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We consider genericsm3nd-mode bipartitions of continuous-variable systems, and study the associated
bisymmetric multimode Gaussian states. They are defined assm+nd-mode Gaussian states invariant under
local mode permutations on them-mode andn-mode subsystems. We prove that such states are equivalent,
under local unitary transformations, to the tensor product of a two-mode state and ofm+n−2 uncorrelated
single-mode states. The entanglement between them-mode and then-mode blocks can then be completely
concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to
prove that the PPTspositivity of the partial transposed condition is necessary and sufficient for the separability
of sm+nd-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of
bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider
explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number
of modes.
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I. INTRODUCTION

In quantum information and computation science, it is of
particular relevance to provide theoretical methods to deter-
mine the entanglement of systems susceptible to encompass
many parties. Such an interest does not stem only from pure
intellectual curiosity, but also from practical needs in the
implementations of realistic information protocols. This is
especially true as soon as one needs to encode two-party
information in a multipartite structure in order to minimize
possible errors and decoherence effectsf1,2g. The study of
the structure of multipartite entanglement poses many formi-
dable challenges, concerning both its qualification and quan-
tification, and so far little progress has been achieved for
multiqubit systems and in general for multiparty systems in
finite-dimensional Hilbert spaces. However, the situation
looks somehow more promising in the arena of continuous
variable systems, where some aspects of genuine multipartite
entanglement can be at least qualitatively understood in the
study of the entanglement of multimode bipartitions.

In the present work, we study in detail the entanglement
properties of multimode Gaussian states of continuous-
variable sCVd systemssfor an introduction to CV quantum
information, see Ref.f3gd. After the seminal analysis on the
separability of two-mode Gaussian statesf4,5g, much
progress has been accomplished on the separability condi-
tions of multimode Gaussian states under various bipartitions
f6–9g. On the other hand, much less is known on the quan-
tification of the entanglement of multimode, multipartite
Gaussian statesf10g. In a previous workf11g, we have pre-
sented a theoretical scheme to exactly determine the en-
tanglement of pure or mixedsn+1d-mode Gaussian states,
unders13nd-mode bipartitions, endowed with full or partial
symmetries under mode exchange. More recently, a measure
of genuine multipartite CV entanglement has been proposed
f12g that extends the approach introduced by Coffman,
Kundu, and Wootters for multiqubit systemsf13g, and pos-

sesses a precise operational meaning related to the optimal
fidelity of teleportation in a continuous-variable teleportation
network f14g.

In this paper, we generalize the analysis introduced in
Ref. f11g to bisymmetric sm+nd-mode Gaussian states of
sm3nd-mode bipartitions. The main result of the present pa-
per is that the bipartite entanglement of bisymmetricsm
+nd-mode Gaussian states isunitarily localizable, i.e., that,
through local unitary operations, it may be fully concentrated
in a single pair of modes, each of them owned by one of the
two partiessblocksd. Here the notion of localizable entangle-
ment is different from that introduced by Verstraete, Popp,
and Cirac for spin systemsf15g. There, it was defined as the
maximal entanglement concentrable on two chosen spins
through localmeasurementson all the other spins. Here, the
local operations that concentrate all the multimode entangle-
ment on two modes areunitary and involve the two chosen
modes as well, as parts of the respective blocks.

The consequences of the unitary localizability are mani-
fold. In particular, the PPTspositivity of the partial trans-
posed criterion is proved to be a necessary and sufficient
condition for the separability ofsm+nd-mode bisymmetric
Gaussian states. Moreover, the block entanglementsi.e., the
entanglement between blocks of modesd of bisymmetric
sgenerally mixedd Gaussian states can be determined. The
entanglement can be quantified by the logarithmic negativity
in the general instance because the PPT criterion holds, but
we will also show some explicit cases in which the entangle-
ment of formation betweenm-mode andn-mode parties can
be exactly computed.

The plan of the paper is as follows. In Sec. II, we intro-
duce the notation and review some basic facts about Gauss-
ian states and their entanglement properties. In Sec. III, we
show that a bisymmetric Gaussian state reduces to the tensor
product of a correlated two-mode state and of uncorrelated
single-mode states. In Sec. IV, we exploit such a result to
explicitly determine the entanglement of bisymmetric Gauss-

PHYSICAL REVIEW A 71, 032349s2005d

1050-2947/2005/71s3d/032349s11d/$23.00 ©2005 The American Physical Society032349-1



ian states. In Sec. V, the scaling of the block entanglement
and the evaluation of the unitarily localizable entanglement
involving different partitions ofsgenerally mixedd symmetric
states are studied in detail. Finally, in Sec. VI, we present
some conclusions and miscellaneous comments.

II. GAUSSIAN STATES OF BOSONIC SYSTEMS

Let us consider a CV system, i.e., a system described by
an infinite-dimensional Hilbert spaceH= ^ i=1

n Hi resulting
from the tensor product of infinite-dimensional Fock spaces
Hi’s. Let ai be the annihilation operator acting onHi, and
x̂i =sai +ai

†d andp̂i =sai −ai
†d / i be the related quadrature phase

operators. The corresponding phase-space variables will be
denoted byxi and pi. Let us group together the operatorsx̂i

and p̂i in a vector of operatorsX̂=sx̂1, p̂1,… , x̂n, p̂nd. The

canonical commutation relationssCCRd for the X̂i’s are en-
coded in the symplectic formV,

fX̂i,X̂jg = 2iVi j ,

with

V ; v%n, v ; S 0 1

− 1 0
D . s1d

A complete description of a CV quantum state% can be
provided in terms of its symmetrically ordered characteristic
function x. If we define the displacement operatorDj

=expsiX̂TVjd, with jPR2n, then the characteristic function
x associated to% is given by xsjd=Trf%Djg. The set of
Gaussian states is, by definition, the set of states with Gauss-
ian characteristic functions. Therefore, a Gaussian state% is
completely characterized by its first and second statistical
moments which form, respectively, the vector of first mo-

mentsX̄; (kX̂1l ,kX̂1l ,… ,kX̂nl ,kX̂nl) and the covariance ma-
trix sCMd s of elements

si j ;
1

2
kX̂iX̂j + X̂jX̂il − kX̂ilkX̂jl, s2d

where, for any observableô, kôl;Trs%ôd. First statistical
moments can be arbitrarily adjusted by local unitary opera-
tions, which do not affect any property related to correlations
or entropies. Therefore, they will be unimportant to our aims
and we will set them to 0 in the following, without any loss
of generality. Throughout the paper,s will stand for the
covariance matrix of the Gaussian state%.

The positivity of% and the CCR entail the following re-
lation on the CM s of a quantum state% s“Robertson-
Schrödinger” uncertainty relationd,

s + iV ù 0. s3d

Inequalitys3d is the necessary and sufficient constraints has
to fulfill to be a bona fideCM f16g. We mention that such a
constraint impliessù0.

The class of unitary transformations generated by second-
order polynomials in the field operatorss“second-order” op-
erationsd is especially relevant in manipulating Gaussian

states. For ann-mode system, such operators may be
mapped, through the so-called “metaplectic” representation,
into the real symplectic group Sps2n,Rd f17g, made up by lin-
ear operations acting on a linear spacescalled “phase space”
in analogy with classical Hamiltonian dynamicsd, which pre-
serves the symplectic formV under congruence,

SP Sps2n,Rd ⇔ STVS= V.

Symplectic operations preserve the Gaussian character of the
input state, acting linearly on first moments and by congru-
ence on second moments,

s → STsS.

Ideal squeezers and beam splitters are examples ofsrespec-
tively, “active” and “passive”d symplectic transformations.

A tensor product of Hilbert spacessand of “second-order”
unitary operationsd is mapped into a direct sum of phase
spacessand of symplectic transformationsd. Under ansm
3nd-mode partition, resulting from the direct sum of phase
spacesG1 and G2 with dimensions 2m and 2n, respectively,
we will refer to a transformationSl =S1 % S2, with S1
PSps2m,Rd andS2PSps2n,Rd acting onG1 andG2, as to a “lo-
cal symplectic operation.” The corresponding unitary trans-
formation is the “local unitary transformation”Ul =U1 ^ U2.

Let us recall that, due to a theorem by Williamsonf18g,
the CM of ann-mode Gaussian state can always be written
as f16g

s = STnS, s4d

whereSPSps2n,Rd andn is the CM,

n = diagsn1,n1,…,nn,nnd, s5d

corresponding to a tensor product of thermal states with di-
agonal density matrix%^ given by

%^ = ‹
i

2

ni + 1o
k=0

` Sni − 1

ni + 1
Dk

ukliikku,

ukli being thekth number state of the Fock spaceHi. The
dual sHilbert spaced formulation of Eq. s4d then reads%
=U†%^U, for some unitaryU. The quantitiesni’s form the
symplectic spectrum of the covariance matrixs and can be
computed as the eigenvalues of the matrixuiVsu f19g. Such
eigenvalues are in fact invariant under the action of symplec-
tic transformations on the matrixs.

The symplectic eigenvaluesni encode essential informa-
tion on the Gaussian state% and provide powerful, simple
ways to express its fundamental properties. For instance,
provided that the CMs satisfiessù0, then

ni ù 1

is equivalent to the uncertainty relations3d. We remark that
the full saturation of the uncertainty principle can only be
achieved by puren-mode Gaussian states, for whichni
=1 ∀ i =1,… ,n. Instead, mixed states such thatniøk=1 and
ni.k.1, with 1økøn, only partially saturate the uncer-
tainty principle, with partial saturation becoming weaker
with decreasingk. Such states are minimum-uncertainty
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mixed Gaussian states in the sense that the phase quadrature
operators of the firstk modes satisfy the Heisenberg minimal
uncertainty, while for the remainingn−k modes, the state
indeed contains some additional thermal and/or Schrödinger-
like correlations which are responsible for the global mixed-
ness of the state.

The symplectic eigenvalues are clearly invariant under
symplectic operations. Yet, it is often advantageous to intro-
duce other symplectic invariants, which can be easily
handled in terms of second statistical moments. In the
present work, dealing with ann-mode Gaussian state with
CM s, we will make use of the obvious invariant Dets
swhose invariance is a consequence of the fact that DetS
=1 ∀SPSps2n,Rdd and ofDs=oi,j=1

n Detsi j , where thesi j are
232 submatrices ofs,

s = 1s11 · s1n

] � ]

sn1 ¯ snn
2 . s6d

The invariance ofDs in the multimode case follows from its
invariance in the case of two-mode states, proved in Ref.
f20g, and from the fact that any symplectic transformation
can be decomposed as the product of two-mode transforma-
tions f21g. The symplectic eigenvaluesn7 of a two-mode
Gaussian state are simply determined by the invariants intro-
duced above,

2sn7d2 = Ds 7 ÎDs
2 − 4 Dets. s7d

Also the puritym=Tr %2 of a multimode Gaussian state%,
quantifying its degree of mixedness, is easily determined in
terms of the symplectic invariant Dets, asf22g

m = 1/ÎDets. s8d

Regarding the entanglement of Gaussian states, we recall
that the positivity of the partial transpose is a necessary and
sufficient criterion for two-mode states to be separablesPPT
criteriond f4g. The validity of such a criterion has been later
extended to generic Gaussian states ofs13nd-mode systems
f6g and tosm+nd-mode Gaussian states with a fully degen-
erate symplectic spectrumf23,24g. For a bipartite system
with Hilbert spaceH=HA ^ HB, made up of two subsystems
with Hilbert spacesHA and HB, the operation of partial
transposition is defined as the transposition of the degrees of
freedom associated to only one of the two subsystems, i.e., to
the transposition of only one of the reduced Hilbert spaces,
say HA. Let us remark that the positivity of the partially
transposed operator%̃ does not depend on which subsystem
is transposed nor on the basis chosen to perform the trans-
position. Therefore, the positivity of the partial transpose is
invariant under local unitary transformations on the two sub-
systems. In particular, for two-mode Gaussian states, the PPT
criterion reduces to a simple inequality on the smallest sym-
plectic eigenvalueñ− of the partially transposed CMs̃ spar-
tial transposition amounts to the mirror reflection of one of
the four quadratures, see Ref.f4gd. A two-mode Gaussian
state is separablesi.e., not entangledd if and only if

ñ− ù 1. s9d

A proper quantification of the entanglement, easily com-
putable for two-mode Gaussian states, is provided by the
negativityN, thoroughly discussed and extended in Ref.f25g
to CV systemsssee also Refs.f26,27gd. The negativity of a
quantum state% is defined as

Ns%d =
i%̃i1 − 1

2
, s10d

where %̃ is the partially transposed density matrix andiôi1
=Truôu stands for the trace norm ofô. The quantityNs%d is
equal touoiliu, the modulus of the sum of the negative ei-
genvalues of%̃, quantifying the extent to which%̃ fails to be
positive. Strictly related toN is the logarithmic negativity
EN, defined asEN; lni%̃i1, which constitutes an upper
bound to thedistillable entanglementof the quantum state%
and is related to the entanglement cost under PPT preserving
operationsf28g. It can be easily shownf29g that the logarith-
mic negativity of a two-mode Gaussian state is a simple
function of the partially transposed symplectic eigenvalueñ−

alone,

EN = maxf0,− ln ñ−g, s11d

quantifying the extent to which inequalitys9d is violated.
Let us recall that the bipartite entanglement of formation

EF f30g of a quantum state%, shared by partiesA andB, is
defined as

EFs%d = min
hpi,ucilj

o
i

piEsucild, s12d

where the minimum is taken over all the pure state realiza-
tions of %,

% = o
i

piucilkciu

andEsucild denotes the entropy of entanglement of the pure
state ucil, defined as the von Neumann entropy of the re-
duced state obtained by tracing over the variables of one of
the two subsystems,

Esucild = − TrAfTrBucilkciulnsTrBucilkciudg.

As far as symmetricfi.e., with Dets11=Dets22, with refer-
ence to the decomposition of Eq.s6dg two-mode Gaussian
states are concerned, the entanglement of formationEF can
be computedf31g. The quantityEF turns out to be, again, a
decreasing function ofñ−,

EF = maxf0,hsñ−dg, s13d

with

hsxd =
s1 + xd2

4x
lnS s1 + xd2

4x
D −

s1 − xd2

4x
lnS s1 − xd2

4x
D .

Therefore, the entanglement of formation provides, for two-
mode symmetric Gaussian states, a quantification of en-
tanglement fully equivalent to the one provided by the loga-
rithmic negativityEN.
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III. STANDARD FORMS OF BISYMMETRIC MULTIMODE
GAUSSIAN STATES

We shall say that a multimode Gaussian state% is fully
symmetricif it is invariant under the exchange of any two
modes. In the following, we will consider the fully symmet-
ric m-mode andn-mode Gaussian states%am and %bn, with
CMs sam andsbn. Due to symmetry, we have that

sam =1
a « ¯ «

« a « ]

] « � «

« ¯ « a
2, sbn =1

b z ¯ z

z b z ]

] z � z

z ¯ z b
2 ,

s14d

wherea , « , b, andz are 232 real symmetric submatrices
sthe symmetry of« and z stems again from the symmetry
under the exchange of any two modesd. All the properties
related to correlations and entropic measures of multimode
Gaussian states are invariant under local, single-mode sym-
plectic operations. A first preliminary fact, analogous to the
standard form reduction of two-mode states, will thus prove
useful.

Standard form of fully symmetric states. Let sbn be the
CM of a fully symmetricn-mode Gaussian state. The 232
blocksb andz of sbn, defined by Eq.s14d, can be brought
by means of local, single-mode symplectic operationsS
PSps2,Rd

%n into the formb=diagsb,bd andz=diagsz1,z2d.
Proof. The blocksb, being CM’s of reduced single-mode

Gaussian states, can be turned into their Williamson standard
form by the same symplecticSl PSps2,Rd acting on each
mode. One is then left with the freedom of applying local,
single-mode rotations that leave the blocksb invariant. The
same rotation applied to each mode is sufficient to diagonal-
ize z, since such a matrix is symmetric.

The coefficientsb,z1,z2 of the standard form are deter-
mined by the local, single-mode invariant Detb;mb

−2, and
by the symplectic invariants Detsb2;mb2

−2 andD2;Dssb2d.
Here mb smb2d is the marginal purity of the single-mode
stwo-moded reduced states, whileD2 is the remaining invari-
ant of the two-mode reduced statesf32g. This parametriza-
tion is provided, in the present instance, by the following
equations:

b =
1

mb

, z1 =
mb

4
se− − e+d, z2 =

mb

4
se− + e+d, s15d

with

e− =ÎD2
2 −

4

mb2
2 ,

and

e+ =ÎSD2 −
4

mb
2D2

−
4

mb2
2 .

This parametrization has a straightforward interpretation, be-
causemb and mb2 quantify the local mixednesses andD2

regulates the entanglement of the two-mode blocks at fixed
global and local puritiesf32g.

Let us next determine and analyze the symplectic spec-
trum ssymplectic eigenvaluesd of sbn.

Symplectic degeneracy of fully symmetric states. The
symplectic spectrum ofsbn is sn−1d-times degenerate. The
two symplectic eigenvalues ofsbnnb

− andnbn
+ read

nb
− = Îsb − z1dsb − z2d,

nbn
+ = Îfb + sn − 1dz1gfb + sn − 1dz2g, s16d

wherenb
− is the sn−1d-times degenerate eigenvalue.

Proof. We recall that the symplectic eigenvalues ofsbn

are the absolute values of the eigenvalues ofiVsbn. Since
the symplectic formV is block diagonal, with 232 blocks
v given by Eq.s1d, the matrixiVs is just the matrixs with
iv multiplying on the left any 232 block. Let us now con-
sider the set of vectorshvij, for i =1,… ,n−1,

s17d

where, for convenience, we have introduced the two-
dimensional vector

v = Si
b − z2

nb
− ,1DT

.

The vi aren−1 linear independent vectors. One has

s18d

A straightforward computation gives

ivsb − zdv = iS 0 1

− 1 0
DSb − z1 0

0 b − z2
D1iÎb − z2

b − z1

1
2

= nb
−1iÎb − z2

b − z1

1
2 , s19d

which recasts Eq.s18d into iVsvi =nb
−vi, thus proving that

the symplectic eigenvaluenb
− of s is sn−1d-times degener-

ate. Note that, as one should expect, there exist alson−1
eigenvectors associated to the negative eigenvalue −nb

−. To
this end, it suffices to turnv into

S− i
b − z2

nb
− ,1DT

.

The remaining linearly independent eigenvector ofiVsbn

is the vector

swT,…,wTdT,

with
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wT = „iÎb + sn − 1dz1,Îb + sn − 1dz2….

It is immediate to verify that such a vector is associated to
the eigenvaluenbn

+ , completing the proof.
The sn−1d-times degenerate eigenvaluenb

− is independent
of n, while nbn

+ can be simply expressed as a function of the
single-mode puritymb and the symplectic spectrum of the
two-mode block with eigenvaluesnb

− andnb2
+ ,

snbn
+ d2 = −

nsn − 2d
mb

2 +
sn − 1d

2
fnsnb2

+ d2 + sn − 2dsnb
−d2g.

s20d

In turn, the two-mode symplectic eigenvalues are determined
by the two-mode invariants by the relation

2snb
7d2 = Db2 7 ÎDb2

2 − 4/mb2
2 . s21d

The global purity Eq.s8d of a fully symmetric multimode
Gaussian state is

mbn ; sDetsbnd−1/2 = fsnb
−dn−1nbn

+ g−1, s22d

and, through Eq.s20d, can be fully determined in terms of
the one- and two-mode parameters alone.

Obviously, analogous results hold for them-mode CM
sam of Eq. s14d, whose 232 submatrices can be brought to
the form a=diagsa,ad and «=diagse1,e2d and whosesm
−1d-times degenerate symplectic spectrum reads

na
− = sa − e1dsa − e2d,

nam
+ = fa + sm− 1de1gfa + sm− 1de2g. s23d

Let us now generalize this analysis to thesm+nd-mode
Gaussian states with CMs, which results from a correlated
combination of the fully symmetric blockssam andsbn,

s = Ssam G

GT sbn
D , s24d

whereG is a 2m32n real matrix formed by identical 232
blocksg. Clearly,G is responsible for the correlations exist-
ing between them-mode and then-mode parties. Once again,
the identity of the submatricesg is a consequence of the
local invariance under mode exchange, internal to the
m-mode andn-mode parties. States of the form of Eq.s24d
will be henceforth referred to asbisymmetric. A significant
insight into bisymmetric multimode Gaussian states can be
gained by studying the symplectic spectrum ofs and com-
paring it to the ones ofsam andsbn.

Symplectic degeneracy of bisymmetric states. The sym-
plectic spectrum of the CMs Eq. s24d of a bisymmetric
sm+nd-mode Gaussian state includes two degenerate eigen-
values, with multiplicitiesm−1 andn−1. Such eigenvalues
coincide, respectively, with the degenerate eigenvaluena

− of
the reduced CMsam and the degenerate eigenvaluenb

− of the
reduced CMsbn.

Proof. One can proceed constructively, in analogy with
the proof of the previous proposition. Let us consider the

standard forms of the blockssam andsbn, while keeping the
232 submatricesg in arbitrary, generally nonsymmetric,
form. Let us next focus on the blocksbn and define the
vectorsv̄i by

v̄i = s0,…,0,vi
TdT. s25d

They are the vectors obtained from the vectorsvi’s of Eq.
s17d by appending to them 2m null entries on the left. Be-
cause of the identity of the blocksg, their contributions to
the secular equation cancel out and it is straightforward to
verify that the vectorsv̄i’s aren−1 eigenvectors ofiVs with
eigenvaluenb

−. The same argument holds considering the
submatrixsam, thus completing the proof.

Equipped with these results, we are now in a position to
determine the bipartite entanglement of bisymmetric multi-
mode Gaussian states and prove that it can always be uni-
tarily localizedor concentrated.

Unitary localization of the entanglement of bisymmetric
states. The bisymmetricsm+nd-mode Gaussian state with
CM s Eq. s24d can be brought, by means of a local unitary
operation, with respect to thesm3nd-mode bipartition with
reduced CMssam and sbn, to a tensor product of single-
mode uncorrelated states and of a two-mode Gaussian state.

Proof. Let us focus on then-mode blocksbn. The vectors
v̄i of Eq. s25d, with the first 2m entries equal to 0, are, by
construction, simultaneous eigenvectors ofiVsbn and iVs,
with the samesdegenerated eigenvalue. This fact suggests
that the phase-space modes corresponding to such eigenvec-
tors are the same fors and forsbn. Then, bringing by means
of a local symplectic operation the CMsbn in Williamson
form, any s2n−2d3 s2n−2d submatrix ofs will be diago-
nalized because the normal modes are common to the global
and local CMs. In other words, no correlations between the
m-mode party with reduced CMsam and such modes will be
left: all the correlations between them-mode andn-mode
parties will be concentrated in the two conjugate quadratures
of a single mode of then-mode block. Going through the
same argument for them-mode block with CMsam would
prove the proposition and show that the whole entanglement
between the two multimode blocks can always be concen-
trated in only two modes, one for each of the two multimode
parties.

To prove this property, we proceed first by investigating
the relationship between the transformations which diagonal-
ize iVs and the symplectic operations that brings in Wil-
liamson normal formn f33g. The problem one is immedi-
ately faced with is that these transformations are not unique
because the normal form associated tos is invariant under
local rotationssthis local freedom is always present in the
selection of normal modesd and, due to degeneracy, also un-
der global symplectic rotations of the modes associated to
the degenerate eigenvaluenb

−. Thus there is an ambiguity in
selecting the eigenvectors ofiVs and therefore in determin-
ing the transformation that diagonalizes it. Moreover, ifhwij
is a set of 2sm+nd column-vectors normalized eigenvectors
of iVs, then any matrixT of the form
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T = sj1w1,…,jkwkd s26d

diagonalizesiVs : T−1siVsdT=D swith the ji’s arbitrary
complex coefficientsd. However, we can proceed by observ-
ing that the 232 matrix iv is diagonalized by the unitary

transformationŪ, with

Ū =
1
Î2

S i − i

1 1
D ,

so thatŪ†iavŪ=diagsa,−ad swherea is any complex num-

berd. We can then define the matrixU=Ū%sm+nd, which is
local in the sense that it is block diagonal and acts on each
mode separately, such that for any normal formn,

U−1iVnU = D, s27d

whereD=T−1iVsT is a diagonal matrix with entriesh7nij
sin terms of the symplectic eigenvaluesd. Let us next denote
by S one of the symplectic transformations that brings in
normal form:STsS=n. It is then easy to see that

D = T−1siVsdT = U−1siVndU

= U−1siVSTsSdU = U−1S−1siVsdSU, s28d

and therefore

S= TU−1 = TU†, s29d

where in Eq.s28d we have exploited the fundamental prop-
erty of symplectic transformations:S−1TVS−1=V. Equation
s29d shows that there must existsomesymplectic transforma-
tion that diagonalizesiVs and satisfies the further condition
given by Eq.s29d. In fact, it is obvious that not everyT
diagonalizingiVs is a symplectic transformation when mul-
tiplied on the right byU†. Vice versa, if this last condition
holds, the symplectic operation that bringss in normal form
is given by Eq.s29d. The modes that diagonalize the qua-
dratic forms in phase space can be reconstructed in terms of
S: since they are linear combinations of the original modes
andSTsS is diagonal, they can be expressed by real column
vectors identified by the columns ofS.

We can now go back to our original problem: leaving
aside the involved task of exactly determining which choice
of the eigenvectors ofiVs leads to a symplectic transforma-
tion of the form Eq.s29d, we are anyway assured that in the
subspace associated to the eigenvalues7nb

−, such eigenvec-
tors must be linear combinations of thev̄i’s defined in Eq.
s25d and their counterparts associated to the eigenvalue −nb

−

swith their first 2m entries, related to them-mode party, set
equal to 0d. Therefore, the transformationT reads, in general,

T =1
T1,1 ¯ T1,m 0 ¯ 0

] � ] ] � ]

Tm,1 ¯ Tm,m 0 ¯ 0

Tm+1,1 ¯ Tm+1,m Tm+1,m+1 ¯ Tm+1,m+n

] � ] ] � ]

Tm+n,1 ¯ Tm+n,m Tm+n,m+1 ¯ Tm+n,m+n

2 ,

s30d

where 0 stands for 232 null matrices andTi,j are 232
blocks, whose exact form is unessential to our aims. Exploit-
ing Eq. s29d, for the last 2sn−1d columns ofS we obtain, in
terms of 232 matrices,

s31d

Due to the presence of the firstm null entries, then−1
modes determined by Eq.s31d are normal modes of both the
global CM s and thelocal CM sbn. An analogous proof,
going along the same lines of reasoning, holds for the re-
duced CMsam: it can be reduced to a local normal form that
sharesm−1 normal modes with the global CMs. These
results imply that the form in which all the correlations be-
tween the two parties are shared only by a single mode of the
n-mode party and by a single mode of them-mode party can
be obtained by means of local symplecticsunitaryd opera-
tions, namely by the symplectic operations bringing the
block sbn and the blocksam in Williamson form.

For the reader’s ease and for the sake of pictorial clarity,
we can supplement the proof by explicitly writing down the
different forms of the CMs at each step; such matrix rep-
resentations allow an immediate visualization of the process
of unitary concentration of the entanglement between a
single pair of modes, one for each multimode party. The CM
s of a bisymmetricsm+nd-mode Gaussian state readsfsee
Eq. s24dg

s =1
a « ¯ « g ¯ ¯ g

« � « ] ] � ]

] « � « ] � ]

« ¯ « a g ¯ ¯ g

gT
¯ ¯ gT b z ¯ z

] � ] z � z ]

] � ] ] z � z

gT
¯ ¯ gT z ¯ z b

2 . s32d

According to what we have just shown, reducing to normal
form the blocksbn brings the global CMs in the form CM
s8,

s8 =1
a « ¯ « g8 0 ¯ 0

« � « ] ] ] � ]

] « � « ] ] � ]

« ¯ « a g8 0 ¯ 0

g8T
¯ ¯ g8T nbn

+
0 ¯ 0

0 ¯ ¯ 0 0 nb
− 0 ]

] � � ] ] 0 � 0

0 ¯ ¯ 0 0 ¯ 0 nb
−

2 ,

where the 232 blocksnbn
+ =nbn

+ 12 andnb
− =nb

−12 are the Wil-
liamson normal blocks associated to the two symplectic ei-
genvalues ofsbn. The identity of the submatricesg8 is due to
the invariance under permutation of the firstm modes, which
are left unaffected. The subsequent symplectic diagonaliza-
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tion of sam puts the global CMs in the following form
fnotice that the firstsm+1d-mode reduced CM is again a
matrix of the same form ofs, with n=1g,

s9 =1
na

− 0 ¯ 0 0 0 ¯ 0

0 � 0 ] ] ] � ]

] 0 na
− 0 0 ] � ]

0 ¯ 0 nam
+

g9 0 ¯ 0

0 ¯ 0 g9T nbn
+

0 ¯ 0

0 ¯ ¯ 0 0 nb
− 0 ]

] � � ] ] 0 � 0

0 ¯ ¯ 0 0 ¯ 0 nb
−

2 , s33d

with nam
+ =nam

+ 12 and na
− =na

−12. Equations33d shows explic-
itly that the state with CMs9, obtained from the original
state with CMs by exploiting local unitary operations, is the
tensor product ofm+n−2 uncorrelated single-mode states
and of a correlated two-mode Gaussian state. The proof is
therefore complete, and shows that the amount of entangle-
ment squantum correlationsd present in any bisymmetric
multimode Gaussian state can be localizedsconcentratedd in
a two-mode Gaussian statesi.e., shared only by a single pair
of modesd, via local unitary operations. These results and
their consequences will be discussed in detail in the follow-
ing sections. h

IV. BLOCK ENTANGLEMENT OF MULTIMODE
GAUSSIAN STATES

In the previous section, the study of the multimode CMs
of Eq. s32d has been reduced to a two-mode problem by
means of local unitary operations. This finding allows for an
exhaustive analysis of the bipartite entanglement between the
m- andn-mode blocks of a multimode Gaussian state, resort-
ing to the powerful results available for two-mode Gaussian
states. For any multimode Gaussian state with CMs, let us
define the associatedequivalent two-mode Gaussian state
%eq, with CM seq given by

seq= Snam
+

g9

g9T nbn
+ D , s34d

where the 232 blocks have been implicitly defined in the
CM s33d. As already mentioned, the entanglement of the
bisymmetric state with CMs, originally shared among all
the m+n modes, can becompletelyconcentrated by local
unitary ssymplecticd operations on a single pair of modes in
the state with CMseq. Such an entanglement is, in this
sense, localizable. Obviously, this kind of localization of en-
tanglement by local unitaries is conceptually very different
from the localization of entanglement by local measurements
first discussed by Verstraete, Popp, and Cirac for qubit sys-
temsf15g. We now move on to describe some consequences
of this result.

A first qualificative remark is in order. It is known that the
PPT criterion is necessary and sufficient for the separability

of Gaussian states ofs131d-mode ands13nd-mode bipar-
titions. In view of the invariance of such a criterion under
local unitary transformations, which can be appreciated by
the definition of partial transpose at the Hilbert space level,
and considering the results proved in the previous section, it
is immediate to verify that the following property holds.

PPT criterion for bisymmetric multimode Gaussian states.
For genericsm3nd-mode bipartitions, the positivity of the
partial transposesPPTd is a necessary and sufficient condi-
tion for the separability of bisymmetricsm+nd-mode Gauss-
ian states.

This statement is a first important generalization tom
3n bipartitions of the result proved by Werner and Wolf for
the case of 13n bipartitionsf6g. In particular, it implies that
no bisymmetric bound entangled Gaussian states may exist
f6,34g and all them3n block entanglement of such states is
distillable. Moreover, it justifies the use of the negativity and
the logarithmic negativity as measures of entanglement for
these multimode Gaussian states.

As for the quantification of the entanglement, exploiting
some recent results on two-mode Gaussian statesf29,32g we
can select the relevant quantities that, by determining the
correlation properties of the two-mode Gaussian state with
CM seq, also determine the entanglement and correlations of
the multimode Gaussian state with CMs. These quantities
are, clearly, the equivalent marginal puritiesmaeq and mbeq,
the global puritymeq, and the equivalent two-mode invariant
Deq. Let us remind that, by exploiting Eqs.s16d, s23d, and
s15d, the symplectic spectra of the CMssam andsbn may be
recovered by means of the local two-mode invariants
mb , ma , mb2, ma2, Db2, and Da2. The quantitiesmaeq and
mbeq are easily determined in terms of local invariants alone,

maeq= 1/nam
+ , mbeq= 1/nbn

+ . s35d

On the other hand, the determination ofmeq andDeq requires
the additional knowledge of two global symplectic invariants
of the CM s; this should be expected, because they are sus-
ceptible of quantifying the correlations between the two par-
ties. The natural choices for the global invariants are the
global puritym=1/ÎDets and the invariantD, given by

D = mDeta + msm− 1dDet« + nDetb + nsn − 1dDetz

+ 2mnDetg.

One has

meq= sna
−dm−1snb

−dn−1m, s36d

Deq= D − sm− 1dsna
−d2 − sn − 1dsnb

−d2. s37d

The entanglement, quantified by the logarithmic negativ-
ity, and the mutual information between them-mode and the
n-mode subsystems can thus be easily determined, as is the
case for two-mode states. In particular, the smallest symplec-
tic eigenvalueñeq of the matrix s̃eq, derived fromseq by
partial transposition, fully quantifies the entanglement be-
tween them-mode andn-mode partitions. Recalling the re-
sults known for two-mode statesf29,32g, the quantityñeq
reads
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2ñeq
2 = D̃eq−ÎD̃eq

2 −
4

meq
2 ,

with

D̃eq=
2

maeq
2 +

2

mbeq
2 − Deq.

The logarithmic negativityEN
amubn

measuring the bipartite en-
tanglement between them-mode andn-mode subsystems is
then

EN
am/bn

= maxf− ln ñeq,0g. s38d

In the casenam
+ =nbn

+ , corresponding to the condition

fa + sm− 1de1gfa + sm− 1de2g

= fb + sn − 1dz1gfb + sn − 1dz2g, s39d

the equivalent two-mode state is symmetric and we can de-
termine also the entanglement of formation, using Eq.s13d.
Let us note that the possibility of exactly determining the
entanglement of formation of a multimode Gaussian state of
an sm3nd-mode bipartition is a rather remarkable conse-
quence, even under the symmetry constraints obeyed by the
CM s. Another relevant fact to point out is that, since both
the logarithmic negativity and the entanglement of formation
are decreasing functions of the quantityñeq, the two mea-
sures induce the same entanglement hierarchy on such a sub-
set of equivalently symmetric statessi.e., states whose
equivalent two-mode CMseq is symmetricd.

From Eq.s36d it follows that, if thesm+nd-mode bisym-
metric state is puresm=nam

− =nbn
− =1d, then the equivalent

two-mode state is pure as wellsmeq=1d and, up to local
symplectic operations, it is a two-mode squeezed vacuum.
Therefore,any pure bisymmetric multimode Gaussian state
is equivalent, under local unitary (symplectic) operations, to
a tensor product of a pure two-mode squeezed vacuum and of
m+n−2 uncorrelated vacua.

More generally, if both the reducedm-mode andn-mode
CMs sam and sbm of a bisymmetric, mixed multimode
Gaussian states of the form Eq.s24d correspond to Gauss-
ian mixed states of partial minimum uncertainty, i.e., ifnam

−

=nbn
− =1, then Eq. s36d implies meq=m. Therefore, the

equivalent two-mode state has the same entanglement and
the same degree of mixedness of the original multimode
state. In all other cases of bisymmetric multimode states, one
has thatmeq.m and the process of localization produces a
two-mode state with higher purity than the original multi-
mode state. In this specific sense, we see that the process of
localization implies a process of purification as well. We can
understand this key point observing that the entanglement is
localized by performing local unitary transformations which
are reversible by definition. Then, in principle, by only using
passive and active linear optics elements such as beam split-
ters, phase shifters, and squeezersf9g, one can implement a
reversible machine that, from mixed, bisymmetric multi-
mode states with strong quantum correlations between all the
modes sand consequently between them-mode and the

n-mode partial blocksd but weak couplewise entanglement, is
able to extract a highly pure, highly entangled two-mode
stateswith no entanglement lost, all them3n entanglement
can be localizedd. If needed, the same machine would be
able, starting from a two-mode squeezed state and a collec-
tion of uncorrelated thermal or squeezed states, to distribute
the two-mode entanglement between all modes, converting
the two-mode into multimode, multipartite quantum correla-
tions, again with no loss of entanglement. The bipartite or
multipartite entanglement can then be used on demand, the
first for instance in a CV quantum teleportation protocol, the
latter to secure quantum key distribution or to perform mul-
timode entanglement swapping.

V. QUANTITATIVE LOCALIZATION OF THE BLOCK
ENTANGLEMENT

In this section, we will explicitly compute the block en-
tanglementsi.e., the entanglement between different blocks
of modesd for some instances of multimode Gaussian states.
We will study its scaling behavior as a function of the num-
ber of modes and explore in deeper detail the localizability
of the multimode entanglement. We focus our attention on
fully symmetric 2n-mode Gaussian states described by a
2n32n CM sb2n given by Eq.s14d. These states are trivially
bisymmetric under any bipartition of the modes, so that their
block entanglement is always localizable by means of local
symplectic operations. Let us recall that concerning the co-
variances in normal forms of fully symmetric statesssee Sec.
III d, pure states are characterized by

zi = h1 + b2s2n − 2d − s2n − 1d − s− 1di

3 Îsb2 − 1dfs2bnd2 − s2n − 2d2gj/f2bs2n − 1dg,

s40d

and belong to the class of CV GHZ-type states discussed in
Refs. f9,11g. These multipartite entangled states are gener-
ated as the outputs of the application of a sequence of 2n
−1 beam splitters to 2n single-mode squeezed inputsf9g. In
the limit of infinite squeezing, these states reduce to the si-
multaneous eigenstates of the relative positions and the total
momentum, which define the proper GHZ states of CV sys-
temsf9g. The CMsb2n

p of this class of pure states, for a given
number of modes, depends only on the parameterb;1/mb

ù1, which is an increasing function of the single-mode
squeezing. Correlations between the modes are induced ac-
cording to the above expression for the covarianceszi. Ex-
ploiting our previous analysis, we can compute the entangle-
ment between a block ofk modes and the remaining 2n−k
modes, both for pure statessin this case the block entangle-
ment is simply the Von Neumann entropy of each of the
reduced blocksd and, remarkably, also for mixed states.

We can in fact consider a generic 2n-mode fully symmet-
ric mixed state with CMsb2n

p\q , obtained from a pure fully
symmetrics2n+qd-mode state by tracing outq modes. For
any q, for any dimensionk of the blockskønd, and for any
nonzero squeezingsi.e., forb.1d, one has thatñk,1, mean-
ing that the state exhibits genuine multipartite entanglement,
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as first remarked in Ref.f9g for pure states: eachk-mode
party is entangled with the remainings2n−kd-mode block.
Furthermore, the genuine multipartite nature of the entangle-
ment can be precisely quantified by observing thatEN

bkub2n−k
is

an increasing function of the integerkøn, as shown in Fig.
1. Moreover, we note that the multimode entanglement of
mixed states remains finite also in the limit of infinite
squeezing, while the multimode entanglement of pure states
diverges with respect to any bipartition, as shown in Fig. 1.

In fully symmetric Gaussian states, the block entangle-
ment is localizable with respect to anyk3 s2n−kd biparti-
tion. Since in this instanceall the entanglement can be con-
centrated on a single pair of modes, after the partition has
been decided, no strategy could grant a better yield than the
local symplectic operations bringing the reduced CMs in
Williamson form sbecause of the monotonicity of the en-
tanglement under general LOCCd. However, the amount of
block entanglement, which is the amount of concentrated
two-mode entanglement after unitary localization has taken
place, actually depends on the choice of a particulark
3 s2n−kd bipartition, giving rise to a hierarchy of localizable
entanglements.

Let us suppose that a given Gaussian multimode state
ssay, for simplicity, a fully symmetric stated is available and
its entanglement is meant to serve as a resource for a given
protocol. Let us further suppose that the protocol is optimally
implemented if the entanglement is concentrated between
only two modes of the global systems, as is the case, e.g., in
a CV teleportation protocol between two single-mode par-
ties. Which choice of the bipartition between the modes al-
lows for the best entanglement concentration by a succession
of local unitary operations? In this framework, for an even
number of modes, the worst localization strategy consists in
assigning 1 modesi.e., settingk=1d at one party and 2n−1
modes to the other. Conversely, the best option for localiza-
tion is an equalk=n splitting of the 2n modes between the
two parties. The logarithmic negativityEN

bnubn
, concentrated

into two modes by local operations, represents the optimal

localizable entanglementsOLEd of the statesb2n, where “op-
timal” refers to the choice of the bipartition. Clearly, the
OLE of a state with 2n+1 modes is given byEN

bn+1ubn
. These

results may be applied to arbitrary, pure or mixed, fully sym-
metric Gaussian states.

We now turn to the study of the scaling behavior withn of
the OLE of 2n-mode states, to understand how the number of
local cooperating parties can improve the maximal entangle-
ment that can be shared between two parties. For generic
smixedd fully symmetric 2n-mode states ofn3n bipartitions,
the OLE can be quantified also by the entanglement of for-
mationEF, as the equivalent two-mode state is symmetric. It
is then useful to compare, as a function ofn, the 131 en-
tanglement of formation between a pair of modessall pairs
are equivalent due to the global symmetry of the stated be-
fore the localization, and then3n entanglement of forma-
tion, which is equal to the optimal entanglement concen-
trated in a specific pair of modes after performing the local
unitary operations. The results of this study are shown in Fig.
2. The two quantities are plotted at fixed squeezingb as a
function of n both for a pure 2n-mode state with CMsb2n

p

and a mixed 2n-mode state with CMsb2n
p\4 . As the number of

modes increases, any pair of modes becomes steadily less
entangled, but the total multimode entanglement of the state
grows and, as a consequence, the OLE increases withn. In
the limit n→`, the n3n entanglement diverges while the
131 one vanishes. This holds both for pure and mixed
states, although the global degree of mixedness produces the
typical behavior that tends to reduce the total entanglement
of the state.

VI. CONCLUDING REMARKS

We have shown that bisymmetric multimode Gaussian
statesspure or mixedd can be reduced, by local symplectic

FIG. 1. sColor onlined Hierarchy of block entanglements of fully
symmetric 2n-mode Gaussian states ofk3 s2n−kd bipartitions sn
=10d as a function of the single-mode squeezingb. The block en-
tanglements are depicted both for pure statesssolid linesd and for
mixed states obtained from fully symmetrics2n+4d-mode pure
Gaussian states by tracing out four modessdashed linesd. All the
quantities plotted are dimensionless.

FIG. 2. sColor onlined Scaling, with half the number of modes,
of the entanglement of formation in two families of fully symmetric
2n-mode Gaussian states. Diamonds denote pure states, while
mixed statessdenoted by starsd are obtained froms2n+4d-mode
pure states by tracing out four modes. For each class of states, two
sets of points are plotted, one referring ton3n entanglementsfilled
symbolsd, and the other to 131 entanglementsempty symbolsd.
Notice how then3n entanglement, equal to the optimal localizable
entanglementsOLEd and estimator of genuine multipartite quantum
correlations among all the 2n modes, increases to the detriment of
the bipartite 131 entanglement between any pair of modes. The
single-mode squeezing parameter is fixed atb=1.5. All the quanti-
ties plotted are dimensionless.
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operations, to the tensor product of a correlated two-mode
Gaussian state and of uncorrelated thermal statessthe latter
being obviously irrelevant as far as the correlation properties
of the multimode Gaussian state are concernedd. As a conse-
quence,all the entanglement of bisymmetric multimode
Gaussian states of arbitrarym3n bipartitions is unitarily
localizablein a singlesarbitraryd pair of modes shared by the
two parties. Such a useful reduction to two-mode Gaussian
states is somehow similar to the one holding for states with
fully degenerate symplectic spectraf23,24g, encompassing
the relevant instance of pure states, for which all the sym-
plectic eigenvalues are equal to 1. The present result allows
us to extend the PPT criterion as a necessary and sufficient
condition for separability for all bisymmetric multimode
Gaussian states of arbitrarym3n bipartitions, and to quan-
tify their entanglement.

Notice that, in the general bisymmetric instance addressed
in this work, the possibility of performing a two-mode reduc-
tion is crucially partition-dependent. However, as we have
explicitly shown, in the case of fully symmetric states all the
possible bipartitions can be analyzed and compared, yielding

remarkable insight into the structure of the multimode block
entanglement of Gaussian states. This leads finally to the
determination of the maximum, or optimal localizable en-
tanglement that can be concentrated on a single pair of
modes.

It is important to notice that the multipartite entanglement
in the considered class of multimode Gaussian states can be
produced and detectedf9,35g, and also, by virtue of the
present analysis, reversibly localized by all-optical means.
Moreover, the multipartite entanglement allows for a reliable
si.e., with fidelity F.Fc, where Fc=1/2 is the classical
thresholdd quantum teleportation between any two parties
with the assistance of the remaining othersf35g. This quan-
tum teleportation network has been recently demonstrated
experimentally with the use of fully symmetric three-mode
Gaussian statesf36g.
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