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We consider generiémX n)-mode bipartitions of continuous-variable systems, and study the associated
bisymmetric multimode Gaussian states. They are define@nas)-mode Gaussian states invariant under
local mode permutations on the-mode andn-mode subsystems. We prove that such states are equivalent,
under local unitary transformations, to the tensor product of a two-mode state anélrof2 uncorrelated
single-mode states. The entanglement betweenrtineode and ther-mode blocks can then be completely
concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to
prove that the PPTpositivity of the partial transpoge&ondition is necessary and sufficient for the separability
of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of
bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider
explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number
of modes.
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I. INTRODUCTION sesses a precise operational meaning related to the optimal
fidelity of teleportation in a continuous-variable teleportation

In quantum information and computation science, it is ofnetwork[14].
particular relevance to provide theoretical methods to deter- In this paper, we generalize the analysis introduced in
mine the entanglement of systems susceptible to encompaBef. [11] to bisymmetric(m+n)-mode Gaussian states of
many parties. Such an interest does not stem only from purénx n)-mode bipartitions. The main result of the present pa-
intellectual curiosity, but also from practical needs in theper is that the bipartite entanglement of bisymmetiic
implementations of realistic information protocols. This is +n)-mode Gaussian states usitarily localizablg i.e., that,
especially true as soon as one needs to encode two-partyrough local unitary operations, it may be fully concentrated
information in a multipartite structure in order to minimize in a single pair of modes, each of them owned by one of the
possible errors and decoherence eff¢dt€]. The study of two parties(blocks. Here the notion of localizable entangle-
the structure of multipartite entanglement poses many formiment is different from that introduced by Verstraete, Popp,
dable challenges, concerning both its qualification and quarand Cirac for spin systenjd5]. There, it was defined as the
tification, and so far little progress has been achieved fomaximal entanglement concentrable on two chosen spins
multiqubit systems and in general for multiparty systems inthrough localmeasurementsn all the other spins. Here, the
finite-dimensional Hilbert spaces. However, the situationocal operations that concentrate all the multimode entangle-
looks somehow more promising in the arena of continuousnent on two modes arenitary and involve the two chosen
variable systems, where some aspects of genuine multipartitdodes as well, as parts of the respective blocks.
entanglement can be at least qualitatively understood in the The consequences of the unitary localizability are mani-
study of the entanglement of multimode bipartitions. fold. In particular, the PPTpositivity of the partial trans-

In the present work, we study in detail the entanglemenpose criterion is proved to be a necessary and sufficient
properties of multimode Gaussian states of continuouseondition for the separability ofm+n)-mode bisymmetric
variable (CV) systems(for an introduction to CV quantum Gaussian states. Moreover, the block entanglerfient the
information, see Ref.3]). After the seminal analysis on the entanglement between blocks of modes bisymmetric
separability of two-mode Gaussian statg4,5, much (generally mixedl Gaussian states can be determined. The
progress has been accomplished on the separability condéntanglement can be quantified by the logarithmic negativity
tions of multimode Gaussian states under various bipartitiong, the general instance because the PPT criterion holds, but
[6-9]. On the other hand, much less is known on the quanwe will also show some explicit cases in which the entangle-

tification of the entanglement of multimode, multipartitt ment of formation betweem-mode andch-mode parties can
Gaussian statgd.0]. In a previous wor11], we have pre- pe exactly computed.

sented a theoretical scheme to exactly determine the en- The plan of the paper is as follows. In Sec. II, we intro-
tanglement of pure or mixeth+1)-mode Gaussian states, duce the notation and review some basic facts about Gauss-
under(1X n)-mode bipartitions, endowed with full or partial jan states and their entanglement properties. In Sec. I, we
symmetries under mode exchange. More recently, a measus@ow that a bisymmetric Gaussian state reduces to the tensor
of genuine multipartite CV entanglement has been proposegroduct of a correlated two-mode state and of uncorrelated
[12] that extends the approach introduced by Coffmansingle-mode states. In Sec. IV, we exploit such a result to
Kundu, and Wootters for multiqubit systerfis3], and pos-  explicitly determine the entanglement of bisymmetric Gauss-
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ian states. In Sec. V, the scaling of the block entanglemerdtates. For ann-mode system, such operators may be

and the evaluation of the unitarily localizable entanglemenmapped, through the so-callechétaplectit representation,

involving different partitions ofgenerally mixeglsymmetric  into the real symplectic group $pg [17], made up by lin-

states are studied in detail. Finally, in Sec. VI, we presenkar operations acting on a linear spécalled “phase space”

some conclusions and miscellaneous comments. in analogy with classical Hamiltonian dynamicwhich pre-
serves the symplectic forf® under congruence,

Il. GAUSSIAN STATES OF BOSONIC SYSTEMS Se Spang) © STOS=Q.

Let us consider a CV system, i.e., a system described bgymplectic operations preserve the Gaussian character of the

an infinite-dimensional Hilbert spack={.;H; resulting  input state, acting linearly on first moments and by congru-
from the tensor product of infinite-dimensional Fock spacesnce on second moments,

‘H;’s. Let g be the annihilation operator acting 61;, and .
%=(a+a') andp,=(a;—a/)/i be the related quadrature phase o — S'oS.

operators. The corresponding phase-space variablesAwiII B8eal squeezers and beam splitters are exampléespec-
denoted byx andp;. Let us group together the operatags tjyely, “active” and “passivel symplectic transformations.

and p; in a vector of operator=(Xy,py, ..., Xy, Pp). The Atensor product of Hilbert spacéand of “second-order”

canonical commutation relatiof€CR) for the X;'s are en-  Unitary operationsis mapped into a direct sum of phase

coded in the symplectic forr2, spaces(and of symplectic transformationsUnder an(m
o X n)-mode partition, resulting from the direct sum of phase
[Xi, %] =21, spaced’; andI', with dimensions gh and 2, respectively,

we will refer to a transformationS=5,6S,, with S;
€ SPomp) andS, € Spon iy acting onl’; andI',, as to a “lo-
0 1 cal symplectic operation.” The corresponding unitary trans-
(_ 1 0)- (1) formation is the “local unitary transformationy;=U, ® Us.
Let us recall that, due to a theorem by Williamgdr8],
A complete description of a CV quantum statecan be the CM of ann-mode Gaussian state can always be written
provided in terms of its symmetrically ordered characteristicas[16]
function y. If we define the displacement operat@;
=exp(iXTQé&), with € e R?", then the characteristic function
x associated ta is given by x(§)=Tr[eD,]. The set of whereSe Spy,y) andv is the CM,
Gaussian states is, by definition, the set of states with Gauss-
ian characteristic functions. Therefore, a Gaussian gtate
completely characterized by its first and second statisticatorresponding to a tensor product of thermal states with di-
moments Wpich j‘orm, reAspecAtiver, the vector of first mo-agonal density matrix® given by
mentsX= ((Xy),{X1),...,{X,{Xy) and the covariance ma- 0

: 2 v —1\K
trix (CM) o of elements ® = ( ! ) k). (k
0 §Vi+1g) e 1) i,

with

Q=" o=

o=S"vS, (4)

v= diaqvl,Vl,...,Vn,Vn)i (5)

1~ -~ A A A A

gij = 5<Xin + XiX5) = X)(X)), 2 |k); being thekth number state of the Fock spagg. The
dual (Hilbert space formulation of Eqg.(4) then readsp
where, for any observablé, (0)=Tr(0). First statistical =yfp®U, for some unitaryU. The quantitiesy’s form the
moments can be arbitrarily adjusted by local unitary operasymplectic spectrum of the covariance matixand can be
tions, which do not affect any property related to correlationscomputed as the eigenvalues of the mafif | [19]. Such
or entropies. Therefore, they will be unimportant to our aimseigenvalues are in fact invariant under the action of symplec-
and we will set them to 0 in the following, without any loss tic transformations on the matrie.
of generality. Throughout the papew; will stand for the The symplectic eigenvalueg encode essential informa-
covariance matrix of the Gaussian state tion on the Gaussian stat and provide powerful, simple

The positivity of o and the CCR entail the following re- ways to express its fundamental properties. For instance,
lation on the CMo of a quantum statep (“Robertson-  provided that the CMy satisfieso=0, then
Schrédinger” uncertainty relation

oc+iQ=0. (3

Vi21

is equivalent to the uncertainty relatig8). We remark that
Inequality(3) is the necessary and sufficient constrairttas  the full saturation of the uncertainty principle can only be
to fulfill to be abona fideCM [16]. We mention that such a achieved by puren-mode Gaussian states, for whiah
constraint implieso= 0. =1 0i=1,...,n. Instead, mixed states such that,=1 and
The class of unitary transformations generated by seconds.,>1, with 1<k=n, only partially saturate the uncer-
order polynomials in the field operatofsecond-order” op- tainty principle, with partial saturation becoming weaker
eration$ is especially relevant in manipulating Gaussianwith decreasingk. Such states are minimum-uncertainty
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mixed Gaussian states in the sense that the phase quadratureA proper quantification of the entanglement, easily com-
operators of the firdt modes satisfy the Heisenberg minimal putable for two-mode Gaussian states, is provided by the
uncertainty, while for the remaining—k modes, the state negativity\V, thoroughly discussed and extended in R2%|
indeed contains some additional thermal and/or Schrédingete CV systemgsee also Refd.26,27)). The negativity of a
like correlations which are responsible for the global mixed-quantum state@ is defined as
ness of the state. ~

The symplectic eigenvalues are clearly invariant under No) = lef.-1 (10)
symplectic operations. Yet, it is often advantageous to intro- 2
duce other symplectic invariants, which can be easily _ R
handled in terms of second statistical moments. In thavhere is the partially transposed density matrix i,
present work, dealing with an-mode Gaussian state with =110| stands for the trace norm &t The quantity\{(e) is
CM o, we will make use of the obvious invariant Det equal to[%\|, the modulus of the sum of the negative ei-
(whose invariance is a consequence of the fact thatSDet genvalues oP, quantifying the extent to which fails to be
=1 OSe Spanr) and oan_:Eirjj:lDetg-ij, where theoy; are positive. Strictly related toV is the logarithmic negativity

2% 2 submatrices ofr, Ey, defined asE,=In|o|;, which constitutes an upper
bound to thdistillable entanglemerf the quantum state
o111 ° Oy and is related to the entanglement cost under PPT preserving
o= + - | (6) operationg 28]. It can be easily showj29] that the logarith-

mic negativity of a two-mode Gaussian state is a simple
function of the partially transposed symplectic eigenvalue
The invariance ofA, in the multimode case follows from its alone,

invariance in the case of two-mode states, proved in Ref.

[20], and from the fact that any symplectic transformation Ex=ma{0,-Inv], (11
figgsb[eszc_lc_);r; pg;?ndplae Scttizee%gﬂsgu%;tiwgfrgogsot_rr?]gsggrm%uantifying the extent to which inequalit®) is violated.

Gaussian state are simply determined by the invariants introé Let us recall that the bipartite entanglement of formaﬂon
duced above, r [30] of a quantum state@, shared by partied andB, is

Onp °°° Opp

defined as
2(v*)?=A, ¥ VA% - 4 Deto. (7) _
. , . . Er(e) = min > pE(|y), (12
Also the purity u=Tr = of a multimode Gaussian stage {pilun)} i

quantifying its degree of mixedness, is easily determined in . , )
terms of the symplectic invariant Det, as[22] where the minimum is taken over all the pure state realiza-

N tions of g,
u=1~Deto. (8)
o= E pil i)Wl

Regarding the entanglement of Gaussian states, we recall
that the positivity of the partial transpose is a necessary and
sufficient criterion for two-mode states to be separdBlRT ~ andE(|;)) denotes the entropy of entanglement of the pure
criterion) [4]. The validity of such a criterion has been later state|), defined as the von Neumann entropy of the re-
extended to generic Gaussian stateslof n)-mode systems duced state obtained by tracing over the variables of one of
[6] and to(m+n)-mode Gaussian states with a fully degen-the two subsystems,
erate symplectic spectruf23,24]. For a bipartite system
with Hilbert spaceH =H® Hg, made up of two subsystems E(|yi)) = = Tral Tra|¢)(ualIn(Trgl¢i)(wi])].
with Hilbert spacesH, and Hg, the operation of partial
transposition is defined as the transposition of the degrees Ql
freedom associated to only one of the two subsystems, i.e., 9
the transposition of only one of the reduced Hilbert space
say H,. Let us remark that the positivity of the partially
transposed operat@ does not depend on which subsystem
is transposed nor on the basis chosen to perform the trans- Er = max{0,h(77)], (13)
position. Therefore, the positivity of the partial transpose is
invariant under local unitary transformations on the two subWith
systems. In particular, for two-mode Gaussian states, the PPT 2 2 5 5
criterion reduces to a simple inequality on the smallest sym- ) = (1+%) In((l ) ) _2-x In<(l =) )
plectic eigenvalu@™ of the partially transposed CI (par- 4x 4x 4x 4x
tial transposition amounts to the mirror reflection of one of
the four quadratures, see Réfl]). A two-mode Gaussian
state is separablg.e., not entangledif and only if

s far as symmetri¢i.e., with Deto;;=Det o, with refer-
ce to the decomposition of E¢)] two-mode Gaussian
ates are concerned, the entanglement of formdtjonan
Se computed31]. The quantityEg turns out to be, again, a
decreasing function 6™,

Therefore, the entanglement of formation provides, for two-
mode symmetric Gaussian states, a quantification of en-
tanglement fully equivalent to the one provided by the loga-
T =1. (9)  rithmic negativityE .
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Ill. STANDARD FORMS OF BISYMMETRIC MULTIMODE regulates the entanglement of the two-mode blocks at fixed
GAUSSIAN STATES global and local puritie§32].
Let us next determine and analyze the symplectic spec-
trum (symplectic eigenvalugof o gn.
Symplectic degeneracy of fully symmetric stat€he
symplectic spectrum oérgn is (n—1)-times degenerate. The
two symplectic eigenvalues af ;v and v;n read

We shall say that a multimode Gaussian statés fully
symmetricif it is invariant under the exchange of any two
modes. In the following, we will consider the fully symmet-
ric m-mode andn-mode Gaussian statgg,m and @ gn, with
CMs o ,m and o . Due to symmetry, we have that

@ e e B L ¢ vp=lb-2)(b-2),
| a € : | ¢ B ¢ :
Tam= e e TP ¢ oLy V;" =\[b+(n=1)z][b+(n-1)z)], (16)
€ ¢ « ¢ - & B where v, is the (n—1)-times degenerate eigenvalue.
(14 Proof. We recall that the symplectic eigenvalues @jfn

are the absolute values of the eigenvalues(®érg. Since
the symplectic forn€2 is block diagonal, with X 2 blocks
 given by Eq.(1), the matrixiQ o is just the matrixo with

wherea, £, B, and{ are 2X 2 real symmetric submatrices
(the symmetry ofe and { stems again from the symmetry
under the exchange of any two mojiesll the properties i multiplying on the left any X 2 block. Let us now con-
related to correlations and entropic measures of multimodg; | 1o <ot of vector®}, for i=1 n—1

Gaussian states are invariant under local, single-mode sym- o '

plectic operations. A _first preliminary fact, anaI(_)gous to the v;=(0,...,0, o7, =0T ,0,...,0)7,
standard form reduction of two-mode states, will thus prove - ——
useful. mode i mode i+1 (17

Standard form of fully symmetric statdset o s be the
CM of a fully symmetricn-mode Gaussian state. Thex2
blocks 8 and £ of o, defined by Eq(14), can be brought
by means of local, single-mode symplectic operati@s (.b—zz 1>T

where, for convenience, we have introduced the two-
dimensional vector

e Sp3}, into the formB=diagb,b) and{=diagz,2,). v=
Proof. The blocksB, being CM’s of reduced single-mode

Gaussian states, can be turned into their Williamson standarthe v; aren—1 linear independent vectors. One has

form by the same symplecti§ € Sp,y) acting on each _ ) - - -

mode. One is then left with the freedom of applying local, iQov;=i(0,....0,[w(B- Ov] ’_[“’(ﬁ_g)v]"ov""o) :

i—
Vs

single-mode rotations that leave the blogksnvariant. The siodE e, i (18)
same rotation applied to each mode is sufficient to diagonal-
ize ¢, since such a matrix is symmetric. A straightforward computation gives

The coefficientsd,z;,z, of the standard form are deter-
mined by the local, single-mode invariant Q& ;% and 0 1\/b-z 0 \[i b-z
by the symplectic invariants Detg= ,u;ﬁ andA,=A(op). io(B-v= i(_ 1 0)( 0 b- ) b-2z
Here ug (ug2) is the marginal purity of the single-mode %
(two-mode reduced states, whil&, is the remaining invari-

ant of the two-mode reduced staf&?]. This parametriza- i b-2z
tion is provided, in the present instance, by the following = vy b-2z |, (19
equations: 1

1 . _ _ .
b=—, z= Ef(e__ €, ZZZ%E(G_"' e,), (15 which recasts Eq(18) into iQov;=vg;, thus proving that

Mg the symplectic eigenvalug, of o is (n—1)-times degener-
with ate. Note that, as one should expect, there exist aisb
eigenvectors associated to the negative eigenvalye Fo
, 4 this end, it suffices to turn into
e=4/82- =,
M g2 b-z \T
g (—i : 2,1) .
and Vg
4\2 4 _ The remaining linearly independent eigenvector@f g
€= Ay-— — - is the vector
Iu‘,B IU/BZ
(WT,. ,WT)T,

This parametrization has a straightforward interpretation, be-
causeug and ug quantify the local mixednesses adg ~ with
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W' = (Vb + (n-1)z,\b+(n—-1)z,). standard form; of th(_e blocksam and o gn, while keeping thg
o ) . . . 2X 2 submatricesy in arbitrary, generally nonsymmetric,
It is immediate to verify that such a vector is associated tGorm. Let us next focus on the blockrz and define the
the eigenvalue/;,n, completing the proof. vectorsy; by

The (n-1)-times degenerate eigenvalujpis independent
of n, while v, can be simply expressed as a function of the
. G . —_ T
single-mode purityu, and the symplectic spectrum of the vi=(0,....,0,07)". (25
two-mode block with eigenvalues, and vzz,

. nn-2) (n-1. ., They are the vectors obtained from the vectoys of Eq.
(vg)?=-——F—+ > [N(v2)? + (n=2)(vp)°]. (17) by appending to themr null entries on the left. Be-
Mp cause of the identity of the blockg, their contributions to

(20) the secular equation cancel out and it is straightforward to
L . __yerify that the vectors;’'s aren—1 eigenvectors afQ2 o~ with
In turn, the two-mode symplectic eigenvalues are determlneei envaluer-. The same argument holds considering the
by the two-mode invariants by the relation 9 -V 9 9
submatrixo,m, thus completing the proof.
20i)2=Ap T A2 —a1.2,. 21 Equi.pped with the;e results, we are now in a pqsition to
(g A S 21 determine the bipartite entanglement of bisymmetric multi-

The global purity Eq.(8) of a fully symmetric multimode mode Gaussian states and prove that it can always be uni-

Gaussian state is tarily localizedor concentrated
i e+ -1 Unitary localization of the entanglement of bisymmetric
ppn = (Det o gn) :[(Vg) V,gn] : (220 states The bisymmetric(m+n)-mode Gaussian state with

CM o Eq. (24) can be brought, by means of a local unitary
operation, with respect to thenx n)-mode bipartition with
reduced CMso,m and ogn, to a tensor product of single-
mode uncorrelated states and of a two-mode Gaussian state.
Proof. Let us focus on the-mode blockog. The vectors
v; of Eq. (25), with the first 2n entries equal to 0, are, by
construction, simultaneous eigenvectorsQio g, andiQa,
v.=(a-e)(a-ey, with the same(degenerateeigenvalue. This fact suggests
that the phase-space modes corresponding to such eigenvec-
tors are the same far and foro . Then, bringing by means
of a local symplectic operation the Cldgn in Williamson

Let us now generalize this analysis to tie+n)-mode  form, any(2n-2)X(2n-2) submatrix ofo will be diago-
Gaussian states with CM, which results from a correlated nalized because the normal modes are common to the global

and, through Eq(20), can be fully determined in terms of
the one- and two-mode parameters alone.

Obviously, analogous results hold for tmemode CM
o,m of Eq. (14), whose 2x 2 submatrices can be brought to
the form a=diag(a,a) and e=diag(e;,e,) and whose(m
—-1)-times degenerate symplectic spectrum reads

vim=[a+(m-Dela+(m-1e,]. (23)

combination of the fully symmetric blocks ,m and o, and local CMs. In other words, no correlations between the
m-mode party with reduced Chr,m and such modes will be
o,m T left: all the correlations between the-mode andn-mode
7= rT o ' (24) parties will be concentrated in the two conjugate quadratures

of a single mode of th@-mode block. Going through the
whereI" is a 2nX 2n real matrix formed by identical 2  same argument for the-mode block with CMeo,m would
blocks y. Clearly,I' is responsible for the correlations exist- prove the proposition and show that the whole entanglement
ing between then-mode and th@-mode parties. Once again, between the two multimode blocks can always be concen-
the identity of the submatricey is a consequence of the trated in only two modes, one for each of the two multimode
local invariance under mode exchange, internal to theparties.
m-mode andn-mode parties. States of the form of HG4) To prove this property, we proceed first by investigating
will be henceforth referred to asisymmetric A significant  the relationship between the transformations which diagonal-
insight into bisymmetric multimode Gaussian states can bée iQ o and the symplectic operations that briagin Wil-
gained by studying the symplectic spectrumeofand com-  liamson normal formw [33]. The problem one is immedi-
paring it to the ones obr,m and o sn. ately faced with is that these transformations are not unique
Symplectic degeneracy of bisymmetric stafHse sym- because the normal form associatedotds invariant under
plectic spectrum of the CMr Eq. (24) of a bisymmetric local rotations(this local freedom is always present in the
(m+n)-mode Gaussian state includes two degenerate eigeselection of normal modg¢sind due to degeneracy, also un-
values, with multiplicitiesm—-1 andn-1. Such eigenvalues der global symplectic rotations of the modes associated to
coincide, respectively, with the degenerate eigenvalpef  the degenerate eigenvalwg. Thus there is an ambiguity in
the reduced CMr,m and the degenerate eigenvalygeof the selecting the eigenvectors i o~ and therefore in determin-
reduced CMorpn. ing the transformation that diagonalizes it. Moreoveiyif}
Proof. One can proceed constructively, in analogy withis a set of 2m+n) column-vectors normalized eigenvectors
the proof of the previous proposition. Let us consider theof iQ o, then any matrixT of the form
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T=(EWy, ..., EW) (26) where 0 stands for 22 null matrices andT;; are 2x2
_ o ) ] ] blocks, whose exact form is unessential to our aims. Exploit-
diagonalizesiQo: T"{iQe)T=D (with the &'s arbitrary  jng Eq.(29), for the last 2n—1) columns ofS we obtain, in
complex coefficients However, we can proceed by observ- arms of 2< 2 matrices,
ing that the 2x2 matrix iw is diagonalized by the unitary

transformationJ, with (0,..0 UT,,. . UT)" (31
RN
_ 1 | _ | first m modes

U:E<1 1 ) Due to the presence of the firet null entries, then-1

__ modes determined by E¢31) are normal modes of both the
so thatUTiawU=diaga, -a) (wherea is any complex num- global CM ¢ and thelocal CM o 4. An analogous proof,
ber. We can then define the matrid=U®™" which is  90ing along the same lines of reasoning, holds for the re-
local in the sense that it is block diagonal and acts on eacHUYced CMom: it can be reduced to a local normal form that

mode separately, such that for any normal farm sharesm—1 normal modes with the global CMr. These
results imply that the form in which all the correlations be-
U liQru =D, (27) tween the two parties are shared only by a single mode of the

n-mode party and by a single mode of ttremode party can
be obtained by means of local symplecfimitary) opera-
tions, namely by the symplectic operations bringing the
block oz and the blocko ,m in Williamson form.

For the reader’s ease and for the sake of pictorial clarity,

whereD=T1iQoT is a diagonal matrix with entrie§+ »}
(in terms of the symplectic eigenvalyetet us next denote
by S one of the symplectic transformations that briagin
normal form:SToS=v. It is then easy to see that

D=TXiQ¢)T=UXiQwU we can supplement the proof by explicitly writing down the
ot e different forms of the CMe at each step; such matrix rep-
=U(iQS oe9U =U"SH(iQ0)SU, (28)  resentations allow an immediate visualization of the process

of unitary concentration of the entanglement between a

heref
and therefore single pair of modes, one for each multimode party. The CM

S=TUl=TU", (29) o of a bisymmetric(m+n)-mode Gaussian state regddee
where in Eq.(28) we have exploited the fundamental prop- Eq. (24
erty of symplectic transformation§1"QAS*=Q. Equation a & - £ y oy
(29) shows that there must exsbmesymplectic transforma- e - g -+ - :
tion that diagonalize&2 o and satisfies the further condition
given by Eq.(29). In fact, it is obvious that not every £ £
diagonalizing Qo is a symplectic transformation when mul- | g g a vy Y
tiplied on the right byU". Vice versa, if this last condition 7= v Y B ¢ g (32
holds, the symplectic operation that bringsn normal form . . ) .
is given by Eq.(29). The modes that diagonalize the qua- g S
dratic forme in phase space can be reconstructed in terms of Y S 4
S: since they are linear combinations of the original modes Yo e L B
andS'oSis diagonal, they can be expressed by real column ) ) ]
vectors identified by the columns &f According to what we have just shown, reducing to normal

We can now go back to our original problem: leaving form the blockog brings the global CMo in the form CM
aside the involved task of exactly determining which choice? -
of the eigenvectors a2 o leads to a symplectic transforma- a € - € "0 - 0

tion of the form Eq.(29), we are anyway assured that in the y .
subspace associated to the eigenvalueg, such eigenvec- 8 £ :
tors must be linear combinations of thg¢s defined in Eq. & e :
(25 and their counterparts associated to the eigenvaitje - e - € a vy 0 0
(with their first 2m entries, related to thev-mode party, set o' = T Tt ,
equal to 0. Therefore, the transformatichreads, in general, Y. oo v Ve 0 0
Tl,l Tl,m 0 O 0 0 0 VB 0
T Tm'l Tm,m 0 0 0 0 0 0 Vﬁ

’ where the 2 blocks¥,=vy,1, and wg=v;l, are the Wil-
liamson normal blocks associated to the two symplectic ei-

T e T T e T genvalues obrgn. The identity of the submatriceg is due to

m+n,1 mnm - Tmen,mel M, MHN the invariance under permutation of the finstnodes, which
(300  are left unaffected. The subsequent symplectic diagonaliza-

Tm+1,1 Tm+1,m Tm+1,m+1 Trml,m+n
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tion of o,m puts the global CMe in the following form  of Gaussian states @i X 1)-mode and(1 X n)-mode bipar-
[notice that the firstm+1)-mode reduced CM is again a titions. In view of the invariance of such a criterion under

matrix of the same form oér, with n=1], local unitary transformations, which can be appreciated by
_ the definition of partial transpose at the Hilbert space level,
v, 0 -~ 0 0 0 -0 and considering the results proved in the previous section, it
o . 0 : i oo is immediate to verify that the following property holds.
0 » 0 0 I . PPT criterion for bisymmetric multimode Gaussian states
“o, ' ' For generic(mX n)-mode bipartitions, the positivity of the
: O - 0 V7w ¥ 0 - O partial transposéPPT) is a necessary and sufficient condi-
o= 0 - 0 T voo - 0 | (33) tion for the separability of bisymmetrign+n)-mode Gauss-
Bn .
] ian states.
o -0 0 v 0O : This statement is a first important generalizationnto
: : S0 .0 X n bipartitions of the result proved by Werner and Wolf for

(') O 0 0 the case of X n bipartitions[6]. In particular, it implies that
Vs no bisymmetric bound entangled Gaussian states may exist
with v’ =", and v, =v,1,. Equation(33) shows explic- [6,34] and all themX n block entanglement of such states is

itly that the state with CMe”, obtained from the original distillable. Moreover, it justifies the use of the negativity and
state with CMe by exploiting local unitary operations, is the € logarithmic negativity as measures of entanglement for
tensor product ofn+n-2 uncorrelated single-mode states tN€Sé multimode Gaussian states. o
and of a correlated two-mode Gaussian state. The proof is AS for the quantification of the entanglement, exploiting
therefore complete, and shows that the amount of entangl€°Me recent results on two-mode Gaussian sfa@82 we
ment (quantum correlationspresent in any bisymmetric @0 sel_ect the rel_evant quantities that, by de_termlnlng t_he
multimode Gaussian state can be localizeshcentratepin correlation properties of the two-mode Gaussian state with
a two-mode Gaussian staiee., shared only by a single pair CM o, also determine the entanglement and correlations of

of modes, via local unitary operations. These results andth® multimode Gaussian state with Cil These quantities

their consequences will be discussed in detail in the follow-2€; clearly, the equivalent marginal puritiggeq and s geq

the global purityu., and the equivalent two-mode invariant

ing sections. O / e
Aeq Let us remind that, by exploiting Eq$l6), (23), and
(15), the symplectic spectra of the CMg,m and g may be
IV. BLOCK ENTANGLEMENT OF MULTIMODE recovered by means of the local two-mode invariants

Mpgeq are easily determined in terms of local invariants alone,
In the previous section, the study of the multimode @M . .
of Eq. (32) has been reduced to a two-mode problem by Maeq= 11V m  tpeq= LIvpn. (39)

means of local unitary operations. This finding allows for an

exhaustive analysis of the bipartite entanglement between tHgh the other hand, the determination;f; and A, requires
m- andn-mode blocks of a multimode Gaussian state, resortthe additional knowledge of two global symplectic invariants

ing to the powerful results available for two-mode GaussiarPf the CM o this should be expected, because they are sus-
states. For any multimode Gaussian state with GMet us ceptible of quantifying the correlations between the two par-

define the associatedquivalenttwo-mode Gaussian state ties. The natural choices for the global invariants are the

Qcq With CM @q given by global purity u=1/yDeto and the invariant\, given by
. ¥ A =mDeta+m(m- 1)Dete +nDetB+n(n-1)Detl
Oeq= (;/’T v;n>' (34) +2mnDety.
L , . One has
where the % 2 blocks have been implicitly defined in the
CM (33). As already mentioned, the entanglement of the Meq:(y;)m_l(y%)n_llu,, (36)
bisymmetric state with CMo, originally shared among all
the m+n modes, can beompletelyconcentrated by local Agg=A - (m- 1)(1};)2_ (n- 1)(1}‘-3)2_ (37)

unitary (symplecti¢ operations on a single pair of modes in

the state with CMo, Such an entanglement is, in this  The entanglement, quantified by the logarithmic negativ-

sense, localizable. Obviously, this kind of localization of en-ity, and the mutual information between thremode and the

tanglement by local unitaries is conceptually very differentn-mode subsystems can thus be easily determined, as is the

from the localization of entanglement by local measurementsase for two-mode states. In particular, the smallest symplec-

first discussed by Verstraete, Popp, and Cirac for qubit sysic eigenvalu€re, of the matrix o, derived froma, by

tems[15]. We now move on to describe some consequencepartial transposition, fully quantifies the entanglement be-

of this result. tween them-mode andn-mode partitions. Recalling the re-
Afirst qualificative remark is in order. It is known that the sults known for two-mode statg®9,32, the quantityv,,

PPT criterion is necessary and sufficient for the separabilityeads
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~ ~ 4 n-mode partial blocKsbut weak couplewise entanglement, is
20%q= Deg= \/ A2~ 7 able to extract a highly pure, highly entangled two-mode
Heq state(with no entanglement lost, all th@x n entanglement
with can be localized If needed, the same machine would be
able, starting from a two-mode squeezed state and a collec-
i = 2 .2 A tion of uncorrelated thermal or squeezed states, to distribute
ed Mieq M,zzseq e the two-mode entanglement between all modes, converting

o the two-mode into multimode, multipartite quantum correla-
The logarithmic negativitfs, " measuring the bipartite en- tions, again with no loss of entanglement. The bipartite or
tanglement between the-mode andn-mode subsystems is multipartite entanglement can then be used on demand, the

then first for instance in a CV quantum teleportation protocol, the
oy g0 _ latter to secure quantum key distribution or to perform mul-
Ex’P = ma{—InTeq 0]. (38)  timode entanglement swapping.

In the casev, =1, corresponding to the condition

[a+(m=1eJla+(m-1)e,] V. QUANTITATIVE LOCALIZATION OF THE BLOCK
ENTANGLEMENT
=[b+(n-1z]lb+(n-1)z], (39) _— —

In this section, we will explicitly compute the block en-
the equivalent two-mode state is symmetric and we can deanglement(i.e., the entanglement between different blocks
termine also the entanglement of formation, using @§).  of modes for some instances of multimode Gaussian states.
Let us note that the possibility of exactly determining thewe will study its scaling behavior as a function of the num-
entanglement of formation of a multimode Gaussian state dber of modes and explore in deeper detail the localizability
an (mxn)-mode bipartition is a rather remarkable conse-of the multimode entanglement. We focus our attention on
guence, even under the symmetry constraints obeyed by thally symmetric Z--mode Gaussian states described by a
CM o Another relevant fact to point out is that, since both2nx2n CM o zn given by Eq.(14). These states are trivially
the logarithmic negativity and the entanglement of formationbisymmetric under any bipartition of the modes, so that their
are decreasing functions of the quanfity, the two mea- block entanglement is always localizable by means of local
sures induce the same entanglement hierarchy on such a suymplectic operations. Let us recall that concerning the co-
set of equivalently symmetric stateg.e., states whose variances in normal forms of fully symmetric statsse Sec.
equivalent two-mode CMrg is symmetrig. lIl'), pure states are characterized by

From Eq.(36) it follows that, if the(m+n)-mode bisym- B ) i
metric state is purdu=v_n=v,=1), then the equivalent z={1+b(2n-2)-(2n-D- (-1
two-mode state is pure as welke,=1) and, up to local X (b2 = 1)[(2bn)2 - (2n - 2)2]}/[2b(2n - 1)],
symplectic operations, it is a two-mode squeezed vacuum. (40)
Therefore,any pure bisymmetric multimode Gaussian state
is equivalent, under local unitary (symplectic) operations, toand belong to the class of CV GHZ-type states discussed in
a tensor product of a pure two-mode squeezed vacuum and B¥efs. [9,11]. These multipartite entangled states are gener-
m+n-2 uncorrelated vacua ated as the outputs of the application of a sequencenof 2
More generally, if both the reduced-mode andn-mode -1 beam splitters tor2single-mode squeezed inpy8. In
CMs o,n and opn of a bisymmetric, mixed multimode the limit of infinite squeezing, these states reduce to the si-
Gaussian stater of the form Eq.(24) correspond to Gauss- Mmultaneous eigenstates of the relative positions and the total
ian mixed states of partial minimum uncertainty, i.e.pji, ~momentum, which define the proper GHZ states of CV sys-
=v/_3n=1, then Eq.(36) implies ueq=p. Therefore, the tems[9]. The CM o-pBZn of this class of pure states, for a given

equivalent two-mode state has the same entanglement afymber of modes, depends only on the paramieted /w4

the same degree of mixedness of the original multimode™ 1. Which is an increasing function of the single-mode
state. In all other cases of bisymmetric multimode states, ongdueezing. Correlations between the modes are induced ac-
has thatue,> u and the process of localization produces acording to the above expression for the covariangegx-
two-mode state with higher purity than the original multi- Ploiting our previous analysis, we can compute the entangle-
mode state. In this specific sense, we see that the process BNt between a block df modes and the remaining1zk
localization implies a process of purification as well. We canModes, both for pure statém this case the block entangle-
understand this key point observing that the entanglement {&€nt is simply the Von Neumann entropy of each of the
localized by performing local unitary transformations which 'educed blocksand, remarkably, also for mixed states.

are reversible by definition. Then, in principle, by only using e can in fact consider a generia-fnode fully symmet-
passive and acfive linear optics elements such as beam splfic Mixed state with CMa?z:, obtained from a pure fully
ters, phase shifters, and squeeZ®is one can implement a Symmetric(2n+q)-mode state by tracing ouf modes. For
reversible machine that, from mixed, bisymmetric multi- anyq, for any dimensiork of the block(k=<n), and for any
mode states with strong quantum correlations between all theonzero squeezing.e., forb> 1), one has thak, <1, mean-
modes (and consequently between the-mode and the ing that the state exhibits genuine multipartite entanglement,
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FIG. 2. (Color online Scaling, with half the number of modes,
FIG. 1. (Color onling Hierarchy of block entanglements of fully of the entanglemgnt of formatiqn in two families of fully symmetric .
symmetric 2-mode Gaussian states ki (2n—k) bipartitions (n 2q-mode Gaussian states. Dlamonds_denote pure states, while
=10 as a function of the single-mode squeezmgrhe block en- ~ Mixed states(denoted by stajsare obtained from2n+4)-mode
tanglements are depicted both for pure stdsesid line9 and for ~ PUre state_s by tracing out four mod(_es. For each class of gtates, two
mixed states obtained from fully symmetri@n+4)-mode pure sets of points are plotted, one referringit® n entanglementfilled

Gaussian states by tracing out four modeashed lines All the ~ SYmbol3, and the other to X1 entanglementempty symbols
quantities plotted are dimensionless. Notice how then X n entanglement, equal to the optimal localizable

entanglementOLE) and estimator of genuine multipartite quantum
as first remarked in Ref9] for pure states: eack-mode  correlations among all then2modes, increases to the detriment of
party is entangled with the remainir@n—k)-mode block. the bipartite Ix 1 en_tanglement bere_en any pair of modes._ The
Furthermore, the genuine multipartite nature of the entangles-'”g'e'rnOOIe squeezing parameter is fixedhat.5. All the quanti-

. - . Ky g2nK . ties plotted are dimensionless.
ment can be precisely quantified by observing E/@ﬁﬂ is
an increasing function of the integkrn, as shown in Fig. localizable entanglemef®LE) of the stateo g, where “op-
1. Moreover, we note that the multimode entanglement otimal” refers to the choice of the bipartition. Clearly, the
mixed states remains finite also in the limit of infinite OLE of a state with 8+1 modes is given bgg 16", These
squeezing, while the multimode entanglement of pure stategsults may be applied to arbitrary, pure or mixed, fully sym-
diverges with respect to any bipartition, as shown in Fig. 1.metric Gaussian states.

In fully symmetric Gaussian states, the block entangle- We now turn to the study of the scaling behavior witbf
ment is localizable with respect to armyx (2n—k) biparti-  the OLE of Z--mode states, to understand how the number of
tion. Since in this instancell the entanglement can be con- local cooperating parties can improve the maximal entangle-
centrated on a single pair of modes, after the partition hagent that can be shared between two parties. For generic
been decided, no strategy could grant a better yield than thhixed fully symmetric 2h-mode states af X n bipartitions,
local symplectic operations bringing the reduced CMs inthe OLE can be quantified also by the entanglement of for-
Williamson form (because of the monotonicity of the en- MationEg, as the equivalent two-mode state is symmetric. It
tanglement under general LOG:GHowever, the amount of IS then useful to compare, as a functionrpfthe 1xX1 en-
block entanglement, which is the amount of concentrated@nglement of formation between a pair of moda# pairs
two-mode entanglement after unitary localization has taker@'® equivalent due to the global symmetry of the State
p|ace, actua”y depends on the Choice of a partic[ﬂar fpre the.local.llzatlon, and thEI><n entanglement of forma-

X (2n-K) bipartition, giving rise to a hierarchy of localizable tion, which is equal to the optimal entanglement concen-
entanglements. tra_ted ina sp_ecific pair of modes gfter performing the' Iogal

Let us suppose that a given Gaussian multimode statghitary operatlons_. _The results of this s_tudy are shqwn in Fig.
(say, for simplicity, a fully symmetric statés available and 2. The two quantities are plotted at fixed squeezings a
its entanglement is meant to serve as a resource for a givéHnction of n both for a pure 8-mode state with CMoJ,
protocol. Let us further suppose that the protocol is optimallyand a mixed B8-mode state with Cl\/er\Zﬁ. As the number of
implemented if the entanglement is concentrated betweemodes increases, any pair of modes becomes steadily less
only two modes of the global systems, as is the case, e.g., #ntangled, but the total multimode entanglement of the state
a CV teleportation protocol between two single-mode pargrows and, as a consequence, the OLE increasesnwitn
ties. Which choice of the bipartition between the modes althe limit n— o, the nXn entanglement diverges while the
lows for the best entanglement concentration by a successianx 1 one vanishes. This holds both for pure and mixed
of local unitary operations? In this framework, for an evenstates, although the global degree of mixedness produces the

number of modes, the worst localization strategy consists ifiypical behavior that tends to reduce the total entanglement
assigning 1 modéi.e., settingk=1) at one party andr®-1  of the state.

modes to the other. Conversely, the best option for localiza-

tion is an equak=n splitting of the 21 modes between the VI. CONCLUDING REMARKS
two parties. The logarithmic negativii&fifn'ﬁn, concentrated We have shown that bisymmetric multimode Gaussian

into two modes by local operations, represents the optimadtates(pure or mixed can be reduced, by local symplectic
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operations, to the tensor product of a correlated two-modeemarkable insight into the structure of the multimode block
Gaussian state and of uncorrelated thermal stdbeslatter  entanglement of Gaussian states. This leads finally to the
being obviously irrelevant as far as the correlation propertiesletermination of the maximum, or optimal localizable en-
of the multimode Gaussian state are concerngsl a conse- tanglement that can be concentrated on a single pair of
quence, all the entanglement of bisymmetric multimode modes.

Gaussian states of arbitramX n bipartitions is unitarily It is important to notice that the multipartite entanglement
localizablein a single(arbitrary) pair of modes shared by the in the considered class of multimode Gaussian states can be
two parties. Such a useful reduction to two-mode Gaussiaproduced and detectel®,35], and also, by virtue of the
states is somehow similar to the one holding for states witlpresent analysis, reversibly localized by all-optical means.
fully degenerate symplectic spectfa3,24], encompassing Moreover, the multipartite entanglement allows for a reliable
the relevant instance of pure states, for which all the sym¢i.e., with fidelity 7> 7., where F.=1/2 is the classical
plectic eigenvalues are equal to 1. The present result allowthreshold quantum teleportation between any two parties
us to extend the PPT criterion as a necessary and sufficiemtith the assistance of the remaining othE35]. This quan-
condition for separability for all bisymmetric multimode tum teleportation network has been recently demonstrated
Gaussian states of arbitranyX n bipartitions, and to quan- experimentally with the use of fully symmetric three-mode
tify their entanglement. Gaussian statg$6].

Notice that, in the general bisymmetric instance addressed
in this work, the possibility of performing a two-mode reduc-
tion is crucially partition-dependent. However, as we have
explicitly shown, in the case of fully symmetric states all the  We thank INFM, INFN, and MIUR under national project
possible bipartitions can be analyzed and compared, yieldingRIN-COFIN 2002 for financial support.
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