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We investigate entanglement properties of multipartite states under the influence of decoherence. We show
that the lifetime of(distillable) entanglement for Greenberger-Horne-Zeilind&HZ) -type superposition
states decreases with the size of the system, while for a class of other states—namely, all graph states with
constant degree—the lifetime is independent of the system size. We show that these results are largely inde-
pendent of the specific decoherence model and are in particular valid for all models which deal with individual
couplings of particles to independent environments, described by some quantum optical master equation of
Lindblad form. For GHZ states, we derive analytic expressions for the lifetime of distillable entanglement and
determine when the state becomes fully separable. For all graph states, we derive lower and upper bounds on
the lifetime of entanglement. The lower bound is based on a specific distillation protocol, while upper bounds
are obtained by showing that states resulting from decoherence in general become nondistillable or even
separable after a finite time. This is done using different methods, nai)elye map describing the decoher-
ence processge.g., the action of a thermal bath on the systdsacomes entanglement breakir(@) the
resulting state becomes separable, @ingthe partial transposition with respect to certain partitions becomes
positive. To this aim, we establish a method to calculate the spectrum of the partial transposition for all mixed
states which are diagonal in a graph-state basis. We also consider entanglement between different groups of
particles and determine the corresponding lifetimes as well as the change of the kind of entanglement with
time. This enables us to investigate the behavior of entanglement under rescaling and in the limit of large
number of particleN—oce. Finally we investigate the lifetime of encoded quantum superposition states and
show that one can define an effective time in the encoded system which can be orders of magnitude smaller
than the physical time. This provides an alternative view on quantum error correction and examples of states
whose lifetime of entanglemeifibetween groups of particles fact increases with the size of the system.
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I. INTRODUCTION lable degrees of freedom of the environment, e.g., described

Since the early days of quantum mechanics, entanglemeRy @ heat bath. GHZ states can be viewed as simple models
has remained at the focus of interest. While entangled staté¥ Schrodinger cat states and are in fact sometimes called cat
of microscopic samples of matter—such as a few atoms optates. For GHZ states, one can _mdeed show thalwfth_e

ions in a trap—can nowadays be prepared and studied in t%ecoh_erence rate of a single qubit, then the rate at which the
laboratory[ 1], the question whether entanglement can persisty-duPit state decoheres is given kil. However, the obser-
on a macroscopiéi.e., classical scale is still the subject of Vation that multipartite entanglement becomes more fragile
an ongoing debate. The puzzling consequences of such mafith the size of the system is valid for this specific state only,
roscopic entanglement—highlighted in the notorious gedan2nd@ priori it is not clear whether a similar conclusion can
ken experiment known as “Schrodingers caf2] by be drawn for other multipartite entangled states.

Schrédinger in 1935—and thi@s it seemsabsence of en- | I;/Io_refover, t_the dbecc?[herfncel rate tdoes n?t prc])cwde ctom—
tanglement in macroscopic objects and hence in our “classE ete information about entangiement properties ot a system.

cal world” suggests a mechanism which prevents the persis[1 the last few years a theory of entanglement has emerged,

" . which allows for a more sophisticated and detailed investi-
tence of entanglement on a macroscopic scale. It is ofte

: ) : ~gation of the effect of decoherence on the entanglement
argued that decoherence, i.e., interaction of a system WIIB g

. roperties of a multiparticle entangled state. Quite recently,
uncontrollable degrees of freedom of some environni@ht |\« have shown in Ref4] that for GHZ states not only does

provides a way to understand the absence of entanglement @i, gecoherence rate show a scaling behavior with the sys-
a macroscopic scale. In particular, the decoherence rate {gm size, but also the lifetime of distillable entanglement

believed to grow linearly with the size of the system which[that is, the time after whiclidistillable) entanglement dis-
would predict a rapid decay of entanglement for systemgppears from a system subjected to decoheléndact de-
consisting of many particles. creases with increasing number of partidgsonfirming the
Such an argument can easily seen to be valid for certaiprevious reasoning. On the other hand, we have also shown
entangled states, e.g., superposition states of the form  in Ref. [4] that for a class of other genuine multiparticle
— 1721 EN ®N entangled states, most notably cluster stgiésthe lifetime
[GHZ) = 1IN2(10)*"+ 1)), @ of distillable entanglement does not depend on the number of
also called Greenberger-Horne-Zeiling&HZ) states which  particlesN and thus the size of the system. This is in sharp
are states oN spins or qubits, that interact with uncontrol- contrast to the behavior of GHZ states and shows that genu-
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ine macroscopic entanglement can indeed persist on tim@lable entanglement vanishes after an arbitrary short time
scales which are independent of the size of the system. on all scales. Only if the size of the subgroups become mac-
While the investigation in Ref.4] was limited to a spe- roscopic themselve@n the sense thall systems are divided
cific decoherence model corresponding in physical terms tinto a fixed numbeM of cells whose size\/M grows to
individual coupling of particles to a thermal reservoir in the infinity as N—) the lifetime of distillable entanglement
infinite-temperature limit, we will show in this article that (between theM cells of macroscopic sizebecomes finite
these observations are largely independent of the specifiand scales to leading order as(&¥). We also consider the
model of decoherence. In particular, a similar scaling behaviifetime of encoded entangled states. When considering en-
ior of the lifetime of N-party distillable entanglement with tang|ement properties between groups of partic|es where
the size of the system is obtained for all decoherence modelsach group constitutes a logical qubit of(@oncatenated
dealing with a coupling of each particle to its own environ- gquantum error correction code, one can define an effective
ment (or heat bath e.g., described by a quantum optical jime for the encoded system that incorporates the error cor-
master equation of Lindblad form. The results can even bggciion procedure. The effective time can be orders of mag-
'?hxéeenr?\i?ofqomceo#[eci;[\ll\ﬁgIftgr_rgrl]—?ze gg:g!nvg: of pa}&ncles tlot' nitude smaller than the physical time. In this way one can
- L provide analiCsy g,y that the lifetime of entanglement between groups of
results for the lifetime ofdistillable) entanglement, we cal- ticl . ith the size of th stem
culate upper and lower bounds on the lifetime for all stated@MICIES can €ven increase wi siz€ ot the system.
The paper is organized as follows. In Sec. Il we introduce

which belong to the family of graph statgs,6]. The lower decoherence models—most notably individual coupling of a

bound is based on an explicit entanglement distillation pro-_. . ; . .
tocol, while upper bounds are obtained by three differents'ngle particle to a reservoir described by a quantum optical

methods. Using the first method we show that the completel aster equa‘qon of L'ndt.’lad form as well as Pauli

positive map describing the decoherence process becom Fanne_ls—whlch we_deal with throughout the paper. In Sec.
entanglement breakinfy7] after a finite time. This implies we introduce k_)a3|c concepts of entanglenj_ent theor_y._ln
that all initially entangled states become separable and th a.rt.|cu_lar, WE review the concepts of separablhty_ and distill-
the lifetime of all kinds of entanglement is finite. The second?® .|I|ty n ml_JItlpar'ucIe systems as we_II as the partial transpo-
method is more specific to graph states and shows that gra tion criterion. We also define the lifetime of entanglement

states suffering from decoherence become separable afterwéth respect to cer'_[ain_ partitionings pf _the system. In Sec. IV
finite time. This is done by using a dynamical description of V€ determine the lifetime di-party distillable entanglement

graph states and by showing that the generating operatior?% GHZ states for decoherence described by depolarizing

become separable. The third method is based on the partié anl;llels[4]f.as; weI_I as t%eneral qu?n;um Oﬁtlct?[ggargnels. In
transposition criterion and evaluates when the partial tran 2€C. vV we Tirst review the concept of graph s n Sec.
A, and then derive lower and upper bounds on the lifetime

position with respect to a certain partition becomes positive. - )
To this aim, we develop a method to calculate the spectruan N-party distillable entanglement for graph states subjected

of the partial transposed operatpfs for any subsetS of to decoherence. We generalize our results to weighted graph

parties and all density operatopswhich are diagonal in a states in Sec. VI. In _Sec. VII we consider entanglemgnt be-
basis constituted by orthogonal graph states tween groups of particles for GHZ states and determine the

We also consider entanglement betwa&mgroups of par- lifetime of encoded entangled states in Sec. VII C. We sum-

ticles, i.e., partitions of the system inkd parts. Each of the m_arize and conc_lude in Sec_. Vill, while_ _some_teqhnical de-
groups may consist of several particles, which are then cont—a'ls’ €.9., r(_egardmg the partial transposition criterion and the
sidered as a single subsystem with a higher-dimensional stafk r_respond|.ng upper bound on the I|fet.|me for mixed states
space. We analytically determine the lifetime of distillable ich are diagonal in a graph-state basis, can be found in the
entanglement betweell groups of particles for arbitrary Appendixes.

partitionings for GHZ states and again derive lower and up- Il. DECOHERENCE MODELS

per bounds for all graph states. In this way we study the _ ) )
change of the kind of entanglement with time and, e.g., show Ve consider a single two-level systefubif) coupled to
for GHZ states that the effective size of entanglement, i.e 2N €nvironment which is described by a thermal reservoir.
the maximum number of entangled subsystems, decreasdd€ evolution of this qubit is governed by a general quantum
with time and entanglement eventually becomes bipartite be2Ptical master equation of Lindblad form

fore it vanishes completely. If we associate a specific spatial 9 )

distribution with the particles, e.g., spins distributed on a 5P=—|[H,P]+/~'P, (2
lattice, one can choose certain partitionings that correspond

to a rescaling of the size of the subsystem, as it is used iwhereH describes the coherent evolution while incoherent
statical physics. We study in particular the behavior of dis-processes are described by the superopeiatdve have
tillable entanglement under coarsening of the partitions, that B

is, under rescaling of the size of the subsystem in the Lp=-—(1-9)|o,0.p+po.o.—20_po.]-=o_0o.p
asymptotic limit N—o. For cluster stategand all other 2 2

graph states with constant degreee show that the lifetime C-B

of distillable entanglement is largely independent\ofaind +po_o, = 20,p0_] - s [2p = 20,p0], 3)
thus the same on all scales. For GHZ states, however, we

find that whenever the size of the subsystems is finite, diswith 0. =(1/2) (oytioy) and Z=B. While the parameters
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B,C give the decay rate of inversion and polarization, 1-p(t) ) ut
s€[0,1] depends on the temperatufeof the bath. More Dp=p(t)p+ (p+oa3pos)  with p(t) =e™.
preciselys=lim,_..((1+0;)/2);, wheres=1/2 corresponds to

T=co. It is straightforward to solve this master equat[&ih (15
We consider the casel=0, i.e., solely decoherence. The Finally, choosings=1 andB=2C= «, one obtains the decay
eigenoperators and corresponding eigenvaluesCotan  channel(pure dampiny

readily be determined and one finds

Dp = E1pE] + EzpE], (16)
Z:O'X:_CO'X, (4) . 10 0y
with the Kraus operatorElz(O \1T7) and EZ:(0 0’). Here
Loy,=~Ca,, (5) y(t)=1-e"* denotes the decay rate for the decay from level

|1) into level |0).

For a system consisting of several particles, we shall be
Lo;==Boy, (6) interested in the effect of decoherence on the entanglement
properties of this system. We consider as a decoherence
model individual coupling of each of the qubits to a thermal
bath, where the evolution of thHeéh qubit is described by the
map &, given by Eq.(9) with Pauli operatorsr; acting on
For p=p(0)=31+8&-6=Gp+a0x+a,0,+[a,~(2s-1)/2]0,  qubitk. We will be interested in the evolution of a given pure

LTo= g%[1+(2s—1)ag:o. 7)

we have that state|¥) of N qubits under this decoherence model. That is,
_ ot - ot the initial statgW) suffers from decoherence and evolves in
p(t) = €%p(0) = 0o + € (a0y + 8y0y) time to a mixed statg(t) given by
+€eBa,- (25— 1)/2]0,. 8
Lo, - (25 i2le ® p(t) = £:67 - ETNY]. 17)

Equivalently, one can describe the resulting completely

positive map(CPM) & with p(t) =&,p as follows: In the following we will also consider decoherence due to
t - “t .

individual noise processes of the particles described by some

8 Pauli channel:
&p= E )\j(t)O'ij'j + u(O)[opl +1po, - iO'xpo'y + iO'ypO'x], 3 3
j=0 .
Dp=2 pi(hoipo;  with (E pi(t) = 1) , (19
9) i=0 i=0
with which are of particular interest in quantum information
theory, especially in the study of fault-tolerance of quantum
Ao(t) = }(1+2e‘C‘+e‘B‘), (10) ~ computation. This class contains, for exampl&) for po
4 =(1+3p)/4 andp,=p,=p3=(1-p)/4 the above depolarizing

channel;(2) for p,=\; the quantum optical channel according
to Eq. (9) with ©=0 (s=3); (3) for po=(1+p)/2, p;=p,=0,
and p;=(1-p)/2 the above dephasing channét) for p,
=(1+p)/2, p,=p3=0, andp;=(1-p)/2 the bit-flip channel.
1 In the remainder of the paper, we will analyze the time
() ==(1-2eCt+eBY, (12)  dependence of the entanglement properties of the decohered
4 state p(t) for different initial states|/¥). The depolarizing
channel is of particular interest, since the decohered state due
to an arbitrary noise channel can be further depolarized to
some state, which might also be obtained by some depolar-
izing channel. Moreover, among the stated noise models the
In Sec. V C we will discuss the entanglement properties ofiepolarizing channel is the only channel, that is basis inde-
this map and show thdexcept for some singular cagés  pendent, i.e., invariant under unitary transformations. We
becomes entanglement breaking after some finite time. Fagill frequently use the Pauli channel and will describe the
s=1/2 andB=C=k, Eq. (9) describes the coupling of the entanglement properties pft) in terms of the parameters.
particle to a thermal bath in the largelimit equivalent to a Nevertheless one has to keep in mind that the time depen-

1
M) =No(t) = Z(l -e), (11

2s—-1
) = ST(l — B, (13)

so-called depolarizing chann@thite noise: dence itself is already included in the paramefersp;(t).
1- 3
Dp=p(t)p+ PO oipa, with pt) = e, (14) Ill. SEPARABILITY, DISTILLABILITY, AND LIFETIME
4 j=0 OF N-PARTY ENTANGLEMENT

ForB=0, C= «, and arbitrarys, Eq.(9) describes instead the For the lifetime of entanglement it is not only necessary to
coupling of the particle to a reservoir, which is equivalent tospecify the underlying decoherence model, but also the very
a dephasing or phase flip channel: notion of multiparticle entanglement itself. This is mainly
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due to the fact that multiparty entanglement is a subtle issustatep(t) becomes nomN-party distillable. This implies that
in quantum information theorgsee, e.9.[9,11]). Apart from  lower bounds on the lifetime of distillable entanglement can
some special cases, the existence of an entanglement médse obtained by showing that the state) is distillable, while
sure that is satisfying for information theoretic purposes asin upper bound can be obtained by proving nondistillability
well as applicable and calculable for mixed states is still arof p(t). When considering partitions of the system irb
open problem. In the following we will therefore concentrate groups, the lifetime oM-party entanglement with respect to
on the discussion of two qualitative entanglement criteriaa given partition is defined accordingly. We refer to the life-
Throughout the paper we will considbrtwo-level systems  time of M-party entanglement as the time after whigh) is
(qubits with corresponding Hilbert spadé=(C?)“". TheN  nondistillable with respect tall M-party partitions. In a
particles are distributed amorg parties 1,..,N. Starting  similar way, one can define a lifetime with respect to the
with a pure GHZ or graph state we will consider in Secs. IVseparability properties qi(t).
and V theN-party separability and distillability properties of  |n order to determine entanglement properties of the
the decohered stajét) [see Eq(17)]. mixed states in question, we will continuously make use of
On the one side of the scale the stalg) can still be  the partial transposition criteriofl2,13, an entanglement
N-party distillable entangledas is the case for the corre- criterion which provides necessary conditions for distillabil-
sponding pure states in question. Hereby we g@d)IN-party ity and separability. The partial transposition is defined for
distillable if any other trueN-party entangled stateb) can  bipartite systems only, while a system can in general consist
be obtaineddistilled) asymptotically from multiple copies of of several parties. Making use of the concept of partitionings
p under local operations and classical communicatiorof the system, in particular considering all bipartitionings,
(LOCOQ) [10,11}: one can use the partial transposition criteria also for multi-
ok OUD 19 partite states. LeA denote a subset oh partiesky, ..., Ky _In
p H’ |[DXD]. (19) general, given an operatdf acting onC%® C%, we define
the partial transpose of with respect to the first subsystem
We remark that in the multicopy case all trdeparty en- in the basig|1),(2),...,|da)}, X4, as follows:
tangled states are equivalent since they can be transformed
into each other by LOCC. That is, the condition that any true T._ . N
N-party entangled state can be created can be replaced by the Xn= iz_:l k%1<"k|x“'l>“’k><"l|'
condition that somé\-party entangled state, e.g., the initial I
pure state, can be created. Disregarding the practicability o Hermitian operatoiX has a nonpositivépositive) partial
the underlying distillation protocol, the stapét) is then as transposéNPT) [(PPT)] if X" is not positive(positive), re-
useful as any other entangled state and therefore can in prigpectively. That isX™ is NPT if there exist somg¥) such
ciple be regarded as a universal resource for quantum infothat (¥[XTA¥)<0.
mation processing such as quantum communication. The positivity of the operatop™ gives a necessary crite-
On the other end of the scalp(t) might have also be- rion for separability, whereas the nonpositivity @ is nec-
come completely separable or classical in the sense that éssary for the distillability of the density operaiarin par-
can be described by a classical mixture of product states, i.dicular, if a bipartite density operator is PPT, then it is

da dg
(21)

p is N-party separableif certainly not distillablg 12]. This implies[11] that if a mul-
tiparticle density operatop is PPT with respect to at least
p) = pod @ p? @@ pV. (200 one bipartite partition, thep is certainly notN-party distill-
k able. On the other hand, positivity of all bipartite partitions is

necessary condition fdd-party separability. In the case of
o-dimensional system&’® (2 the PPT(NPT) criterion is
necessaryand sufficient for separability (distillability)

If a state is completely separable, it is no longer entangle
whatsoever. In between these two extremal casé$,can

contain different types dblockwise entanglementhich we 113 14 A'detailed discussion of the application of the partial

W'" dlsc_:uss In-more dgtall in Sec. .V”' T_here we will con- transposition criteria to multipartite systems can be found in
sider different partitionings of particles intel groups(M Ref. [11]

=<N), where each group forms a subsystem with a higher-

dimensional state space and consists of several particles.

M-party dIStIIIabIIIty (Separability)can then be definedith IV. LIEETIME OF N-PARTY ENTANGLEMENT

respect to a given partitioningn a similar way, where the IN GHZ STATES

notion of local operation has to be adapted accordingly.

Moreover we will callp(t) M-party distillable if there exists We start by considering the lifetime dfi-qubit GHZ

at least one partitioning with respect to whiett) is M-party ~ States

distillable. _ 5\ /1N N
Based on the notion oi-party separability and distill- IGHZ) = (1/\“2)(|O> D). (22)

ability, one can define the lifetime of entanglement. AnThese states are special examples of states that maximally

N-party stategW)(¥| which is subjected to decoherence for violate multipartite Bell inequalitie§15]. GHZ states have

timet evolves into a mixed staigt). The lifetime ofN-party  also become an interesting resource for multiparty quantum

distillable entanglement is given by the time after which thecommunication, e.g., in the context of secret sharing and
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secure function evaluatiori.6]. Moreover they can be used
to improve frequency standarfis7]. For the class of-party

GHZ states the lifetime of most of the above entanglement

properties can be determined analytically.

A. Large-T limit of reservoir

We start by reviewing the results ¢#] and consider a

model of decoherence with individual coupling of each of

the particles to a thermal reservoir in the lafdmit. The
process for a single qubit is described by Etd) and cor-
responds to white noise with time-dependent parampter
=p(t)=e " wherex is a coupling constant. That is, we con-
sider the state(t) given by Eq.(17) where the CPME, is
given by the depolarizing channéb, [Eq. (14)]. It is
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FIG. 1. Upper bound on lifetimer of N-party entanglement.

straightforward to evaluate the effect of decoherence on thigaspect to the partition one-partié—1)-parties is the first

kind of stateg11,18. One finds thatGHZ) evolves to a state
p(v),
1

p() =2 Nk Py ok (N + o), (23
k=0

with

Pijky iy, = [KaKo - -kn)(Kakor Ky, (24)

and o, =(oytioy)/2, i.e., aN=[00--0)(11 --1|. It turns out
that the coefficients)\klkz...kN satisfy Moy kg = MR Ky - Ky
where kj=1-k;. In addition, Mk, -k depend only onk
— <N H — — ; N, —<sNj —
=;j=.1k]" that IS, )\klkz"'kN_}\lllz"'lN:_)\k if EllkJ_Ejlll_k
This implies that\,=\y-x and one finds

1
HlL+p*L-p)NF+ (1 +pN KL -p),

)\k: 2N

pN

w=

2 (25)

States of the form Eq23) with Nk kg = M- Ky, CAN equiva-
lently be written as density operators which are diagonal in

basis consisting of orthogonal GHZ states. Such density op-

erators have been completely characterized with respect
their entanglement properties in R¢lL1]. In particular, it
was shown that these states afeparty distillable (sepa-

rable if and only if the partial transpose with respect to all

possible partitions is nonpositivépositive), respectively.

One readily finds that the partial transposition with respect to

a group B, which contains exactlyk parties is positive,
p(H)™8=0, if and only if[11] x?<NAn-k i.€.,

Making use of the fact that
N =A== Nggps (27)

it is now straightforward to determine the lifetime of distill-

one to become positive. Similarly, E6) with k=[N/2]
determines the time after which the stat¢) becomes fully
separable, as the partial transposition with respect to the par-
tition N/2-N/2 parties is the last one to become positive.
One observes that the critical valpg;= e i, at which
the partial transposition with respect to one party becomes
positive increases withl. This implies that fot=t;;= 7 the
state is no longeN-party distillable entangled and thus the
lifetime 7 of true N-party entanglement decreases with the
size of the system as expectexbe Figs. 1 and)2Note that
finding the threshold valug,; for a given N exactly is
equivalent to finding the roots of a polynomial of degide
(which can be done efficiently numericgllyOne can obtain
analytic upper and lower bounds pg;; by approximatingy,
by (1+p)NK(1-p)*/2N*1 or 2(1+p)NK(1-p)k/2V*1, respec-
tively, which is done explicitly in Sec. VII B.

B. Arbitrary individual coupling to the environment

We will now investigate the lifetime of distillable en-
tanglement for more general decoherence models. While we
continue to assume an individual coupling of particles to

eilndependent environments—an assumption which is particu-

(=}

-
(=]

to

N
on

-
S,
[

&

Upper bound on kt

A

s
(=1

10° 1° 10° 10* 10°  10°

number of particles N

0 1

=
(=]

FIG. 2. Same as Fig. 1 but with double-logarithmic axis. Note
that the same figures also display an upper bound on the life¢ime

ableN-party entanglement as well as the time when the statgf M-party entanglement in systems with—c particles for dif-

becomes fully separable. From Ed&6) and (27) follows
that the lifetime of distillableN-party entanglement is deter-
mined by Eq.(26) with k=1, as the partial transpose with

ferentM, as discussed in Sec. VII. In this case the numbers on the
x axis have to be considered as the numideof M-party entangle-
ment in question.
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larly well satisfied if the entangled states in question are-a)(1-c)]%/4 and(ii) exp(-NBt)/4=[bN/2]2. While (i) can
distributed among several parties—we consider now coube checked by direct computatiofii) follows from 2C-B
plings that are described by arbitrary quantum optical mastex=0 (see Sec. )l Using (i) and (ii) together with Eq(32),
equations of Lindblad fornisee Sec. )l These models in- one obtains thap(t) certainly has positive partial transposi-
clude as particular instances decay channels, phase flip chation with respect to any group & parties if

nels, and depolarizing channels. We consider the influence of

decoherence—described by the CPM E&)—on the GHZ N= kln(ac) —In[(1 -a)(1-¢)] (33)

= y

state ofN particles, i.e., the entanglement properties of the In(ac) + Bt
density operatop(t) which is given by Eq(17). We use the provided thats# 0,1 andB>0. We remark that thésingu-

fact that one can writp(0) =|GHZ)(GHZ| as lar) cases=0 corresponds to a decay channel, and for such a
1 oN . coN . eN. N channel we have that the staiét) has nonpositive partial
p(0) =3 (P "+ P+ 0, T+ 0T, (28)  transposition for all times Whenever the temperature of the
bath is however not zer@.e., s# 0, 1) we have that for any
where Py=|0)0|=(1+0,)/2,P;=|1)(1|=(1-0,)/2, and 0.  time t there exists a finite numbeX, [given by the right-
=(oyxioy)/2. It is not difficult to see that the action of the hand side of Eq(33) with k= 1] such that forN=N, par-

map¢& [Eq. (9)] is given by ticles the statg(t) is certainly no longer distillable. Thus we
have, as in the case of depolarizing channels, a scaling of the
EPg=aPy+ (1 -a)Py, (upper bound on thelifetime of distillable entanglement
with the number of particlebl. If N is sufficiently large, the
EP;=(1-c)Py+cPy, (upper boungon the lifetime goes to zero.
A lower bound on the lifetime of(t) can be obtained as
Eo, =bo,, (29) follows. We have that a state of the form E@3) can be

) ) ) depolarized by means of(atochasti¢ sequence of local op-
where we introduced the new variablasb,c, which are  erations and classical communicatiésee Ref.[11]) such

given by that the resulting state has new coefficiefn;:li(Z.A.kN which
a=s+(1-se®, satisfy
A +\
— aCt N _ kakoky kiky Ry
b=¢€ s )\klkz"'kN_ 2 y (34)
c=(1-s) +sebBt (30)

and hence\ =Xy It follows that the depolarized stafgt)
It is now straightforward to determine the action of the mapis distillable if

E,E5 --Ey on the statep(0). One finds that the resulting den- -

sity operator is of the form Eq(23). The coefficients [bN/2] > Ay, (39

N | - ~
Mgk, ONIY depend oo, kj, where for all k. One can upper bounti, by N, <\,=maxa(1

1 - - —a)Vk a1 -a)k,cH1-c)NK, cNK(1-c)) and obtains that
Ne= o[-0+ (1 -a)a], p(t) is distillable if bN>2).. By taking the logarithm of this
equation, one obtains a bound on the number of partidles
pN such that the state remains distillable for a titne
w= > (31

V. LIFETIME OF N-PARTY ENTANGLEMENT

Th ndition that th rtial tran ition with r
e condition that the partial transposition with respedt to IN GRAPH STATES

parties is positivep'A=0 reads
Njo12 In the previous section the class of generalized GHZ
(D721 < M (32) states was shown to have a lifetime of entanglement that
We remark that in contrast to the discussion in Sec. IV A,decreasegexcept in some singular cagesith increasing
here we have\, # \y_. This means that nonpositiy@osi-  number of particled in the system. We will now discuss the
tive) partial transposition with respect to all partitions is no lifetime of N-party entanglement in graph states and show
longer a sufficient condition foN-party distillability (sepa- that for a significant subclass such as cluster states the life-
rability) respectively. However, one can still use the partialtime of distillable entanglement is essentially independent of
transposition criterion to obtain lower and upper bounds orN. After recalling some basic definitions and notations, we
the lifetime of distillable entanglement. In particular, if the will first derive a lower bound tdN-party distillable entangle-
partial transposition with respect to at least one partition isnent by providing an explicit distillation protocol. We will
positive, then the statp(t) is certainly no longemN-party  then use three different techniques to establish upper bounds
distillable. to the lifetime ofN-party entanglement. These methods ap-
To obtain an upper bound on the lifetime of GHZ states,ply to different decoherence processes and are interesting on
we make use of the following fact$) MAy_=(@c)N (1 their own, since they might find applications also in other
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problems not directly related to lifetime of states under de-
coherence. Finally we will extend our results to a more gen-
eral class of so-called weighted graph states.

A. Basic definitions and examples

Graph states are multiparticle spin states of distributed
guantum systems with interesting applications in quantum
information theory: Special instances of graph states are ) _
codewords of quantum error correcting codes, which protect F!G- 3. (Color onling The graph states corresponding to the
quantum states against decoherence in quantum computatidif™Plete graph and the star graph are equivalent to the GHZ state
Up to local unitaries all stabilizer states can be represented &% F9- (22 up to some local unitarie5].
graph state§19]. For example, the Calderblank-Shor-Steane
(CS9 codes correspond to the class of so-called two- KkG|U)G: (- DYqU)g. (40)
colorable graphf20]. For this class of graph states entangle-
ment purification procedures are knoy. These protocols
even work in the case of noisy local control operations. Fi
nally the class of cluster states are known to be a univers
resource for quantum computation in the one-way quantum Us g oM (41)
computer[21]. For the study of genuine multipartite en- 927 2.7
tanglement graph states are particularly useful, since they
allow for an efficient description even in the regime of manyMoreover we will denote setd and their corresponding bi-
parties: Thereby the graph essentially encodes an interactiorary vectorsU =(Uy)ev=(U1,...,Uy) over Iy (the integer
pattern between the particles. L&=(V,E) be a graph, field modulo 2 with the same symbol. Finallk will also
which is a set ofN vertices keV connected by edges denote both the vertex and the corresponding one-element
{k,I} € E that specify the neighborhood relation between theset{k}. In this notation the stabilizer generators can be writ-
vertices. Starting from the state ten ask®=c%o)k and the original graph state is just that with
[+)Vi= ® ey +)®, where|+)=(1/v2)(|0)+|1)) denotes the an error syndrome corresponding to the empty set 0, i.e.,
eigenstate ofr, with eigenvalue+1, the graph statéG) is  |G)=|0)s. This is also notationally advantageous, since we
obtained by applying a sequence of Ising-type interactions will use both set and binary operations: e.g., for
A,BEP(V)=F) we will wiitt AUB, ANB, and A\B
(A=V\A) for the union, intersection, and difference
according to the interaction pattern specified by the graph(’complemer)tas well asA+B and(A,B} for the addition .and.
the scalar product modulo 2. The neighborhood relation in a

Here and in the following, setd CV as an upper index
for operators will label those vertices where the operator acts
aﬂontrivially, e.g.,

Uy = e (@a%-og) o000 (36)

ie., . . . .
graph is also often represented in terms of its adjacency ma-
Gy= TT Uyl+)". (37) trix I
{kI}eE
inQ i ; 1 if {kl} € E,
Graph states occur, e.g., as a result of the Ising interaction " :{ { }_ 42)
between neighboring spins on a lattice after a specific inter- 0 otherwise.

action time[5]. An example for a realization of such a sys- In the spirit of the above notation we can therefore also write
tem is based on neutral atoms in optical lattif28]. Alter- - (k)p ()T = ko Ne gk Tk
natively, graph states can be specified in terms of theiKKk =% _Hlev("z) M=oy, =00, )
stabilizer. For this leN={l €V|{k,I}EE} denote the set of  COMINg to some examples, we first note that the class of
neighbors ok. Then the graph stat&) is the unique state in multiparty GHZ_states in Sec. IV is c;ontamed in the class of
(C2)®V that is, the common eigenstate for the set of independraPh states, since the GHZ state in E2g) can be trans-
dent commuting observables formed by Ioca! unitaries into graph states c_orrespondlng to
the graphs depicted in Fig. 3. When considering decoherence
KS=o¥ I o¥, (3g)  of alocally equivalent state, we remark that the underlying
IEN, noise process has to be adapted according to the local unitary
transformation. From this point of view the depolarizing
channel in Eq.(14) has the advantage that it is invariant
under local unitary transformation and hence is basis inde-

where the eigenvalues of &V are 1. The stabilize$g of
the state is thus generated by the 8€f|keE V}, which im-

plies pendent. In the following we will also consider the class of
_ cluster states in one, two, or three dimensi¢sse Fig. 4,
)G = GEES g (39) which are of particular interest in the context of “one-way”
G

guantum computatiof21]. For more examples and a discus-
In order to obtain a complete basis f@?)®V we will also  sion of equivalence classes of graph states under local uni-
consider the eigenstatfis)g=07|G) of K¢ according to dif-  taries and/or graph isomorphies we refer{623. We will
ferent eigenvalueb,, i.e., now discuss the entanglement properties from Sec. Il for the
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FIG. 4. (Color onling Cluster states in two and three dimen-
sions form a universal resource for quantum computation in the
framework of the one-way quantum compuf2d].
FIG. 5. (Color onling Ring with seven qubits.

statep(t) [see Eq.(17)] that is produced by different deco- ,

herence processes described in Sec. Il acting on different Observation (i) follows from the fact thata}|U)g

types of graph states. :(—1)Uicr§(K]G|U>G, Wherecri(KJG is an operator that contains

only products ofo, operators at neighboring particles of par-

ticle j, and the identity otherwise. Similarly, the actionaj)’

on graph states is up to a phase factor equivalent to the
We establish a lower bound on the lifetime of graph statesiction of an operator which contains only products ogf

by considering an explicit distillation protocol. In order to operators acting on particieand all its neighbors. That is,

show that a mixed staig(t) is N-party distillable, it is suffi-

cient to show that maximally entangled pairs shared between

any pair of neighboring parties can be distilled. This is due to

the fact that these pairs can be combined by means of local .

operations (e.g., by teleportationto create an arbitrary

N-party entangled pure state. We emphasize that we use the = Z p(HSIUUIS', (44)

distillation of neighboring pairs only as a tool to show 1=0

N-party distillability. This, however, does not imply that the with S=0%, S{=03k S5=05k% andS=0%. In the case of a

entanglement contained in the cluster state was in SoMgng (Fig. 5), for example, we havel=1, Sk1:U(3k—1)U(3k+1)'

sense only “bipartite.” One could in principle also use direct P e $:U(3k)

. . . $:U O, 0.
multiparty entanglement purification protocols, e.g., the one \w3 ow aSPW(i) and (i) to establish a sufficient condi-

introduced in Ref[24]; hovyever, the c_onditions under which tion when bipartite entanglement between neighboring par-
these protocols'are applicable are in general more complijqjes can be distilled from the state

cated to determine.

~ First we will consider the case of decoherence of the par- p(t) = MMy - M|GXG|. (45)
ticles due to the same individual Pauli channBlp . ) -
:zfzopi(t)gipgi and we will show then how to extend these This allows us to obtain a lower bound on Fhe I|fe_t|me qf
results to more general decoherence models. We will esseffaph states. We concentrate on two specific neighboring
tially follow the ideas used ifi4], in which the correspond- Particles, sayk andl. One performs measurements in the
ing result was shown for the case of a depolarizing channefigenbasis ofr, on all but particles and! (we remark that
and make use of the following facts. measurements on all neighboring particles of partiéds

(i) Measuring all but two neighboring particles, day, of ~ Would also be sufficient It follows from (i) and (i) that
a graph statéG) in the eigenbasis ofr, results in the cre- these measurements commute with the action of the CPM
ation of another graph state with only a single eflgd} [6].  M1Mz "My on the graph statéwhich equivalently de-
That is, the resulting state of particlesl is up to locals, ~ Scribes the action of Pauli channels on these stafét is,
operations equivalent to a maximally entangled state of théhe resuling state after the measurements is given by
form MMy - M| D) (D] ® | x){x|, where|y) is a state of the

remaining(N-2) particles, and®) is a maximally entangled
@) = ir(|0>x|0>z+|1>x|1>z)1 (43) state equivalent up to, operations(which can be deter-
V2 mined from the specific measurement outconteg®) [see
Eq. (43)]. We emphasize that the operatbt; only acts non-
whereli), (|i},) denote eigenstates of, (d,), respectively. trivially on particlej and its neighbors. This is due to the fact
(i) The action of a Pauli channé}, acting on particlek  [see(ii)] that the operator§, 1=0,1,2,3, and thus the map
of a graph state can equivalently be described by amp  M;, only affect particlg and/or its neighbors. It follows that
whose Kraus operators only contain products of Pauli matriin order to determine the reduced density operator of two
ceso, and the identity, where herg, may act on particl&k  neighboring particlegk, |}, pq(t), one has to consider only
and its neighbors, i.e., particles which &methe correspond- the action of maps\1; which act on particle,| or neigh-
ing graph connected by edges to partidte bors ofk or | on the maximally entangled staf@), i.e.,

B. Lower bound: An explicit distillation protocol

3

DYU)e(U] = 2 pj(h)al|U)a(U] ot = M JU)e(U|
j=0
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where |®) is given by Eq.(43). One can now easily deter-
mine py(t) for any graphG and thus the condition when
pu(t) [Eg. (46)] has nonpositive partial transposition and is
thus distillable. After some algebra, one obtains that the
stated protocol yields distillable entanglement betwieand

| if for the depolarizing channéDp:pp+(l—p)%}l,

put) = (H M,»)|<I>><<I>|, (46)
jel

where =N, UN,UkUI. We have that the reduced density

operatorpy(t) is distillable if and only if its partial transpo-

sition is nonpositivg12], i.e., p(t) k0. To obtain a lower

bound on the time until which thBl-particle statep(t) re-

mains distillable one has to consider all neighboring pairs piNK+L 4 plNc N4 pINIF+L > g (49)
{k,I}, determine the corresponding threshold value on th ) . _

lifetime of distillable entanglementt!, and take the mini- holds; for the bitip channel Dp=pp+[(L-p)/2)(p
mum over all neighboring pairgk,|} €E [25]. For graphs TP,

corresponding to periodic structur@sg., some lattice geom- piNK + NN pNIE > 1 (50)

etry), such a minimization is, however, not required.
Thus we have that the threshold value is a function of théolds; for the phase-flip channeDp=pp+(1-p)/2(p

local degredi.e., the number of neighborsf the graph, but +,p0>),

is independent of the number of particlds Note, however,

that the degree of the graph may itself depend\pras is, (5)

e.g., the case for_ G_HZ states, which then implies that theolds; and for the quantum optical channel wji 0, i.e.,

threshold value will indeed depend oh In all cases where =p,=p andp,=q for 0<p, q<1%,

the degree of the graph is independeniafhich is, e.g., the

case for all graphs corresponding to some lattice geometry, [1-2p+a)H(1 - 4p)™ + (1 - 4p)N

+(1 - 4pNNI 1 - 2p + )] > 1

—
V2-1<p=l1

such as two- or three-dimensional cluster states, hexagonal
lattices, lattices with finite-range interactions, etc., we have
no scaling withN, i.e., the lower bound on the lifetime of holds.
entanglement is independent of the number of partibles A lower bound on the lifetimef distillable entanglement
These results can also be understood in the following wayunder decoherence due to one of the above Pauli channels
The measurement in the neighborhood of partitleand | can then be derived by solving the corresponding polynomial
disconnects these two particles from the remaining systemnequalities. From Eq(51) it follows for example that in the
which implies that errors occurring in some outside area daase of the phase-flip channel the lower bound obtained by
not influence the two particles in question. This insight isthis distillation protocol is the same for all graph states. This
also used in the following sections and allows one to showan be understood by the fact that here only the two indi-
that the behavior of cluster states is not a consequence of thidual dephasing channels actingloandl (and not those of
specific decoherence model but rather a general feature dfieir neighborsare relevant for the decoherence of the bell
such states. state|d) betweerk and|. For the bit flip and the depolariz-
The exact dependence of the distillability properties ofing channel the critical valup- for p, which is proportional
pu(t) (and thus the threshold valy¥') on the graphG can  to the fidelity with the original pure graph state, increases
be determined as follows. FpE N, \N; the action ofM; can  with [N, [N[, or [N +N,|. Similarly, the critical values for
be described by a phase-flip channel acting solely on particlép, ) decrease with increarin@\y/, [Nj|, or [N, +N|, sincep
k, where a phase-flip channel acting on partkls defined and g now represent the error probabilities instead of the
by fidelity with original pure graph state. In the following we
will consider the condition49) for the depolarizing channel
with p=e in more detail: In the case of thé-party GHZ
state both representations of Fig. 3 yield the same polyno-
mial inequality 2V+p?> 1, since the depolarizing channel is
invariant under local unitaries. This polynomial inequality
can be further estimated from above giviag>In(2)/N
=0.6931N. As depicted in Fig. 6 the corresponding critical
value for «t is indeed always below the exact value given in
Eq. (26) and decreases with the number of partides=or
linear chains or rings(|Ny=|Ny:1|=2,|Nc+N;1/=4) one
finds a threshold valug_=0.7167, which gives a lower
bound on the lifetimext.=0.3331. That is, fop=p. («t
wherep,,=1-2(p;+p,). Note that the sequential application < «t.) the statep(t) is certainlyN-party distillable using this
of each of these channels, say the correlated phase-flip chaspecific protocol. For cluster states corresponding to a regu-
nel with parametep, for [N,NN,| times, is equivalent to a lar 2D (3D) lattice we have that neighboring particlésl
single application of the same channel with new parametegorresponding to inner vertices, i.e., witl,|=|N/|=4, [N,

(52)

1-p
“(p+ 0ypal),

MPp=pp+ (47)
and we findp,=1-2(p;+p,)=2(pg+ps)—1. The action of
M; for j€N;\Ny can similarly be replaced by a phase-flip
channel acting only oh Moreover, the action ofM; when
particlej EN,N N, is a common neighbor of particlésl is
given by a correlated phase-flip channel,

1-p
M}H)P =Papt Tzz(p +oWolpe®oly,  (48)

P=p™NNI Finally the Pauli channel$/, and M, have also
to be taken into account. In any case the resulting gigts
diagonal in the “Bell basis?|®),10|®),o,l|®),0,0,|P)},

+N|=8 (INJ=|N||=6,|N+N,|=12), will give the most sen-
sitive polynomial inequality p>(p3+2)>1 [p’(p°+2)>1].
One hence finds p.=0.8281 (kt-=0.1886
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-1 < 1
o =2 -
TN+ IN+ 27

Taking [N, and|N,| to be the maximal degrees of two neigh-
boring vertices in the graph, this leads to a universal lower

0:4 - bound for all graph states under depolarizing noise.
We remark that the observed behavior, i.e., that the life-
0i2 2D time of multiparticle entanglement for clusteand similaj
3D states is essentially independent of the size of the system,
GHZ exact .
GHZ bound also holds for more general decoherence models. This fol-
20 40 60 80 100 N lows from the fact that—similar to fadii)—the action of

any CPM acting on graph states describing an arbitrary de-
coherence process can be estimated by a CPM whose Kraus
operators contain only products @f operators and the iden-
tity and thus the measuremef still commutes with the
CPM. To this end, we apply after the application of the CPM
a local depolarization procedure which maps arbitrary den-
sity operators to operators diagonal in the graph-state basis
without changing the diagonal elemenitg4]. When re-
[p-=0.8765(xt-=0.1318], respectively. As can be seen in stricted on graph states, the resulting action of the initial
Fig. 6, whereas the lifetime di-party GHZ states decreases CPM (given by 2, a,,0,00;, whereOQ,,0, are products of
with increasing size of the system, cluster states do not sho®Rauli operatorscan then be described by a CPM specified
such a scaling behavior, since the derived lower bounds fapy =,a, 00}, where all operator®, can be expressed in
cluster states remain constant. terms of products ofr, operators. Only operatofS, which

In the following we derive a more handy expression foract nontrivially on particlesk,| or their neighbors in the
the critical values fop and «t. For fixed degreesN,| and  graph affect the resulting maximally entangled pair after the
IN)|, one finds that the strongest lower bound on the lifetimemeasuremerti), leading again to a threshold value which is
(which is thus also valid for all other configurations of this independent of the size of the system for all those decoher-

kind) is obtained forlN,N N,|=0. This can be understood as gnce models where the number of such operadyris inde-
follows. Assume that for some given graph one changes thﬁendent ofN. This is for instance the case if each acts

graph such that the degree of two neighboring verticgs nontrivially on a finite, localized number of subsystems.

increases by 1, i.e|NJ=|Ny+1 and|N|=|N[+1. The first  Therefore, the fact that all graph states with finite maximal
possibility is that this increase is due to the addition of agegree, such as cluster states, the lifetime of distillable
single common neighbor df andl, i.e., [N\NWN|=|NyNN,|  N-party entanglement will remain finite, holds in particular
+1, which leads to the condition for distillabilitp™<Nl  for all decoherence models based onaabitrary individual
+pNe24 pINI*2> 1 10 the second possibility the neighbor- coupling to the environmentescribed by a quantum optical
hood of both particlek andl is increased by two different channel in Eq(9). In the following we will determinaipper
particles, i.e.|N.+N|=|N,+N|+2. In this case one obtains boundson the distillable entanglement.

the condition p'Nk+Nl|+2+piTNk‘+2+p|Nl‘+2>1 for distillability.

Clearly, the second condition will give a larger value jpn
and thus provides a stronger bound on the lifetime of distill-
able entanglement. Intuitively, this can be understood from In our first approach, we determine an upper bound to the
the fact that adding a single joint neighbor corresponds to éifetime of N-party entanglement by considering the capabil-
single additional noise channel with correlated phase noiseity of the decoherence process to disentangle any state dis-
while adding two independent neighbors corresponds to twoegarding its specific form. Hence the upper bounds derived
independent noise channels acting on partiglemd|. The in this way will apply not only to graph states but to an
influence of two independent noise channels is larger than darbitrary state. In turn this method will be restricted to cou-

a single(correlated noise channel. In order to derive a lower pling of the particles to individual environments described
bound we may therefore evaluate the polynomial inequalitieby an arbitrary channel of the form

of the different neighboring particlds,| as if the valugNy 3

+N|| was maximal(i.e., [N, N;|=0), since this will give a _ .

stronger or larger critical value than the critical value that bp= i’jzzo Pij 1P 9
would be the solution to the exact polynomial inequality.

Under this simplification and by using that™d*1+piNi+1  like the completely positive map in E¢9). We now make

= 2pINd+INIF2/2 = 2n(INNIF2)/2 gne finds that for use of the Jamiolkowski isomorphism between CP maps and
states[26]. Let [0 =(1/y2)(|0)}0)K +|1)X1)K) denote

the maximally entangled state on syst&rand a copyk’ of

the reduced density operatpy, is certainly distillable. This the systenk. Then to each CPND acting on particleék there
leads to the lower bound on the lifetime uniguely corresponds a state

FIG. 6. (Color online Under individual coupling due to the
same depolarizing channel the lower boundscbto the lifetime of
distillable N-party entanglement for the 1D, 2D, and 3D cluster
states remain constant for arbitrary system sieBor theN-party
GHZ state the lower bound as well as the exact valued@ccord-
ing to Eq.(26), until which GHZ state remains distillable entangled,
strictly decrease and go to zero lds- o°.

C. Upper bound I: Noise operation becomes
entanglement breaking

p> 2—(2/(|Nk\+\N||+2))' (53)
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0_ka’ - Dk(|q)+>kk’<q)+|) (56) all states expos_ed to individugl ijepolarizing channt_als. For

the quantum optical channel wiil»=0 in Eq.(9) one arrives

on the combined system &fandk’. The main fact which we  at the condition ®;+\3= %

will use in the following is, thati) the CPMD is entangle- In the case of a general quantum optical channel with

ment breakind7], i.e., D*p** is separable for anypossibly 0 or an arbitrary noise channel of the for®5) one can

entangled statep** on the composite system, consisting of instead use the fact, that for any two dimensional systems

particlek and some other particles hold by the paresf  andk’ the PPT(NPT) criterion, i.e., the positivitnonposi-

and only if the corresponding statéz)k' is separablgwith tivity) of the partial transposg'k, is necessary and sufficient

respect to the particldsandk’). for separability(distillability) [13,14]. Thus the CPMD is

Hereby the “only if” implication directly follows from the entanglement breaking, if and only if
very definition of the map to be completely disentangling, AT
whereas the other direction can be seen as follows: Given the (o)™ =0. (62)

stateo%k' one obtains the corresponding CPM via the invers

&or the general quantum optical chant@ this leads after
isomorphism, i.e., g g b @

some algebra to the condition

Dpfo=2* X try (|0 @ o 0 o), (57) 12
_ _ x%—;ﬂ?(xlms——). (63)
wherep is an arbitrary state on another colgyof systemk, 2

the projection ontd®*)** is performed with respect to the
joint systemk,, k, andD is now thought to map systeky
onto systenk’ instead ofk onto k. Now, if o* =pk@ p is
separable, then E@57) factorizes into

In terms of the original parameteB C, ands of the quan-
tum optical master equation with the superoperator defined
in Eq. (3) this inequality reads

. N ' 1-9[e(1-eBY)P=1. 64
Ko(@*|pho @ pk|d*) 0 @ pk (58) s(1-9le(1-e™)] (64)

regardless of whethgfo=p*o* is itself entangled with some
other partieA or not. The resulting state on systéinwhich

It is worth remarking that in the terminology of quantum
optics(reservoir theoryboth the equilibrium valus and the

corresponds tdp is even independent of the input state decay rate83,C enter in the inequality in this multiplicative
and thus cannot be entangled at all with the paries form. For the example of a decay channel, k&= =2,

In order to derive an upper bound to the entanglement of #» We have 0= (A+x3-3)%, which cannot be satisfied.
states suffering from decoherence due to individual coupling herefore the decay channel cannot become entanglement

D of the particles to the environment, one can determine th@réaking and the multiparty GHZ states are examples for
critical value forp; in Eq. (55), for which the state states that remain entangled under decoherence due to this

5 5 c??nne;gs?(e Sec. I\)/BE EOL th((ja bir:—flip chartlnnerrrgp:pp
+[(1-p)/2](p+oypay) and the dephasing channBlp=pp
Opk = 2_ Bij O‘ik|q’+><d)+|“}<= E_ pij | P Dj[ - (59) +[(1-p)/2](p+0,p0,) the upper boungh=0 obtained from
=0 h=0 Eq. (60) becomes trivial.
becomes separable and hence the CPKibecomes en-
tanglement breaking. In E¢59) we have used the notation
|®;)=0|D*), where(|®g),|Pq),|P,),|Ps) form a complete _
Bell basis. In the following we will restrict attention to the ~ In our second approach, we determine an upper bound
same individual coupling*=D of the particles to the envi- ON the I|fet|me Qf distillable entanglement by showing that
ronment, which then only requires us to test the separabilitfter a certain time, the stajeft) becomes fully separable
of one stateop. In the case of Pauli channel®p  andis hence no longer entangled whatsoever. With this aim,
=33 pioipa; this task becomes particularly easy, since thewe consider theidynamica) description of graph states in
stateop, is diagonal in the above Bell basis. Moreover for terms of Ising interactions acting on a specific separable
such Bell diagonal states the separability criterion reduces tétate. We determine the separability properties of the opera-
the necessary and sufficient condition that all diagonal entor p(t) by considering the corresponding interactions which
tries p; are smaller than 1/2, i.e., generate the state and show that for a given noise level, these
operations itself become separable and hence are not capable
max p; < }_ (60) of creating entanglement. Consequently, also the giatas
i=0,1,2,3 2 separable in this case. The main advantage of this approach

This can be easily evaluated for the examples given in sed® that one does not have to consider tigarticle statep

Il. For the depolarizing channéPp:pp+(1—p)%Jl the state itself and determine when it is fully separalfletask which

" ; is generally very difficult, especially N is large, but has to
p(t) has certainly becomi-party separable, if consider onlytwo-particle operationsand determine when

these operations are separable.
(61) We make use of the following properties.
(i) The graph statéG) corresponding to a grap® can be
Note that this condition provides a universal upper bound fowritten as(see Sec. V A[5]

D. Upper bound II: Noisy Ising interaction becomes separable

Wik

p=p-
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Gy= [T Ul +)*N, (65) between CPM.and mixed statE28]. In particular, we use
(KNeE that a CPMD is separable and hence not able to generate
) ) _ entanglement if the corresponding mixed stlteis sepa-
whereUy =g, /20(17-0, )12 gnd [+)=1/2(|0)+|1)).  rable, where
(i) We will take only o, noise into account. We thus _ + + + +
restrict the following analysis to decoherence models due to Dity, = Pty | P igpef D1 © |9 ,1,(P7, (72)
the same individual noise chanrlthat can be decomposed ang separability has to be determined between paikids)
into some noise channél acting after a dephasing channel and (I4],). It turns out to be useful to define
Dp=p,p+[(1-py) /2] p+o,p0,], i.e., E=E °D. A more de-
tailed analysis of the cases, for which such a decomposition
is possible, is postponed to Appendix A. For the depolarizing
channelD,(p) [Eq. (14) with noise parametgo=e ], such
a decomposition is possible by choosipg2p/(1+p) and

1 ~ o~ -~
| oo = \“3—5(|0>k1k2|0>|1|2 + Dy D1,

1~ -~ L
& o= 1+p . 1-p |bop) = E(|0>klk2|1>lllz+ D O
LT Py

1 ~  ~ -~ -
This can be checked by direct calculation. |10 = TE(|0>klk2|0>|l|2— Dl D1,
We now investigate the influence of noise on the entangle- \
ment generating unitary operatidt, and determine when 1
the resulting CPM becomes separable. Sibgecommutes = (0% . 1) =1, 10 72
with Dj(p,), it follows that p(t) can be written asp(t) |10 v"2(| Dyl D11, = [ D | ON 1) (72)
=&'(p(t)), wherep(t) is obtained from the original graph

[pot¥ + opal¥]. (60

state by considering only phase noise describedip,), with
e |0>k1k2 = |Oo>k1k21
0 =I1Di(p) IT Ul+)+[*NUf.  (67) N
j {kl}€E D =11
kqky kyky?

Since p(t) is obtained fronip(t) by means of separable op-

erations, it is sufficient to determine the condition wigt ~ 1
- : : Oy, = —=(|00) | +[11) ),
becomes separable. In principle, one could also consider this 2 o 12 12
additional noise to obtain a stronger upper bound on the
lifetime; however, the analysis becomes more involved in - 1
this case as one has to deal with correlated noise. In the |1)|1|2E ’_5(|00>|1'2_|11>'1|2)' (73
\r

following we will therefore consider only noise resulting

from phase-flip errors described 8, i.e., the map One finds that the Sta@klkzlﬂz(pz,qz) corresponding to the

Du(P2Go)p = PP Di(A)UpUy, (68)  mapDy(p,,qy) is given by
. . ) . 1
for two different dephasing parametgrs and g,. With this ~
notation the operatd(t) can be written as Dicjil1, (P2 d2) = _20 Nij | Dy (D (74)
i,j=
PO =TI D™ p™Mh+)(+ [N (69  where hoo=(1+P)(1+0) /4, Aor=(1+P)(1=0p) /4, Ayo=(1
(kDEE +0,)(1-p,)/4, N;=(1-p,)(1-q,)/4. This state is separable

For the vertexk with degregN,| we have split up the action with respect to(k;k,)—(14l,) if and only if Ngo<1/2, as its
of the mapDy(p,) into |N,| parts(one for each term in the partial transposition is positive in this case. Note that for
product which involvedJ,, and thus particl&) by using a  Systems inC?® (2, positivity of the partial transposition is a
decomposition of the map,(p,) into sufficient condition for separability13,14]. Although the
m system that we consider consists of two four-level systems,
the resulting state has support only in a four-dimensional
Dk(pz)P:[[le(p%/m)P' (700 subspace and thus the results about qubit systems can be
: directly applied. We then obtain that the operator

1/|N 1/|N : H
all mapsDy(p; N ™) at a fixed vertex are separable, it is separable and not able to create entanglement—if and only
immediately follows that alsp(t) is k-versus-rest separable

since the following maps are local and act ok-@ersus-rest
separable state. (1+p)(l+q) =<2. (75

To determine the entanglement propertiesf)gf(pz,qz), We now use the above result to obtain an upper bound for
we make again use of the Jamiolkowski isomorph{@@] the lifetime of graph states under a decoherence model that
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obeys (ii). Due to Eq. (75 we find that the map spectto several partitions. Although this upper bound will be

Dy(pY™N plNly is separable if worse than the upper bound in Sec. (€cept for some
1IN N singular cases the ability to explicitly compute the partial
(1+p, ") (L+p, M) <2. (76)  transpose with respect to different partitions will enable us to

compare the aforementioned bounds with the exact critical
values for the PPT criterion, at least for graphs with only few
vertices(N=<10). In this case the techniques developed in
this section thus lead to stronger results for the lifetime of
N-party entanglement. For the following upper bound we
make use of the fact that ld-particle state is certainly no
longer N-party distillable if at least one of the partial trans-
positions with respect to all possible bipartite partitions is
p,< (V2 -1m. (77)  positive. To this aim, we determine the eigenvalues of partial
) transposition ofp(t) with respect to various partitions. Since
For the various decoherence processes, one now has to dfs s in general a rather complicated task, we will assume

termine the actual value fq,, which depends on the param- that decoherence of the particles is based on the same indi-
eters of the underlying noise model and should be chosegiqual Pauli channel:

minimal (see Appendix A since this gives the strongest up-
per bound. The exact values for the bounds obtained in this
way are however worse than the upper bound derived in Sec. Dyp = 2, pi(H)ofpat. (78)
V C, but as we will see in Sec. VI that the way of deriving 1=0

the upper bound here will turn out to be well suited for all Ag it was already used in the derivation of the lower bound,
those cases where the initial state is only slightly entangled,der such a Pauli channel the graph st@&E evolves in

_ Moreover, as was the case for the I_ower bound, the degme into a mixed state =1I1,c,D¥|GXG| that is diagonal
rived upper bound on the lifetime of distillable entanglement,, o graph state basj§):

does only depend on the maximum degree of the graph and
not necessarily on the number of parti_cré._sWe remark that p= > Ay|Uda(U. (79)
the upper and lower bounds on the lifetime of graph states Ucv

show a different dependence on the degreef the graph.

While the lower bound on the lifetime decreases with in-In the following we will make use of the following facts,
creasingm, the upper bound on the lifetime increases with ~ Whose proofs are postponed to the Appendix B:

We emphasize that this observation applies only to the lower (i) The diagonal elements; in Eq. (79) can be computed
and upper bounds, and no definitive statement about the at? be of the form

tual dependence of the lifetime of distillable entanglement on o , , , ,

the degree of the graph can be ma@déhough one may Ku:plal‘ > Q‘lu \ru +U)‘q‘2U nrv +U)‘q‘§ru OV (80)
expect that the lifetime of entanglement decreases with the u'cv

degree of the graphThe different dependences of the lower __ L o
and upper bounds can in part be understood by looking at thvgereqit_.[i/pgfor_l _1(213 ;r; (t3he+clr;1]s$hgf the dl_?.pol?rlzmg
corresponding derivations. In particular, in the derivation of o e L= 01=02= 0= (1 =P)1(2P IS Simpiities to
the upper bound.. the influence of bothr, and oy noise is N S quIurus)
completely ignored. The influence of this kind of noise, how- u=FRo q '
ever, strongly depends on the degree of the graph and is in
fact responsible that, e.g., the fragility of GHZ states dependgve note, that in both expressions we have made use of the
on the number of particlef24]. That is, o, noise on all noetational simplifications described in Sec. V A. For ex-
neighboring particles acts as noise on a given vertex, and ampleI'U’ denotes both the set and the binary vector, that is
the noise accumulates. However, it is not straightforward t@btained by the multiplicatioimodulo 2 of the adjacency
take aIsoEf(k) and&¥ in above analysis into account, as they matrix I" with the binary vector corresponding to the &Et

lead to correlated noise when expressed in terms,adp- (i) For any state of the form(79), i.e., that is diagonal
erators[see Eq(44)]. This implies that one could no longer in the basis|U)s according to some grapt, the partial
consider separability properties of two-qubit maps indepentranspositionp™ with respect to some partitioA is again
dently but has to take correlations into account and thus cordiagonal in the(samé graph state basifJ)s. In order to
sider a largeor eventually the wholesystem, thereby los- compute the corresponding eigenvaluesJlet ', denote

ing the main advantage of this approach on determininghe adjacency matrix of the graph between the parti#ion

The threshold valu@-. such that state(t) is fully separable
is then obtained by considering all pairs of partic{ésl},
calculate the corresponding valpé and take the minimum
over all{k, I}, i.e.,p-=minp¥. This ensures that all involved
operators are separable fpy<p-. By estimating|N,| and
[N,| from above with maximal degrem in the graph, we
arrive at the weaker upper bound

3

(81)
u’'cv

separability of the resulting state. and its complemendS, i.e.
E. Upper bound IlI: Partial transposition criterion [N I‘;AC
for graph diagonal states =T. (82)
FAAC FAC

In our third approach, we determine an upper bound on
the lifetime by considering the partial transposition with re-Then,
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' = "L =
pa= 3 AU '{O} gpd(kerl‘ ) P(A)' holds. I\{Iorepver Eq(,83) can be
ucv simplified by parametrizing I’ with Y=I"A,, where
, A, CA:
Lo, |kerT| (XA

with A, = oA > (= DN Gy 1 A A

(XY)& N=on 2 (DM, (85)
(ke") - x (ImT") 2" pL AYCA

(83 If A={k} for a nonisolated verteke V the eigenvalues of the

whereA, € A is arbitrary withT’A,=Y and the kernel ker or Partial transposition with respect foare
the orthocomplement. are taken with respect to the sub-

1
spaceP(A) spanned by the sets i = E(AU + AN, T AUk Au+Nk+k). (86)
(iii) In the case of small noise <0g;=p;/py<1 for
i=1,2,3 the following estimation: Similarly for the partial transposition with respect to the split
1 A={k,I} versus rest, wherk,| €V are two nonadjacent ver-
O\ < NUsk < Ay (84) tices with linearly independent neighbor séisandN;, one
q obtains
can be derived, wherg=min(q;,d,,d3). The same holds for .1
)\U+N and )\U+N +k instead Of)\U'Fk' )\U = Z( E )\U+X - E )\U+X>! (87)
K K . XEM, XEM_
Before coming to the upper bound let us give two ex-
amples for formula(83). If I'" is invertible, then kef"’ where

M, ={0,k 1,k +1,N, N;,N + Nk + N, T+ N, k+ 1+ N+ N

M_={k+ N, | + N, k+ N+ N, |+ N+ N k+ 1+ N k+1+ N}

If k and| are adjacent the same formula holds but with , 1

neighbor setdN;=N,\I and N/ =N, \k restricted toA°. Ay = (1 +209- EI)AU' (88)
Finally we note that for GHZ diagonal states of the form

(23) the positivity (nonpositivity of the partial transpose

with respect to all possible partitions was already a necessariherefore the statg in (79) is certainly PPT with respect to

and sufficient condition foN-party separabilitydistillabil-  the partition A={k} if 1+2q-¢=0, i.e, 3=q=<1. In the

ity). For general graph diagonal states the corresponding PRdase of the depolarizing channgd=(1-p)/(3p+1)] this

(NPT) criterion is only known to be a necessary conditionmeans that ndA—A°)-entangled state can be distilled from

for N-party separability(distillability), whereas the suffi- any graph state if p(t) falls belowp.=1.

ciency of these conditions is presently unknown. But for all oy the partial transposition with respect to the partition

partlthns (A,A°), for 'WhICT‘h the pure graph staﬂ@) has A={k,I} [see Eq(87)], Eq. (84) can be applied twicée.g.,

Schmidt measure 1 ie.,it can be decomposed into the forrpu+k+N|>qxu+k>qz)\W) in order to obtain estimations for the

|G)=aylap)|bp)” +azaxby)”, the NPT criterion is also igher-order termsk+1,k+N,,k+I+Ng+N,,... in M, and

SUffiCient Condition at IeaSt for the dlStIllablllty Of an M__ In th|s Way one arrives at the Condition

(A,A%-entangled state. I' in Eq. (83) has a negative ei-

genvalue)|,, then the corresponding eigenstdtd has a 5 4

Schmidt decomposition of the form|U)g=0%|G) A= (1 + 40+ 502 - - - _2>)\U =0 (89)

= ay]a)Ab)A + aplab) by and also a negative overlap a 4

(Ulp™|U)5 <0, which is sufficient for(A, A distillability

[27]. for the distillability of (A—A°) entanglement. This means that
These results can now be used to derive upper bounds o the case of the depolarizing channel fpe=0.8457 orp

the distillable entanglement in graph states in the presence of0.0436 any graph stat€) will become PPT with respect

local noise described by a Pauli chanfi$) with p;>0 for  to A={k,l}. A closer comparison with Sec. V C shows that

i=1,2,3. For example, if one considers the split one-versusthe upper bounds th-party distillable entanglement derived

rest, the eigenvalues), of the partial transposition with re- in this way are worse than the upper bound in E&f). For

spect to the corresponding partitider{k} in Eq.(86) can be the one-versus-rest split, this can be understood for a general

bounded from below by Pauli channel withp; >0 by rewriting the condition as

032350-14



ENTANGLEMENT PROPERTIES OF MULTIPARTITE. PHYSICAL REVIEW A 71, 032350(2005

Perit
0.8
I N=5
0.7 ower
0.6
A a s first PPT —a "
0.3 all PPT
0.4 N=6 =
upper,
0.3 PPeh —
0.2 upper;
55 6 7 8 9 10N N=
FIG. 7. (Color online For the case of particles in rings of size

N =10, which individually decohere according to the same depolar-
izing channel(14) with parametem: the critical valuep.;, after
which the first(last partition becomes PPA [[1], the lower bound
according to Sec. V B and the upper bounds according to Secs. V Q
and V E.

FIG. 8. (Color online Representatives of the equivalence
classes under local unitaries and graph isomorphies of the con-
ected graphs withN=>5,6,7 verticeg6]. The first(second column
epicts a representative of the class, that is the(fast) class of a
given sizeN to become PPT with respect to some partition. Hence
the first(secondl column contains those graphs for which the PPT
criterion indicates that thél-party distillable entanglement con-
tained in these states might be most stafiestablg¢ (among all
graphs with the same number of verticeSimilarly the third
Then, due tay=1, p, must be the maximum in E¢60) and (fourth) column shows a graph of the equivalence class, that is, the
hence can only be larger tha}ﬂf also py/2=1/4 holds, last(firsy of a given sizeN to become PPT with respect &l
which cannot be exceeded by the minimum(@®). Never- par_tltlons. Hence .the.thll‘.(lfOL_lrth) column contains thosg graphs for
theless, we think that the derivation can be of interest fOIwh|ch the PPT criterion indicates that these states might be the last

other applications involving the partial transposition of graph(first to becomeN-party separable.

?cl)?%z?ginwstg;eusii é%g:;gfg@%g%?ﬂeoggg d(iqt?oenss“?gr VF\,/E?hefror which the one-versus-rest partition is the first to become
PPT, the numerical results for smallindicate that in rings

with respect to larger partitions might yield a stronger upper, . . .
bound than the condition in EG60). This will certainly de- this split seems to be most stable against decoherence due to

end on the solutions to the corresponding polvnomial e uar_1oise described individual depolarizing channels and that the

It?on in 0. But anv ubper bound derli{:/e d wi%hpthg use(if) W mallest eigenvalue of the partial transposition with respect
: Q- y upp ; ._to these one-versus-rest spltg is given by\y .

will not depend on the topology of the underlying graph in In Fig. 8 h tati f tﬁ val

guestion. By using a slight modification of the argumentation | n '?' we St OdW repr:esemréraSnée; 0 " N Equwa er:jce

leading to the estimation iii ) we will therefore discuss the Classes for connected grapns o /0, [ Vertices discusse

example of the dephasing channel, for which a stronger up|_n [6], that are most stable or instable, when exposed to noise

per bound can be provided, that conversely depends on t escribed by' individual depolarizing channels. In this con-
topology of the graph. In any case, the procedure to comput Xt we consider wo graphs to belong to the same equiva-

the eigenvalues of the partial transposition describediiin ence cl_ass_ if they can be trans_formed into each other by
does not require the diagonalization of %22N matrix and local unitariesand graph isomorphies. The latter corresponds

therefore allows the evaluation of the PPT criteria with re-1© &" exchange of particles, that maps neighboring particles

spect to different partitions, as long as the vector consistin nto pelghborlng part|cle§. We. hote that in .tr.us special case
f noise due to the same individual depolarizing channel the

of the initial eigenvalues , (which is already of length™ . ; i
is small enough to be stored and—in the case, that it occurdotion of equwa_lence classes Of graph states und_er local uni-
! ﬁl]ry transformations and graph isomorphies., particle ex-
C

as a result of Pauli channel—as long as this vector can als 2 inaful. si the decoh tself
be initialized fast enough. In order to illustrate the aforemen- ange|is meaningiui, since the deconerence process 1setis
variant under these operations. As it can be seen in Fig. 8

tioned results we have, for example, considered rings up t
; _ ; ._Tor connected graphs oN=5,6,7 theN-party GHZ states
sizeN=10 suffering from decoherence due to the depolariz em to be the first that logéparty distillability.

ing channel and examined the partial transpose with respeé? Finall il der th ¢ individual dephasi

to all possible partitions. Figure 7 depicts the critical value h |na|wae_W| +C°1nf' ?rz e+case ot Indivi u_a1+ep/gsmg

for p, after which the statg first becomes PPT with respect channelsDp=pp+[(1-p)/2](p . Tp) ["(.3" p(_)—( P) '
p1=p,=0, p3=(1-p)/2], for which the estimatioi84) is no

to some partition, which implies that at this point the state F3” X :
is certainly no longeN-party distillable. For Fig. 7 the criti- 0nger valid in general. It is straightforward to see that

cal valuep,,;; has also_been computed, after which the spate q|u'|)\U < sy < q—|u’|)\U (91)

has become PPT with respect to all partitions, i.e., after

which p contains at most bound entanglement with respect tdolds for q=(1-p)/(1+p)<1, sincexy=pNgYl. As in Eq.
any partition. In contrast to the case lfparty GHZ states, (88), we therefore can bound the eigenvalues of the partial

min p; = E. (90
i=1,2,3 2
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Perit within the Pauli group is possible. In particular this implies
0.5 that the results of Sec. VE are no longer applicable to
" z A i : i . lower weighted graph states. But in the following we will show,
04 first PPT that the other techniques established in the previous sections

to obtain lower and upper bounds on the lifetime of entangle-

0.3 ment can in fact be extended to cover also weighted graph

states. Actually the following analysis will also hold for all
02 all PPT states produced frord,; acting on an arbitrary product state
o upper , |)=|41) - <|n), which are not necessarily of the forhw)

=|+)®V. Nevertheless, for the sake of simplicity we will re-
strict the following to this case.

upper,
4 5 6 7 8 9 10 N

. . o . A. Lower bound on lifetime
FIG. 9. (Color online For the case of particles in rings of size

N= 10, which individually decohere according to the same depolar- In order to obtain a lower bound on the lifetime of
izing channel with paramete: the critical valuep,;, after which ~ weighted graph states, we again provide an explicit protocol
the first (last partition becomes PPT\ (0J), the lower bound ac- which allows the distillation of maximally entangled states
cording to Sec. V B, and the upper bounds according to Secs. V ®etween all neighboring pairs of particles and thus to create
and V E. arbitraryN-particle entangled states. In fact, we make use of
the same protocol as in Sec. V B, however the analysis turns
transpose\|, with respect to the partitiok from above by ~ out to be different. To be specific, we consider the stp
, N N+ which is obtained from a welghtgd g_rz_aph steEe §ubjected
A= (1+gTK+g =g TN, (92 to decoherence—described by individual Pauli channels—
for time t. We perform measurement in the eigenbasis-of
on all but particlek,| and determine the condition when the

=<0.1397% for all one-versus-rest splits to have PPT andresultingjrfdujced djefSit¥ Operam'{' s disti_llable. We_d_e-
hence yields a stronger criterion fol-party distillable en- note byPAO_JO> (0l P=|1XY] pTOJectors acting on pa_rtA|pr
tanglement than Eq60). Note, that the lower bound actually and by Po,P; the corresponding superoperators, i€gp
coincides with the computed critical values forafter which  =PgpP,. Similarly, we denote byJ,,0 = Uk|QUL the super-

the ring first becomes PPT with respect to some partition. operator corresponding to the unitary operatidp. Note

that the entanglement properties of the resulting state do not
depend on the specific measurement outcomes. For nota-
tional convenience we restrict our analysis to the case, where
the measurement result 0 is obtained on all measured par-

In this section we extend the previous results to a mordicles. Taking noise described by some Pauli charigl
general class of initial states, the so-called weighted grapRZioPigipai, we thus have to consider thannormalizeg
states. The graph states discussed so far arise from the Isingfate
type interaction HamiltoniarH,=|1)1|®|1)'(1] [see Eq. N - v
(36)] acting on a collection of particleg in the o, eigenstate DkDI‘H PYD; [T Ua +)¥+]. (99
|+)V for a fixed time =7 according to some interaction Ikl tabieE
pattern specified by the graph. We will now allow the par-ysing thatPooyg 3= 0 3Po and Pyor; ,=a; ,P; we can rewrite
ticles to interact according to the same Hamiltonkyy but pi D0 and obtain
for different interaction timespy. This corresponds to the = %!

I
situation of a disordered system as it occurs, e.g., in a spin DIy n— (Al D iF
glass or semiquantal Boltzmann gas. The interaction pattern PoDje = (MoPo+ MiPye, (96)
can similarly be summarized by a weighted graph, in whichyhere
every edge is specified by a phagg corresponding to the
time the particlesk and | have interacted. The weighted M@ = Po@ + P303Q03,
graph statéG) is thus given by

As depicted in Fig. 9, the above case of a riig,|=2) this
inequality yields to the sufficient conditiog=0.7549 (p

VI. GENERALIZATION TO WEIGHTED GRAPH
STATES

IGy= T U+ (93) M0 =p101007 + P202005. (97)
tkiyeE Choosing the computational bagligy " = ¢Y|0yk! on the
where the operationdy, are in this case given by measured particles, we thus can write
| (0K g (1) . .
Uy = e (er1€-0p)e-0))) (94) 11 PiD;o = > II ML P o. (98)
ikl UCWK I} j=k| b

In contrast to this straightforward extension of the interaction
picture for weighted graph states, no such generalization ofhe projector commutes with the unitary operatidhg and
the stabilizer formalisnisee Eq(38)] in terms of generators we therefore obtain that E§95) can be rewritten as
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DD j 0 weak—may not play a role if there exists another way to
K Iu;%k,l} ng MUi{ap}eE ab obtal_n singlets between all relgvant pairs. For instance, if one
" k) considers a graph corresponding to a 1D cluster state, where

X[+ +) Y+ + | ® [U)UL. (99 each edge has weight, and one adds in addition an edge

1, k with small weighte,, then it is not necessary that en-
tanglement between particles K can be distilledalthough

the two particles are neighboring ones according to the graph
G), but it is sufficient to distill entanglement between all
pairs of particlesk,k+1.

Note thatU,, leaves|U)&!' invariant and it is thus suffi-
cient to consider onlyJ,,, that act on particlek,| and/or their
neighbors, i.e., the sd=N,UN,UKkU]I. For all other par-
ticles j&l we thus have expressions of the form
MU1|UJ>1<U1|=|O>1<O|, i.e., these particles factor out. It fol-
lows that the reduced density operaggr which is obtained B. Upper bound on lifetime
by tracing out all but particlek,| only depends on particles
in the setl but not on the other particleg=! or errors
(noise affecting these other particles. This already show
that the lower bound on distillability for weighed graph
states only depends on tkdegree of thecorresponding in-
teraction graph as well as the weights of the edges, but iE
independent of the size of the systdhas long as the degree
of the graph itself does not depend NnIn particular, only
the subgraph of particleg=| determines the entanglement
properties of the reduced density operaigr
We have thap,, is given by

The first method to obtain an upper bound to the lifetime
Sof entanglement certainly also holds for arbitrary weighted
graph states, since it is independent of the initial state and
reflects the time after which the decoherence process itself
as become entanglement breaking. Conversely the upper
ounds derived in this way cannot take into account whether
the initial state is only slightly entangled or not. In Sec. V D
it turned out that for ordinary graph states the upper bound is
weaker than the first one derived in Sec. V C. In contrast we
will show in the following that the upper bound presented in
Sec. V D will give tighter upper bounds to the entanglement

j 2 in weighted graph states, which contain vertikesith only

tr"{k"}(DkD'UC%kyl} ll;ll My, a,1b_£| Yab small interaction phases, to all their neighbors € N,. We
- {abjeE use again the dynamical description of the weighted graph

X[+ + M+ +] @ [UyMIU|) (100) state|G) given by Eq.(93). The influence ofphasg noise on

the entanglement properties bf, can be determined in a
where the partial trace has to be performed for the remainingimilar way as in Sec. V D, where we had a fixed angle
neighboring particles of k and| only. Thus the effect of ¢q= for all {k,I}€E. We remark that the upper bound
noise can be localized to the regibaround the edggk, 1} in obtained in Sec. V D for a general graph state is also valid
guestion. In principle, one can now obtain the explicit formfor all graphs of the same kind where the edges are weighted.
of py for a given(weighted graph and determine the condi- This is due to the fact that the operatiddg are most resis-
tion for p; until when the reduced density operajgg has tant to noise(i.e., remain entanglingif the angle isgy =1,
nonpositive partial transposition and remains thus distillablebecause in this case the operation is—in the ideal case—
The explicit formula is however rather complicated and notcapable of creating maximally entangled states, while for all
particularly illuminating. For the example of a depolarizing other values ofgy only partially entangled states can be
channel, it is clear that for smaller values of, (i.e., a created.
weaker edge between particlesindl) one obtains stronger This observation immediately leads a way to obtain stron-
threshold values on the paramegethan given by Eq(49),  ger upper bounds on the lifetime for weighted graph states.
i.e., a shorter lifetime. To this aim, one determines the threshold valpisvhen the

What is, however, more important in our context is thatstatep(t) [Eq. (69)] becomes separable. The valuepﬁfnow
also for weighted graph states the lower bound on lifetime otlepends ong,,. One finds that the corresponding density
distillable entanglemen_t depends only on tHegreg qf the OperatOF5k1k2|1|2((p'§|)”|Nk‘ip?')”'”") in Eq. (74) again has
corresponding interaction graph, but not on th_e size Of_ th%upport only in a four-dimensional subspace and is given by
systemN. Although the actual values of the lifetime will
depend on the specific weights of the edges, for clusterlike ~ !
and similar graph states there will be no scaling behavior Dl = 2 Nifl @i (@, (101
with N. Moreover, in many cases such as rings, the edge with =0
the smallest weight will give rise to the strongest thresholdyjth
value condition and will thus determine the lower bound on
the lifetime of distillableN-party entanglement. Actually, it
is sufficient if one can create maximally entangled pairs be-
tween pairs of particles in such a way that there exists a path
between each pair of particléise., entanglement between all 1
pairs {k,I} where the edgesk,|} form a maximally con- Nor= - [1 +(pi)HYMI[L - (p¥) /NI,
nected graph Thus the state is already-party distillable, if 4
the subgraph is connected that is generated by all those edges 1
from which a Bell pair can be distilled. This implies that — 271 _ (KN LINY K 2/N|
some edges in the original graph—even if they are very Mo= 412 =(pz) L + (pz) T,

o= 711+ (BYYITL + ()M,
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degreem there always exists a range of values gy, for
which the analysis of this section provides a stronger upper
boundp,;; than the condition derived in Sec. V C.

VIl. BLOCKWISE ENTANGLEMENT AND RESCALING

Entanglement is a concept which can only be defined be-
tween subsystems of the whole system. In our previous

upper, analysis, we have identified subsystems with parties, i.e., we
have investigated the lifetime of trud-party entanglement.
0.2 One can however also consider a slightly more general con-
0.1+ cept, where subsystems are formed by a collection of several
o [m =103 parties(see Sec. ). Also in this case one can investigate
0 0.5 1 L5 2 25 34y entanglement properties betwebh such subsystems. That

is, one can consider a partitioning of tNeparty system into

FIG. 10. (COlOI’ Onliné For the case of individual depolarizing M=<N groups and |nvest|gate tr'(d|st|”ab|e) entanglement
channels with parametep the threshold value.=p-/(2+p-)  petween thesM groups, where each of these groups consists
[see Eq(66)] as a function of the interaction phagR [0, 7] for 4 one or several of the initial parties. Whenewdr< N, one
edges{k,l} between two verticek and| with the same increasing ~5n have that the state is stil-party entangled although it
degreem=|N,|=[N[=2,3,...,10. The horizontal line depicts the |, |onger containdN-party entanglement. Considering such
upper bound according to Sec. V C in this case. coarser partitions allows one to investigate the change of the
kind of entanglement in time and to determine an “effective
size” of the entanglement present in the system. One can
determine for each kind of entanglement the corresponding
lifetime.

1
A= g [1- ()L - ()™M (102
The orthogonal states|®;) are given by (a(z"Z))i
(I2)\j
®(UZ )| ®o0), where A. Blockwise entanglement: Distillability and lifetime
|@oo) = [0),0), + [0y + [1)O), + €1y, (1), (103 Given anN-party system, we consider a partitioning of
~ B the N parties intoM <N groups (M-partitioning. Parties
with |0),=|00) k., [ 1h=[11) and similar for particles;l,. We  within a given group are allowed to perform joint operations
have again, thal?)klk2|l,2 is separable if and only if the partial &€ considered as a single subsystem with a higher-

transposition is positive, which leads to the threshold Valuedlmensmnal state space. We are interested in the entangle-

K - . ent between theskl subsystems. A density operatoris
p;. The separability of the weighted graph state can then bgalled M-party distillable with respect to a certain

determined in a similar way as in Sec. V D. In order to make Lo n . )
M-partitioning if from (asymptotically many copies op one

i : ; KIy1//N
Ehﬁ)ﬁﬁ?.r:t:gnU.‘;'(;Z‘iag?fg;zazg'Isitvgth. (Ezn ) erteand can create some irreducible entangled pure state by means of
Pz IS requi vert ' given vertexk, local (in the sense of th&l-partitioning in questionopera-

i i =mi kol ) , S I .
this leads to a required total value @‘m'n'EN P2 such  ions and classical communication. Similarly, a density op-

that all operationsUy; become separable. The threshold eratorp is separable with respect to a certdlpartitioning
value p-, below which the state is fully separable, is finally if it can be written as convex combination of product states
obtained by taking the minimum over af (that is over all ~ (in the sense of th&l-partitioning in question
verticesg. That is We say that a density operatorN&-party distillable if it is
L distillable with respect to at least ord-partitioning. It is
P~ =minp, (104 obvious that ifp is M-party distillable, it as alsd/’-party
distillable for M’ <M. The maximal possibl# such that a
and the state is certainly separable fop,<p-. For the density operatop is M-party distillable can be interpreted as
different decoherence modefsallowing for an extraction of @ measure of the “size” of entanglement, as it provides the
a dephasing componefisee Eq.(A2)] one finally has to maximal number of subsystentgroups, blockswhich are
insert the relation between the dephasing paramgtend (distillable) entangled. We will investigate the lifetime of
the noise parameter & in order to obtain the announced M-party distillable entanglement for al. We remark that
upper bound on the lifetime for weighted graph states. Figurdl-partitionings might be completely different in nature.
10 depicts the critical value for the depolarizing parampter Consider for instance a system consisting of 90 parigs
in Eqg. (14) as a function of the weighi,, at the edge in k=1,...,90. Possible three-partitionings include, for in-
question. As it was already mentioned in Sec. V D, for astance,(A)) —(Ay) = (A3, Ay, ..., Agy) as well as(A;, ..., Az
fixed phasegy, the obtained upper bound on the lifetime —(Agy, ..., Ag0) —(Ag1, ..., Agg). FOr a detailed description of
decreases with the degree of the neighboring particlesd ~ M-partitionings as well as necessary and sufficient condi-
I (in contrast to the corresponding behavior of the lowertions for M-party distillability we refer the reader to Ref.
bound in Sec. V B Moreover Fig. 10 shows, that for any [11].
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become positive. We use that a necessary—and in the case of
states of the formp(t) we deal with in this case also
sufficient—condition foM-party distillability is that the par-
tial transposition with respect to all subsysteB)sforming
the M-partitioning is nonpositive. To be exact, one also
needs that all partial transposition with respect to groups
formed by several such subsysteBjsare also nonpositive,
which is in our case, however, automatically satisfied as par-
FIG. 11. For blockwise entanglement different partitionings of tial transpositions with respect to larger groups are more
particles into groups are considered. stable than with respect to smaller groups. If only one of all
these partial transpositions with respect to various sub-

Equivalently one may say that we are considering Systems is positive, it follows that the staté) is no longer

coarse graining of the partition and investigate the entangle!-Party distillable (see Ref[11]). Thus we have that the

ment properties under coarse graining. As a particular inlifetime of M-party distillable entanglement with respect to a

stance of such coarse graining we will investigate partition-9\Ven M-partitioning is determined by the size of the small-

ings that correspond to rescaling of the size of the subsysteffF! subs_?/stem of thde correspgl_ﬁd|ngart_|t.|on.|ng. For in-
as it is used in statistical mechanics. Consider for instahce Stance, if one considers an arbitravipartitioning (M < N)

particles which are arranged on a regular rectangiivao- ~ that contains as one subsystem a single party, /Asaywe
dimensional lattice. The finest partition corresponds to con-Nave that the lifetime of entanglement with respect to this
sidering each particle individually as a single subsystemPatitioning is completely determined by the pgrtlal transpo-
Coarsening of the partition may, e.g., take place by considSition with respect to party, i.e., the conditiorp™<2\;. In
ering blocks ofnx n particles(arranged as a squares a pgrncular, the lifetime of dlst!ll_abl_d\/l-party entanglement
single subsystem. That is, for=2 one considers a specific With respect to any such partitioning is exactly the same as
M=N/4 partitioning, while for arbitraryn we have M for N-party entanglemer(t:orre_spondl_ng to &l-partitioning
=N/n? groups of parties/subsystems, each formedibgar-  Where each subsystem contains a single party ,
ticles. This concept is also illustrated in Fig. 11. We will !t follows that for a givenM, M-party entanglement with
investigate how(distillable) entanglement changes under '€SPECt to a specifill-partitioning has longest lifetime if all
such rescaling and determine asymptotic properties of th@roUPS havelapproximately the same size. For a minimal

lifetime of M-party entanglement for a macroscopic numberdrOUP Size ofm particles, arN-particle GHZ state can con-
of particles,N— =. tain at mostM =[N/m] such groups of sizen. This allows

one to obtain the maximum lifetime d¥l-party entangle-
ment which is determined byN< 2\, [EQq. (26) with k=m].
B. Lifetime of GHZ states under coarse graining Determining the threshold valyg,; involves the solution
of a polynomial equation of degred, which can be done
numerically in an efficient way. One can however also deter-
As in Sec. IV, we consider the lifetime of distillable en- mine analytic lower and upper bounds on the lifetime of
tanglement for GHZ states when each particle is individuaIIyM_party entanglement. One obtains apper boundon the

coupled to a thermal reservoir wifhi—, described by a |ifetime of M-party entanglement if one approximateg by
d_epolarlzmg guantum channel. In order to determine the “fe'somexm$>\m and investigate the condition
time of M-party entanglement, we can make use of the re-
sults obtained in Sec. IV, together with the classification of pN< 3N (105)
GHZ diagonal states of Refll]. Recall that the partial m
transposition with respect to a grodgubsystemB, which  as in this case automatically alp< 2\, and thus the par-
contains exactlk parties is positivep(t)™&=0 if and only if ~ tial transposition with respect to a group that contains
pN=<2\, [see Egs(25) and (26)]. In addition, we have\, parties is certainly positive. We can, e.g., choose
=N\, == Nz [S€e Eq(27)]. This implies that the size of
the subsystem, i.e., the number of particles that are contained
in a sub_s_ystem, determine _v_vhen the corresponding part_|alhich obviously satisfie&ks)\k. The condition Eq(105
transposition becomes positive. We have that the partia .
transposition with respect to a single pagigt) "4, is the first can then be rewritten as
one that becomes positive, while the partial transposition In[2p/(1 +p)]
with respect to a larger subsystem is more stable, i.e., be- ms _ . (107

o . In[(1 -p)/(1+p)]
comes positive at a later time.

For a givenM-partitioning, above observation immedi- Recall that in thgloptimal) case where all subsystems have
ately allows one to identify the bipartite partitidhich  the same size we havel=[N/m]. Thus we find that an
contains theM-partition in question which determines the N-party system is certainly no long&t-party entangled if
lifetime of distillable M-party entanglement. In particular,
the partial transposition with respect to the subsystem that . In(1-p)-In(1+p) (109
contains thesmallestnumber of parties is the first one to In(2p) - In(1+p) ~

1. Lifetime of entanglement in large-T limit of reservoir

A= (1-p)™(1 +p)N-2N+1 (106)
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Equation(108) is a central result in our analysis of the IN[2(1-p)] - In(1 +p)
properties of the lifetime for GHZ states under rescaling. We = In(2p) - In(1 + p) (111
have illustrated Eq(108) in Figs. 1 and 2.

On the one hand, Eq108) provides an upper bound on
the lifetime k7 of M-party entanglement in the system. This
upper bound can be obtained by determinirg, for a fixed
M from Eq.(108), wherext is again given by=€e. On the

other hand, for a fixed timé one can determine from Eq. . -
(108 the maximumM of distillable multipartite entangle- t@in€d by Simon and Kempgi8]. They observed that the

ment in the system. That is, the effective size of entanglezhr‘aShOId value fopp yvhen co_nsidering the partitiofN/2)
ment after a time can be obtained this way. One observes~ (N/2) decreases with the size of the systémBased on

(see Figs. 1 and)2that the maximunM rapidly decreases this observation, they conclude that GHZ states of more par-
with t. For small times, i.ext<1, one finds thaM scales as ticles are more stable against local decoherence. However, as

pointed out in the discussion above, the effective number of
subsystems that remain entangléetreasesvith time. The

entanglement becomes bipartite when approaching the
threshold value found by Simon and Kempe. In fact, the

For «t>0.8049[which is obtained from Eq108) by setting  |ifetime of genuine(distillable) N-party entanglement de-
M =2], we have that also two-party entanglement disappeargreases with the size of the systén

In fact, the state becomes fully separable as all partial trans-
poses are positivewhich is a sufficient condition for sepa-
rability for such state$11]). We emphasize that the upper

all partial transposition with respect to thM-partitioning
are certainly nonpositive, which already ensures that the state
p(t) is M-party distillable.

At first sight, our results seem to contradict the ones ob-

M = = 2 In(xt)/(xt). (109

2. Quantum optical channel

bound on the lifetime oM-party entanglement isxdepen- One can now perform a similar analysis of the lifetime of
dentof the number of particlel, in particular it is also valid M-party entanglement for more general couplings of the in-
for a macroscopic number of particles and evenNe# «. dividual particles to the environment described by a general

On the one hand this implies that even if the size of thequantum optical master equation. We have already deter-
groupsm=N/M goes tox (for a total number of particles mined the condition such that the partial transposition with
N—c0,) the maximum number of grougd that can remain respect to a group df parties is positive in Sec. IV Bsee
entangled after a timeis finite, i.e., the maximum effective Eq. (33)]. Following the line of argumentation if Sec.
size of entanglement is limited for any timeOn the other VII B 1 and using the notation of Sec. IV B, it is straightfor-
hand it follows that in the limitN—oo any partitioning in  ward to obtain an upper bound on the lifetime Mfparty
groups with finite sizen leads to a vanishing lifetime of the entanglement. In particular, one has that positivity of at least
corresponding =N/m party entanglemerfisee Eq.(107)].  one of the partial transpositions with respect to a specific
Only if one considers the limit where the number of sub-subsystem ensures thalt) is no longerM-party distillable.
systemsM is fixed asN—o, i.e., the size of each of the That is, when consideringas in the previous sectipran
groups itself is macroscopic amd— <, one obtains that the M-partitioning of the N-party system intoM subsystems,
lifetime of the correspondiniyl-party entanglement inite. each of sizem=N/M, an upper bound on the lifetime is
We remark that above results also enable one to olftgsgn  given by Eq.(33) with k=m. In fact, also in this case we
per boundson the lifetime ofN-party entanglement by con- have that the subsystem that contains the smallest number of
sideringm=1 andM =N (see also Sec. IV parties gives rise to the strongest condition on the lifetime of

In an analogous way one can deriveower boundon the  M-party entanglement, i.e., the corresponding partial trans-
lifetime of M-party entanglement. To this aim, one uses thaiposition is the first one to become positive. This can be seen
if the partial transposition with respect to the smallest subby considering the condition for positivity of the partial
system is still nonpositive, also all other relevant partialtransposition with respect to a group loparticles given by
transpositions of the system with respect to all other subgq. (32), [bN/2]?<\An-. We have that for E£k<[N/2]
systems(and combinations thereofare nonpositive. For
states of the form Eq23) this ensures that the stgiét) is
M-party distillable [11]. Thus we can derive an analytic
lower bound on the lifetime o -party distillability by con-

sidering the condition Eq(26) with k=m and upper bound ing separately the casdéac)>0 and (ac)<0]. From this

Am by someh/. We. hgve that.|bN>2)\r’n> 2\, th?hp(t) IS" " observation the claim already follows, as Ef12) ensures
certa_lnIyM—party distillable Wlt_h respect to a partition which 5+ if p(t) has positive partial transposition with respect to
consists ofM subsystems of sizex=[N/M]. We choose k+1 parties, it automatically has also positive partial trans-
position with respect t& parties. Hence the subsystem with
Xr,nE 2(1 - p)™(L +p)Ny2N (110  the smallest number of parties determines the lifetime of
M-party entanglement. Using again that for a fidéddone
~ obtains the longest lifetime if alM groups have the same
which can readily be checked to satisfly=\n, The condi-  sjizem=[N/M], it follows from Eq.(33) thatp(t) is certainly
tion pN>2\/, can be rewritten and one finds that for no longerM-party distillable entangled if

MAN-k = M 1AN-k-1 (112

[which can be checked by direct computation and consider-
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In(ac) - In[(1 —a)(1-c¢)] correcting code and constitute the basis state of a “logical
= In(ac) + Bt , (113} qubit” In the following we will consider an optimal error
correcting code which allows one to correct an arbitrary error
wherea,b,c are defined by Eq.30). Thus an analogous dis- on one of the particles and uses five physical qubits to en-
cussion as in Sec. VII B 1 applies, i.e., the scaling propertiegsode one logical qubit, e.g., the five-qubit Steane d&®.
of the lifetime of GHZ states with the size of the systéim In the following discussion we will assume that each of the
and the number of subsystemsis similar for different cou-  physical qubits is coupled to an independent environment
plings of the particles to the environment. Only in singularand the individual coupling is described by depolarizing
cases(such as zero temperature corresponding<0® ors  quantum channel®(p) (corresponding to the coupling to a
=1), does one discover a different behavior. heat bath in the large-limit), Eq. (14), with p=e™. We
Considering general graph states instead of GHZ states, @nsider the evolution of an arbitrary state of a single logical
detailed analysis of their blockwise entanglement has nogubit
been accomplished yet. Nevertheless, the scaling behavior of
M-party entanglement is restricted to a range between the
upper and lower bounds of Sec. V, which in the case of |p) = al0) + Bl1), (114
cluster and similar graph states were shown to be indepen-
dent of the numbeilN of particles. In this sense also the
scaling behavior of blockwise entanglement in these stategnder the influence of depolarizing channels acting on each
must be essentially independent of the size of the system. of the individual particles, i.e.,

C. Lifetime of encoded entangled states

Until now we have seen two different kinds of scaling (t) = D1(p) D) D3(P) Da(P) Ps(P) | pL)( |- (115)
behaviors with respect to the number of partics For
GHZ states, we found that the lifetime of distillable en-
tanglementdecreaseswith N, while for cluster stategand  The action of the maD, on physical qubitk is such that
similar graph statésve have that the lifetime imdependent  With probability
of N. In this section we will show that certain states can
show a different scaling behavior, namely that the lifetime of
(blockwisa entanglement can evémcreasewith the number q=3p+1)/4 (116)
of particlesN. Examples of such states are provided by en-
coded entangled states, i.e., entangled states which are
formed by logical qubits where each of the logical qubitsnO error occurred, while with probabilityl—qg) the qubit
corresponds to the codewords of@ncatenatedquantum  was affected by some error. In particular, we have that one of
error correction code. We find that entanglement betwden the three possible errors described dy k=1,2,3 occurred
such logical qubits is maintained. Each of the logical qubitswith probability (1-q)/3=(1-p)/4. Considering now the
forms a subsystem of size, and we consider entanglement logical qubit consisting of five physical qubits, we know that
betweenM such subsystems. We will show that asin-  there exists a sequence of operati¢@esor syndrome mea-
creasesbut is still of finite size, there exist states such that surement followed by a correction step depending of mea-
the maximum number of subsystenhé that remain en- surement outcomesuch that the state of the five qubits re-
tangled increases. In addition, for a fixstwe have that the mains in the subspace spanned{{fy),|1,)} and the logical
lifetime of M-party entanglement increases as the block sizgubit remains in the initial state ) as long as no or only a
m increases and tends to infinity as— . This shows that single error in one of the physical qubits occurred. That is,
(encoded macroscopic entangled states—even of GHZwith probability
type—can persist for long times. Note that this behavior is in
contrast to nonencoded GHZ states, where on the one hand
the maximum number of subsystenhd that remain en- q =q°+5q%1-q), (117
tangled after a certain time is finite and on the other hand
also the lifetime ofM-party entanglement is finiteeven as
m-— ). no or only a singlgcorrectablg error happened, while with
One can interpret these results in the sense that the time jrobability (1-q,) the logical qubit was affected by some
the encoded system is slowed down as compared to the timgror. By applying(correlated random unitary operations on
in the original system. This provides an alternative view onthe subspace spanned £9,),|1,)} att=0 andt, one can
quantum error correction and allows one to understand whychieve that the errors can again be describedlije noise

encoded maCrOSCOpiC SUperpOSition states can be prOdUCﬁdting on the |Ogica| qub|t, i_e_, a map of the form
and maintained on a quantum computer.

1. Quantum error correcting codes 3

We consider two orthogonal states af qubits [0,), DL(P)pL = PLpL + 1;p,_2 opol, (119
|1,) € (C?)®M which correspond to codewords of some error k=0
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wherep, =(4q,-1)/3 ando'l((L) denote Pauli operators acting cal qubits that form a logical qubit at concatenation lgvis|

on the logical qubits, e-glf(ll'):|0|_><1l_|+|1|_><0|_|- The pa- given by 8, which corresponds to 5, 25, 125, 625, 3125,
rameterp, is related to the initiap via 15 625, respectively. In particular, this implies that by using
625 particles to encode one qulite., j=4), the effective
time t, as compared to the physical tilmean be decreased

— 4iq — —
pL=(3p+1)*(4 - 3p)/192 - 1/3. (119 by a factor of 167,

That is, the action of the decoherence process on the logical

qubit can(after performing a correction step plus depolariza- 2. Lifetime of blockwise entanglement for encoded states

tion) be described by a depolarizing channel acting on the . ) . . .
logical qubit, where the parametpr can be obtained from Using the effective change in the time scale for logical
p—the parameter describing the decoherence process of ti§eIbits, it is now straightforward to de'termlne the. lifetime of
individual physical qubits—by Eq119. We thus have that encoded entangled states. We consider blockwise entangle-

a logical qubit where each of the particles is subjected tdn€nt i-., entanglement betwekhsubsystems where each
decoherence for timat=—-In(p) behaves as if it was sub- subsystem consists af qubits. We consider lifetime of dif-

jected to decoherence described by a depolarizing chann[’-.‘ﬁfre.nt kinds of entangled stat_es which are formed by logical
acting on the logical qubit for timet, =—-In(p, ). We remark qubits and Whgare each phyS|caI.q.ub|t is subjected to deco-
that if p>0.825 17(xt<0.192 165 8, we have thap, >p herence described by a depolarizing quantum chajibel
(kt, <kt), that is, the logical qubit is less affected by deco-(14)] as in Sec. IVA. We emphasize that a logical qubit

herence as a physical one. In other words, the effective timbehaves In this context in exactly the same way as a physical

t, for which the decoherence acts on the logical qubit isSUb't; the only difference is that the effective tinte (or

; ; noise paramet is different. This implies that the results
smaller than the_ physmz_al time and thus the decoherence pr%'btaingd for G?—IDLZ) and graph states cgm be directly used to
cess on t.he. logical qubit is slowed_ down. . . ., _obtain lifetime of such encoded entangled states.

In a similar way, one can consider logical qubits which Consider an entangled state of GHZ type which is given

are formed by codewords of concatenated quantum error coy-

rection codes withk concatenation levels. A logical qubit

consists in this case ofhysical qubits. This follows from

the fact that at concatenation levgleach logical qubit at 1

level j—1 is replaced by five such logical qubitsf level j |GHZ,) = 5(|0,_>®M +]1)°M), (123

-1) which form the new logical qubit at concatenation level

j. Following the same reasoning as in the case of a single

concatenation level, one obtains that a logical qubit at con;
. S g where{|0,),|1,)} are codewords ofconcatenatedquantum

catenation levej is subjected to decoherence described by a { .L> |. L . of 8aq .
. ) ! . codes(with j concatenation levelsformed by m physical

depolarizing quantum channel acting at the logical qubit,

. ) . qubits which represent a logical qubit. When considering
where the noise parametgyis related to the noise parameter : i .
. ) . ; blockwise entanglement betweéh blocks of m=5' qubits,
g;-; of the (logical) qubits at concatenation levet1 by

this state behaves in exactly the same way aMaparticle

5 4 GHZ statg[Eq. (22)] consisting of physical qubits where one
Qj = G-t * 59j=4(1 —gj-0), (120 considers blocks of size 1. The only difference is that the

effective time scalet; (effective noise parametep;) is

whereq;=(3p;+1)/4 andgy=q (po=Pp) corresponds to deco- changed according to Eq&L20) and (122).

herence acting on the physical qubits. That is, at each con- When considering the original GHZ state art=1072,

catenation level the effective timte for which the decoher- e obtain from Eq(108) (i) after a timext=1072, the maxi-

ence acts on the logical qubit of levgl decreases as mum number of blocks that can be entangled is upper

compared to the physical timé=t, as long as«t  bounded byM=1057;(i) for M=1057,«t=10"2 provides an

<0.192165 8. Fokty=4/3¢,<1 we have that upper bound on the lifetime ol blocks (where in both
cases each block may have arbitrary size, ire-; «).
€~ 1Oej2_1, (121 For an encoded GHZ staf&q. (123] we have the fol-
lowing results.(i) The maximum number of blocks of size
from which follows m=5 (i.e., logical qubit$ that is entangled after a timet

=102 is determined by Eq108), wherep in this equation is
7 5Kt)2j given bye ™ and «t; is the effective time. We find that for
Kty = = , (122 =1, M=2.103X 10% j=2, M=6.195x 10%; j=3, M=3.510
7.5 X 10'% i.e., the number of blocks of fixed size=5 that
remain entangled after some tilzeis drastically increased.
That is, the effective timet; for the decoherence acting on (i) An upper bound on the lifetime d#1=1057 blocks con-
the logical qubit is drastically decreased. For instance, ifisting of logical qubits of sizan=5 is provided by t;
kty=kt=0.01, we have thatxt;~7.5x10% «t,~4.22 =107 wherext is the effective time. One can determine the
X106, «t3=~1.33x10710 «t,~1.34x10%° «t;=1.34 time «t (which provides an upper bound on the lifetime of
X 107%, ktg=1.35x 10 "3 Recall that the number of physi- such systemsusing the recursive formula E¢120). One
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finds that for j=1,xt=0.0382; j=2,xt=0.0778; j=3,«t European Unior(Grants No. IST-2001-38877 and No. IST-
=0.1149;j=4,kt=0.1431;j=5,kt=0.1621. Again, one sees 2001-39227, and the Deutsche Forschungsgemeinschaft.
that the lifetime of M-party entanglement is increased as

compared to the original GHZ state, although here we con-

sidered only blocks of finite siz@=5', while we allowed for APPENDIX A

blocks of arbitrary sizan— ¢ in the case of theorigina) In this appendix we will give a more detailed analysis of

GHZ state. We remark that one can only expect that th . . ;
encoded system has a longer lifetime as compared to th(%g'a statementii) of Sec. V D. Given an arbitrary channel

original GHZ state as long ag <0.192 165 8, since only in _

thig caset; <t. ’ g Ep= 2 pjoipoy, (A1)
In a similar way, the lifetime oM-party cluster and graph

states(formed by logical qubitsis enhanced when consider- we first consider the question of whether it is possible to

ing such states formed by logical qubits. decompose it into a dephasing chanm@b=[(1+p,)/2]p

+[(1-p,)/2]opao, with p,£[0,1] followed by some arbi-

trary noise channef’ p==; i 1, §lijoipoy, i.€.,

1,j=0,1,2,3

VIIl. SUMMARY AND CONCLUSIONS

In this paper we have investigated the lifetime(distill-
able entanglement under the influence of decoherence. We E=&-D. (A2)
found that the qualitative b'ehaV|or of different k|nd§ _of eN-cince the upper bound derived in Sec. V D becomes tighter
tangled states are largely independent of the specific deco-.th d ina dephasi il also trv t
herence model. In particular, we found f@ssentially all with a decreasing dephasing paramgiemwe will also try to
decoherence models with individual coupling of particles toMiNIMIZ€ p, for thqse charmelg for which an extract|or) of
(independentenvironments that the lifetime of GHZ states & dephasing part is nontrivial, i.ep,<1. First of all, with
decreases with the size of the system. On the other hand /&€ matrices?=(p;), Q=(q;), and

lifetime of cluster states and graph states with a constant 00 0 1

degree(which does not depend aN) is independent of the .

number of particled\. The last observation can even be ex- 0 0 i O

tended to all decoherence models which correspond to some M=|g -j g o |=M" (A3)

correlated but localized noise, i.e., where the Kraus operators
of the corresponding map act only nontrivially on a finite,
localized number of subsystems. We have also considered
the lifetime of entanglement between subsystems of differeritve can rewrite Eq(A2) as a matrix equation

size, which allowed us to determine the scaling behavior of

entanglement under rescaling of the size of the subsystems. p= LDZQ + LDZM QM (A4)
While for cluster states there is essentially no change in the 2 2 '

scaling behavior withN, for GHZ states we found théi) the
lifetime of blockwise entanglement for any number of blocks

1 0 0O

which is linear inQ. For 0<p,=<1 it has the unique solution

that contain only a finite number of particlestends to zero p,+1  p,-1
asN— oo, while it can become finite if the blocks themselves Q= 2—P + 2—M P-M. (A5)
become macroscopic, i.an— o asN— «; (ii) the number Pz Pz

of blocks M that remain entangled after a certain timnes
finite, independent of the block size. In addition, we have }
shown that for encoded entangled states the number ofs* obtained via the Jamiolkowski isomorphisia6] (see
blocks that can be entangled after a certain time can be draSec. V Q, the conditions thaQ actually corresponds to a
tically increased and the lifetime dfl-party entanglement completely positive and trace preserving mép are (a)
can be enhanced. trk,Q:a‘(‘) and(b) Q >0, i.e., thatQ is a density matrix. It is
Our results suggest a remarkable robustness of certagtraightforward to show that&Q is the maximally mixed
kinds of macroscopic entangled states—namely, all grapbtatea(,:%l on particlek whenever ﬁ{/P=o{§ and hence that
states with constant degree—under various kinds of decohefer 0< p,<1 condition(a) is always satisfied. On the other
ence. hand the positivity(b) imposes further constraints on the
allowed parameter range pf, for which the channef per-
ACKNOWLEDGMENTS mits a decomposition of the forrfA2). For Pauli channels
This work was supported by the Osterreichische Akad<p==i- 1, Pioipo; the solution Q is again a diagonal
emie der Wissenschaften through project APARY.D.), the  matrix:

Since the matrice® andP coincide with the states?,‘/ and

1
Q= gdiag((pz+ Dpo+ (P~ Dps,(p,+ Dpy + (P~ Dp2, (P, + D2 + (P, — Dp1. (P, + Dps+ (P~ D)po) - (AB)
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Now the positivity(b) yields the four inequalities with ©=0 [po=1-(2p+0), p=1=p2:p$% and paz(K:ll]
1—pzS @S 1l+p, one arrives ap,=1-qg/(1-2p).

1+p, ps 1-p;

APPENDIX B
1- 1+
P = Py < —pz, (A7) In this appendix we will give the proof to the statements
1+p, p2 1-p; (i), (i), and(iii) of Sec. V E.
which imply that in particular either both;, andp, (p, and Proof of (i). LetU,, U,, andU; denote the disjoint subsets

ps) are zero or none of them. Therefore in the case of #n which aay, gy, or o, error occurs. From the stabilizer
bit-flip channel, as to be expected, no dephasing componeﬁﬂuationg(ﬂG):rG) it follows thato}|G) =02 G) and simi-
can be extracted in the above sense. Moreover, it is straightarly o}|G)=0%0%|G)=0)«"/G). With this one obtains
forward to see that the minimal value fpy that allows for

— V|-|Uq|-|Us|-|U U U Uzl U U
such an extraction is given by p= X phreelpPilg oty Gl oY,
Uq,UpU3CV
1-p, _ , {Po P1 Ps pz} Uinu;=0
< Qin = MiN) —, —,—, =, (A8)
1+p, ™" Ps'P2' Po’ Py (B1)

i.e., p,=(1-Qmin)/ (1+0min). In the trivial case of a dephas- whereU=I'(U;+U,)+U,+U;. With g;=p;/py the eigenval-
ing channel itself with parametey, i.e., pp=(1+p)/2, p;  ues\y therefore can be written as

=(1-p)/2, andp;=p,=0, this clearly gives a minimal value W Uy Us U4

for p,=p. For the depolarizing channgp,=(1+3p)/4,p; Ay =Po > 0 1dx %dg %,
=p,=p3=(1-p)/4] we obtain the minimal value fop, (U2 Uz EMU)

=2p/(1+p), and in the case of the quantum optical channelhere

M(U) ={(U,Up,U)lU; CV, UiNU;=0,U=T(U;+Uy) +U,+Ug}.
This set may alternatively be written as

M(U)={(U"\U",U" N U",U"\U)U",U" C V,U=TU’ +U"} ={(U' \(TU’ +U),U’ N (TU’ +U),(TU’ +U)\U")|U’ C V.

This is exactly the index set in EB0). graphG\A, which is obtained fronG by removing all ver-
Proof of (ii). We first note that for partial transpositid® tices inA. Now we can compute
generally

(Cl ® CID"BCh @ C§)Ta= (C)H" ® CH(D*B)TA(C])A ® CE 1

(B2)  Ny=c{UI(IGXG|)™U)e = a4 2 (- DEAAHUAAAY)
AigA

holds. With this rule we can compute i=1,2,3,4

XA AN A AN AT Ag + U pe)

X(I'Ag+ Upc T A)

KE(IGHG|)TAKE = (KZ|GHGIKE) Ta= (|GXG|) A,

i.e., ((GXG|)™ commutes withK¢ for all k€ V. Therefore
(|GXG|)™ is again diagonal in the graph state basis 1 >

- _ 1\ (UaA+AY)
{U)GUC V), e, (GHG)A=SychU)s(U]. In order to A (T

A1, ACA:

determine the spectrum let us decompbkénto (Ua,Uac) I"(All+f\2):UAc

according to the partitioning and use the Schmidt decompo- 1

sition [6] — ﬂ S (- 1)U, (B3)

1 : c WA
|G>:_ 2 (- 1)fA(A)|AI>A|I“IA/>A I A'=U pe
2‘A|/2
A'CA

with fa(A")=(A",I'sA"), the standard baSiS|9A=U>?|O>®A Whereas\; vanishes fold CV with Uxc ¢ Im I, in the op-
on partitionA and the graph basi§>A°:|C)§Q on partition  posite casd&J,c€EIM T’ we can choose an arbitrafyy with
A® with respect to the pure graph state corresponding to th€’Ay=U,c to simplify (B3):

032350-24



ENTANGLEMENT PROPERTIES OF MULTIPARTITE. PHYSICAL REVIEW A 71, 032350(2005

, 1 , U'\(T'U’'+U +Kk)|=|Uq -1,
)\U:ﬁ(_l)aJA,Ao) 2 (_1)<UA,A) | | | 1|

A'ekerT’

_i(_l)<UA'%>{|kerF’| if U, € (kerT")*,
T gAl

0 if Up & (kerI'")*. |(TU'+U)\U'|:|U3|.
Note that this is independent of the choitg since a differ-
ent choicez‘0 will differ from Ay only by an element
A’ ekerI'’, for which (U,,A’)=0 if UpE (kerI')*. There- v’
fore one obtains the partial transpose for the pure graph state !
in Eq. (80) can be bounded from below liyx q\V1lgV2gVs

UM (TU +U+K)|= Uy +1,

In any case every addend

FU’+U+k)|q\U ! m(FU’+U+k)\q|(FU’+U+k)—U’|
2 3

LN and from above by Igx Y dg¥2qVsl since g<1. This
(IGXG|) 1102703
2K givesghy <Ay =(1/q)\y. For AU+, and Ay+n,+k @ similar
x > (= DFAVX + Y)(X + V. argument holds, if one rewrites
X,Y)e ’ ’
(ker ') - (im ) N, = p\a/\ > q|1(u +\(TU' +U)|

(B4) uev
. . % [(U"+k)N(TU’+U)]| 4 [(TU+U\ U’ +k)|
The corresponding formul@3) for a general graph diagonal a2 O3

state can be deduced from E&4) by again usingdB2).

Proof of (iii). For A4 the estimation can be derived from and
Eq. (80): By adding(deleting an elemenk to (from) the set N Z VS UL Uk
I'U’+U the corresponding sizes of the seig=U’\(I'U’ Uk = Po “ i
+U), U,=U’'N(TU’+U) and Uz=(TU’+U)\U’ in the ex- vev
ponents 0f80) can at most increase or decrease by 1. More- X gV NIV U TUTHUHNUT],

over, sinceU,;, U,, and Uz are disjoint, the operation
U—U+k of adding or deletink cannot simultaneously in- In this representation we “absorbebly into the summation
crease or decrease any two selts For example, itkeU;  index U’ in both cases using’U’+U+N,=I"" (U’ +k)+U.

then This concludes the proof dfii).
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