-
sider the staterstd given by Eq.s17d where the CPMEk is
given by the depolarizing channelDk fEq. s14dg. It is
straightforward to evaluate the effect of decoherence on this
kind of statesf11,18g. One finds thatuGHZl evolves to a state
rstd,

rstd = o
ki=0

1

lk1¯kN
Pk1¯kN

+ mss+
^N + s−

^Nd, s23d

with

Pk1k2¯kN
= uk1k2¯kNlkk1k2¯kNu, s24d

ands±=ssx± isyd /2, i.e.,s+
^N= u00̄ 0lk11̄ 1u. It turns out

that the coefficientslk1k2¯kN
satisfy lk1k2¯kN

=lk1k2¯kN
,

where kj =1−kj. In addition, lk1k2¯kN
depend only onk

;o j=1
N kj, that is, lk1k2¯kN

=ll1l2¯lN
;lk if o j1

Nkj =o j1
Nl j =k.

This implies thatlk=lN−k and one finds

lk =
1

2N+1fs1 + pdks1 − pdN−k + s1 + pdN−ks1 − pdkg,

m =
pN

2
. s25d

States of the form Eq.s23d with lk1¯kN
=lk1¯kN

can equiva-
lently be written as density operators which are diagonal in a
basis consisting of orthogonal GHZ states. Such density op-
erators have been completely characterized with respect to
their entanglement properties in Ref.f11g. In particular, it
was shown that these states areN-party distillable ssepa-
rabled if and only if the partial transpose with respect to all
possible partitions is nonpositivespositived, respectively.
One readily finds that the partial transposition with respect to
a group Bk which contains exactlyk parties is positive,
rstdTBkù0, if and only if f11g m2ølklN−k, i.e.,

pN ø 2lk. s26d

Making use of the fact that

l1 ù l2 ù ¯ ù lfN/2g, s27d

it is now straightforward to determine the lifetime of distill-
ableN-party entanglement as well as the time when the state
becomes fully separable. From Eqs.s26d and s27d follows
that the lifetime of distillableN-party entanglement is deter-
mined by Eq.s26d with k=1, as the partial transpose with

respect to the partition one-party–sN−1d-parties is the first
one to become positive. Similarly, Eq.s26d with k=fN/2g
determines the time after which the staterstd becomes fully
separable, as the partial transposition with respect to the par-
tition N/2−N/2 parties is the last one to become positive.

One observes that the critical valuepcrit;e−ktcrit, at which
the partial transposition with respect to one party becomes
positive increases withN. This implies that fortù tcrit;t the
state is no longerN-party distillable entangled and thus the
lifetime t of true N-party entanglement decreases with the
size of the system as expectedssee Figs. 1 and 2d. Note that
finding the threshold valuepcrit for a given N exactly is
equivalent to finding the roots of a polynomial of degreeN
swhich can be done efficiently numericallyd. One can obtain
analytic upper and lower bounds onpcrit by approximatinglk
by s1+pdN−ks1−pdk/2N+1 or 2s1+pdN−ks1−pdk/2N+1, respec-
tively, which is done explicitly in Sec. VII B.

B. Arbitrary individual coupling to the environment

We will now investigate the lifetime of distillable en-
tanglement for more general decoherence models. While we
continue to assume an individual coupling of particles to
independent environments—an assumption which is particu-

FIG. 1. Upper bound on lifetimekt of N-party entanglement.

FIG. 2. Same as Fig. 1 but with double-logarithmic axis. Note
that the same figures also display an upper bound on the lifetimekt
of M-party entanglement in systems withN→` particles for dif-
ferentM, as discussed in Sec. VII. In this case the numbers on the
x axis have to be considered as the numberM of M-party entangle-
ment in question.
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larly well satisfied if the entangled states in question are
distributed among several parties—we consider now cou-
plings that are described by arbitrary quantum optical master
equations of Lindblad formssee Sec. IId. These models in-
clude as particular instances decay channels, phase flip chan-
nels, and depolarizing channels. We consider the influence of
decoherence—described by the CPM Eq.s9d—on the GHZ
state ofN particles, i.e., the entanglement properties of the
density operatorrstd which is given by Eq.s17d. We use the
fact that one can writers0d;uGHZlkGHZu as

rs0d =
1

2
sP0

^N + P1
^N + s+

^N + s−
^Nd, s28d

where P0= u0lk0u=s1+szd /2 ,P1= u1lk1u=s1−szd /2, and s±

=ssx± isyd /2. It is not difficult to see that the action of the
mapE fEq. s9dg is given by

EP0 = aP0 + s1 − adP1,

EP1 = s1 − cdP0 + cP1,

Es± = bs±, s29d

where we introduced the new variablesa,b,c, which are
given by

a = s+ s1 − sde−Bt,

b = e−Ct,

c = s1 − sd + se−Bt. s30d

It is now straightforward to determine the action of the map
E1E2¯EN on the staters0d. One finds that the resulting den-
sity operator is of the form Eq.s23d. The coefficients
lk1k2¯kN

only depend ono j=1
N kj, where

lk =
1

2
fcks1 − cdN−k + s1 − adkaN−kg,

m =
bN

2
. s31d

The condition that the partial transposition with respect tok
parties is positive,rTAkù0 reads

fbN/2g2 ø lklN−k. s32d

We remark that in contrast to the discussion in Sec. IV A,
here we havelkÞlN−k. This means that nonpositivesposi-
tived partial transposition with respect to all partitions is no
longer a sufficient condition forN-party distillability ssepa-
rabilityd respectively. However, one can still use the partial
transposition criterion to obtain lower and upper bounds on
the lifetime of distillable entanglement. In particular, if the
partial transposition with respect to at least one partition is
positive, then the staterstd is certainly no longerN-party
distillable.

To obtain an upper bound on the lifetime of GHZ states,
we make use of the following facts:sid lklN−kù sacdN−kfs1

−ads1−cdgk/4 andsii d exps−NBtd /4ù fbN/2g2. While sid can
be checked by direct computation,sii d follows from 2C−B
ù0 ssee Sec. IId. Using sid and sii d together with Eq.s32d,
one obtains thatrstd certainly has positive partial transposi-
tion with respect to any group ofk parties if

N ù k
lnsacd − lnfs1 − ads1 − cdg

lnsacd + Bt
, s33d

provided thatsÞ0,1 andB.0. We remark that thessingu-
lard cases=0 corresponds to a decay channel, and for such a
channel we have that the staterstd has nonpositive partial
transposition for all timest. Whenever the temperature of the
bath is however not zerosi.e., sÞ0, 1d we have that for any
time t there exists a finite numberN0 fgiven by the right-
hand side of Eq.s33d with k=1g such that forNùN0 par-
ticles the staterstd is certainly no longer distillable. Thus we
have, as in the case of depolarizing channels, a scaling of the
supper bound on thed lifetime of distillable entanglement
with the number of particlesN. If N is sufficiently large, the
supper boundd on the lifetime goes to zero.

A lower bound on the lifetime ofrstd can be obtained as
follows. We have that a state of the form Eq.s23d can be
depolarized by means of asstochasticd sequence of local op-
erations and classical communicationssee Ref.f11gd such

that the resulting state has new coefficientsl̃k1k2¯kN
which

satisfy

l̃k1k2¯kN
=

lk1k2¯kN
+ lk1k2¯kN

2
, s34d

and hencel̃k= l̃N−k. It follows that the depolarized stater̃std
is distillable if

fbN/2g . l̃k, s35d

for all k. One can upper boundl̃k by l̃kølk8;max(aks1
−adN−k,aN−ks1−adk,cks1−cdN−k,cN−ks1−cdk) and obtains that
rstd is distillable if bN.2lk8. By taking the logarithm of this
equation, one obtains a bound on the number of particlesN
such that the state remains distillable for a timet.

V. LIFETIME OF N-PARTY ENTANGLEMENT
IN GRAPH STATES

In the previous section the class of generalized GHZ
states was shown to have a lifetime of entanglement that
decreasessexcept in some singular casesd with increasing
number of particlesN in the system. We will now discuss the
lifetime of N-party entanglement in graph states and show
that for a significant subclass such as cluster states the life-
time of distillable entanglement is essentially independent of
N. After recalling some basic definitions and notations, we
will first derive a lower bound toN-party distillable entangle-
ment by providing an explicit distillation protocol. We will
then use three different techniques to establish upper bounds
to the lifetime ofN-party entanglement. These methods ap-
ply to different decoherence processes and are interesting on
their own, since they might find applications also in other
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problems not directly related to lifetime of states under de-
coherence. Finally we will extend our results to a more gen-
eral class of so-called weighted graph states.

A. Basic definitions and examples

Graph states are multiparticle spin states of distributed
quantum systems with interesting applications in quantum
information theory: Special instances of graph states are
codewords of quantum error correcting codes, which protect
quantum states against decoherence in quantum computation.
Up to local unitaries all stabilizer states can be represented as
graph statesf19g. For example, the Calderblank-Shor-Steane
sCSSd codes correspond to the class of so-called two-
colorable graphsf20g. For this class of graph states entangle-
ment purification procedures are knownf4g. These protocols
even work in the case of noisy local control operations. Fi-
nally the class of cluster states are known to be a universal
resource for quantum computation in the one-way quantum
computer f21g. For the study of genuine multipartite en-
tanglement graph states are particularly useful, since they
allow for an efficient description even in the regime of many
parties: Thereby the graph essentially encodes an interaction
pattern between the particles. LetG=sV,Ed be a graph,
which is a set ofN vertices k[V connected by edges
hk, lj[E that specify the neighborhood relation between the
vertices. Starting from the state
u+lV

ª^k[Vu+lskd, where u+l=s1/Î2dsu0l+ u1ld denotes the
eigenstate ofsx with eigenvalue11, the graph stateuGl is
obtained by applying a sequence of Ising-type interactions

Ukl ; e−isp/4ds1skd−sz
skdd^s1sld−sz

sldd s36d

according to the interaction pattern specified by the graph,
i.e.,

uGl = p
hk,lj[E

Uklu + lV. s37d

Graph states occur, e.g., as a result of the Ising interaction
between neighboring spins on a lattice after a specific inter-
action timef5g. An example for a realization of such a sys-
tem is based on neutral atoms in optical latticesf22g. Alter-
natively, graph states can be specified in terms of their
stabilizer. For this letNk=hl [Vuhk, lj[Ej denote the set of
neighbors ofk. Then the graph stateuGl is the unique state in
sC2d^V, that is, the common eigenstate for the set of indepen-
dent commuting observables

Kk
G ; sx

skd p
l[Nk

sz
sld, s38d

where the eigenvalues of allk[V are 1. The stabilizerSG of
the state is thus generated by the sethKk

Guk[Vj, which im-
plies

uGlkGu = o
s[SG

s. s39d

In order to obtain a complete basis forsC2d^V we will also
consider the eigenstatesuUlG=sz

UuGl of Kk
G according to dif-

ferent eigenvaluesUk, i.e.,

Kk
GuUlG = s− 1dUkuUlG. s40d

Here and in the following, setsU#V as an upper index
for operators will label those vertices where the operator acts
nontrivially, e.g.,

sz
U = ^

k[U
sz

skd. s41d

Moreover we will denote setsU and their corresponding bi-
nary vectorsU=sUkdk[V.sU1,… ,UNd over F2

V sthe integer
field modulo 2d with the same symbol. Finallyk will also
denote both the vertex and the corresponding one-element
sethkj. In this notation the stabilizer generators can be writ-
ten asKk

G=sx
ksz

Nk and the original graph state is just that with
an error syndrome corresponding to the empty set 0, i.e.,
uGl= u0lG. This is also notationally advantageous, since we
will use both set and binary operations: e.g., for
A,B[PsVd>F2

V we will write AøB, AùB, and A\B
sA;V\Ad for the union, intersection, and difference
scomplementd as well asA+B andkA,Bl for the addition and
the scalar product modulo 2. The neighborhood relation in a
graph is also often represented in terms of its adjacency ma-
trix G:

Gkl = H1 if hk,lj [ E,

0 otherwise.
s42d

In the spirit of the above notation we can therefore also write
Kk

G=sx
skdpl[Vssz

slddGkl=sx
ksz

Nk=sx
ksz

Gk.
Coming to some examples, we first note that the class of

multiparty GHZ states in Sec. IV is contained in the class of
graph states, since the GHZ state in Eq.s22d can be trans-
formed by local unitaries into graph states corresponding to
the graphs depicted in Fig. 3. When considering decoherence
of a locally equivalent state, we remark that the underlying
noise process has to be adapted according to the local unitary
transformation. From this point of view the depolarizing
channel in Eq.s14d has the advantage that it is invariant
under local unitary transformation and hence is basis inde-
pendent. In the following we will also consider the class of
cluster states in one, two, or three dimensionsssee Fig. 4d,
which are of particular interest in the context of “one-way”
quantum computationf21g. For more examples and a discus-
sion of equivalence classes of graph states under local uni-
taries and/or graph isomorphies we refer tof6,23g. We will
now discuss the entanglement properties from Sec. III for the

FIG. 3. sColor onlined The graph states corresponding to the
complete graph and the star graph are equivalent to the GHZ state
in Eq. s22d up to some local unitariesf6g.
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staterstd fsee Eq.s17dg that is produced by different deco-
herence processes described in Sec. II acting on different
types of graph states.

B. Lower bound: An explicit distillation protocol

We establish a lower bound on the lifetime of graph states
by considering an explicit distillation protocol. In order to
show that a mixed staterstd is N-party distillable, it is suffi-
cient to show that maximally entangled pairs shared between
any pair of neighboring parties can be distilled. This is due to
the fact that these pairs can be combined by means of local
operations se.g., by teleportationd to create an arbitrary
N-party entangled pure state. We emphasize that we use the
distillation of neighboring pairs only as a tool to show
N-party distillability. This, however, does not imply that the
entanglement contained in the cluster state was in some
sense only “bipartite.” One could in principle also use direct
multiparty entanglement purification protocols, e.g., the one
introduced in Ref.f24g; however, the conditions under which
these protocols are applicable are in general more compli-
cated to determine.

First we will consider the case of decoherence of the par-
ticles due to the same individual Pauli channelDr
=oi=0

3 pistdsirsi and we will show then how to extend these
results to more general decoherence models. We will essen-
tially follow the ideas used inf4g, in which the correspond-
ing result was shown for the case of a depolarizing channel,
and make use of the following facts.

sid Measuring all but two neighboring particles, sayk, l, of
a graph stateuGl in the eigenbasis ofsz results in the cre-
ation of another graph state with only a single edgehk, lj f6g.
That is, the resulting state of particlesk, l is up to localsz
operations equivalent to a maximally entangled state of the
form

uFl ;
1
Î2

su0lxu0lz + u1lxu1lzd, s43d

whereuilx suilzd denote eigenstates ofsx sszd, respectively.
sii d The action of a Pauli channelDk acting on particlek

of a graph state can equivalently be described by a mapMk
whose Kraus operators only contain products of Pauli matri-
cessz and the identity, where heresz may act on particlek
and its neighbors, i.e., particles which aresin the correspond-
ing graphd connected by edges to particlek.

Observation sii d follows from the fact that sx
j uUlG

=s−1dUjsx
j Kj

GuUlG, wheresx
j Kj

G is an operator that contains
only products ofsz operators at neighboring particles of par-
ticle j , and the identity otherwise. Similarly, the action ofsy

j

on graph states is up to a phase factor equivalent to the
action of an operator which contains only products ofsz
operators acting on particlej and all its neighbors. That is,

DkuUlGkUu = o
j=0

3

pjstds j
kuUlGkUus j

k = MkuUlGkUu

= o
j=0

3

pjstdSj
kuUlGkUuSj

k, s44d

with S0
k=s0

k, S1
k=s3

Nk, S2
k=s3

Nkøk, andS3
k=s3

k. In the case of a
ring sFig. 5d, for example, we haveS0

k=1, S1
k=s3

sk−1ds3
sk+1d,

S2
k=s3

sk−1ds3
skds3

sk+1d, andS3
k=s3

skd.
We now applysid and sii d to establish a sufficient condi-

tion when bipartite entanglement between neighboring par-
ticles can be distilled from the state

rstd = M1M2¯MNuGlkGu. s45d

This allows us to obtain a lower bound on the lifetime of
graph states. We concentrate on two specific neighboring
particles, sayk and l. One performs measurements in the
eigenbasis ofsz on all but particlesk and l swe remark that
measurements on all neighboring particles of particlesk, l
would also be sufficientd. It follows from sid and sii d that
these measurements commute with the action of the CPM
M1M2¯MN on the graph stateswhich equivalently de-
scribes the action of Pauli channels on these statesd. That is,
the resulting state after the measurements is given by

M1M2¯MNuF̃lk,lkF̃u ^ uxlkxu, where uxl is a state of the

remainingsN−2d particles, anduF̃l is a maximally entangled
state equivalent up tosz operationsswhich can be deter-
mined from the specific measurement outcomesd to uFl fsee
Eq. s43dg. We emphasize that the operatorM j only acts non-
trivially on particle j and its neighbors. This is due to the fact
fseesii dg that the operatorsSl

j, l =0,1,2,3, and thus the map
M j, only affect particlej and/or its neighbors. It follows that
in order to determine the reduced density operator of two
neighboring particleshk, lj, rklstd, one has to consider only
the action of mapsM j which act on particlesk, l or neigh-
bors ofk or l on the maximally entangled stateuFl, i.e.,

FIG. 4. sColor onlined Cluster states in two and three dimen-
sions form a universal resource for quantum computation in the
framework of the one-way quantum computerf21g.

FIG. 5. sColor onlined Ring with seven qubits.
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rklstd = Sp
j[I

M jDuFlkFu, s46d

where I =NkøNl økø l. We have that the reduced density
operatorrklstd is distillable if and only if its partial transpo-
sition is nonpositivef12g, i.e., rklstdTkà0. To obtain a lower
bound on the time until which theN-particle staterstd re-
mains distillable one has to consider all neighboring pairs
hk, lj, determine the corresponding threshold value on the
lifetime of distillable entanglementkt,

kl, and take the mini-
mum over all neighboring pairshk, lj[E f25g. For graphs
corresponding to periodic structuresse.g., some lattice geom-
etryd, such a minimization is, however, not required.

Thus we have that the threshold value is a function of the
local degreesi.e., the number of neighborsd of the graph, but
is independent of the number of particlesN. Note, however,
that the degree of the graph may itself depend onN, as is,
e.g., the case for GHZ states, which then implies that the
threshold value will indeed depend onN. In all cases where
the degree of the graph is independent ofN which is, e.g., the
case for all graphs corresponding to some lattice geometry,
such as two- or three-dimensional cluster states, hexagonal
lattices, lattices with finite-range interactions, etc., we have
no scaling withN, i.e., the lower bound on the lifetime of
entanglement is independent of the number of particlesN.
These results can also be understood in the following way.
The measurement in the neighborhood of particlesk and l
disconnects these two particles from the remaining system,
which implies that errors occurring in some outside area do
not influence the two particles in question. This insight is
also used in the following sections and allows one to show
that the behavior of cluster states is not a consequence of the
specific decoherence model but rather a general feature of
such states.

The exact dependence of the distillability properties of
rklstd sand thus the threshold valuep,

kld on the graphG can
be determined as follows. Forj [Nk\Nl the action ofM j can
be described by a phase-flip channel acting solely on particle
k, where a phase-flip channel acting on particlek is defined
by

M j
szdr = pzr +

1 − pz

2
sr + sz

skdrsz
skdd, s47d

and we findpz=1−2sp1+p2d=2sp0+p3d−1. The action of
M j for j [Nl \Nk can similarly be replaced by a phase-flip
channel acting only onl. Moreover, the action ofM j when
particle j [NkùNl is a common neighbor of particlesk, l is
given by a correlated phase-flip channel,

M j
szzdr = pzzr +

1 − pzz

2
sr + sz

skdsz
sldrsz

skdsz
sldd, s48d

wherepzz=1−2sp1+p2d. Note that the sequential application
of each of these channels, say the correlated phase-flip chan-
nel with parameterpz for uNkùNlu times, is equivalent to a
single application of the same channel with new parameter
p̃=puNkùNlu. Finally the Pauli channelsMk andMl have also
to be taken into account. In any case the resulting staterkl is
diagonal in the “Bell basis”huFl ,1szuFl ,sz1uFl ,szszuFlj,

where uFl is given by Eq.s43d. One can now easily deter-
mine rklstd for any graphG and thus the condition when
rklstd fEq. s46dg has nonpositive partial transposition and is
thus distillable. After some algebra, one obtains that the
stated protocol yields distillable entanglement betweenk and
l if for the depolarizing channelDr=pr+s1−pd 1

21,

puNku+1 + puNk+Nlu + puNlu+1 . 1 s49d

holds; for the bit-flip channel Dr=pr+fs1−pd /2gsr
+sxrsxd,

puNku + puNk+Nlu + puNlu . 1 s50d

holds; for the phase-flip channelDr=pr+s1−pd /2sr
+szrszd,

Î2 − 1, p ø 1 s51d

holds; and for the quantum optical channel withm=0, i.e.,
p1=p2=p andp3=q for 0øp, q,

1
4,

f1 − 2sp + qdghs1 − 4pduNku + s1 − 4pduNlu

+ s1 − 4pduNk+Nlu−2f1 − 2sp + qdgj . 1 s52d

holds.
A lower bound on the lifetimeof distillable entanglement

under decoherence due to one of the above Pauli channels
can then be derived by solving the corresponding polynomial
inequalities. From Eq.s51d it follows for example that in the
case of the phase-flip channel the lower bound obtained by
this distillation protocol is the same for all graph states. This
can be understood by the fact that here only the two indi-
vidual dephasing channels acting onk andl sand not those of
their neighborsd are relevant for the decoherence of the bell
stateuFl betweenk and l. For the bit flip and the depolariz-
ing channel the critical valuep, for p, which is proportional
to the fidelity with the original pure graph state, increases
with uNku, uNlu, or uNk+Nlu. Similarly, the critical values for
sp,qd decrease with increaringuNku, uNlu, or uNk+Nlu, sincep
and q now represent the error probabilities instead of the
fidelity with original pure graph state. In the following we
will consider the conditions49d for the depolarizing channel
with p=e−kt in more detail: In the case of theN-party GHZ
state both representations of Fig. 3 yield the same polyno-
mial inequality 2pN+p2.1, since the depolarizing channel is
invariant under local unitaries. This polynomial inequality
can be further estimated from above givingkt. lns2d /N
=0.6931/N. As depicted in Fig. 6 the corresponding critical
value forkt is indeed always below the exact value given in
Eq. s26d and decreases with the number of particlesN. For
linear chains or ringssuNku= uNk+1u=2,uNk+Nk+1u=4d one
finds a threshold valuep,=0.7167, which gives a lower
bound on the lifetimekt,=0.3331. That is, forpùp, skt
økt,d the staterstd is certainlyN-party distillable using this
specific protocol. For cluster states corresponding to a regu-
lar 2D s3Dd lattice we have that neighboring particlesk, l
corresponding to inner vertices, i.e., withuNku= uNlu=4, uNk
+Nlu=8 suNku= uNlu=6,uNk+Nlu=12d, will give the most sen-
sitive polynomial inequalityp5sp3+2d.1 fp7sp5+2d.1g.
One hence finds p,=0.8281 skt,=0.1886d
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fp,=0.8765skt,=0.1318dg, respectively. As can be seen in
Fig. 6, whereas the lifetime ofN-party GHZ states decreases
with increasing size of the system, cluster states do not show
such a scaling behavior, since the derived lower bounds for
cluster states remain constant.

In the following we derive a more handy expression for
the critical values forp and kt. For fixed degreesuNku and
uNlu, one finds that the strongest lower bound on the lifetime
swhich is thus also valid for all other configurations of this
kindd is obtained foruNkùNlu=0. This can be understood as
follows. Assume that for some given graph one changes the
graph such that the degree of two neighboring verticesk, i
increases by 1, i.e.,uÑku= uNku+1 and uÑlu= uNlu+1. The first
possibility is that this increase is due to the addition of a
single common neighbor ofk and l, i.e., uÑkù Ñlu= uNkùNlu
+1, which leads to the condition for distillabilitypuNk+Nlu

+puNku+2+puNlu+2.1. In the second possibility the neighbor-
hood of both particlesk and l is increased by two different

particles, i.e.,uÑk+Ñlu= uNk+Nlu+2. In this case one obtains
the condition puNk+Nlu+2+puNku+2+puNlu+2.1 for distillability.
Clearly, the second condition will give a larger value onp
and thus provides a stronger bound on the lifetime of distill-
able entanglement. Intuitively, this can be understood from
the fact that adding a single joint neighbor corresponds to a
single additional noise channel with correlated phase noise,
while adding two independent neighbors corresponds to two
independent noise channels acting on particlesk and l. The
influence of two independent noise channels is larger than of
a singlescorrelatedd noise channel. In order to derive a lower
bound we may therefore evaluate the polynomial inequalities
of the different neighboring particlesk, l as if the valueuNk
+Nlu was maximalsi.e., uNkùNlu=0d, since this will give a
stronger or larger critical value than the critical value that
would be the solution to the exact polynomial inequality.
Under this simplification and by using thatpuNku+1+puNlu+1

ù2psuNku+uNlu+2d/2=2psuNk+Nlu+2d/2, one finds that for

p . 2−„2/suNku+uNlu+2d…, s53d

the reduced density operatorrkl is certainly distillable. This
leads to the lower bound on the lifetime

kt, =
2 lns 1

2d
uNku + uNlu + 2

. s54d

Taking uNku anduNlu to be the maximal degrees of two neigh-
boring vertices in the graph, this leads to a universal lower
bound for all graph states under depolarizing noise.

We remark that the observed behavior, i.e., that the life-
time of multiparticle entanglement for clustersand similard
states is essentially independent of the size of the system,
also holds for more general decoherence models. This fol-
lows from the fact that—similar to factsii d—the action of
any CPM acting on graph states describing an arbitrary de-
coherence process can be estimated by a CPM whose Kraus
operators contain only products ofsz operators and the iden-
tity and thus the measurementsid still commutes with the
CPM. To this end, we apply after the application of the CPM
a local depolarization procedure which maps arbitrary den-
sity operators to operators diagonal in the graph-state basis
without changing the diagonal elementsf24g. When re-
stricted on graph states, the resulting action of the initial
CPM sgiven by ok,lak,lOkrOl, whereOk,Ol are products of
Pauli operatorsd can then be described by a CPM specified
by okak,kOkrOk

†, where all operatorsOk can be expressed in
terms of products ofsz operators. Only operatorsOk which
act nontrivially on particlesk,l or their neighbors in the
graph affect the resulting maximally entangled pair after the
measurementsid, leading again to a threshold value which is
independent of the size of the system for all those decoher-
ence models where the number of such operatorsOk is inde-
pendent ofN. This is for instance the case if eachOk acts
nontrivially on a finite, localized number of subsystems.
Therefore, the fact that all graph states with finite maximal
degree, such as cluster states, the lifetime of distillable
N-party entanglement will remain finite, holds in particular
for all decoherence models based on anarbitrary individual
coupling to the environmentdescribed by a quantum optical
channel in Eq.s9d. In the following we will determineupper
boundson the distillable entanglement.

C. Upper bound I: Noise operation becomes
entanglement breaking

In our first approach, we determine an upper bound to the
lifetime of N-party entanglement by considering the capabil-
ity of the decoherence process to disentangle any state dis-
regarding its specific form. Hence the upper bounds derived
in this way will apply not only to graph states but to an
arbitrary state. In turn this method will be restricted to cou-
pling of the particles to individual environments described
by an arbitrary channel of the form

Dr = o
i,j=0

3

pijsirs j s55d

like the completely positive map in Eq.s9d. We now make
use of the Jamiolkowski isomorphism between CP maps and
states f26g. Let uF+lkk8=s1/Î2dsu0lku0lk8+ u1lku1lk8d denote
the maximally entangled state on systemk and a copyk8 of
the systemk. Then to each CPMD acting on particlek there
uniquely corresponds a state

FIG. 6. sColor onlined Under individual coupling due to the
same depolarizing channel the lower bounds onkt to the lifetime of
distillable N-party entanglement for the 1D, 2D, and 3D cluster
states remain constant for arbitrary system sizesN. For theN-party
GHZ state the lower bound as well as the exact value forkt accord-
ing to Eq.s26d, until which GHZ state remains distillable entangled,
strictly decrease and go to zero asN→`.
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sD
kk8 ; DksuF+lkk8kF+ud s56d

on the combined system ofk andk8. The main fact which we
will use in the following is, thatsid the CPMD is entangle-
ment breakingf7g, i.e., DkrkA is separable for anyspossibly
entangledd staterkA on the composite system, consisting of
particlek and some other particles hold by the partiesA, if
and only if the corresponding statesD

kk8 is separableswith
respect to the particlesk andk8d.

Hereby the “only if” implication directly follows from the
very definition of the map to be completely disentangling,
whereas the other direction can be seen as follows: Given the
statesD

kk8 one obtains the corresponding CPM via the inverse
isomorphism, i.e.,

Drk0 ; 24 3 trkk0
suF+lkk0kF+urk0 ^ sD

kk8d , s57d

wherer is an arbitrary state on another copyk0 of systemk,
the projection ontouF+lk0k is performed with respect to the
joint systemk0, k, andD is now thought to map systemk0

onto systemk8 instead ofk onto k. Now, if sD
kk8=r1

k
^ r2

k8 is
separable, then Eq.s57d factorizes into

kk0kF+urk0 ^ r1
kuF+lkk0 ^ r2

k8 s58d

regardless of whetherrk0=rk0A is itself entangled with some
other partiesA or not. The resulting state on systemk8 which
corresponds toDr is even independent of the input stater
and thus cannot be entangled at all with the partiesA.

In order to derive an upper bound to the entanglement of
states suffering from decoherence due to individual coupling
Dk of the particles to the environment, one can determine the
critical value forpij in Eq. s55d, for which the state

sDk = o
i,j=0

3

pijsi
kuF+lkF+us j

k = o
i,j=0

3

pij uFilkF ju s59d

becomes separable and hence the CPMDk becomes en-
tanglement breaking. In Eq.s59d we have used the notation
uFil=siuF+l, wheresuF0l , uF1l , uF2l , uF3ld form a complete
Bell basis. In the following we will restrict attention to the
same individual couplingDk=D of the particles to the envi-
ronment, which then only requires us to test the separability
of one state sD. In the case of Pauli channelsDr
=oi=0

3 pisirsi this task becomes particularly easy, since the
statesD is diagonal in the above Bell basis. Moreover for
such Bell diagonal states the separability criterion reduces to
the necessary and sufficient condition that all diagonal en-
tries pi are smaller than 1/2, i.e.,

max
i=0,1,2,3

pi ø
1

2
. s60d

This can be easily evaluated for the examples given in Sec.
II. For the depolarizing channelDr=pr+s1−pd 1

21 the state
rstd has certainly becomeN-party separable, if

p ø p. ;
1

3
. s61d

Note that this condition provides a universal upper bound for

all states exposed to individual depolarizing channels. For
the quantum optical channel withm=0 in Eq.s9d one arrives
at the condition 2l1+l3ù

1
2.

In the case of a general quantum optical channel withm
Þ0 or an arbitrary noise channel of the forms55d one can
instead use the fact, that for any two dimensional systemsk
andk8 the PPTsNPTd criterion, i.e., the positivitysnonposi-
tivity d of the partial transposerTk, is necessary and sufficient
for separabilitysdistillabilityd f13,14g. Thus the CPMD is
entanglement breaking, if and only if

srD
kk8dTk ù 0. s62d

For the general quantum optical channels9d this leads after
some algebra to the condition

l1
2 − m2 ù Sl1 + l3 −

1

2
D2

. s63d

In terms of the original parametersB, C, ands of the quan-
tum optical master equation with the superoperator defined
in Eq. s3d this inequality reads

ss1 − sdfeCts1 − e−Btdg2 ù 1. s64d

It is worth remarking that in the terminology of quantum
opticssreservoir theoryd both the equilibrium values and the
decay ratesB,C enter in the inequality in this multiplicative
form. For the example of a decay channel, i.e.l;l1=l2

=m, we have 0ù sl+l3− 1
2

d2, which cannot be satisfied.
Therefore the decay channel cannot become entanglement
breaking and the multiparty GHZ states are examples for
states that remain entangled under decoherence due to this
channel ssee Sec. IV Bd. For the bit-flip channelDr=pr
+fs1−pd /2gsr+sxrsxd and the dephasing channelDr=pr
+fs1−pd /2gsr+szrszd the upper boundp=0 obtained from
Eq. s60d becomes trivial.

D. Upper bound II: Noisy Ising interaction becomes separable

In our second approach, we determine an upper boundt.

on the lifetime of distillable entanglement by showing that
after a certain time, the staterstd becomes fully separable
and is hence no longer entangled whatsoever. With this aim,
we consider thesdynamicald description of graph states in
terms of Ising interactions acting on a specific separable
state. We determine the separability properties of the opera-
tor rstd by considering the corresponding interactions which
generate the state and show that for a given noise level, these
operations itself become separable and hence are not capable
of creating entanglement. Consequently, also the staterstd is
separable in this case. The main advantage of this approach
is that one does not have to consider theN-particle stater
itself and determine when it is fully separablesa task which
is generally very difficult, especially ifN is larged, but has to
consider onlytwo-particle operationsand determine when
these operations are separable.

We make use of the following properties.
sid The graph stateuGl corresponding to a graphG can be

written asssee Sec. V Ad f5g
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uGl = p
hk,lj[E

Uklu + l^N, s65d

whereUkl;e−ips1skd−sz
skdd/2^s1sld−sz

sldd/2 and u+l=1/Î2su0l+ u1ld.
sii d We will take only sz noise into account. We thus

restrict the following analysis to decoherence models due to
the same individual noise channelE, that can be decomposed
into some noise channelE8 acting after a dephasing channel
Dr=pzr+fs1−pzd /2gfr+szrszg, i.e., E=E8 +D. A more de-
tailed analysis of the cases, for which such a decomposition
is possible, is postponed to Appendix A. For the depolarizing
channelDkspd fEq. s14d with noise parameterp;e−ktg, such
a decomposition is possible by choosingpz=2p/ s1+pd and

E8kr =
1 + p

2
r +

1 − p

4
fsx

skdrsx
skd + sy

skdrsy
skdg. s66d

This can be checked by direct calculation.
We now investigate the influence of noise on the entangle-

ment generating unitary operationUkl and determine when
the resulting CPM becomes separable. SinceUkl commutes
with D jspzd, it follows that rstd can be written asrstd
=E8(r̃std), where r̃std is obtained from the original graph
state by considering only phase noise described byDkspzd,
i.e.,

r̃std ; p
j

D jspzd p
hk,lj[E

Uklu + lk+ u^NUkl
† . s67d

Sincerstd is obtained fromr̃std by means of separable op-
erations, it is sufficient to determine the condition whenr̃std
becomes separable. In principle, one could also consider this
additional noise to obtain a stronger upper bound on the
lifetime; however, the analysis becomes more involved in
this case as one has to deal with correlated noise. In the
following we will therefore consider only noise resulting
from phase-flip errors described byDk, i.e., the map

D̃klspz,qzdr ; DkspzdDlsqzdUklrUkl
† , s68d

for two different dephasing parameterspz and qz. With this
notation the operatorr̃std can be written as

r̃std = p
sk,ld[E

D̃klspz
1/uNku,pz

1/uNludu + lk+ u^N. s69d

For the vertexk with degreeuNku we have split up the action
of the mapDkspzd into uNku parts sone for each term in the
product which involvesUkl and thus particlekd by using a
decomposition of the mapDkspzd into

Dkspzdr = p
j=1

m

Dkspz
1/mdr. s70d

This leads to the parameterpz
1/uNku in Eq. s69d. If in Eq. s69d

all mapsDklspz
1/uNku ,pz

1/uNlud at a fixed vertexk are separable, it
immediately follows that alsor̃std is k-versus-rest separable
since the following maps are local and act on ak-versus-rest
separable state.

To determine the entanglement properties ofD̃klspz,qzd,
we make again use of the Jamiolkowski isomorphismf26g

between CPM and mixed statesf28g. In particular, we use
that a CPMD is separable and hence not able to generate
entanglement if the corresponding mixed stateD is sepa-
rable, where

Dk1k2l1l2
= Dk2l2

uF+lk1k2
kF+u ^ uF+ll1l2

kF+u, s71d

and separability has to be determined between partiessk1k2d
and sl1l2d. It turns out to be useful to define

uf00l ;
1
Î2

su0̃lk1k2
u0̃ll1l2

+ u1̃lk1k2
u1̃ll1l2

d,

uf01l ;
1
Î2

su0̃lk1k2
u1̃ll1l2

+ u1̃lk1k2
u0̃ll1l2

d,

uf10l ;
1
Î2

su0̃lk1k2
u0̃ll1l2

− u1̃lk1k2
u1̃ll1l2

d,

uf11l ;
1
Î2

su0̃lk1k2
u1̃ll1l2

− u1̃lk1k2
u0̃ll1l2

d, s72d

with

u0̃lk1k2
; u00lk1k2

,

u1̃lk1k2
; u11lk1k2

,

u0̃ll1l2
;

1
Î2

su00ll1l2
+ u11ll1l2

d,

u1̃ll1l2
;

1
Î2

su00ll1l2
− u11ll1l2

d. s73d

One finds that the stateD̃k1k2l1l2
spz,qzd corresponding to the

mapD̃klspz,qzd is given by

D̃k1k2l1l2
spz,qzd = o

i,j=0

1

li j uFi jlkFi j u, s74d

where l00=s1+pzds1+qzd /4, l01=s1+pzds1−qzd /4, l10=s1
+qzds1−pzd /4, l11=s1−pzds1−qzd /4. This state is separable
with respect tosk1k2d−sl1l2d if and only if l00ø1/2, as its
partial transposition is positive in this case. Note that for
systems inC2 ^ C2, positivity of the partial transposition is a
sufficient condition for separabilityf13,14g. Although the
system that we consider consists of two four-level systems,
the resulting state has support only in a four-dimensional
subspace and thus the results about qubit systems can be
directly applied. We then obtain that the operator

D̃k1k2l1l2
spz,qzd is separable—and hence the CPMD̃klspz,qzd

is separable and not able to create entanglement—if and only
if

s1 + pzds1 + qzd ø 2. s75d

We now use the above result to obtain an upper bound for
the lifetime of graph states under a decoherence model that
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obeys sii d. Due to Eq. s75d we find that the map
Dklspz

1/uNku ,pz
1/uNlud is separable if

s1 + pz
1/uNkuds1 + pz

1/uNludø2. s76d

The threshold valuep. such that staterstd is fully separable
is then obtained by considering all pairs of particleshk, lj,
calculate the corresponding valuep.

kl and take the minimum
over allhk, lj, i.e.,p.=min p.

kl. This ensures that all involved
operators are separable forpzøp.. By estimatinguNku and
uNlu from above with maximal degreem in the graph, we
arrive at the weaker upper bound

pz ø sÎ2 − 1dm. s77d

For the various decoherence processes, one now has to de-
termine the actual value forpz, which depends on the param-
eters of the underlying noise model and should be chosen
minimal ssee Appendix Ad, since this gives the strongest up-
per bound. The exact values for the bounds obtained in this
way are however worse than the upper bound derived in Sec.
V C, but as we will see in Sec. VI that the way of deriving
the upper bound here will turn out to be well suited for all
those cases where the initial state is only slightly entangled.

Moreover, as was the case for the lower bound, the de-
rived upper bound on the lifetime of distillable entanglement
does only depend on the maximum degree of the graph and
not necessarily on the number of particlesN. We remark that
the upper and lower bounds on the lifetime of graph states
show a different dependence on the degreem of the graph.
While the lower bound on the lifetime decreases with in-
creasingm, the upper bound on the lifetime increases withm.
We emphasize that this observation applies only to the lower
and upper bounds, and no definitive statement about the ac-
tual dependence of the lifetime of distillable entanglement on
the degree of the graph can be madesalthough one may
expect that the lifetime of entanglement decreases with the
degree of the graphd. The different dependences of the lower
and upper bounds can in part be understood by looking at the
corresponding derivations. In particular, in the derivation of
the upper boundt. the influence of bothsx andsy noise is
completely ignored. The influence of this kind of noise, how-
ever, strongly depends on the degree of the graph and is in
fact responsible that, e.g., the fragility of GHZ states depends
on the number of particlesf24g. That is, sx noise on all
neighboring particles acts assz noise on a given vertex, and
the noise accumulates. However, it is not straightforward to
take alsoEx

skd andEy
skd in above analysis into account, as they

lead to correlated noise when expressed in terms ofsz op-
eratorsfsee Eq.s44dg. This implies that one could no longer
consider separability properties of two-qubit maps indepen-
dently but has to take correlations into account and thus con-
sider a largersor eventually the wholed system, thereby los-
ing the main advantage of this approach on determining
separability of the resulting state.

E. Upper bound III: Partial transposition criterion
for graph diagonal states

In our third approach, we determine an upper bound on
the lifetime by considering the partial transposition with re-

spect to several partitions. Although this upper bound will be
worse than the upper bound in Sec. V Csexcept for some
singular casesd, the ability to explicitly compute the partial
transpose with respect to different partitions will enable us to
compare the aforementioned bounds with the exact critical
values for the PPT criterion, at least for graphs with only few
verticessNø10d. In this case the techniques developed in
this section thus lead to stronger results for the lifetime of
N-party entanglement. For the following upper bound we
make use of the fact that aN-particle state is certainly no
longerN-party distillable if at least one of the partial trans-
positions with respect to all possible bipartite partitions is
positive. To this aim, we determine the eigenvalues of partial
transposition ofrstd with respect to various partitions. Since
this is in general a rather complicated task, we will assume
that decoherence of the particles is based on the same indi-
vidual Pauli channel:

Dkr = o
j=0

3

pjstds j
krs j

k. s78d

As it was already used in the derivation of the lower bound,
under such a Pauli channel the graph stateuGl evolves in
time into a mixed stater;pk[VDskduGlkGu that is diagonal
in the graph state basisuUlG:

r = o
U#V

lUuUlGkUu. s79d

In the following we will make use of the following facts,
whose proofs are postponed to the Appendix B:

sid The diagonal elementslU in Eq. s79d can be computed
to be of the form

lU = p0
uVu o

U8#V

q1
uU8\sGU8+Uduq2

uU8ùsGU8+Uduq3
usGU8+Ud\U8u, s80d

whereqiªpi /p0 for i =1,2,3. In the case of the depolarizing
channelfqªq1=q2=q3=s1−pd / s3p+1dg this simplifies to

lU = p0
uVu o

U8#V

quU8øsGU8+Udu. s81d

We note, that in both expressions we have made use of the
notational simplifications described in Sec. V A. For ex-
ampleGU8 denotes both the set and the binary vector, that is
obtained by the multiplicationsmodulo 2d of the adjacency
matrix G with the binary vector corresponding to the setU8.

sii d For any stater of the form s79d, i.e., that is diagonal
in the basisuUlG according to some graphG, the partial
transpositionrTA with respect to some partitionA is again
diagonal in thessamed graph state basisuUlG. In order to
compute the corresponding eigenvalues, letG8=GAAc denote
the adjacency matrix of the graph between the partitionA
and its complementAc, i.e.

S GA GAAc
T

GAAc GAc
D = G. s82d

Then,
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rTA = o
U#V

lU8 uUlGkUu

with lU8 =
ukerG8u

2uAu o
sX,Yd[

skerG8d'3sImG8d

s− 1dkX,AYllsU+X+Yd,

s83d

whereAY[A is arbitrary withG8AY=Y and the kernel ker or
the orthocomplement' are taken with respect to the sub-
spacePsAd spanned by the sets inA.

siii d In the case of small noise 0,qi =pi /p0ø1 for
i =1,2,3 the following estimation:

qlU ø lU+k ø
1

q
lU s84d

can be derived, whereq=minsq1,q2,q3d. The same holds for
lU+Nk

andlU+Nk+k instead oflU+k.
Before coming to the upper bound let us give two ex-

amples for formulas83d. If G8 is invertible, then kerG8

=h0j and skerG8d'=PsAd holds. Moreover Eq.s83d can be
simplified by parametrizing ImG8 with Y=G8A2, where
A2#A:

lU8 =
1

2uAu o
A1,A2#A

s− 1dkA1,A2llsU+A1+G8A2d. s85d

If A=hkj for a nonisolated vertexk[V the eigenvalues of the
partial transposition with respect toA are

lU8 =
1

2
slU + lU+Nk

+ lU+k − lU+Nk+kd. s86d

Similarly for the partial transposition with respect to the split
A=hk, lj versus rest, wherek, l [V are two nonadjacent ver-
tices with linearly independent neighbor setsNk andNl, one
obtains

lU8 =
1

4S o
X[M+

lU+X − o
X[M−

lU+XD , s87d

where

M+ = h0,k,l,k + l,Nk,Nl,Nk + Nl,k + Nl,l + Nk,k + l + Nk + Nlj,

M− = hk + Nk,l + Nl,k + Nk + Nl,l + Nk + Nl,k + l + Nk,k + l + Nlj.

If k and l are adjacent the same formula holds but with
neighbor setsNk8=Nk\ l andNl8=Nl \k restricted toAc.

Finally we note that for GHZ diagonal states of the form
s23d the positivity snonpositivityd of the partial transpose
with respect to all possible partitions was already a necessary
and sufficient condition forN-party separabilitysdistillabil-
ityd. For general graph diagonal states the corresponding PPT
sNPTd criterion is only known to be a necessary condition
for N-party separabilitysdistillabilityd, whereas the suffi-
ciency of these conditions is presently unknown. But for all
partitions sA,Acd, for which the pure graph stateuGl has
Schmidt measure 1, i.e., it can be decomposed into the form
uGl=a1ua1lAub1lAc

+a2ua2lAub2lAc
, the NPT criterion is also

sufficient condition at least for the distillability of an
sA,Acd-entangled state. IfrTA in Eq. s83d has a negative ei-
genvaluelU8 , then the corresponding eigenstateuUlG has a
Schmidt decomposition of the form uUlG=sz

UuGl
=a1ua18l

Aub18l
Ac

+a2ua28l
Aub28l

Ac
and also a negative overlap

GkUurTAuUlG,0, which is sufficient forsA,Acd distillability
f27g.

These results can now be used to derive upper bounds to
the distillable entanglement in graph states in the presence of
local noise described by a Pauli channels18d with pi .0 for
i =1,2,3. For example, if one considers the split one-versus-
rest, the eigenvalueslU8 of the partial transposition with re-
spect to the corresponding partitionA=hkj in Eq. s86d can be
bounded from below by

lU8 ù S1 + 2q −
1

q
DlU. s88d

Therefore the stater in s79d is certainly PPT with respect to
the partition A=hkj if 1+2q− 1

q ù0, i.e., 1
2 øqø1. In the

case of the depolarizing channelfq=s1−pd / s3p+1dg this
means that nosA−Acd-entangled state can be distilled from
any graph stater if pstd falls belowp.= 1

5.
For the partial transposition with respect to the partition

A=hk, lj fsee Eq.s87dg, Eq. s84d can be applied twicese.g.,
lU+k+Nl

ùqlU+kùq2lWd in order to obtain estimations for the
higher-order termsk+ l ,k+Nl ,k+ l +Nk+Nl ,… in M+ and
M−. In this way one arrives at the condition

lU8 ù S1 + 4q + 5q2 −
2

q
−

4

q2DlU ù 0 s89d

for the distillability of sA−Acd entanglement. This means that
in the case of the depolarizing channel forqù0.8457 orp
ø0.0436 any graph stateuGl will become PPT with respect
to A=hk, lj. A closer comparison with Sec. V C shows that
the upper bounds toN-party distillable entanglement derived
in this way are worse than the upper bound in Eq.s60d. For
the one-versus-rest split, this can be understood for a general
Pauli channel withpi .0 by rewriting the condition as
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min
i=1,2,3

pi ù
p0

2
. s90d

Then, due toqù1, p0 must be the maximum in Eq.s60d and
hence can only be larger than12 if also p0/2ù1/4 holds,
which cannot be exceeded by the minimum ins90d. Never-
theless, we think that the derivation can be of interest for
other applications involving the partial transposition of graph
diagonal states. In particular, it is an open question whether
for certain Pauli channels withpi .0 the conditions for PPT
with respect to larger partitions might yield a stronger upper
bound than the condition in Eq.s60d. This will certainly de-
pend on the solutions to the corresponding polynomial equa-
tion in q. But any upper bound derived with the use ofsiii d
will not depend on the topology of the underlying graph in
question. By using a slight modification of the argumentation
leading to the estimation insiii d we will therefore discuss the
example of the dephasing channel, for which a stronger up-
per bound can be provided, that conversely depends on the
topology of the graph. In any case, the procedure to compute
the eigenvalues of the partial transposition described insiii d
does not require the diagonalization of a 2N32N matrix and
therefore allows the evaluation of the PPT criteria with re-
spect to different partitions, as long as the vector consisting
of the initial eigenvalueslU swhich is already of length 2Nd
is small enough to be stored and—in the case, that it occurs
as a result of Pauli channel—as long as this vector can also
be initialized fast enough. In order to illustrate the aforemen-
tioned results we have, for example, considered rings up to
sizeN=10 suffering from decoherence due to the depolariz-
ing channel and examined the partial transpose with respect
to all possible partitions. Figure 7 depicts the critical value
for p, after which the stater first becomes PPT with respect
to some partition, which implies that at this point the stater
is certainly no longerN-party distillable. For Fig. 7 the criti-
cal valuepcrit has also been computed, after which the stater
has become PPT with respect to all partitions, i.e., after
which r contains at most bound entanglement with respect to
any partition. In contrast to the case ofN-party GHZ states,

for which the one-versus-rest partition is the first to become
PPT, the numerical results for smallN indicate that in rings
this split seems to be most stable against decoherence due to
noise described individual depolarizing channels and that the
smallest eigenvalue of the partial transposition with respect
to these one-versus-rest splitshkj is given bylNk+k.

In Fig. 8 we show representatives of the equivalence
classes for connected graphs overN=5,6,7 vertices discussed
in f6g, that are most stable or instable, when exposed to noise
described by individual depolarizing channels. In this con-
text we consider two graphs to belong to the same equiva-
lence class if they can be transformed into each other by
local unitariesandgraph isomorphies. The latter corresponds
to an exchange of particles, that maps neighboring particles
onto neighboring particles. We note that in this special case
of noise due to the same individual depolarizing channel the
notion of equivalence classes of graph states under local uni-
tary transformations and graph isomorphiessi.e., particle ex-
changed is meaningful, since the decoherence process itself is
invariant under these operations. As it can be seen in Fig. 8
for connected graphs onN=5,6,7 theN-party GHZ states
seem to be the first that loseN-party distillability.

Finally we will consider the case of individual dephasing
channelsDr=pr+fs1−pd /2gsr+szrszd fi.e., p0=s1+pd /2,
p1=p2=0, p3=s1−pd /2g, for which the estimations84d is no
longer valid in general. It is straightforward to see that

quU8ulU ø lU+U8 ø q−uU8ulU s91d

holds for q=s1−pd / s1+pdø1, sincelU=pNquUu. As in Eq.
s88d, we therefore can bound the eigenvalues of the partial

FIG. 7. sColor onlined For the case of particles in rings of size
Nø10, which individually decohere according to the same depolar-
izing channels14d with parameterp: the critical valuepcrit, after
which the firstslastd partition becomes PPTn fhg, the lower bound
according to Sec. V B and the upper bounds according to Secs. V C
and V E.

FIG. 8. sColor onlined Representatives of the equivalence
classes under local unitaries and graph isomorphies of the con-
nected graphs withN=5,6,7 verticesf6g. The firstssecondd column
depicts a representative of the class, that is the lastsfirstd class of a
given sizeN to become PPT with respect to some partition. Hence
the first ssecondd column contains those graphs for which the PPT
criterion indicates that theN-party distillable entanglement con-
tained in these states might be most stablesunstabled samong all
graphs with the same number of verticesd. Similarly the third
sfourthd column shows a graph of the equivalence class, that is, the
last sfirstd of a given sizeN to become PPT with respect toall
partitions. Hence the thirdsfourthd column contains those graphs for
which the PPT criterion indicates that these states might be the last
sfirstd to becomeN-party separable.
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transposelU8 with respect to the partitionk from above by

lU8 ù s1 + quNku + q − q−suNku+1ddlU. s92d

As depicted in Fig. 9, the above case of a ringsuNku=2d this
inequality yields to the sufficient conditionqù0.7549 sp
ø0.1397d for all one-versus-rest splits to have PPT and
hence yields a stronger criterion forN-party distillable en-
tanglement than Eq.s60d. Note, that the lower bound actually
coincides with the computed critical values forp, after which
the ring first becomes PPT with respect to some partition.

VI. GENERALIZATION TO WEIGHTED GRAPH
STATES

In this section we extend the previous results to a more
general class of initial states, the so-called weighted graph
states. The graph states discussed so far arise from the Ising-
type interaction HamiltonianHkl= u1lkk1u ^ u1llk1u fsee Eq.
s36dg acting on a collection of particlesV in thesx eigenstate
u+lV for a fixed time w=p according to some interaction
pattern specified by the graph. We will now allow the par-
ticles to interact according to the same HamiltonianHkl but
for different interaction timeswkl. This corresponds to the
situation of a disordered system as it occurs, e.g., in a spin
glass or semiquantal Boltzmann gas. The interaction pattern
can similarly be summarized by a weighted graph, in which
every edge is specified by a phasewkl corresponding to the
time the particlesk and l have interacted. The weighted
graph stateuGl is thus given by

uGl = p
hk,lj[E

Uklu + lV s93d

where the operationsUkl are in this case given by

Ukl ; e−iswkl/4ds1skd−sz
skdd^s1sld−sz

sldd. s94d

In contrast to this straightforward extension of the interaction
picture for weighted graph states, no such generalization of
the stabilizer formalismfsee Eq.s38dg in terms of generators

within the Pauli group is possible. In particular this implies
that the results of Sec. V E are no longer applicable to
weighted graph states. But in the following we will show,
that the other techniques established in the previous sections
to obtain lower and upper bounds on the lifetime of entangle-
ment can in fact be extended to cover also weighted graph
states. Actually the following analysis will also hold for all
states produced fromHkl acting on an arbitrary product state
ucl= uc1l¯ucNl, which are not necessarily of the formucl
= u+l^V. Nevertheless, for the sake of simplicity we will re-
strict the following to this case.

A. Lower bound on lifetime

In order to obtain a lower bound on the lifetime of
weighted graph states, we again provide an explicit protocol
which allows the distillation of maximally entangled states
between all neighboring pairs of particles and thus to create
arbitraryN-particle entangled states. In fact, we make use of
the same protocol as in Sec. V B, however the analysis turns
out to be different. To be specific, we consider the staterstd
which is obtained from a weighted graph stateuGl subjected
to decoherence—described by individual Pauli channels—
for time t. We perform measurement in the eigenbasis ofsz
on all but particlesk,l and determine the condition when the
resulting reduced density operatorrkl is distillable. We de-
note byP0

j = u0l jk0u, P1
j = u1l jk1u projectors acting on particlej

and by P̂0,P̂1 the corresponding superoperators, i.e.,P̂0r

=P0rP0. Similarly, we denote byÛkl%;Ukl%Ukl
† the super-

operator corresponding to the unitary operationUkl. Note
that the entanglement properties of the resulting state do not
depend on the specific measurement outcomes. For nota-
tional convenience we restrict our analysis to the case, where
the measurement result 0 is obtained on all measured par-
ticles. Taking noise described by some Pauli channelDr
=oi=0

3 pisirsi, we thus have to consider thesunnormalizedd
state

DkDl p
jÞk,l

P̂0
j D j p

ha,bj[E

Ûabu + lVk+ u. s95d

Using thatP0s0,3=s0,3P0 andP0s1,2=s1,2P1 we can rewrite

P̂0
j D j% and obtain

P̂0
j D j% = sM0

j P̂0 + M1
j P̂1d%, s96d

where

M0% = p0% + p3s3%s3,

M1% = p1s1%s1 + p2s2%s2. s97d

Choosing the computational basisuUlV\hk,lj=sx
Uu0lV\hk,lj on the

measured particles, we thus can write

p
jÞk,l

P̂0
j D j% = o

U#V\hk,lj
p

jÞk,l
MUj

j P̂Uj

j %. s98d

The projector commutes with the unitary operationsUab and
we therefore obtain that Eq.s95d can be rewritten as

FIG. 9. sColor onlined For the case of particles in rings of size
Nø10, which individually decohere according to the same depolar-
izing channel with parameterp: the critical valuepcrit, after which
the first slastd partition becomes PPTn shd, the lower bound ac-
cording to Sec. V B, and the upper bounds according to Secs. V C
and V E.
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DkDl o
U#V\hk,lj

p
jÞk,l

MUj

j p
ha,bj[E

Ûab

3u + + lklk+ + u ^ uUlV\hk,ljkUu. s99d

Note thatUab leavesuUlV\hk,lj invariant and it is thus suffi-
cient to consider onlyUab that act on particlesk,l and/or their
neighbors, i.e., the setI =NkøNl økø l. For all other par-
ticles j ¹ I we thus have expressions of the form
MUj

uUjl jkUju= u0l jk0u, i.e., these particles factor out. It fol-
lows that the reduced density operatorrkl which is obtained
by tracing out all but particlesk,l only depends on particles
in the set I but not on the other particlesj [ I or errors
snoised affecting these other particles. This already shows
that the lower bound on distillability for weighed graph
states only depends on thesdegree of thed corresponding in-
teraction graph as well as the weights of the edges, but is
independent of the size of the systemN as long as the degree
of the graph itself does not depend onN. In particular, only
the subgraph of particlesj [ I determines the entanglement
properties of the reduced density operatorrkl.

We have thatrkl is given by

trI\hk,ljsDkDl o
U#V\hk,lj

p
j[I

MUj

j p
a,b[I

ha,bj[E

Ûab

3u + + lklk+ + u ^ uUlI\hk,ljkUud, s100d

where the partial trace has to be performed for the remaining
neighboring particlesI of k and l only. Thus the effect of
noise can be localized to the regionI around the edgehk, lj in
question. In principle, one can now obtain the explicit form
of rkl for a givensweightedd graph and determine the condi-
tion for pi until when the reduced density operatorrkl has
nonpositive partial transposition and remains thus distillable.
The explicit formula is however rather complicated and not
particularly illuminating. For the example of a depolarizing
channel, it is clear that for smaller values ofwkl si.e., a
weaker edge between particlesk and ld one obtains stronger
threshold values on the parameterp than given by Eq.s49d,
i.e., a shorter lifetime.

What is, however, more important in our context is that
also for weighted graph states the lower bound on lifetime of
distillable entanglement depends only on thesdegreed of the
corresponding interaction graph, but not on the size of the
systemN. Although the actual values of the lifetime will
depend on the specific weights of the edges, for clusterlike
and similar graph states there will be no scaling behavior
with N. Moreover, in many cases such as rings, the edge with
the smallest weight will give rise to the strongest threshold
value condition and will thus determine the lower bound on
the lifetime of distillableN-party entanglement. Actually, it
is sufficient if one can create maximally entangled pairs be-
tween pairs of particles in such a way that there exists a path
between each pair of particlessi.e., entanglement between all
pairs hk, lj where the edgeshk, lj form a maximally con-
nected graphd. Thus the state is alreadyN-party distillable, if
the subgraph is connected that is generated by all those edges
from which a Bell pair can be distilled. This implies that
some edges in the original graph—even if they are very

weak—may not play a role if there exists another way to
obtain singlets between all relevant pairs. For instance, if one
considers a graph corresponding to a 1D cluster state, where
each edge has weightp, and one adds in addition an edge
1, k with small weightw1k, then it is not necessary that en-
tanglement between particles 1,k can be distilledsalthough
the two particles are neighboring ones according to the graph
Gd, but it is sufficient to distill entanglement between all
pairs of particlesk,k+1.

B. Upper bound on lifetime

The first method to obtain an upper bound to the lifetime
of entanglement certainly also holds for arbitrary weighted
graph states, since it is independent of the initial state and
reflects the time after which the decoherence process itself
has become entanglement breaking. Conversely the upper
bounds derived in this way cannot take into account whether
the initial state is only slightly entangled or not. In Sec. V D
it turned out that for ordinary graph states the upper bound is
weaker than the first one derived in Sec. V C. In contrast we
will show in the following that the upper bound presented in
Sec. V D will give tighter upper bounds to the entanglement
in weighted graph states, which contain verticesk with only
small interaction phaseswkl to all their neighborsl [Nk. We
use again the dynamical description of the weighted graph
stateuGl given by Eq.s93d. The influence ofsphased noise on
the entanglement properties ofUkl can be determined in a
similar way as in Sec. V D, where we had a fixed angle
wkl=p for all hk, lj[E. We remark that the upper bound
obtained in Sec. V D for a general graph state is also valid
for all graphs of the same kind where the edges are weighted.
This is due to the fact that the operationsUkl are most resis-
tant to noisesi.e., remain entanglingd, if the angle iswkl=p,
because in this case the operation is—in the ideal case—
capable of creating maximally entangled states, while for all
other values ofwkl only partially entangled states can be
created.

This observation immediately leads a way to obtain stron-
ger upper bounds on the lifetime for weighted graph states.
To this aim, one determines the threshold valuespz

kl when the
stater̃std fEq. s69dg becomes separable. The value ofpz

kl now
depends onwkl. One finds that the corresponding density

operatorD̃k1k2l1l2
(spz

kld1/uNku ,spz
kld1/uNlu) in Eq. s74d again has

support only in a four-dimensional subspace and is given by

D̃k1k2l1l2
= o

i,j=0

1

li j uFi jlkFi j u, s101d

with

l00 =
1

4
f1 + spz

kld1/uNkugf1 + spz
kld1/uNlug,

l01 =
1

4
f1 + spz

kld1/uNkugf1 − spz
kld1/uNlug,

l10 =
1

4
f1 − spz

kld1/uNkugf1 + spz
kld1/uNlug,
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l11 =
1

4
f1 − spz

kld1/uNkugf1 − spz
kld1/uNlug. s102d

The orthogonal statesuFi jl are given by ssz
sk2ddi

^ ssz
sl2dd juF00l, where

uF00l ; u0̃lku0̃ll + u0̃lku1̃ll + u1̃lku0̃ll + eiwklu1̃lku1̃ll s103d

with u0̃lk= u00lk1k2
, u1̃lk= u11l and similar for particlesl1l2. We

have again, thatD̃k1k2l1l2
is separable if and only if the partial

transposition is positive, which leads to the threshold value
pz

kl. The separability of the weighted graph state can then be
determined in a similar way as in Sec. V D. In order to make
the operationUkl separable,sz noise with spz

kld1/uNku and
spz

kld1/uNlu is required at verticesk and l. At a given vertexk0,
this leads to a required total value ofp.

k0=minl[Nk0
p.

k0l such

that all operationsUk0l become separable. The threshold
valuep., below which the state is fully separable, is finally
obtained by taking the minimum over allp.

k sthat is over all
verticesd. That is

p. ; min
k

p.
k , s104d

and the stater is certainly separable forpz,p.. For the
different decoherence modelsE allowing for an extraction of
a dephasing componentfsee Eq.sA2dg one finally has to
insert the relation between the dephasing parameterpz and
the noise parameter ofE in order to obtain the announced
upper bound on the lifetime for weighted graph states. Figure
10 depicts the critical value for the depolarizing parameterp
in Eq. s14d as a function of the weightwkl at the edge in
question. As it was already mentioned in Sec. V D, for a
fixed phasewkl the obtained upper bound on the lifetime
decreases with the degree of the neighboring particlesk and
l sin contrast to the corresponding behavior of the lower
bound in Sec. V Bd. Moreover Fig. 10 shows, that for any

degreem there always exists a range of values forwkl, for
which the analysis of this section provides a stronger upper
boundpcrit than the condition derived in Sec. V C.

VII. BLOCKWISE ENTANGLEMENT AND RESCALING

Entanglement is a concept which can only be defined be-
tween subsystems of the whole system. In our previous
analysis, we have identified subsystems with parties, i.e., we
have investigated the lifetime of trueN-party entanglement.
One can however also consider a slightly more general con-
cept, where subsystems are formed by a collection of several
partiesssee Sec. IIId. Also in this case one can investigate
entanglement properties betweenM such subsystems. That
is, one can consider a partitioning of theN-party system into
M øN groups and investigate thesdistillabled entanglement
between theseM groups, where each of these groups consists
of one or several of the initial parties. WheneverM ,N, one
can have that the state is stillM-party entangled although it
no longer containsN-party entanglement. Considering such
coarser partitions allows one to investigate the change of the
kind of entanglement in time and to determine an “effective
size” of the entanglement present in the system. One can
determine for each kind of entanglement the corresponding
lifetime.

A. Blockwise entanglement: Distillability and lifetime

Given anN-party system, we consider a partitioning of
the N parties intoM ,N groups sM-partitioningd. Parties
within a given group are allowed to perform joint operations
are considered as a single subsystem with a higher-
dimensional state space. We are interested in the entangle-
ment between theseM subsystems. A density operatorr is
called M-party distillable with respect to a certain
M-partitioning if fromsasymptoticallyd many copies ofr one
can create some irreducible entangled pure state by means of
local sin the sense of theM-partitioning in questiond opera-
tions and classical communication. Similarly, a density op-
eratorr is separable with respect to a certainM-partitioning
if it can be written as convex combination of product states
sin the sense of theM-partitioning in questiond.

We say that a density operator isM-party distillable if it is
distillable with respect to at least oneM-partitioning. It is
obvious that ifr is M-party distillable, it as alsoM8-party
distillable for M8øM. The maximal possibleM such that a
density operatorr is M-party distillable can be interpreted as
a measure of the “size” of entanglement, as it provides the
maximal number of subsystemssgroups, blocksd which are
sdistillabled entangled. We will investigate the lifetime of
M-party distillable entanglement for allM. We remark that
M-partitionings might be completely different in nature.
Consider for instance a system consisting of 90 partiesAk,
k=1,… ,90. Possible three-partitionings include, for in-
stance,sA1d−sA2d−sA3,A4,… ,A90d as well assA1,… ,A30d
−sA31,… ,A60d−sA61,… ,A90d. For a detailed description of
M-partitionings as well as necessary and sufficient condi-
tions for M-party distillability we refer the reader to Ref.
f11g.

FIG. 10. sColor onlined For the case of individual depolarizing
channels with parameterp the threshold valuepcrit=p. / s2+p.d
fsee Eq.s66dg as a function of the interaction phasewkl[ f0,pg for
edgeshk, lj between two verticesk and l with the same increasing
degreem= uNku= uNlu=2,3,… ,10. The horizontal line depicts the
upper bound according to Sec. V C in this case.

HEIN, DÜR, AND BRIEGEL PHYSICAL REVIEW A71, 032350s2005d

032350-18



Equivalently one may say that we are considering a
coarse graining of the partition and investigate the entangle-
ment properties under coarse graining. As a particular in-
stance of such coarse graining we will investigate partition-
ings that correspond to rescaling of the size of the subsystem
as it is used in statistical mechanics. Consider for instanceN
particles which are arranged on a regular rectangularstwo-
dimensionald lattice. The finest partition corresponds to con-
sidering each particle individually as a single subsystem.
Coarsening of the partition may, e.g., take place by consid-
ering blocks ofn3n particlessarranged as a squared as a
single subsystem. That is, forn=2 one considers a specific
M =N/4 partitioning, while for arbitraryn we have M
=N/n2 groups of parties/subsystems, each formed byn2 par-
ticles. This concept is also illustrated in Fig. 11. We will
investigate howsdistillabled entanglement changes under
such rescaling and determine asymptotic properties of the
lifetime of M-party entanglement for a macroscopic number
of particles,N→`.

B. Lifetime of GHZ states under coarse graining

1. Lifetime of entanglement in large-T limit of reservoir

As in Sec. IV, we consider the lifetime of distillable en-
tanglement for GHZ states when each particle is individually
coupled to a thermal reservoir withT→`, described by a
depolarizing quantum channel. In order to determine the life-
time of M-party entanglement, we can make use of the re-
sults obtained in Sec. IV, together with the classification of
GHZ diagonal states of Ref.f11g. Recall that the partial
transposition with respect to a groupssubsystemd Bk which
contains exactlyk parties is positive,rstdTBkù0 if and only if
pNø2lk fsee Eqs.s25d and s26dg. In addition, we havel1
ùl2ù¯ùlfN/2g fsee Eq.s27dg. This implies that the size of
the subsystem, i.e., the number of particles that are contained
in a subsystem, determine when the corresponding partial
transposition becomes positive. We have that the partial
transposition with respect to a single party,rstdTAk, is the first
one that becomes positive, while the partial transposition
with respect to a larger subsystem is more stable, i.e., be-
comes positive at a later time.

For a givenM-partitioning, above observation immedi-
ately allows one to identify the bipartite partitionswhich
contains theM-partition in questiond which determines the
lifetime of distillable M-party entanglement. In particular,
the partial transposition with respect to the subsystem that
contains thesmallestnumber of parties is the first one to

become positive. We use that a necessary—and in the case of
states of the formrstd we deal with in this case also
sufficient—condition forM-party distillability is that the par-
tial transposition with respect to all subsystemsBk forming
the M-partitioning is nonpositive. To be exact, one also
needs that all partial transposition with respect to groups
formed by several such subsystemsBk are also nonpositive,
which is in our case, however, automatically satisfied as par-
tial transpositions with respect to larger groups are more
stable than with respect to smaller groups. If only one of all
these partial transpositions with respect to various sub-
systems is positive, it follows that the staterstd is no longer
M-party distillable ssee Ref.f11gd. Thus we have that the
lifetime of M-party distillable entanglement with respect to a
given M-partitioning is determined by the size of the small-
est subsystem of the correspondingM-partitioning. For in-
stance, if one considers an arbitraryM-partitioning sM ,Nd
that contains as one subsystem a single party, sayA1, we
have that the lifetime of entanglement with respect to this
partitioning is completely determined by the partial transpo-
sition with respect to partyA1, i.e., the conditionpNø2l1. In
particular, the lifetime of distillableM-party entanglement
with respect to any such partitioning is exactly the same as
for N-party entanglementscorresponding to aN-partitioning
where each subsystem contains a single partyd.

It follows that for a givenM, M-party entanglement with
respect to a specificM-partitioning has longest lifetime if all
groups havesapproximatelyd the same size. For a minimal
group size ofm particles, anN-particle GHZ state can con-
tain at mostM ;fN/mg such groups of sizem. This allows
one to obtain the maximum lifetime ofM-party entangle-
ment which is determined bypNø2lm fEq. s26d with k=mg.

Determining the threshold valuepcrit involves the solution
of a polynomial equation of degreeN, which can be done
numerically in an efficient way. One can however also deter-
mine analytic lower and upper bounds on the lifetime of
M-party entanglement. One obtains anupper boundon the
lifetime of M-party entanglement if one approximateslm by

somel̃mølm and investigate the condition

pN ø 2l̃m, s105d

as in this case automatically alsopNø2lk and thus the par-
tial transposition with respect to a group that containsm
parties is certainly positive. We can, e.g., choose

l̃m ; s1 − pdms1 + pdN−m/2N+1, s106d

which obviously satisfiesl̃kølk. The condition Eq.s105d
can then be rewritten as

mø N
lnf2p/s1 + pdg

lnfs1 − pd/s1 + pdg
. s107d

Recall that in thesoptimald case where all subsystems have
the same size we haveM ;fN/mg. Thus we find that an
N-party system is certainly no longerM-party entangled if

M ù
lns1 − pd − lns1 + pd
lns2pd − lns1 + pd

. s108d

FIG. 11. For blockwise entanglement different partitionings of
particles into groups are considered.
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Equations108d is a central result in our analysis of the
properties of the lifetime for GHZ states under rescaling. We
have illustrated Eq.s108d in Figs. 1 and 2.

On the one hand, Eq.s108d provides an upper bound on
the lifetimektM of M-party entanglement in the system. This
upper bound can be obtained by determiningktM for a fixed
M from Eq.s108d, wherekt is again given byp=e−kt. On the
other hand, for a fixed timet one can determine from Eq.
s108d the maximumM of distillable multipartite entangle-
ment in the system. That is, the effective size of entangle-
ment after a timet can be obtained this way. One observes
ssee Figs. 1 and 2d that the maximumM rapidly decreases
with t. For small times, i.e.,kt!1, one finds thatM scales as

M < − 2 lnsktd/sktd. s109d

For kt.0.8049fwhich is obtained from Eq.s108d by setting
M =2g, we have that also two-party entanglement disappears.
In fact, the state becomes fully separable as all partial trans-
poses are positiveswhich is a sufficient condition for sepa-
rability for such statesf11gd. We emphasize that the upper
bound on the lifetime ofM-party entanglement isindepen-
dentof the number of particlesN, in particular it is also valid
for a macroscopic number of particles and even forN→`.

On the one hand this implies that even if the size of the
groupsm=N/M goes to` sfor a total number of particles
N→`,d the maximum number of groupsM that can remain
entangled after a timet is finite, i.e., the maximum effective
size of entanglement is limited for any timet. On the other
hand it follows that in the limitN→` any partitioning in
groups with finite sizem leads to a vanishing lifetime of the
correspondingM =N/m party entanglementfsee Eq.s107dg.
Only if one considers the limit where the number of sub-
systemsM is fixed asN→`, i.e., the size of each of the
groups itself is macroscopic andm→`, one obtains that the
lifetime of the correspondingM-party entanglement isfinite.
We remark that above results also enable one to obtainsup-
per boundsd on the lifetime ofN-party entanglement by con-
sideringm=1 andM =N ssee also Sec. IVd.

In an analogous way one can derive alower boundon the
lifetime of M-party entanglement. To this aim, one uses that
if the partial transposition with respect to the smallest sub-
system is still nonpositive, also all other relevant partial
transpositions of the system with respect to all other sub-
systemssand combinations thereofd are nonpositive. For
states of the form Eq.s23d this ensures that the staterstd is
M-party distillable f11g. Thus we can derive an analytic
lower bound on the lifetime ofM-party distillability by con-
sidering the condition Eq.s26d with k=m and upper bound

lm by somel̃m8 . We have that ifpN.2l̃m8 ù2lm, thenrstd is
certainlyM-party distillable with respect to a partition which
consists ofM subsystems of sizem=fN/Mg. We choose

l̃m8 ; 2s1 − pdms1 + pdN−m/2N+1, s110d

which can readily be checked to satisfyl̃m8 ùlm. The condi-

tion pN.2l̃m8 can be rewritten and one finds that for

M ø
lnf2s1 − pdg − lns1 + pd

lns2pd − lns1 + pd
s111d

all partial transposition with respect to thisM-partitioning
are certainly nonpositive, which already ensures that the state
rstd is M-party distillable.

At first sight, our results seem to contradict the ones ob-
tained by Simon and Kempef18g. They observed that the
threshold value forp when considering the partitionsN/2d
−sN/2d decreases with the size of the systemN. Based on
this observation, they conclude that GHZ states of more par-
ticles are more stable against local decoherence. However, as
pointed out in the discussion above, the effective number of
subsystems that remain entangleddecreaseswith time. The
entanglement becomes bipartite when approaching the
threshold value found by Simon and Kempe. In fact, the
lifetime of genuinesdistillabled N-party entanglement de-
creases with the size of the systemN.

2. Quantum optical channel

One can now perform a similar analysis of the lifetime of
M-party entanglement for more general couplings of the in-
dividual particles to the environment described by a general
quantum optical master equation. We have already deter-
mined the condition such that the partial transposition with
respect to a group ofk parties is positive in Sec. IV Bfsee
Eq. s33dg. Following the line of argumentation if Sec.
VII B 1 and using the notation of Sec. IV B, it is straightfor-
ward to obtain an upper bound on the lifetime ofM-party
entanglement. In particular, one has that positivity of at least
one of the partial transpositions with respect to a specific
subsystem ensures thatrstd is no longerM-party distillable.
That is, when consideringsas in the previous sectiond an
M-partitioning of theN-party system intoM subsystems,
each of sizem=N/M, an upper bound on the lifetime is
given by Eq.s33d with k=m. In fact, also in this case we
have that the subsystem that contains the smallest number of
parties gives rise to the strongest condition on the lifetime of
M-party entanglement, i.e., the corresponding partial trans-
position is the first one to become positive. This can be seen
by considering the condition for positivity of the partial
transposition with respect to a group ofk particles given by
Eq. s32d, fbN/2g2ølklN−k. We have that for 1økø fN/2g

lklN−k ù lk+1lN−k−1 s112d

fwhich can be checked by direct computation and consider-
ing separately the casessacd.0 and sacdø0g. From this
observation the claim already follows, as Eq.s112d ensures
that if rstd has positive partial transposition with respect to
k+1 parties, it automatically has also positive partial trans-
position with respect tok parties. Hence the subsystem with
the smallest number of parties determines the lifetime of
M-party entanglement. Using again that for a fixedM one
obtains the longest lifetime if allM groups have the same
sizem=fN/Mg, it follows from Eq.s33d thatrstd is certainly
no longerM-party distillable entangled if
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M ù
lnsacd − lnfs1 − ads1 − cdg

lnsacd + Bt
, s113d

wherea,b,c are defined by Eq.s30d. Thus an analogous dis-
cussion as in Sec. VII B 1 applies, i.e., the scaling properties
of the lifetime of GHZ states with the size of the systemN
and the number of subsystemsM is similar for different cou-
plings of the particles to the environment. Only in singular
casesssuch as zero temperature corresponding tos=0 or s
=1d, does one discover a different behavior.

Considering general graph states instead of GHZ states, a
detailed analysis of their blockwise entanglement has not
been accomplished yet. Nevertheless, the scaling behavior of
M-party entanglement is restricted to a range between the
upper and lower bounds of Sec. V, which in the case of
cluster and similar graph states were shown to be indepen-
dent of the numberN of particles. In this sense also the
scaling behavior of blockwise entanglement in these states
must be essentially independent of the size of the system.

C. Lifetime of encoded entangled states

Until now we have seen two different kinds of scaling
behaviors with respect to the number of particlesN. For
GHZ states, we found that the lifetime of distillable en-
tanglementdecreaseswith N, while for cluster statessand
similar graph statesd we have that the lifetime isindependent
of N. In this section we will show that certain states can
show a different scaling behavior, namely that the lifetime of
sblockwised entanglement can evenincreasewith the number
of particlesN. Examples of such states are provided by en-
coded entangled states, i.e., entangled states which are
formed by logical qubits where each of the logical qubits
corresponds to the codewords of asconcatenatedd quantum
error correction code. We find that entanglement betweenM
such logical qubits is maintained. Each of the logical qubits
forms a subsystem of sizem, and we consider entanglement
betweenM such subsystems. We will show that asm in-
creasessbut is still of finite sized, there exist states such that
the maximum number of subsystemsM that remain en-
tangled increases. In addition, for a fixedM we have that the
lifetime of M-party entanglement increases as the block size
m increases and tends to infinity asm→`. This shows that
sencodedd macroscopic entangled states—even of GHZ
type—can persist for long times. Note that this behavior is in
contrast to nonencoded GHZ states, where on the one hand
the maximum number of subsystemsM that remain en-
tangled after a certain time is finite and on the other hand
also the lifetime ofM-party entanglement is finiteseven as
m→`d.

One can interpret these results in the sense that the time in
the encoded system is slowed down as compared to the time
in the original system. This provides an alternative view on
quantum error correction and allows one to understand why
encoded macroscopic superposition states can be produced
and maintained on a quantum computer.

1. Quantum error correcting codes

We consider two orthogonal states ofm qubits u0Ll,
u1Ll[ sC2d^m which correspond to codewords of some error

correcting code and constitute the basis state of a “logical
qubit.” In the following we will consider an optimal error
correcting code which allows one to correct an arbitrary error
on one of the particles and uses five physical qubits to en-
code one logical qubit, e.g., the five-qubit Steane codef29g.
In the following discussion we will assume that each of the
physical qubits is coupled to an independent environment
and the individual coupling is described by depolarizing
quantum channelsDspd scorresponding to the coupling to a
heat bath in the large-T limit d, Eq. s14d, with p=e−kt. We
consider the evolution of an arbitrary state of a single logical
qubit

ufLl = au0Ll + bu1Ll, s114d

under the influence of depolarizing channels acting on each
of the individual particles, i.e.,

%std = D1spdD2spdD3spdD4spdD5spdufLlkfLu. s115d

The action of the mapDk on physical qubitk is such that
with probability

q ; s3p + 1d/4 s116d

no error occurred, while with probabilitys1−qd the qubit
was affected by some error. In particular, we have that one of
the three possible errors described bysk, k=1,2,3 occurred
with probability s1−qd /3=s1−pd /4. Considering now the
logical qubit consisting of five physical qubits, we know that
there exists a sequence of operationsserror syndrome mea-
surement followed by a correction step depending of mea-
surement outcomed such that the state of the five qubits re-
mains in the subspace spanned byhu0Ll , u1Llj and the logical
qubit remains in the initial stateufLl as long as no or only a
single error in one of the physical qubits occurred. That is,
with probability

qL = q5 + 5q4s1 − qd, s117d

no or only a singlescorrectabled error happened, while with
probability s1−qLd the logical qubit was affected by some
error. By applyingscorrelatedd random unitary operations on
the subspace spanned byhu0Ll , u1Llj at t=0 and t, one can
achieve that the errors can again be described bywhite noise
acting on the logical qubit, i.e., a map of the form

DLspLdrL = pLrL +
1 − pL

4 o
k=0

3

sk
sLdrLsk

sLd, s118d
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wherepL=s4qL−1d /3 andsk
sLd denote Pauli operators acting

on the logical qubits, e.g.,s1
sLd= u0Llk1Lu+ u1Llk0Lu. The pa-

rameterpL is related to the initialp via

pL = s3p + 1d4s4 − 3pd/192 − 1/3. s119d

That is, the action of the decoherence process on the logical
qubit cansafter performing a correction step plus depolariza-
tiond be described by a depolarizing channel acting on the
logical qubit, where the parameterpL can be obtained from
p—the parameter describing the decoherence process of the
individual physical qubits—by Eq.s119d. We thus have that
a logical qubit where each of the particles is subjected to
decoherence for timekt=−lnspd behaves as if it was sub-
jected to decoherence described by a depolarizing channel
acting on the logical qubit for timektL=−lnspLd. We remark
that if p.0.825 17skt,0.192 165 8d, we have thatpL.p
sktL,ktd, that is, the logical qubit is less affected by deco-
herence as a physical one. In other words, the effective time
tL for which the decoherence acts on the logical qubit is
smaller than the physical time and thus the decoherence pro-
cess on the logical qubit is slowed down.

In a similar way, one can consider logical qubits which
are formed by codewords of concatenated quantum error cor-
rection codes withk concatenation levels. A logical qubit
consists in this case of 5k physical qubits. This follows from
the fact that at concatenation levelj , each logical qubit at
level j −1 is replaced by five such logical qubitssof level j
−1d which form the new logical qubit at concatenation level
j . Following the same reasoning as in the case of a single
concatenation level, one obtains that a logical qubit at con-
catenation levelj is subjected to decoherence described by a
depolarizing quantum channel acting at the logical qubit,
where the noise parameterqj is related to the noise parameter
qj−1 of the slogicald qubits at concatenation levelj −1 by

qj = qj−1
5 + 5qj−1

4 s1 − qj−1d, s120d

whereqj =s3pj +1d /4 andq0=q sp0=pd corresponds to deco-
herence acting on the physical qubits. That is, at each con-
catenation level the effective timetj for which the decoher-
ence acts on the logical qubit of levelj decreases as
compared to the physical timet; t0 as long as kt
,0.192 165 8. Forkt0;4/3e0!1 we have that

e j < 10e j−1
2 , s121d

from which follows

ktj <
s7.5ktd2j

7.5
. s122d

That is, the effective timektj for the decoherence acting on
the logical qubit is drastically decreased. For instance, if
kt0=kt=0.01, we have thatkt1<7.5310−4, kt2<4.22
310−6, kt3<1.33310−10, kt4<1.34310−19, kt5<1.34
310−37, kt6<1.35310−73. Recall that the number of physi-

cal qubits that form a logical qubit at concatenation levelj is
given by 5j, which corresponds to 5, 25, 125, 625, 3125,
15 625, respectively. In particular, this implies that by using
625 particles to encode one qubitsi.e., j =4d, the effective
time t4 as compared to the physical timet can be decreased
by a factor of 1017.

2. Lifetime of blockwise entanglement for encoded states

Using the effective change in the time scale for logical
qubits, it is now straightforward to determine the lifetime of
encoded entangled states. We consider blockwise entangle-
ment, i.e., entanglement betweenM subsystems where each
subsystem consists ofm qubits. We consider lifetime of dif-
ferent kinds of entangled states which are formed by logical
qubits and where each physical qubit is subjected to deco-
herence described by a depolarizing quantum channelfEq.
s14dg as in Sec. IV A. We emphasize that a logical qubit
behaves in this context in exactly the same way as a physical
qubit; the only difference is that the effective timetL sor
noise parameterpLd is different. This implies that the results
obtained for GHZ and graph states can be directly used to
obtain lifetime of such encoded entangled states.

Consider an entangled state of GHZ type which is given
by

uGHZLl =
1

2
su0Ll^M + u1Ll^Md, s123d

wherehu0Ll , u1Llj are codewords ofsconcatenatedd quantum
codesswith j concatenation levelsd formed by m physical
qubits which represent a logical qubit. When considering
blockwise entanglement betweenM blocks ofm=5j qubits,
this state behaves in exactly the same way as anM-particle
GHZ statefEq. s22dg consisting of physical qubits where one
considers blocks of size 1. The only difference is that the
effective time scaletj seffective noise parameterpjd is
changed according to Eqs.s120d and s122d.

When considering the original GHZ state andkt=10−2,
we obtain from Eq.s108d sid after a timekt=10−2, the maxi-
mum number of blocks that can be entangled is upper
bounded byM =1057;sid for M =1057,kt=10−2 provides an
upper bound on the lifetime ofM blocks swhere in both
cases each block may have arbitrary size, i.e.,m→`d.

For an encoded GHZ statefEq. s123dg we have the fol-
lowing results.sid The maximum number of blocks of size
m=5j si.e., logical qubitsd that is entangled after a timekt
=10−2 is determined by Eq.s108d, wherep in this equation is
given bye−kt j andktj is the effective time. We find that for
j =1, M =2.1033104; j =2, M =6.1953106; j =3, M =3.510
31011; i.e., the number of blocks of fixed sizem=5j that
remain entangled after some timekt is drastically increased.
sii d An upper bound on the lifetime ofM =1057 blocks con-
sisting of logical qubits of sizem=5j is provided byktj
=10−2, wherektj is the effective time. One can determine the
time kt swhich provides an upper bound on the lifetime of
such systemsd using the recursive formula Eq.s120d. One
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finds that for j =1,kt=0.0382; j =2,kt=0.0778; j =3,kt
=0.1149;j =4,kt=0.1431;j =5,kt=0.1621. Again, one sees
that the lifetime ofM-party entanglement is increased as
compared to the original GHZ state, although here we con-
sidered only blocks of finite sizem=5j, while we allowed for
blocks of arbitrary sizem→` in the case of thesoriginald
GHZ state. We remark that one can only expect that the
encoded system has a longer lifetime as compared to the
original GHZ state as long askt,0.192 165 8, since only in
this casetj , t.

In a similar way, the lifetime ofM-party cluster and graph
statessformed by logical qubitsd is enhanced when consider-
ing such states formed by logical qubits.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have investigated the lifetime ofsdistill-
abled entanglement under the influence of decoherence. We
found that the qualitative behavior of different kinds of en-
tangled states are largely independent of the specific deco-
herence model. In particular, we found forsessentiallyd all
decoherence models with individual coupling of particles to
sindependentd environments that the lifetime of GHZ states
decreases with the size of the system. On the other hand the
lifetime of cluster states and graph states with a constant
degreeswhich does not depend onNd is independent of the
number of particlesN. The last observation can even be ex-
tended to all decoherence models which correspond to some
correlated but localized noise, i.e., where the Kraus operators
of the corresponding map act only nontrivially on a finite,
localized number of subsystems. We have also considered
the lifetime of entanglement between subsystems of different
size, which allowed us to determine the scaling behavior of
entanglement under rescaling of the size of the subsystems.
While for cluster states there is essentially no change in the
scaling behavior withN, for GHZ states we found thatsid the
lifetime of blockwise entanglement for any number of blocks
that contain only a finite number of particlesm tends to zero
asN→`, while it can become finite if the blocks themselves
become macroscopic, i.e.,m→` as N→`; sii d the number
of blocks M that remain entangled after a certain timet is
finite, independent of the block sizem. In addition, we have
shown that for encoded entangled states the number of
blocks that can be entangled after a certain time can be dras-
tically increased and the lifetime ofM-party entanglement
can be enhanced.

Our results suggest a remarkable robustness of certain
kinds of macroscopic entangled states—namely, all graph
states with constant degree—under various kinds of decoher-
ence.
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APPENDIX A

In this appendix we will give a more detailed analysis of
the statementsii d of Sec. V D. Given an arbitrary channel

Er = o
i,j=0,1,2,3

pijsirs j , sA1d

we first consider the question of whether it is possible to
decompose it into a dephasing channelDr=fs1+pzd /2gr
+fs1−pzd /2gszrsz with pz[ f0,1g followed by some arbi-
trary noise channelE8r=oi,j=0,1,2,3qijsirs j, i.e.,

E = E8 + D. sA2d

Since the upper bound derived in Sec. V D becomes tighter
with a decreasing dephasing parameterpz, we will also try to
minimize pz for those channelsE for which an extraction of
a dephasing part is nontrivial, i.e.,pz,1. First of all, with
the matricesP=spijd, Q=sqijd, and

M =1
0 0 0 1

0 0 i 0

0 − i 0 0

1 0 0 02 = M † sA3d

we can rewrite Eq.sA2d as a matrix equation

P =
1 + pz

2
Q +

1 − pz

2
M ·Q ·M , sA4d

which is linear inQ. For 0,pzø1 it has the unique solution

Q =
pz + 1

2pz
P +

pz − 1

2pz
M ·P ·M . sA5d

Since the matricesQ andP coincide with the statessE8
kk8 and

sE
kk8 obtained via the Jamiolkowski isomorphismf26g ssee

Sec. V Cd, the conditions thatQ actually corresponds to a
completely positive and trace preserving mapE8 are sad
trk8Q=s0

k andsbd Q.0, i.e., thatQ is a density matrix. It is
straightforward to show that trk8Q is the maximally mixed
states0= 1

21 on particlek whenever trk8P=s0
k and hence that

for 0,pzø1 conditionsad is always satisfied. On the other
hand the positivitysbd imposes further constraints on the
allowed parameter range ofpz, for which the channelE per-
mits a decomposition of the formsA2d. For Pauli channels
Er=oi=0,1,2,3pisirsi the solution Q is again a diagonal
matrix:

Q =
1

2pz
diag(spz + 1dp0 + spz − 1dp3,spz + 1dp1 + spz − 1dp2,spz + 1dp2 + spz − 1dp1,spz + 1dp3 + spz − 1dp0). sA6d
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Now the positivitysbd yields the four inequalities

1 − pz

1 + pz
ø

p0

p3
ø

1 + pz

1 − pz
,

1 − pz

1 + pz
ø

p1

p2
ø

1 + pz

1 − pz
, sA7d

which imply that in particular either bothp1 andp2 sp0 and
p3d are zero or none of them. Therefore in the case of a
bit-flip channel, as to be expected, no dephasing component
can be extracted in the above sense. Moreover, it is straight-
forward to see that the minimal value forpz that allows for
such an extraction is given by

1 − pz

1 + pz
ø qmin ; minHp0

p3
,
p1

p2
,
p3

p0
,
p2

p1
J , sA8d

i.e., pzù s1−qmind / s1+qmind. In the trivial case of a dephas-
ing channel itself with parameterp, i.e., p0=s1+pd /2, p3

=s1−pd /2, andp1=p2=0, this clearly gives a minimal value
for pz=p. For the depolarizing channelfp0=s1+3pd /4 ,p1

=p2=p3=s1−pd /4g we obtain the minimal value forpz

=2p/ s1+pd, and in the case of the quantum optical channel

with m=0 fp0=1−s2p+qd, p=1=p2=pø
1
4 and p3=qø

1
4g

one arrives atpz=1−q/ s1−2pd.

APPENDIX B

In this appendix we will give the proof to the statements
sid, sii d, andsiii d of Sec. V E.

Proof of (i). Let U1, U2, andU3 denote the disjoint subsets
on which asx, sy, or sz error occurs. From the stabilizer
equationsKk

GuGl= uGl it follows thatsx
kuGl=sz

NkuGl and simi-
larly sy

kuGl=sz
ksx

auGl=sz
Nk+kuGl. With this one obtains

r = o
U1,U2,U3#V

UiùUj=0

p0
uVu−uU1u−uU2u−uU3up1

uU1up2
uU2up3

uU3usz
UuGlkGusz

U,

sB1d

whereU=GsU1+U2d+U2+U3. With qi =pi /p0 the eigenval-
ueslU therefore can be written as

lU = p0
uVu o

sU1,U2,U3d[MsUd
q1

uU1uq2
uU2uq3

uU3u,

where

MsUd = hsU1,U2,U3duUi # V, Ui ù Uj = 0,U = GsU1 + U2d + U2 + U3j.

This set may alternatively be written as

MsUd = hsU8 \ U9,U8 ù U9,U9 \ U8duU8,U9 # V,U = GU8 + U9j = hsU8 \ sGU8 + Ud,U8 ù sGU8 + Ud,sGU8 + Ud \ U8duU8 # Vj.

This is exactly the index set in Eq.s80d.
Proof of (ii). We first note that for partial transpositionTA

generally

sC1
A

^ C2
BDABC3

A
^ C4

BdTA = sC3
TdA

^ C2
BsDABdTAsC1

TdA
^ C4

B

sB2d

holds. With this rule we can compute

Kk
GsuGlkGudTAKk

G = sKk
GuGlkGuKk

GdTA = suGlkGudTA,

i.e., suGlkGudTA commutes withKk
G for all k[V. Therefore

suGlkGudTA is again diagonal in the graph state basis
huUlGuU#Vj, i.e., suGlkGudTA=oU#VlU8 uUlGkUu. In order to
determine the spectrum let us decomposeU into sUA,UAcd
according to the partitioning and use the Schmidt decompo-
sition f6g

uGl =
1

2uAu/2 o
A8#A

s− 1d fAsA8duA8lAuG8A8lAc

with fAsA8d=kA8 ,GAA8l, the standardz basisuClA=sx
Cu0l^A

on partitionA and the graph basisuClAc
= uClG\A

^Ac
on partition

Ac with respect to the pure graph state corresponding to the

graphG\A, which is obtained fromG by removing all ver-
tices inA. Now we can compute

lU8ªGkUusuGlkGudTAuUlG =
1

4uAu o
Ai#A

i=1,2,3,4

s− 1doi fAsAid+kUA,A1+A2l

3kA1uA3lkA2uA4lkG8A1uG8A2 + UAcl

3kG8A3 + UAcuG8A4l

=
1

4uAu o
A1,A2#A:

G8sA1+A2d=UAc

s− 1dkUA,A1+A2l

=
1

2uAu o
A8#A:

G8A8=UAc

s− 1dkUA,A8l. sB3d

WhereaslU vanishes forU#V with UAc¹ Im G8, in the op-
posite caseUAc[ Im G8 we can choose an arbitraryA0 with
G8A0=UAc to simplify sB3d:
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lU8 =
1

2uAu s− 1dkUA,A0l o
A8[ker G8

s− 1dkUA,A8l

=
1

8uAu s− 1dkUA,A0lHukerG8u if UA [ skerG8d',

0 if UA ¹ skerG8d'.

Note that this is independent of the choiceA0, since a differ-

ent choice Ã0 will differ from A0 only by an element
A8[kerG8, for which kUA,A8l=0 if UA[ skerG8d'. There-
fore one obtains the partial transpose for the pure graph state

suGlkGudTA =
ukerG8u

2uAu

3 o
sX,Yd[

sker G8d'3sIm G8d

s− 1dkX,AYluX + YlGkX + Yu.

sB4d

The corresponding formulas83d for a general graph diagonal
state can be deduced from Eq.sB4d by again usingsB2d.

Proof of (iii). For lU+k the estimation can be derived from
Eq. s80d: By addingsdeletingd an elementk to sfromd the set
GU8+U the corresponding sizes of the setsU1=U8 \ sGU8
+Ud, U2=U8ù sGU8+Ud and U3=sGU8+Ud \U8 in the ex-
ponents ofs80d can at most increase or decrease by 1. More-
over, since U1, U2, and U3 are disjoint, the operation
U°U+k of adding or deletingk cannot simultaneously in-
crease or decrease any two setsUi. For example, ifk[U1
then

uU8 \ sGU8 + U + kdu = uU1u − 1,

uU8 ù sGU8 + U + kdu = uU2u + 1,

usGU8 + Ud \ U8u = uU3u.

In any case every addend

q1
uU8−sGU8+U+kduq2

uU8ùsGU8+U+kduq3
usGU8+U+kd−U8u

in Eq. s80d can be bounded from below byq3q1
uU1uq2

uU2uq3
uU3u

and from above by 1/q3q1
uU1uq2

uU2uq3
uU3u since qø1. This

givesqlUølU+kø s1/qdlU. For lU+Nk
andlU+Nk+k a similar

argument holds, if one rewrites

lU+Nk
= p0

uVu o
U8#V

q1
usU8+kd\sGU8+Udu

3 q2
usU8+kdùsGU8+Uduq3

usGU8+Ud\sU8+kdu

and

lU+Nk+k = p0
uVu o

U8#V

q1
usU8+kd\sGU8+U+kdu

3 q2
usU8+kdùsGU8+U+kduq3

usGU8+U+kd\sU8+kdu.

In this representation we “absorbed”Nk into the summation
index U8 in both cases usingGU8+U+Nk=G8sU8+kd+U.
This concludes the proof ofsiii d.
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