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Quantum theoretical treatment of coherent forward scattering of light in a polarized atomic ensemble with an
arbitrary angular momentum is developed. We consider coherent forward scattering of a weak radiation field
interacting with a realistic multilevel atomic transition. Based on the concept of an effective Hamiltonian and
on the Heisenberg formalism, we discuss the coupled dynamics of the quantum fluctuations of the polarization
Stokes components of propagating light and of the collective spin fluctuations of the scattering atoms. We show
that in the process of coherent forward scattering, this dynamics can be described in terms of a polariton-type
spin wave created in the atomic sample. Our work presents a general example of an entangling process in the
system of collective quantum states of light and atomic angular momenta, previously considered only for the
case of spin% atoms. We use the developed general formalism to test the applicability of thé SPIDFOXi-
mation for modeling the quantum nondemolishing measurement of atoms with a higher angular momentum.
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[. INTRODUCTION It is worth noting that the effect of a random Faraday
; - ; - .__fotation due to atomic fluctuations was discussed and ob-
Various optical phenomena associated with the optlcaLGerVed first in Refs[10,11] more than 20 years ago in the

umping process, which have been comprehensively studie . ; ;
gincep thgep19603 and described in many F;spects in Zl famo gntext of demonstrating the advantages of the light-beating
method in atomic spectroscopy. The importance of atomic

review[1] by Happer, are being revived nowadays in a new N . . )
form within the field of quantum information and quantum polarization was later discussed in Ref$2,13, where it

computing. The paramagnetic ground states of macroscop}gas shown that the collective spin polarization of an atomic

atomic spin subsystems are considered now to be convenie hpesirlj]tbloeincoglf-(fj.rzzar;tﬁllyr(;?)zdrlgjitgt?oﬂu%r:};musr;agtsaﬂfsstig;
physical objects for mapping and storing the quantum infor- going P :

mation in the quantum states of their collective angular mo-Of atomic spin variables was first experimentally observed

menta. The Faraday-type interference scheme was proposg'& off-resonant forward scattering jd4].

for spin squeezing2] and for quantum communication be- o % FIERET PEREE I SRERCE 8 B ER
tween atomic ensembl¢8]. The proposed ideas were real- 9 P

ized in spin squeezinf4] and in the entanglemen§] ex- oms .With an a_rbitrary angulqr momentum. \We disc'uss the
periments, where a quantum measurement on light forwar ohysical conditions under which the forward scattering can

scattered from atomic ensembles was used. The same kind 9f properly described in terms of the effective Hamiltonian,

off-resonant forward scattering combined with a quantu ig,'?f;an'('f'gg, rt:f: 23?8'051212&;?55?3}2% zz th:;rﬁﬂw] tctEects
feedback was used in the recent demonstration of quantu Y q J '

merory o (6} Applcatons 0 varous quaniun ior 2o, 0 16| SHecve Hamonan, e derve e
mation protocols including a cat state generatj@h and g-type €eq P

quantum cloning of light onto atonf8] have been proposed. dlstnbl_mon of the Stokes variables of the field a_nd of the
collective angular momentum of atoms. The solution shows

Efficient generation of entanglement via multipass interac—hoW the entanalement of the gquantum fluctuations of liaht
tion have been also proposgd. Theoretical modeling in the and atomic suk?s Stems is forrged We show that the engtan-
above-mentioned papers was concerned with collective ca- y :

nonical variables for atoms which can be conveniently intro-gllng process can be understood in terms of a polariton-type

. . spin wave induced in the atomic sample. We support our
duced for spln%- atoms. However, the actual experiments P P P

X . : discussion by numerical simulations, assuming the condi-
were conducted using states with higher angular momentag. < Lose to those of the recent experimdais

Hence a theoretical model describing off-resonant interaction The paper is organized as follows. In Sec. II, we review

of I|g[1t_ with r(_eal|st|c atoms with angular momentum hlgherthe process of coherent forward scattering to show how the
thans is required. field Heisenberg operators are transformed in interaction
with a multiatom ensemble consisting of atoms with an arbi-
trary Zeeman structure and for an off-resonant excitation on
*Electronic address: Kupr@quark.stu.neva.ru a dipole allowed optical transition. In Sec. Ill, we extend the
"Electronic address: polzik@nbi.dk Heisenberg formalism to the atomic subsystem and introduce
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the effective Hamiltonian responsible for the coupled dy-solid angle different from the direction of light propagation
namics of an infinite number of variables associated with thes just a sum of partial probabilities of independent scattering
local polarization of the weak probe light and with individual by each atom. In the Heisenberg formalism, this means that
atomic spins. The effective Hamiltonian is further trans-the non-forward-propagating operator waves created in the
formed in Sec. IV into another form by introducing the more medium by single or multiple scattering events are super-
convenient irreducible tensor formalism for the polarization-Posed with random phases to a roughly zero sum. The out-
sensitive processes. In Sec. V, we perform mesoscopic aveg0ing flux associated with incoherent scattering is propor-
aging to arrive at the wave-type equations for the collectiveional to the total number of atoms, but stays small because
&f a negligible value of the off-resonant cross section. At the

equations are solved and discussed in Sec. VI in the contexfM€ time, for Iight propagating in the forward direction in a
of the quantum entangling process. In particular, they araransparent medium there is a very strong coherent enhance-

S ) ment of the scattering process. Since the Doppler shift in the
used to test the applicability of the sp%napproxmatlon for forward-scattered mgd%s disappears see(E%F)) and the
modeling the quantum nondemolishing measurement in a Y .

_ X . Raman shift, caused by Zeeman splitting, does not notice-
ensemble of alkali-metal atoms with a higher angular mo4py change the phase of these modes, the transmitted light
mentum. reveals strong coherent superposition of all partial contribu-
tions associated with single and multiple scattering. For dis-
cussion of the off-resonant light-atom coherent scattering be-
yond the plane-wave approximation, 4é&,16].

Let us subdivide the joint dynamics of light and atomic

Consider a system d{ identical atoms located in a finite subsystems into time increments, during which the number
volume and scattering coherent light of frequenay The  Of accumulated incoherent scattering events is much less
wave of light incident on the atomic ensemble is assumed téhan the total number of atoms. This simplifies our analysis
be weak enough that possible saturation effects in its internd allows us to consider only the modes coherently scat-
action with the atoms are negligible. The atomic ensembletered in the forward direction. In the examples we are going
in general, represents an optically loftgick in refraction, to discuss below, this type of scattering is addltlonally stimu-
but thin in absorption medium for multiple off-resonance 'atéd by the propagating mode, which has the quasiclassical

scattering, but, on the average, the atoms are separated g tclg(z :ZIrtrrllel? ftrgeurg:]at_'n%;)viv:;ginaps\z?ﬁ'g]]gtg\?érgvee 'fr:g_o'
distances much larger than the wavelengthThus each quenay, gw 9

) . T . quency of propagating light, and define an averaged wave
atom is located, on average, in the radiation zone of its — ) .
neighbors. The interaction of the atoms with incident and’UmbPerk=w/c associated with the full set of the modes

multiply scattered light is assumed to be of the dipole typeoropagating in the direction. Then the spectral bandwidth

and a proper description of multiple scattering has to be re2® Of the continuum of the field modes, contributing to the
stricted to the rotating-wave approximation. quantum operator expansion, should be chosen to be less

To follow as clearly as possible the analogy between clasthan @. The actual spectrum of the incident radiation, cen-

. S ered atw, has a narrower bandwid#w, which is much less
sical and quantum descriptions of the coherent forward sca han the detuning from the resonanke - wy, wherew is
. . . 01 0
tering, It seems convenient to solve the quantum probl_em he resonance frequency of the nonperturbed optical transi-
the Heisenberg picture. In such an approach, the basic progn \we will also assume th#a| is much greater than natu-
cess is the transformation of the electric field operators in a | linewidth v Doooler shific and Raman shife We
single scattering event. This process I3 reviewed in Append&‘z lect the ijr/rq’a ing: shift agéociated with the rn\qél?lljral line-
A, as an e>_<arr_1p|e of the tran_sformatlon of the operator of th%]vi(?th in the en(gar 3(/jenominators The dissipation process
free electric field of a moving atom. As shown there, the gy ' P P

basic result can be written in terms of the Heisenberg—typ%fssoc'a_ted_ V\;]'th the spo_ntane_ous_ (jeca)r/]_ls neg(lje_cted in do_ur
microscopic Maxwell equation, where the polarization re-diSCUsSion; the assumptions justifying this are discussed in

sponse operator is given by a single pointlike scatterer. Thi§_ec'fvI C];f For an analysis cl)_f th? role qf spogtaneous emis-
allows us to make a subsequent generalization to the situgon for off-resonant entangling interaction, s6¢ .
Under the above-mentioned assumpltions, the basic ex-

tion of an arbitrary number of atoms scattering light coher- . L -
pression for the polarization of arath atom contributing to

ently in the forward direction. he f d NGALS b ) foll i
We begin our discussion from the single-particle micro-te forward scatteringA15) can be rewritten as follows:

scopic problem, described by E@10) (see Appendix A for N 1. — AL

detaily. For a system oN identical scatterers randomly lo- Pi(a' )(Z't) = g)ai(ja)(w't)é(z_ Za(t))EJ( )(Z’t)' (2.9
cated in space, it would not be so easy to generalize Eq.

(A10) to a multiparticle form allowing to follow precisely where

II. COHERENT FORWARD SCATTERING OF LIGHT IN
THE HEISENBERG PICTURE

the Heisenberg dynamics. For simplicity, we restrict the dis- (), ()

cussion to the case of the plane incident wave, as in the &i(,—a)(at)= > Lmmjnm I’ }(m|@(t)
experiments with gas cell$,6]. For a transparent medium mm’ N = Ao = opm— kv

consisting ofN scatterers, light is scattered in any direction 2.2)

other than the forward direction only incoherently. This
means that for an optically thin and transparent medium, thés the polarizability tensor an§, is the cross-section area of
probability to observe a photon randomly scattered in anyhe light beam propagating through the medium in zrdi-
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rection. Other notations are specified in Appendix A. Expres-
sion (2.2) gives the instantaneous value of the polarizability
tensor for theath atom, which depends on its exact Heisen-where by the second equality we specify the atomic state
berg evolution to the momeimt The Heisenberg operator of more precisely and introduce the atomic quantum numbers:
the electric field on the right-hand side of E®.1) is as- joandm,m’ are the ground-state angular momentum and its
sumed to be dressed in the perturbations by other atoms Igrojections on the direction of an external magnetic field
cated in front of any selecteath atom but nonperturbed by oriented along th& axis, which in general is different from
the selected atom itself. Here we use Cartesian coordinates the direction of the light propagation. Based on a perturba-
the tensor notation and sum over each repeated index. TH®n theory, we can expand the corresponding Heisenberg

T=m')m) = [jom'Xjom, (3.1)

indicesi, | take values< or y. operator up to the second order as follows:
Let us consider a thin mesoscopic layer located betvwzeen - - -
and z+Az planes and containing a large number of atoms. T() =To(t) + To(t) + -+, (3.2

Such an atomic subensemble will scatter the incoming fieldyhere
coherently in the forward direction by the collective polar-

ization To(t) = €emm|m’y(m| (3.3

50 N ) is the operator in the interaction representation, and the sec-
PU(zt) = 2 PaY(zY), (23 ond term

a=1
t t
where thez coordinate is confined inside the layéz,z -”rz(t):_izf dtuJ dt’ x [a(t”)éo(t”),[a(t’)éo(t’),?o(t)]]
+Az). If the medium is split in a number of thin layers along hJo t’
the propagation direction, the light beam would be subse- (3.9
quently scattered by these layers in the forward direction, o )
Then the “coarse-grained” dynamics of the field operatordS the second-order correction induced by a dipole-type op-

can be described by the following Heisenberg-type macrotical interaction, see EqA2). . .
scopic Maxwell equation: The integral(3.4) should be evaluated in the rotating-

wave approximation by keeping only the leading terms in the
ﬁA“)(z t)—iﬁé(”(z t)—4—77£|5(+)(z 0. (2.4 limit t>|A|"L. These terms can only depend on normally
972 ' c2 ot? T2 a2 T ' ordered products of the creation and annihilation field opera-
R tors. In general, such products expand over all the spatial
where the polarization operatd®*(z,t) is subsequently modes, but in reality only those modes which will not vanish
given by expression&.1)—2.3). after the averaging over the initial state are important. These
We conclude this section by the following remark. Theare planar modes propagating along thaxis. Taking into
derived macroscopic Maxwell equation is coupled to the coraccount only the propagating modes, the expan&@d? can
responding Heisenberg equations governing the dynamics dfe rewritten as follows:
the atomic subsystem, see below, and it cannot be extended t
up to an arbitrary time. Its validity is restricted by ignoring T(t) ~ To(t) + J
the dissipation process of incoherent scattering. That is why 0
the averaging of the operator polarizabili®®.2) gives only
the refraction part of the real polarizability tensor of normal
Maxwell equations. We will further discuss the self-
consistency of the dynamical approach in Sec. VI C. 7:leff(t) - Ef‘)(z,t)&ij(Et)l%}”(z,t). (3.6)

U+ [Fer®) To0] + -, 3.9

where we introduce an effective interaction Hamiltonian in
the interaction representation

IIl. DYNAMICS OF THE ATOMIC SUBSYSTEM Strictly speaking, the electric field operators and the operator
of the atomic polarizability tensor should be understood here

In this section, we discuss how the atomic variables args defined in the interaction representation and marked by
modlfled via th.e interaction v_wth the forward propagating ihq index zero. For the electric field, these operal%‘t%
light. We describe the dynamics of slowly varying ground- X(z,t) are given by the expansiofAl), defined atz—o0,

with an arbitrary quantized optical field. Then we generalize%here we keep only the forward propagating modes. The

; . operator of the polarizability tensar; (w,t) is given by Eq.

the problem to a macroscopic ensemble and introduce atom P v . i@, isg ' by Ed

. . .2), transformed to the interaction representation, with
collective variables. —

andk=w/c being the carrier frequency and wave number of

the modes interacting with an atom. As in EQ.1), the

tensor indices inside the definition of the effective Hamil-
Consider an atom at the origin of the coordinate frame atonian(3.6) can run only two projections, eitheror y.

the initial moment of time and drifting in space in such a Note that in our derivation of the effective Hamiltonian,

way that during the scattering event it moves much less thawe used a rather short time incrementonsistent with the

a wavelength. Let us define an arbitrary dyadic-type operatgperturbation theory approach, with the assumption that the

for the ground state of this atom, atom does not noticeably change its location during the scat-

A. Dynamics of a single atom coupled to an off-resonant field
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tering event. Then there would be no difference between théon of the quasiresonant radiation propagating in a disor-
interaction and the Heisenberg representations in the evaludered medium in the forward direction is based on the
tion of the integral(3.4) and in introducing the effective rotating-wave approximation. According to this approxima-
Hamiltonian(3.6). Based on a general principle of dynamical tion, the spectral bandwidth of the fielt is assumed to be
evolution, we can straightforwardly generalize E8.6) up  at least less than carrier frequeney Such a truncation of
to an arbitrary moment in time if we substitute there all thethe infinite field continuum makes it possible to consider the
operators in the Heisenberg representation. We should alsmmmutation relations of truly Heisenberg operators in the
take into account a classical drift of the atom in space andorm (3.9). Thus thes functions here and in Eq2.1) should
considerz=z(t) coordinate as its actual location at moment be correctly understood as distributed in a small mesoscopic
area of the ordet/ Aw. This spatial scale is obviously longer

B. Generalization to a multiatom ensemble thanx but still much shorter than the sample size or than any
internal macroscopic scale associated with macroscopic sus-
%eptibilities of the medium. It is also important to think about
Egs.(3.10 as an approximation for the more general multi-

Consider now an ensemble consisting of many atom
scattering incident light coherently in the forward direction.

Aljchough the most interesting polariton-type soluf[ions (.)b'mode Heisenberg-Langevin-type equation, where the damp-
tam_ed further in th? paper are destroyed by atomic rnOtloni*ng processes associated with incoherent scattering would be
we include the motion in our model for the sake of general'taken into consideration. As was mentioned before, the va-
their spatial motion and the internal state evolution. Therrgilttgaﬁ; ﬁzgtr?(gctapdui)ylvl tiéwﬁgrriwzgggféﬁ )dgrrrlldaigi?éls(s))og—

each atom is in. the envirqnment of the fie!d scattered by th ted with the spectrum of the probe light. But in the process
atoms located n front of it and cquplgd with such a dresse f transposing the field operators by means of the commuta-
field via the partial effective Hamiltonia(8.6). The full ef- tion rule (3.9), the whole field spectrumw should be taken

fective Hamiltonian for the whole ensemble interacting Wlthimo account.

the propagating field in the Heisenberg representation is The coupled equationé3.8) and (3.10 considered to-
given by gether are the main result of this section. They reveal the
. N A joint dynamics of the field and atomic subsystems interacting
Herd®) = = 2 E7(z:(0), D& (w,)E[(z(t),1). (3.7  in the limit of nonsaturating off-resonant optical excitation.
a=1 Being an example of Heisenberg equations, they are valid for
the arbitrary initial quantum state of the field and of the
3tomic ensemble. The main restriction comes from the model
of lossless coherent scattering. But even with such a simpli-
fication, these equations are quite complicated since they are
operator equations for aimfinite numberof the field and
atomic variables. In the following sections, we identify and
5 ey @ i - ~a) discuss special conditions when E¢3.8) and (3.10 could
T = lommT (1) + Z[Heff(t)fr M1, (3-8  pe converted to finite numberf Heisenberg-type equations
for collective variables of the field and atomic subsystems.

We preserve here the notation for the full effective Hamil-
tonian, which was used in the previous equation in the cas
of one atom.

Then operatof3.1) considered for each atom of the en-
semble satisfies the following Heisenberg equation:

wherea=1-N.

If we take into account the commutation relation between
Heiesenberg operators of the electric field propagating in the
forward direction, which are given by

IV. REPRESENTATION OF IRREDUCIBLE
COMPONENTS: STOKES OPERATORS
OF THE ELECTROMAGNETIC FIELD
~ “ 2mfiw . . o

[E(k )(Z’,t),Ei(+)(Z,t)] —_ 582 - 2), (3.9 A. Transformapon of'the effective Hgmlltonlan

to the irreducible representation

then the Maxwell equatiori2.4) can also be rewritten in The set of dyadic-type operato(8.1) for each atom of

terms of the effective Hamiltonian, the ensemble can be replaced with another set of operators,
& 1# - 20 - - - 2K+1 e
@) - 5 5B @) = - [ Her(®).E 7 (2], o=\ 5j 41 = Climediom)iom/®.
m’,m
(3.10
This op_er_ator equation sh_ows t_hat, in turn, the st_ate o_f the |jom’><j0m|(a) :E 2f(+ lqjomQ-}%_ (4.1)
field existing at each spatial point of the medium is defined ko Y2jotl 0

by the atomic operators in the Heisenberg representation, . , o . ,
according to their spatial distribution in space at a given time=eing the linear combination of original operators weighted
t. with Clebsh-Gordan coefficient€ - , the projectorsT(Ka()g

Let us make the following remark concerning the defini-become irreducible tensor operators, which possess the sim-
tion of § functions in Egs(3.9) and in(2.1) and the validity =~ plest properties with respect to rotational transformations,

of the dynamical equations in the for(8.10. Our descrip- see[17]. The linear transformation@.1) are consistent with
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any coordinate frame. Let us abandon the choice of the frame o101 0101 |d; ;I?
with the Z axis along the magnetic field, used in the basic a(w) = (=) o—=y ——* (4.9
definition (3.1), and return to the original frame with the V2o Jo 1) ~fle-awj;)

axis along the propagating beam, which is more natural for ) , .

the further discussion of the effective Hamiltonian approach/S follows from the Maxwell equatiof8.10 in the classical
For large frequency detuning, the Zeeman splitting in thdimit, the termH(elf)f completely defines the Faraday rotation

energy denominators can be neglected compared with they other gyrotropy effects existing in a bulk medium.

average detuning =w-wj; , wherew;; =wj is the transition The third term in Eq(4.2) couples the alignment compo-

frequency between the ground and excited states charactétents of the atomic ensemble with the remaining two linear

ized by the angular momenjgandj, respectively. Then the Polarized type Stokes components of propagating light,

effective Hamiltonian can be expressed as the sum of three

N
terms, A 2mhw ~ 2
L HD = =g - 02l@) 2 [T 0Za((0.0
Hert(t) = HE() + HEGHO + HEHD), (4.2 -l
where the dependence on time emphasizes that the contrib- + TR E1(za0),1)], (4.9
uting atom and field operators are taken in the Heisenberg
representation. where
The first term in Eq(4.2) couples the atomic population
of the whole Zeeman multiplet and their longitudinal align- -]-Sg})(t) = }[-]-<2a_>2(t) + T M1,
ment with the full photon flux of propagating light, 2
— N
A 2mhw e 1
H() = - ao(@) X, TR + “=ay(w) ~ 1 ~
eff SV e Ty (0 == T80 - TE(0]. (4.10
N
x> T(zag(t)] Eo(za(1),1), (4.3 The Stokes operatd4(z,t), showing an imbalance between
a=l the photon fluxes of the modes linearly polarized alongxthe
where andy axes, is given by
2z = L EOZHED (Y (4.4) Sy = 2O, ) EC)(y ED)
soab = , , : :3(10-%[5( (zHE’(z1) - E,"(zHE, (z1)].
is the Stokes operator of the total photon flux at the spatial (4.1
point z. The isotropic polarizability of an atom is given by A
1 e The Stokes operatag(z,t), showing an imbalance between
ag(w) = —= o , (4.5 photon fluxes of the modes linearly polarized along §land
3V2jo+ 1~ fi(w =~ wyj ) 7n axes rotated with respect toandy directions by ther/4

Wheredjoj is the reduced matrix element of the atomic dipoleangle’ Is given by

moment for thejo— | transition. The alignment component ~ S - ~ . R
of the atomic polarizability is given by Eq4.13 below. Bzt = ——=[EP(ZDES (z ) - EV(ZDE (zb)].
The second term in Eq4.2) couples the gyrotropic or 2mhie
orientation component of the atomic ensemble with the (4.12
Stokes component responsible for circular polarization of
propagating light, The alignment component of the atomic polarizability is de-

fined as follows:

— N
- 27w - 2
0 == ~en@2 TROZ0.0, (4.6 L1 9] P
= aw)= (=)o) T T T (413
where Jo Jo 1) -fle-wj)
~ C - ~ ~ ~ i i i
Z.(2t) = S _[Eg)(z,t)E(F{)(z,t) _ E(L‘)(z,t)E<L+>(z,t)] As follovys fr9m the Maxvgezlzl) t.a‘quat|0|(13..10) conS|dered.|n
27mhw its classical limit, the terni ; is responsible for the optical

(4.7)  birefringence effects with respect to either thendy or &

. . L __andy directions.
is the Stokes operator associated with circular polarization. It

is defined in terms of the photon flux operators at a spatial
point z and shows imbalance between the right-héRdand

the left-hand(L) polarizations of the field. The orientational Equation(3.9) in the irreducible representation transforms
polarizability of an atom is given by into

B. Dynamical equations driven by the effective Hamiltonian
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Y ) i~ ) operators, but we can approximately display their averaged
Tia(t) = 2 THo(0). Tkg(O] + > [HerdD). Tig(®], (4.14 pehavior by solution of coupled equatiofs14) and (4.16.
Instead of the Heisenberg-type equations for slowly vary-
whereH, is the unperturbed Hamiltonian responsible for theing amplitudese;(z,t) and &(z,t), similar equations written
interaction with the external magnetic field. Recall here thafor the Stokes operators can be introduced,
in general the direction of the magnetic field does not coin-

cide with thez axis. The set of Eqs4.14 for a=1-N is 3
equivalent to the set of Eq§3.8) but it is written for more [—
convenient physical observables. The irreducible compo- 0z

nents of a low rank, which contribute to the effective Hamil-

tonian and couple to the Stokes observables of the propagaferei=0,1,2,3. All theterms appearing on the right-hand
ing light, allow for a more transparent interpretation than thegjges of Egs.(4.14 and (4.17 can be expressed via the
g(r;?ma}l prOJectF)r operator3.1). The zero rank component Stokes operators. Moreover, it can be straightforwardly veri-
Too(t) is the .Helsenberg operator of the totgl population of aNfied that Z4(z,t) stays unchanged as a function wfz/c,

ath atom in its ground state. It can be straightforwardly veri-necayse of the conservation of the number of photons in the
fied that the right-hand size of E#.14) is equal to zero in  ¢oyard scattering process. In turn, this means that the first
this case and the zero rank irreducible operator is, in fact, thgyym in Eq.(4.3), i.e., the isotropic component of the effec-
identity operator. The first rank Componeﬂ@(t), being the  tive Hamiltonian, can be omitted in E¢4.17) since it com-
Heisenberg operator of atomic orientation, is equivalent tanutes with all the Stokes operators.

the vector of the atomic angular momentum. This vector un- As follows from the derived equations, the main obstacle
dergoes dynamical evolutiofregular precession and cou- on the way to converting the infinite number of operator
pling with the field variablescaused by the perturbation of equations to the system of truncated equations, written for
the atomic ground state by the propagating light. The seconthe collective atomic variables, coupled with the integral or

rank componenﬁ'%(t), being the Heisenberg operator of averaged field variables, comes from the spatial dependence
atomic alignment, is equivalent to the ground-state quadru®f the interaction process. Such a dependence is caused by
pole moment of the atom. The quadropole tensor also undeRNISOtropic terms in the effective Hamiltonian, which lead to
goes the dynamical evolution caused by interaction with thépatially varying entanglement of different polarization
propagating light. Other higher rank irreducible componentgnodes of light with atomic spins along the propagation path.
are important only as long as their evolution is dynamically The spatial profile of the Heisenberg-type Stokes operators
coupled with the evolution of the lower rank components incould be considered as uniform in tg component and as
the complete set of Eq¢4.14). accumulating the collective fluctuations of atomic spins in
Equations4.14) have to be solved together with the Max- the complementaryg, component only in one special case
well equations. Let us introduce the slowly varying ampli- of @ pure Faraday effect. In this case, the anisotropic compo-

10 |2 [ 2
+ EE:|Ei(Z,t) = hI_C[Heff(t)*Ei(Z’t)]’ (4.17)

tudes of the Heisenberg field operators, nents of the local susceptibilities of the medium would be
R o zero on average and would exist as fluctuations acting only
EM(zt) = &(z, t)e+ikz, on the 2, Stokes component via random Faraday rotation.
A o This can be true iT3(1), Tay(t), andTio,(t) operators would
E7(zt) = & (z,t) et k2, (4.15  be zero on average along the whole interaction cycle. But

I ) ) . even if we neglect the repopulation optical pumping mecha-
By substituting these expressions into E810 and into its  nism coming from incoherent scattering, it would not be so

Hermitian conjugated form, we obtain the following first- 55y 1o show any realistic example of a proper atomic tran-
order differential equations for the slowly varying ampli- gition satisfying this condition.

tudes: 3

Such an example could bg=3—j=3 or jo=3—]=3
d . i~ . atomic transitions. Then there is no quadropole moment in
L_Z + EE] €(zt) = %[Heff(t)'fi(z’t)]’ the ground state in principle and the ensemble consists of the
atoms perfectly polarizetbriented in the direction orthogo-
9 d . i . nal to the propagation direction of the probe light. The atom
{— + ——}% (zt) = ﬁ—[Heff(t).%iT(Z.t)]- (4.16  with spin; in its ground state does exist in realifiHe, for
¢ example, but it is not a convenient object for the
In such Heisenberg-transport equations, as well as in the dypolarization-sensitive experiments. In the earlier work on en-
namical equationg4.14), we consider timet in a coarse- tanglement and quantum information protocols with atomic
grain temporal scale much longer thiyj™ and the coordi- continuous variable§2-5,9,1§, realistic atoms were mod-
natez on a coarse-grain spatial scale much longer than eled as spin} systems. One of the goals of this paper is to
Any changes in the atomic subsystem and displacement @fnalyze the applicability of such an approximation.
atoms during the time increments comparable Vdh' as Below we derive the equations of motion in their general
well as any changes of the slow varying field operators orform and discuss their possible conversion to the finite num-
the scale of a fewk are ignored. We do not actually know the ber of wave-type equations written in terms of spatially dis-
exact behavior either for the atom or for the field Heisenberdributed collective variables.
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V. DYNAMICS OF THE SYSTEM IN TERMS
OF COLLECTIVE VARIABLES

As the most important practical example, we will further

PHYSICAL REVIEW A 71, 032348(2005

means that in Eq95.2) only 'AI'(XZ;)(t) and ég(z,t) have non-
zero expectation values. Other operators exist only as fluctu-
ating quantum variables. It is possible to linearize these

discuss light propagation through an atomic ensemble presquations by substitutin‘ﬁf@)(t) andég(z,t) by their average
pared originally in the coherent spin state, see Fig. 1. Wevalues and leaving on the right-hand side only the linearized
assume that atoms fill the cylindrical volume with the crosscontribution over quantum fluctuations. Then the evolution

sectionS, coinciding with the cross section of the probe light

of the Stokes operators is given by

beam. The atomic ensemble is located in the homogeneous

magnetic field with the direction orthogonal to the direction
of the propagating light. Originally atoms are perfectly ori-
ented along the magnetic field in tikedirection. Probe light
is in a coherent state linearly polarized along xhdirection.

Such a geometry is common, e.g., for experiments aiming at

the quantum state teleportation between field and atomic spi
subsystem$3,5,9].

A. Field subsystem

d 149 |-~ ~
—+—— |Eiz) = - kpEo(zt
[&Z C&t] 1( ) K 2( )
L N
+ @ E5 > TR0zt - 2),
a=1

n

|

N
A2 D) = KZ1(2,) — wEs >, TEWM) Azalt) - 2),

—
=
—_

1
—_— + —_——
dz cdt

il

Let us consider first the evolution of the Stokes compo-

nents. Based on the commutation relation
[E/(Z 0,5,z 0] = 2ieycoz-2)Edz), (5.1

where g =+1 in dependence on order of indices j #Kk,
Egs.(4.17 can be rewritten as follows:

N
104 — 5 - =
Liz + _E] Bz = algl TR A(zo(t) ~ 2 E5(z.Y)
N ~ ~
- a2 TA() 8zt - D E(zY),
a=1
g 14| S - -
{a—;zﬂazcﬂ):@z HCECAOREENER
N ~ ~
- 2,2, T 8(z,(t) ~ 2)Es(2.1),
a=1
g 19| G- =
2020200 - 00 -
N

+ a2 TE 0820 - D Ea(21),
a=1
(5.2
where we introduced the dimensionless polarizabilities

_ A
a; —gai@),

These equations are valid for any type of initial conditions

i=1,2. (5.3

d 19
_+__

5.4
dz cot 64

:|é3(zat) = 01

N

where E5=5, is the average value of the corresponding

Stokes component, which is approximately unchanged for
the light beam propagating through the sample. The third line
in Egs. (5.4 just indicates this circumstance. The coupling

parameter

N
Ko = a2, T3 8(zo(t) = 2) (5.5
a=1

is responsible for birefringence effects, i.e., for unitary trans-
formation of linear polarizatioidefined with respect tg, »

axes to circular polarization and vice versa. He?g) is the
averaged and approximately unchanged value of the align-
ment of theath atom. For any atom, whose angular momen-
tum j, is oriented along th& direction, the alignment term is
given by

S £ 1 VY
-7,

Y 2[2(jo+ 1)(2jo + 1)(2jo+ 32

(5.6

The microscopic structure af, can be averaged over a small
mesoscopic interval oAz and substituted into Eq5.4) as
ko= apTyyNo, Whereny is the linear density of atonise., the
number of atoms per unit lengtiFrom the classical electro-
dynamics point of view, the mesoscopically averaged prod-
uct k,X is the difference between refraction indices for the
polarizations along th& andy directions.

The most important terms in Eq&.4) are the last ones

and can be simplified for excitation geometry described inon the right-hand sides. These terms show how any quantum

the preamble to this section.
The coherent forward scattering of light linearly polarized
along thex direction does not modify the average angular

state, originally encoded in the spin fluctuations of the
atomic subsystem, can be mapped onto the polarization state
of the light subsystem. Thus these terms are responsible for

momentum orientation of the atomic ensemble. Transmittethe quantum information processing in light-atoms interac-
light also preserves its mean 100% linear polarization. Thigion.
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B. Atomic subsystem

Consider the dynamics of the orientation vector ofasm
atom. Applying the commutation rule for irreducible tensor

operators B2
v
7
[T%,T@Qr] S (2K + 1)(2K’ + 1)]HZS, 5
K"
~ K K K’
X[1 - (- KKK ]{ _ } @)
JO JO Jo %x
H n ", i
X (_ )2]0+K ﬁQ?(IQrTErQH; (57) :
see Ref[17], to the right-hand side of Eqé4.14), we obtain ‘;.7..1..
v
7
Tﬁa.?(t)- [H 1), T ] 4
_ L= 2 1 2 - . )
_az(_)ZIO\lO{. : .}:3(Za(t),t)Tg(t) (b)
Jo Jo Jo

> 1 2 FIG. 1. Schematic diagram showing the polarization response in
— T = 2 the probe light, transmitted through the spin oriented atomic
+ap(-)AN10) T T T 1Eaz).0TR), probe 19 g pn o
o o o sample, on random gyrotropfa) and random birefringencéb).
Both processes are initiated by transverse fluctuations of the collec-
tive angular momentum.

BRCERGEONG)

_| .

N
2 1 I =27?0. (5.9
a=1

Jo Jo Jo

_ 2z -
tiay(- )02 { . }Eo(za(t)vt)-r(zfl(t)

Then starting from Eq9B7), written for anyath atom, and
210\5 2 1 21z 1),0T@ (1) making the sum over all atoms of the ensemble, we arrive at
Fiay(-) - (Ea(za(1),0) 2+1( . ) . )
jo o Jo the following equations governing the dynamics of the col-
| lective angular momentum:
+ 210—5 2 b2t 0Ty
ap(—) B0 o | E1(za(1),) T340
e ﬁwmwmwtme%@M)
\3 - -
tia Eo(z(),)TEL(D).
“liolio+ Dijg+ Dz 2T

N

A ~ 1— =
(5.8 (0 = = (Qo+ Q)0 + ST 2 Zo(za(0,),
As one can see, these equations are not closed, since the e

right-hand sides are expressed in terms of alignment compo- .
nents. Moreover, the higher rank multipoles drive the dy- J(t) =0, (5.10
namics of the alignment components. Thus to introduce the
system of closed Heisenberg equations, it is necessary tghere parameterQ, andT are defined by expressio(i88)
consider the coupled dynamics of all irreducible componentand(B9), respectively, anfr xy IS given by Eq(5.6). The last
defined for each atom. source-type terms on the right-hand side of these equations
However, the dynamics of the atomic subsystem can bare responsible for the mapping of any quantum state, origi-
approximated by the dynamics of orientation componentsally prepared in the Stokes fluctuations of the field sub-
only as far as we are restricted to the discussion of the excsystem, onto a long-lived atomic spin subsystem.
tation regime described in the preamble to this section. As Equations(5.4) and (5.10, considered together, approxi-
shown in Appendix B, Eq9(5.8) can be transformed to the mate the dynamical evolution of coupled collective variables
set of nonlinear equations, where the right-hand sides aref light and atomic subsystems. But, as follows from the
expressed in terms of the operators of the angular momerstructure of these equations, they are still not closed because
tum. In a special, but the most important for us, regime ofthe coupling termsre not expressed by collective variables
small fluctuations, such transformed equations can be lineaAs we see from Eq(5.4), only the atoms currently located
ized and simplified to the equations describing the dynamickefore the wavefront contribute into formation of the fluctu-
of the vector of the angular momentum in a closed form. Letating Stokes variables. In turn, such spatially dependent
us define the vector of the collective angular momentum ofStokes fluctuations, which stay actually unknown, drive the
the ensemble as dynamics of atomic collective angular momentum via source

032348-8



MULTIMODE ENTANGLEMENT OF LIGHT AND ATOMIC.... PHYSICAL REVIEW A 71, 032348(2005

terms in Eq.(5.10. However, as we show below, under cer- that Ex(z,t):z(:const. Equation$5.13 should be accom-

tain simplifying assumptions, these equations can be furth&sanied by corresponding initial and boundary conditions,
transformed into the system of closed equations describinghich are given by

the wave-type spatial and temporal distribution of the collec-

tive Heisenberg operators of the atomic and field subsystems. Z,00,H) =EN(),

ot

C. Mesoscopic averaging = _ Sin
E,(0,t) = E5(1),
If atoms are slowly drifting in space and during the inter-
action with a short probe light pulse each atom preserves its
location inside the area much less than the length scale com-
parable with«," or with the sample size, Eqg5.4 and
(5.10 can be transformed into a closed form. Let us note T,(2,0) :jzn(z), (5.14
here that if in the experiment the duration of a probe pulse is ) _ ) ]
chosen less than a few microseconds, such a condition ishe solution of these equations presented in the next section
normally fulfilled even in the case of atoms at room temperaShows how the swapping of quantum fluctuations between
ture. For the case of cold trapped atoms, this assumption #ght and spin subsystems takes place during the interaction
consistent with the pulse duration up to a second. Then thBrOCess. _ .
equations of motion can be rewritten for any mesoscopic Several new parameters appear in H§s13. Firstly, by
layer of the sample, which gives only a small increment to{2 we denote the frequenc2 =Qy+(), of_thg regular pre-
the Heisenberg operators but contains a large number of agession caused by the external magnetic field as well as by
oms. The atoms do not leave the layer during the interactiof’€ light-induced shift of the Zeeman sublevels. Secondly,

time and cooperatively interact with the electromagneticthere are two new parameters in the first pair of equations
field. If this layer has a length akz, we can introduce the describing the transformation of the Stokes variables. The

Ty(2,0=T(2),

averaged Stokes operatds(z,t) along this layer. As a next angle 8

step, instead of total angular momentum, given by &) NE o
we can define its mesoscopic spatial distribution as follows: B= L iolo+ Do+ DM (5.19
o\Jo 0
I(zt) = 1 > @), (5.11)  isthe angle of Faraday-type rotation of the polarization plane
Zy<z,<z+Az of the propagating light per one spin flip in the ensemble in

, the z direction. The parametey,
where the sum ovea is extended only over the atoms lo-

cated inside the layer. Then the total angular momentum of [15(2j,— 1)]*? — (5.16
i €= N N _ N aoy, .
the ensemble is expressed as 22j0( jo+ 1(2jo+ 1)(2jo + 32"
L
=l 3 is the ellipticity induced in the propagating light by the
IO fo J(zbdz, (5.12 atomic sample per one spin flip in tlyedirection, see Fig. 1.

Thirdly, there are two angles in the second pair of equations
wheredz=Az andL is the length of the sample. describing the dynamics of the spatial distribution of the
The above assumptions lead us to the following set ohtomic angular momenta. Anglg=e is the rotation angle of
closed and coupled equations for the mesoscopically avethe local collective angular momentum, originally oriented

aged spatial distributions of the field and atomic variables: a|ong thex axis, around thg axis per one photon propagat-
9 191 . o ing through the sample in eithé&rtype or »-type linear po-
{— + ——]El(z,t) = - K,5,(2,1) + 2BE3T,(2,1), larization. In turn, angled,=g is the rotation angle of the
gz cdt local angular momentum around tkeaxis per one photon
propagating through the sample in either right-hand-type or

dJ left-hand-type circular polarization.

192 - .
|:07_Z + EE:| :2(Z,t) = K2,’:',1(Z,t) - Zéﬂ,gjy(z,t),

VI. ENTANGLEMENT OF THE QUANTUM STATES
d ~ ~ — 2 OF LIGHT AND ATOMS
—TAz1) =QT(z,1) - 0T E(z1),
a For pedagogical purposes, we consider at first a special
example of optical excitation in the far-off-resonance wing
513 Of jo=3—]=3 or jo=3—j=1 optical transitions and will

2 Iz = QT2 0 + 6,72
aY z0= A% zSx=2\ 8t discuss the general case after that.

where we used the same notation for the averaged Stokes . a -
variables as for their microscopic origins and denoted the A Example of jo=5—]=3, j=3 optical transitions
mesoscopic spatial distributions of angular momentum com- |, the case Oio=%—>j =% or io=%—>j =§ transition, Egs.

ponents asAZL(z,t), with w=X,y,z It is taken into account (5.13 are simplified to the following form:
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d 10 |4 =
LT za]ﬂ“’” SRR,

9 19|z~
—+ - |ExzH) =0,
[az c&t} 221)

d ~ ~
Ejz(zat) = ony(zat) y

Sz =- 007,20 + BTEAZD.  (6.)

where it was taken into account tha;=0 and thereforec,

PHYSICAL REVIEW A 71, 032348(2005

The retardation effects, which are clearly visible in the
derived solution, are mainly important in order to preserve
the proper commutation relations for the whole set of the
Heisenberg operators involved in the process. The initial zero
moment of time is a conventional and arbitrary chosen pa-
rameter to coordinate Schrddinger and Heisenberg pictures.
Physically, the interaction cycle starts only when the wave-
front of the probe radiation crosses the0 point. We will
take this time as the initial momett0. In the Heisenberg

formalism, this means that any expectation valueéi{i(t)

and Eizn(t) operators or their products are equal to zero for

time t<0. Since the goal is to evaluate the expectation val-

ues of outgoing operators, it is acceptable to substitute the

lower zero limit byt—z/c in Eq. (6.2 and byt’—Zz'/c in

=0, 0,=0, e=6,=0. Because of the second line in the sys-ihe internal integral6.3. Then the derived solution can be

tem (6.1), one haséz(z,t):éizn(t—z/c).

further applied at any spatial poiatonly for time t>z/c,

The straightforward solution for the distribution of the which is in accordance with physical manifestation of retar-

angular momentum components leads to

Tz2,D) = cosQetTN(2) + sinQt 7N(2)

—_— t ~ .
+ Bjxf dt’ sinQq(t-t")EJ(t' - zc),
0

T(2t) = - sinQetT"(2) + cosQet 7M(2)

JE— t ~ .
+Bjxf dt’ cosQq(t-t)E5(t' - zc) (6.2
0

and the Stokes componeﬁtl(z,t) is given by
_ z ~
E.(zt) =ENt-zc) + 2,853f dZ 7z’ t-(z-2")lc)
0
==t~ zc)
z

+ 2ﬂE3 f dzZ' cosQg[t - (z- z’)/c]\A7"Z”(z’)
0

+ Zﬁgaf dz'sinQq[t-(z- z’)/c]j;'(z’)
0

___(Z t—(z-2")lc
+2B%E 3Ty f dz J dt’
0 0

XsinQg[t—t' —(z- z’)/c]éizn(t’ -Zlc). (6.3

dation effects.

In reality, we are most interested in a correct description
of the behavior of the modes around the carrier frequency
see definition(4.15. For the modes distributed in the spec-
tral domain much narrower thasiL, whereL is the length
of the sample, the retardation effects become negligible. In
this case, the above solution is simplified and can be written
in terms of transverse components of the collective angular
momentum,

J (1) = cosQtdl + sinQutd"

JR— t ~ .
+ ,BJXf dt’ sinQq(t—t")EJ (),
0

(1) = = sinQtd! + cosQtd

+,8fo dt’ cosQy(t-t")EN(), (6.4)

0

and for the output Stokes operafgf(t),
E9U(t) = EN(t) + 285 cosQtIM + 285 5 sin Qetd"

—— t ~ .
+2/3253ij dt’ sinQy(t-t")E5("), (6.5
0

which coincides, in principle, with the solution obtained ear-

This solution explains the basic idea of entanglement of thdier in Refs.[5,6].
collective quantum states of atomic and field subsystems. The input-output transformations expressed by EG<Y)
After the interaction cycle, the quantum state of light de-and (6.5 have a simple logical structure and therefore are

scribed by theEgI Component is mapped onto the atomic attractive for pOSSib|e applications to the quantum informa-

angular momentum components because of the last terms {ign tasks. However, they are only valid fjg=;—j=3, |

Eqgs.(6.2). In turn, the information written in eithe7™ or :7')?

components of the angular momentum is mapped onto th

él Stokes component of light, because of the second an?
third terms in Eq(6.3). Moreover, due to atom-field interac-

tion, there is a partial mapping of tlﬁ!}‘ component onto the

=4, component because of the last term in Ey3).

1

=2 isolated transitions, and it is rather difficult to find a
gractical example of such a transition. However, the same
imple input-output relations are effectively realized in the
ase of alkali-metal atoms excited in the far wingxgfor D,
lines. In this case, the contributions from the components of
the upper hyperfine multiplet to the interaction add up in
such a way that the alignment effects become unimportant.
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For a transition from the ground hyperfine st&tg to all

t
hyperfine state§, we straightforwardly obtain after taking Eizth= 2 | dtM;(zt-t)EN)
the sum over the excited states 171270
z
d - 2 % ot 4\ AN
2 32 o E | ;iO]A| (_ )F+Fo+l(2F + 1)(2F0+ 1) + szzy 0 dz ‘7:“,(2 z 1t)u7|v (Z ) (68)
F F ~NAf
11 2[1 | F)2 with i=1, 2. For the operators of the spatial distributions of
{ }{ _ } 0. (6.6 the angular momentum components, the solution is
Fo Fo FJ |1 Fo Jo t
Hence the alignment contribution vanishes for the ground- Tzt =2 | dt'G,(zt-t)E]()
state electronic angular momentygr1/2 if the frequency i=12-0
detuningAF:E—wFFO for each hyperfine transitiofry— F z N
becomes larger than the hyperfine splitting of the upper state. + > | dZN,L@zZ-Z0)TZ) (6.9
The crucial inequalityay| > [a,| which allows us to neglect v=zy 70

the alignment effects is better fulfilled the less important iswith x=z,y. The solution can be formally extended over the
the dependence on the upper hyperfine momentum in thepace-time region €t<o and 0<z<o.

denominator of Eq(6.6). In spite of the fact that for heavy  As shown in Appendix C, the kernels of the integral trans-
alkali-metal atoms the ratio of the hyperfine to fine splittingformations in Eqs(6.8) and (6.9) can be expressed via the
in the upper statéE,/ 5E; is really small(it is less than 10 corresponding Laplace images,

for 13%Cs), which makes it possible to neglect the alignment _ _
contribution for large detunings, such an approximation is K(zt) = 1 (P fsom
not always easy to fulfill under typical experimental condi- ' (2mi)?

tions. This is because for a large frequency detuning, one has
to use pulses with a very large photon number in order to (6.10
make the atom-field interaction strong enough. Large photoyhere iC(z,t) is any of the matrix functions
numbers are often inconvenient due to either limitations Of/\/l(z,t), ....Mz,1) in Egs.(6.9) and (6.9 andK(p,s) is its

detectors or due to a limited pulse duration, or both. ThereLapIace image. The limits of integratiqy ands, are chosen
fore, the frequ_ency detunl_ng 1S frequently cho;en to be as arbitrary real values warranting the existence of Laplace
comparable .W'th‘sEhf' A typical detuning chosen in the €%~ images for the spatial and temporal transforms, respectively.
periment[5] |$2 of the order of 900 MHz with the hyperfine | Appendix C, the images for all the matrices
splitting in 6f Pg,ﬁ Ofd OEn~200 lMHZ- Ih'S IS one Or‘: the  \i(p,s), ... Mp,9) are calculated explicitly. Evaluation of
motlvatllc;ns or the deeper analysis of E¢S.13 in their the integralg6.10 can be done numerically for any sample
general form. when all the external parameters are defined.

B. General solution Let us briefly explain how the retardation effects can be

. ) . taken into account. To do this, the retardation tinret
Equations(5.13 can be solved in the general case, which_;¢ shoyid be introduced as an independent variable for

we do first ignoring the retardation effects. This is the most, .1, spatial point at a certain moment of time Then the

important case for practical applications to quantum informay, e systen(5.13, where all the operators are considered
tion processing. Without retardation, the system of couple%OW as functions of and =, can be converted to the form

K(p,s)eP**'dpds

_ioo

Pgic

equations(s.13 can be rewritten as follows: (6.7) but with the derivative over retardation time on the
d - — . left-hand side. The initial conditions should be also modified
&_zﬁl(z't) == KBz, 1) + 2BE3T/z1), and written for the initial retardation time=0, which corre-

sponds now to spatially dependent moments in the laboratory
- time t=z/c. As before, we will assume that the wavefront of
ifz(z,t) = 1,54 (2 1) - 2653:7y(z,t), the probe radiation crosses-0 point at zero time. In this
Iz case, we need to know the cooperative atom-field dynamics
at any spatial poingz only for time t>z/c. Then we may

d -~ o ~ A ignore the interaction Hamiltonian for time<0t<<z/c and
&Jz(z't) = Q7,21 - 6,TxEa(2.1), choose the initial conditions in Eq5.14) in the following
form:

gjy(z,t) = - QT(z0) + 0,7,z ). 6.7 Tz,7=0)=codQozc) T(2) + sin(Quzl0) T(2) = T (2),

This is a set of differential equations with constant coeffi- P — A\ — o ~in ~in

cients and it is accompanied by initial and boundary condi- Ty(z,7=0) = = sinQe2l0) 7;'(2) + cod 7/} Ty (2

tions (5.14). The solution can be presented in the form of an = 7" (2). (6.11)
integral response on these conditions. For the Stokes opera- Y

tors, it can be written as There are no changes in the boundary conditions in Eq.
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(5.14), since atz=0 the retardation time coincides witht. be mapped on spatially dependent correlations of an atomic

Thus in the most general case the soluti@8—(6.10 standing spin wave.

should be rewritten in terms of the retardation time and The following remark concerning the terminology is due

should depend ot} (z) and j';"(z) as on initial quantum here. Let us point out the principal difference between the

fluctuations of the atomic angular momenta. spin-wave dynamics described by E¢8.13 and the collec-
Finally, the retardation effects give us the following cor- tive spin behavior in the spin-organized cold fermion gas,

rection to the spatial and temporal dynamics of the field variwhich was discussed years ago; $26]. In our case, the

ables: cooperative dynamics of atomic spins is driven by the

t—zlc radiation-type interaction whereas in the cold fermionic sys-

Z(zt)= D dt' M, (zt - zlc - t)EN(t") tems it is driven by the static interparticle interaction via the
= e - longitudinal electric field
j=1,2J0 gitudinal electric field.

z
+ dZ F (z- 27 t- o) T (2 _ o _
V:ELy 0 i )“7” @) C. Spin squeezing in an ensemble of cesium atoms
(6.12 In this section, we concentrate on calculations relevant for
the existing experimental examp]6] carried out with en-

and of the atomic variables semblés) of 1**Cs atoms. We first calculate the degree of

. t-zlc N spin squeezing ignoring the alignment, i.e., following the
Tz =2 dt'G,(zt-2zc-t)E(t') model adopted ifi5] and describing the atomic ground state
j=1.2-0 by the spin(orientatior) only. We then present the numerical
z o results including the alignment and show how this affects
+ > | dZN,(z-Z t-do) T (2). spin squeezing of atoms.
v=zy <0 In the experiment[5], the entanglementtwo-mode

(6.13 squeezing was generated between two spatially separated

ensembles via a Faraday-type detection of light. For peda-

These expressions can be applied for calculation of expectay, yica| reasons, we will make numerical simulations for the
tion values of any products of operators at a spatial ppint case of single-mode spin squeezing, which makes no differ-

for the timet>z/c. ence for the present discussion. We will completely ignore

Animportant fef,:altlure 0; solut;]or(ﬁ.llz and(6.1?) s their . dthe retardation effects and consider the spin dynamics with-
wave nature. As follows from the Laplace transform carried, . axternal magnetic field.

out in Appendix C, the eigenmodes of spatial and temporal ", the case of cesium atoms, the alignment contribution

distributions of atoms-field collective fluctuations are associ- . :
can be suppressed if the frequency detuning of the probe
ated with the poles of determinaftp,s) — 0, whereA(p,s) PP q y g P

. i . i ] o light from the atomic resonance is much larger than the hy-
is defined by Eq(C3). For atoms with spirg, this condition ~ perfine splitting in the upper state, as described in the end of
leads top— 0 ands— *i{),. In the absence of the magnetic gec, v| A. If the alignment is ignored, the basic equations

field (3,— 0, there are only two collective modes associatedstem from the expressioris.4) and (6.5), which in the ab-
with the total number of atoms and with the total number ofsence of magnetic field read

scattering photons which undergo polarization-sensitive in-
teraction in the process of coherent forward scattering. This :]Z(t) = jiZ“,
makes it possible to further simplify the effective Hamil-
tonian and to discuss it in terms of integrated collective vari- ~ R ot
ables of the canonical tyd&,19]. J (=37 + ﬁJXf dt =),
However, in a general case, due to the presence of align- 0
ment associated effects, the conditidip,s)—0 gives
coupled rootss=s(p), i.e., the wave-type modes which can é‘{”‘(t) - éiln(t) + 2,8533"‘,
survive in the sample and be excited by either time- ‘
dependent fluctuations of the field Stokes components or by o0 2in
spatial fluctuations of atomic spins. Such quantum superpo- 2541 = 25(0). (6.19
sition of the field and material waves can be understood as ¢,¢ input-output transformatior(s.14) show the entangling
polariton-type spin wave generated in the medium. The mulyechanism of the atoms-field variables in the process of co-

timode structure of such waves does not allow entanglememperent forward scattering. If the number of atoms and pho-

only between integrated collective variables. Instead, in gen- . — =
Y 9 9 tons is large enough such g3,>1 andB=t> 1, the output

eral the entanglement is distributed in all polariton modes. : .
From the quantum information point of view, this means thaduantum fluctuations become strongly entangled. Indeed, in

in the case of atoms with the ground-state angular momerfhis case the role ofj and Z7(t) terms on the right-hand
tum equal to or larger than 1, a possible entanglement reside of Eq.(6.14 becomes negligible if these fluctuations
source hidden in the polariton modes allows for multimodehave been originally Poissonian. After the interaction, there
entanglement rather than a single-mode entanglement avaiould be strong correlations between fluctuations  of
able for spin% systems. The quantum information then will ngﬁ“‘(t’)dt’ and J(t) as well as betweenl,(t) and
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JSESUit)dt'. If the observablg{ZU(t")dt’ is measured by T
a balanced Faraday detector, there will no longer be standard As 1A, 1A
guantum uncertainty i, (t+0), whose original(at t— 0) - E
= ¥

|

|

|

i
Poissonian fluctuations will be suppressed by a fag@st -] i 4 s
> 1. The collective spin state will become squeezed and will — 3

accumulate its quantum uncertainty Jy(t+0) fluctuation. 2
It is important to recognize that even in such an ideal o

scheme there is a restriction on the number of participating

atoms and photons because of an accumulation of events of

the incoherent scattering. It is clear that in each event of the

incoherent scattering one photon and one atom of the en- 1 F .=

semble cancel out from the entangling process. These losses 2g

can be neglected if the number of scattering events is much

less than the total numbers of atofNg and incoming pho- 3

tons Ny, This can be written as two inequalities,

5 4 3

|
I
4 F=5

12

FIG. 2. Energy level diagram d, line of *%Cs:Ag, A4, andA,

a are the frequency detunings of the probe light from hyperfine tran-
“ANyN, < N
S ph'¥a as sitions participating in the process.
[N put light. For”OUt Stokes component, the original value of
< )
S ‘s, NotNa << Non, 619 e Mandel parameteﬁl transforms as
where o, is the cross section for off-resonant incoherent v
scattering in full solid angle, an§, is the area of the light &) =&+ 2n9f A_ A A_ BI=&+x% (6.19
5 A4 Az

beam, which coincides with the area of an atomic cloud. _ _ _ _
Both inequalities lead to similar restrictions on the number ofwhere the second line defines the dimensionless parameter

participating atoms and photons, responsible for coupling of the field and atomic subsystems
S, described in terms of their canonical variable, §8g For
Ng, Nph < —. (6.16 =9 component, the Mandel parameter preserves its magni-
Ta tude, so that,(J)=¢&,. In Eqg. (6.19 and throughout, we ap-

In the case of photons, this inequality can also be understoderoximate the input fluctuations as a Markovigicorrelated
as a restriction on the whole interaction tirffie(the probe process in the lower-frequency domain,

ulse duratiojy sinceN,,=E,T=23T. Since both types of S =
!cohe losses arg undesir@ble 0one ?:an assumel\lgmt)lt(lph to (EMEND) = 51+ &t - (6.20
exclude any preference for atoms or photons. The number @nd assume the Poissoniroherent statesquare variance
scattered photons can be expressed as of the angular momentur{ﬂi) J,/2=3/2 for the original
coherent atomic spin state. The second term in @®dL9

denotes the contribution of the Faraday effect itself, and the

) function f(---) denotes the product
where by small parametey we denoted the relative number

Nen= n% (6.17)

of atoms and photons lost as a result of incoherent scattering, 11y 7Ty T v

see the first line of E¢(6.19. A detailed analysis of the role S ( y oy ) 60As 3207, 192A,

of spontaneous emission is presente@9h B—=ft-=-—-= ,
The scheme of energy levels 5¥Cs is shown in Fig. 2. Ia As Az Aq 3 72 ! 72

Skipping technical details of calculation of off-resonant cross 10A2 10A2

sectiono, (on an atom in the Zeeman sublevg)j=4, M, (6.21)

=4 of its ground stateand of estimation of the elementary
Faraday anglg, we present the final result. The square vari-Where y is the rate of the spontaneous decay of the upper

ance of any output Stokes componé&ft", wherei=1, 2 is  State, andA;=w—wj, with =3, 4, 5 are the frequency de-
given by tunings of the probe light from each exciting hyperfine tran-

- s sition, see Fig. 2
Zou = : Note that, as a consequence of neglecting the alignment
<[fo t(t)dt] > EaTlL+&)], 6.13 effects, the total angular momentufor number of atoms
) ) contributes in the output Mandel parameter only in combina-
where the Mandel parametéi(J), considered as a function ion gJ. This parameter is the optical activity of the sample,
of the total collective angular momentudr=J,, shows the i.e., the angle of Faraday rotation of the planar wave for the
relative deviation from the shot-noise level. This deviation isensemble perfectly oriented along the probe beam, see Fig.
due to the variance of the atomic state mapped onto the ouf- This linearity (see dashed-dotted lines in Figs. B-Has
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(a) Optical activity pJ (a) Optical activity pJ

0.0 0.2 04 06 08 0.0 0.1 0.2 03 04 0.5

(b) Opllcal actIVIty BJ (b) Optical actlvity BJ

FIG. 3. The Mandel parameters for the output square variances rig. 4. Same as in Fig. 3 for the frequency offsat
of the Stokes componeng&)"" (upper ploj and =3 (lower plo} as =1000 MHz.
a function of optical activity of the sample for the frequency offset

As=700 MHz. The dotted curve indicates the original shot-noise he transformed original light fluctuations and bevond the
level, the dashed curve is the atomic signal coming from the firs{ 9 9 y

term in Eq.(6.8), the dashed-dotted linear dependence is the Faral-fevhel.Of thke splr(grlgntatlo?] projection no.lshe. The Inqomlng .
day approximatior(6.19), and the solid curve is the complete out- ight is taken to be in a coherent state with Poissonian statis-

put variance. tics and withé; = &,=0. The enhancement of the light noise is

been used as the benchmark for the determination of the
projection noise level of atoms in all the work related to
guantum state generation with atomic ensembles; see, for
example[9].

As follows from the above discussion of the role of spon-
taneous emission, a reasonable choice of parameters for spin
squeezing corresponds (8]~ Fonf(---)=4nf(---). Under
typical conditions for the frequency detuning\s
~ 1000 MHz andn~ 0.1, the optical activity can bgJ~ 1,
which can provide spin squeezing far below the standard
guantum limit in Eq.(6.18). 0 ; ;

In order to calculate the corrections to the variances of the 09 0.1 02 03 04
output Stokes components for a realistic alkali-metal atom at @ Optical activity  pJ
a finite detuning, the alignment associated effects have to be 3 |
included in calculations. This can be done only numerically
by means of the transformatio8.8). In Figs. 3-5, we plot
the results of these calculations. The variances of the Stokes

=out

components={" and Z3" are shown as a function of the

optical activity of the sampl@J, calculated for different fre- 1
quency offsetsA;=700, 1000, and 1200 MHz and fow

=0.1. In the figures, the solid curves represent the complete

result within the described model, whereas the dashed curves 0.0 01 02 03 04

are computed only including the partial contribution coming Optical activity pJ

from the first term in Eq(6.8). These curves show the ex-

cessive atomic spin fluctuations, mapped onto the Stokes col- FIG. 5. Same as in Fig. 3 for the frequency offsat
lective variable of the transmitted light, beyond the level of=1200 MHz.

8
7
6
5 1
4
3

1+&,()

N

=

1+£,(J)
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caused by higher orders of the interaction process. Considperators manifests itself in a spin polariton wave created in
ered at a certain value g8J, the difference between the the sample. The fluctuating components of atoms and field
complete variance and the background level shows the effbecome strongly entangled in the polariton wave in space
ciency of the Faraday detector as a spin squeezer. Thend time. Such spin polariton waves initiated by radiative
scheme works better the higher this difference is. Howeverorces are different from the collective spin dynamics exist-
because of the alignment, the squeezing has to be consideridy in the spin-polarized quantum gé80]. They are also
not for a collective angular momentum but for a more com-different from the polariton modes discussed 21], where
plex type of a spatial spin mode, which is defined by thepolaritons of the combined atom-light state are introduced. In
input-output transformation.8) and (6.9). Squeezing and our case, the quantum entanglement arises from the interac-
entanglement for such spatial modes will be considered elsd¢ion between the internal collective polarization degrees of
where. freedom of light and atomic subsystems. In particular, our
It is instructive to compare the result of numerical calcu-analysis yields the input-output transformations for the
lations with the approximation ignoring the alignment ef- Heisenberg operators of the collective variables of light and
fects. The dashed-dotted linear dependencies in Figs. 3-&@omic spins after the whole interaction cycle. Our results
reproduce the ideal result described by Bq19. As we see, suggest that a successful approach of using off-resonant
for small values ofJ the Faraday approximation fits the light-atomic ensemble interaction for quantum information
exact solution with rather good accuracy and the deviation oprocessing can become even more fruitful with the use of a
& from zero is quite small. This means that for the samplemultimode type of entanglement provided by spin polariton
characterized by rather small optical activity, the séiap- atomic variables.
proximation for the multilevel cesium atom is self-consistent Numerical simulations demonstrate the importance of the
and potentially good for describing the real experimentaldeveloped formalism for application to a realistic experimen-
situation. Hence for such a sample the squeezed spin stant situation. We considered a well known example, when the
ing wave can be approximated by the collective angular moFaraday rotation is used as a nondemolishing measurement
mentum. Let us point out here that in the existing experimenof transverse fluctuations of the collective atomic spin and
[5], the optical activity wag3J<0.2 and the alignment cor- can be utilized as a physical mechanism for the spin squeez-
rection was not so important. However, as clearly seen foing in an ensemble of spin polarized atoms. We tested the
large 8, the difference between the input-output transforma-validity of the spin—% approximation for a realistic cesium
tions in their general form and approximatidf.14 be-  atom, which is normally used to describe the interaction with
comes quite important. a far-off-resonant probe light arouri@j, or D, transitions of
alkali-metal atoms. As shown, for small values of optical
activity this approximation is self-consistent and deviates
negligibly from the calculations based on a general solution.
We have considered the quantum theory of coherent fortlowever, for the samples with high optical activity, where
ward scattering of light by an ensemble of multilevel atomsgquantum correlations become strong, there is an important
p0|arized in their angu|ar momenta. As a result of such ;guantitative as well as qualitative difference between the
scattering process, the quantum states of the field and atom@eneral solution and the model of spiratoms.
subsystems are transformed into an entangled state. In our
discussion of the process, we followed the effective Hamil-
tonian approach, which in the semiclassical form is normally

applied for studying optical pumping processes after adia- Financial support for this work was provided by INTAS
batic elimination of the excited state. Compared to earliefGrant No. INFO 00-479 by Danish National Research
studies of entanglement of light and atomic ensembles, wgoundation, by the EU grant COVAQIAL, and by the North
have derived the effective Hamiltonian in a more generalatiantic Treaty Organization(PST-CLG-978468 D.V.K.

form for the atoms with an arbitrary total magnetic momen-would like to acknowledge financial support from the Delzell
tum. Towards this end, we have found the physical condifoundation, Inc.

tions under which the analysis can be simplified by introduc-
ing a finite number of collective variables for light and

atoms. APPENDIX A: TRANSFORMATION OF THE ELECTRIC

We showed that under certain conditions the cooperative FIELD IN A SINGLE SCATTERING

atoms-field dynamics can be properly described by the wave-
type coupled equations for the space-time evolution of the&
collective Heisenberg operators of the field and atomic suba
systems. In these equations, an infinite set of atom-field op-

VIl. CONCLUSION

ACKNOWLEDGMENTS

The unperturbed electric field operator in the origin of the
oordinate frame coupled with a scattering atom, which
rifts with velocity v, is given by

erators is truncated via introduction of slowly varying collec- ~ 2mhan \M? t (kv

tive modes. The coupled equations for the time evolution of Eo(t) = v (= Dleg,ax 8"

spatially dependent operators of the Stokes components of ku

light and of the macroscopic fluctuations of the collective — BB, € KTV

atomic angular momentum are written in a closed form. In ) =)

the general case, the coupled dynamics of the atom and field =E; () +Ey (D), (A1)
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Whereaﬂ: , &, are, respectively, the operators of creation The integral(A4) gives us the solution for the electric
and anniﬁilation of the photon with wave vectoand in the field in the origin of the frame coupled with a moving atom.
polarization state, . ' is the quantization volume. The sec- But in the zero order of relativistic effects, when only retar-
ond line in Eqg.(Al) defines negative and positive frequency dation effects in the radiation zone have to be taken into

components of the electric field. consideration, this solution coincides with the electric field in
The dipole-type interaction operator of the atom with thethe laboratory frame at the point of atom location as well as
electric field is given by in the small vicinity of this point. Then we can obtain the
solution for any point in the laboratory frame by using the
\7(t) —_ a(t)éo(t), (A2) propagation law in free space. By this procedure, one obtains

the following expansion for the positive frequency compo-

where the operator for the atomic dipole mom&(’(h and for nent of the electric field operator in the radiation zdme
n> X) of the scattering atom:

the electric field are defined in the interaction representation.

Based on a perturbation theoretic approach, the exact solu- =4 =4 =)

tion for the Heisenberg operator can be written as the follow- EFV(r)=Ey (r,) +E3"(r,t) + -, (A5)

ing expansion:
where

E(t) = Eq(t) + Eq(t) + Ex(t) + -+ (A3) 2ty

(4 1) =
ES(r,1) k};,( V

1/2
) e—i(wkt—k-r)iekluak’u (AG)
which can also be written for positive™(t) and negative
E(‘)(t) frequency components. We assume that the wavand
function of the joint atom-field system describes the com-

. . 1/2
bined state where an atom occupies the ground state and thex (1) _ 2mhwy L ik
electric field is in a weak quasicoherent state nonsaturating%2 (o= E E E % ire m ><m|ak“

’ k
the atomic transition. Then the correction of the first order in mm'
Eqg. (A3) will disappear after averaging over the wave func- w'?| 1(d)nm(d - &) mn
tion. Thus the second-order correction gives us the main con- ne2| i(@ + Wy —K' V)
tribution, since it is responsible for the scattering process. _ nm
The second-order term in EGA3) can be written as follows: . i(d ) mn(d - € )nm } (A7)
1t t (= 0qm=K V) = %2
Ex(t) =- ﬁjo dtﬁft”dt'[d(t")Eo(tH)v[d(t/)Eo(t,)!Eo(t)]]- and the negative frequency component is given by the Her-

mitian conjugationE)(r ,t)=E™(r ,t). Here the origin of
(Ad) the frame is chosen in the location of the atom, which is
assumed to be unchanged during the light propagation time
As follows from this expression, in a complete dynamicalr/c. The scattered light frequenay’ is defined here via the
description of the process there is a memory of initial Con-input frequencywk and the Raman Shif“)m’m for atomic
ditions in the formal expansion of perturbation theory. How-transition I[m)—|m’). There is an additional Doppler shift
ever, for nonsaturating fields this solution can be spread owWaused by atomic motion, given by
over the timet>y™1, wherey is the natural radiative relax-
ation rate of the upper state. But in this case it is necessary to o' = wp = og— oymt (K'=K)-v. (A8)
take into account all the radiative correction for the retarded
and advanced Green functions of the decaying upper atomithe wave vectok’=w’r/cr, but on the right-hand side of
state. This can be done by introducing the natural decay lawq. (A8) the Doppler correction is neglected and it is as-
into the time behavior of these functions. Then the integrasumed thak’ = wr /cr. The transition dipole moments in Eq.
(A4) loses its dependence on the lower limit as on the initia A7) are defined in the Schrédinger representation and its
time coordinate. Let us also point out that there is only aransverse component is given by
conventional choice of initial timeé;— 0 to coordinate the
Heisenberg and Schrodinger representations. The real physi-
cal conditions can be arranged as the wave front of probe
radiation(expressed by expectation values of any products of
freely Heisenberg operators of the figlcbuld arrive at the The sum oven is expanded over all possible excited transi-
interaction area at any time aftgy=0. Thus we can always tions characterized by natural linewidths, but as a practi-
think that observation time satisfies inequality>y%. At  cal matter, the sum can be restricted to the most significant
the same time it is important to recognize that by includingresonance transitions and the frequeagy= » can be asso-
the radiation decay into the Green functions of the uppeciated with the frequency of the incident mode.
atomic states, we average their time evolution and ignore any Even though both the terms in E@\6) are well known in
random fast variation of the field and atomic operators assahe scattering theory, s¢@2], we claim that only the latter
ciated with high frequencies of the field continuum. term, constituted with the rotating-wave approximation,

kl

d,=d-(d-k) ;.

(A9)
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should be left in aiming for the following generalization to . . 27hw N

multiple scattering process. Indeed, the first term contribut- P (K'.0 = 2 2 (Tk> T i)
ing in Eq. (A6) reveals the quantum-mechanical phenom- mm' N ke

enon that the scattered photon is created before the incoming (dD)rwn(d - @) nm

photon was annihilated. This process has a very small, and in Xiay, () -

fact negligible, amplitude and should be ignored if one stays ~fulw— opm =K - Vo) ~ifyy/2

with a semiclassical-type understanding of the multiple scat- (A15)
tering process as a sequence of successive scattering events.

Moreover, as shown if23], the electric field transformation andv,=r(t). In substituting Eq(A15) into Eq. (A10), the

in the presence of one scatterer in the fos)—(A7) pre-  time derivation should be done only for the fast oscillating
serves the commutation relation, i.e., the unitary transformacomponents of the Heisenberg operators and for the expo-

tion is only in the rotating-wave approximation. nential factors.
In the rotating-wave approximation, the perturbation
theory SO|UtiOﬂ(A5)—(A7) satisfies the foIIowing equation: APPENDIX B: LINEARIZED DYNAMICS OF ATOMIC
. P ANGULAR MOMENTA
—(+) i (+) N9 B+
AET(r,D E (r.)= 2 o —prl (Y, (AlD) The operators of irreducible components can be expressed

in terms of the operators of atomic angular momenta. For

where any ath atom of ensemble, the orientation vector is given by
R B V3
P(+)(r ,t) = J _elk -rP(+)(k!’t) (All) T(a) — “(a) (Bl)
. (2m)® . Q- [io(o+ D(2jo+ 1)]1/2]Q
and in turn and the alignment tensor is given by
2’”% A ! ’!/_
P(+ KH=SS> ( wk> e’ y(m| %(Za) N - \15. |
N K ° [2lolio* D(2jo~ V(2jo+ D(2jo+ 3]
i (d Dmn(d - 8, )nm X Z Cidy [Jéa)Jéa) IR — ()96, ¢ Ziolio + 1)],
== opm—K -v) =ik /2
(A12) (B2)

is the operator of the transverse component of atomic polarwherej are the cyclic components of the operator vector of
ization responding on an external field. Frequengy is angular momentum, which are defined by their Cartesian
given by Eq.(A8), but wave vectok’ is an independent components as follows:
variable here.

In the above discussion, the interaction timevas as- j@=j@
sumed to be short enough for validity of the perturbation
theory approach. Therefore, in the derived equations the
dyadic-type operatoren’)(m| of the low atomic state can be j@=7 1 [J<a + IJ(a)] (B3)
selected as referred to the interaction representation, h V2

M’ }{mlg(t) = €<mm|m’)(m|. (A13)  see[l7].
By substituting subsequently Eq&B1)—(B3) into Egs.

But this operator differs only slightly from their Heisenberg (5.8), the latter can be straightforwardly transformed to the
analogs during the short interaction time. Therefore, the evoset of nonlinear equations containing only the operators of
lution of the electric field operator can be extended up tcatomic angular momenta,
arbitrary timet, if the final equations of this section are
modified as follows. All the dyadic-type operators should be =, — 0.5@(1) — 2= )0
changed by the corresponding Heisenberg operators with Jz (= Qojy (1) — (=)
keeping the complete dynamic evolution up to moment 5 {2 1

" [@o- Do+ 31 i Jo

21 -
j}a@m@
[ X(mlo(t) — [ X(m(t). (A14) o0
XL OFD 1) + [P ]2 (0] + ap(= )0

The drift of the atom in space cannot be further ignored, and

instead of the origin of the laboratory coordinate frame, we « 5 2 1 21 0.0
should assume its actual location associated with its classical [(2i0=Dio*+ 31 io Jo Jo) * =
motionr ,=r,4(t). Equation(A10) stays valid and unchanged, gy (@2

but atomic polarizatiorfA12) modifies to X[ix =~y ],
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5 - — - time dynamics of off-diagonal projectoff,jo){jo.jo—1/(t)

@t) = — (a) _\2j o/\osJo

Iy (1) == Qojz" (1) + a(=)7° and|jo,jo—1{jo.Jol(t) is only taken into consideration. Then
5 {2 1 2} orientation dynamics, described by EB4), can be approxi-

(20— D(2j + 32 mated by the following set of linearized equations:

Jo Jo Jo
X [Eozalt),1) + E5(z0,0 1120 0) 190 = Qo+ 00 - TS a1 z(0).0),
I ., 5
7@ 1)7@ —)2i : — ~
+ Iz (t)Jx (t)] + CY2( ) 02[(2j0_ 1)(2J0+ 3)]1/2 ]‘i/a)(t) ~ — (QO + Qz)]‘(za)(t) + %T)((a)ElEz(Za(t)yt)a
2 1 2(, @)y @ gy 4+ @)@
XV (Ba@®.Dy 0570 + 7 (0], (0] R
jo Jo Jo R i@ =0, (B7)
- L 2 @
" flgllo+ D@+ D 2N where

Q.= [15(2jo =~ D]V
5 { 2 1 2} 2 [2loio+ D(2io+ D(2jo+ 312
2[(2jo- D(2jo + 32 is the light-induced shift between=j, andm=j,—1 sublev-

X [Eo(z:(1),1) = Ea(z(). D@1 @(t els. The average value of alignment compon%fﬁ)t is de-
[Bo(z:(0).0) ~ Za(z(0.D1Ly (0170 fined in the body of the paper by E¢5.6). Similarly, we

aEy  (B8)

B3 () = = (=)o

Jo Jo o

N ~ _ ) 5 . . . ) .
@ 1)@ (+)] = (= )2 troduced here the orientation compondi?, associated
OO (1)] - a - Yo in poner?,
S ? 2[(2jo~ D(2jo + 32 with the average orientation of trath atom, as
2 1 2|- - o A . o L 12 _
x{. . }El<za(t>,t>[1§a><t)1§a>(t>+J§a><t>1<f><t)] S p— [ T, (89)
lo Jo Jo “[Go+D(2jo+DIM2 X
_ \E

~ a a) : . .
- — . E.(z (t),t)j(a)(t). (B4) Here T,” is the average orientation component of 10-type
2joljo+ D(2jo+ DT Y defined in the frame with thE axis along the magnetic field,

In their general form, these equations are quite complicateWh'Ch coincides with thex axis in our case. This component

and not closed because of their nonlinear structure, but thely e same” for a_\lllthe atoms of the ensemble. Making the
can be simplified and linearized in the following assump-SUm over all partial equation®7), we come to Eqs(5.10

. . 2 . . written for the collective vector of atomic angular momen-
tions. The dynamics of operatoyé,a)(t) is driven only by 9

those terms which, being averaged, have a quadratic scaﬁe '

over fluctuations of the field and atomic variables. Recall

that 2,=E5. Physically this means that there is no coherentAPPENDIX C: LAPLACE TRANSFORM OF THE ATOMS-
process demolishing the original spin orientation of a single FIELD DYNAMICAL EQUATIONS

atom along thex direction. So far we neglected any possi- Let us define the Laplace images of the space-time-

bilities of incoherent scattering; our analysis has to be reaependent Stokes components of the probe light and of the
stricted by the assumption that on averiﬁ%{t):jo. More-  collective angular momentum of atoms,

over, since this observable has a maximal possible
expectation value and it has no deviation frgyin the lower
orders of weak external perturbations, it is allowed to ap-

éi(p,s) :f f dZdte‘pZ‘S‘éi(z,t), i=1,2,
z o Jo
proximate the Heisenberg operaj{ﬁ’(t) when it appears in

linear or in the squared nonlinear form by its nonperturbed R o (o ~
projector onto an atomic wave function, Ju(p,9) =f f dzdte‘pZ‘StjM(z,t), n=zy, (Cl1
0o Jo
12 = joliojoXiool(t) ~ const. (B5)

where the parameterg s>0. Then the original system of
But while substituting it in the operators’ products, one haddifferential equation$6.7) with initial and boundary condi-
to follow the rule tions (5.14 can be transformed to the following system of

. . . . _ . linear algebraic equations for the Laplace images:
BIOIYO + I ORT0 — 2jo- DI, N N . N

PE1(p,S) + k2E2(P,S) ~ 2BE3T/p,S) = E1(9),
BROIP0 + P01 — (20~ DiP®).  (B6)

This is the crucial point of the linearizing procedure. It is
expected that the left- and right-hand-side operators are co- o ~ . N
ordinated if the spin subsystem is slightly disturbed and the 0, TxZ1(p,S) +8T,p.s) — QTy(p.s) = 7 (p),

~ 1221(D,9) + PE(p,S) + 262,37,(p,5) = E(s),
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_ eixéz(p@ +Q:72(p,s) +s:7y(p,s) =:7"y”(p). (C2) field and of the initial angular momentum operators for the

atoms,
The determinant of this system is given by éi(p,s) > M (p, S)H'n(s) + > Fip, S)j'n(p
A=A(p,s) A e o
= (@4 ) (P + kD) + 2eb, + B8, TZaSD Tp9= 2 0P[O+ 2 NulpOTVP).
— 2 ey + BO) TEQrcp + 4Beb,0(TE)° (CI) (C4

These transformations perform the Laplace images of the
and its solution can be easily found by means of Kramer’'sntegral transform$6.8) and(6.9) introduced in the body of
rules. the paper.

The solution is expressed as linear transformations of the The self-transformation matrix1(p,s) of the Stokes op-
Laplace images of the boundary Stokes operators for therators is given by

1 ( DS +02) + 260,7,555,  — kol S+ 02) + 286,724 )

M(p,s) = — (CH
AP\ iey(2+02) - 266,720, p(S+0?) +2B6,T,E 45
The self-transformation matri¥/{(p,s) of the angular momentum operators is given by
1 [ S(pP+ i) +2e0,0,Ep, QPP+ KB) - 2€0,T,E sk,
Mp9)= 5 )( L, ZoT (C6)
P.S)\ - Q(p~+ Kz) + 20,0, E 3Kz, S(p + K2) + Zﬁeij'—Gp

The cross-transformation matrik(p, s), which is responsible for mapping the initial angular momentum fluctuations onto the
outgoing Stokes components of the transmitted light, is given by

1 (2:3(BIOS exp) + 4Be0, T E2, 25 4(BOP + €xs9) )
Alp9) 2E4(ep+ BrsS). — 25 (eps— Bra2) - 4Be0, T =3

The cross-transformation matrix(p,s), which is responsible for mapping the input Stokes components onto the spatially
distributed angular momentum fluctuations, is given by

F(p,s) = (C7)

(Cy

oy L (—Ex(eyps— 0,100) - 2€6,0,7°55, T ByksS+ 6,0p) )

Ap,9) T Ocss+ 0,0p), T 0.5~ Oy, 0) + 2B6,0,725 5

Thus the Laplace images of the field and atomic variablefrom Egs.(C3)—(C8), the Laplace images of all the matrix
become fully defined. elements have polynomial structure and the return transform

To return to the original space-time-dependent representaould be found for any definite set of the external param-
tion, it is necessary to evaluate the integf8l4.0. As we see  eters, such as,,(},..., etc.
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