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Quantum theoretical treatment of coherent forward scattering of light in a polarized atomic ensemble with an
arbitrary angular momentum is developed. We consider coherent forward scattering of a weak radiation field
interacting with a realistic multilevel atomic transition. Based on the concept of an effective Hamiltonian and
on the Heisenberg formalism, we discuss the coupled dynamics of the quantum fluctuations of the polarization
Stokes components of propagating light and of the collective spin fluctuations of the scattering atoms. We show
that in the process of coherent forward scattering, this dynamics can be described in terms of a polariton-type
spin wave created in the atomic sample. Our work presents a general example of an entangling process in the
system of collective quantum states of light and atomic angular momenta, previously considered only for the
case of spin-12 atoms. We use the developed general formalism to test the applicability of the spin-1

2 approxi-
mation for modeling the quantum nondemolishing measurement of atoms with a higher angular momentum.
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I. INTRODUCTION

Various optical phenomena associated with the optical
pumping process, which have been comprehensively studied
since the 1960s and described in many aspects in a famous
review f1g by Happer, are being revived nowadays in a new
form within the field of quantum information and quantum
computing. The paramagnetic ground states of macroscopic
atomic spin subsystems are considered now to be convenient
physical objects for mapping and storing the quantum infor-
mation in the quantum states of their collective angular mo-
menta. The Faraday-type interference scheme was proposed
for spin squeezingf2g and for quantum communication be-
tween atomic ensemblesf3g. The proposed ideas were real-
ized in spin squeezingf4g and in the entanglementf5g ex-
periments, where a quantum measurement on light forward-
scattered from atomic ensembles was used. The same kind of
off-resonant forward scattering combined with a quantum
feedback was used in the recent demonstration of quantum
memory for lightf6g. Applications to various quantum infor-
mation protocols including a cat state generationf7g and
quantum cloning of light onto atomsf8g have been proposed.
Efficient generation of entanglement via multipass interac-
tion have been also proposedf9g. Theoretical modeling in the
above-mentioned papers was concerned with collective ca-
nonical variables for atoms which can be conveniently intro-
duced for spin-12 atoms. However, the actual experiments
were conducted using states with higher angular momenta.
Hence a theoretical model describing off-resonant interaction
of light with realistic atoms with angular momentum higher
than 1

2 is required.

It is worth noting that the effect of a random Faraday
rotation due to atomic fluctuations was discussed and ob-
served first in Refs.f10,11g more than 20 years ago in the
context of demonstrating the advantages of the light-beating
method in atomic spectroscopy. The importance of atomic
polarization was later discussed in Refs.f12,13g, where it
was shown that the collective spin polarization of an atomic
ensemble could essentially modify the quantum statistics of
the outgoing off-resonant probe radiation. Quantum statistics
of atomic spin variables was first experimentally observed
via off-resonant forward scattering inf14g.

In the present paper, we develop the quantum theory of
coherent forward scattering on an ensemble of polarized at-
oms with an arbitrary angular momentum. We discuss the
physical conditions under which the forward scattering can
be properly described in terms of the effective Hamiltonian,
generalizing the semiclassical approachf1g, so that both the
field and atomic subsystems are treated as quantum objects.
Based on the effective Hamiltonian, we derive the
Heisenberg-type equations of motion written for the spatial
distribution of the Stokes variables of the field and of the
collective angular momentum of atoms. The solution shows
how the entanglement of the quantum fluctuations of light
and atomic subsystems is formed. We show that the entan-
gling process can be understood in terms of a polariton-type
spin wave induced in the atomic sample. We support our
discussion by numerical simulations, assuming the condi-
tions close to those of the recent experimentsf5g.

The paper is organized as follows. In Sec. II, we review
the process of coherent forward scattering to show how the
field Heisenberg operators are transformed in interaction
with a multiatom ensemble consisting of atoms with an arbi-
trary Zeeman structure and for an off-resonant excitation on
a dipole allowed optical transition. In Sec. III, we extend the
Heisenberg formalism to the atomic subsystem and introduce
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the effective Hamiltonian responsible for the coupled dy-
namics of an infinite number of variables associated with the
local polarization of the weak probe light and with individual
atomic spins. The effective Hamiltonian is further trans-
formed in Sec. IV into another form by introducing the more
convenient irreducible tensor formalism for the polarization-
sensitive processes. In Sec. V, we perform mesoscopic aver-
aging to arrive at the wave-type equations for the collective
quantum variables of the light and atomic subsystems. These
equations are solved and discussed in Sec. VI in the context
of the quantum entangling process. In particular, they are
used to test the applicability of the spin-1

2 approximation for
modeling the quantum nondemolishing measurement in an
ensemble of alkali-metal atoms with a higher angular mo-
mentum.

II. COHERENT FORWARD SCATTERING OF LIGHT IN
THE HEISENBERG PICTURE

Consider a system ofN identical atoms located in a finite
volume and scattering coherent light of frequencyv. The
wave of light incident on the atomic ensemble is assumed to
be weak enough that possible saturation effects in its inter-
action with the atoms are negligible. The atomic ensemble,
in general, represents an optically longsthick in refraction,
but thin in absorptiond medium for multiple off-resonance
scattering, but, on the average, the atoms are separated by
distances much larger than the wavelengthÂ. Thus each
atom is located, on average, in the radiation zone of its
neighbors. The interaction of the atoms with incident and
multiply scattered light is assumed to be of the dipole type
and a proper description of multiple scattering has to be re-
stricted to the rotating-wave approximation.

To follow as clearly as possible the analogy between clas-
sical and quantum descriptions of the coherent forward scat-
tering, it seems convenient to solve the quantum problem in
the Heisenberg picture. In such an approach, the basic pro-
cess is the transformation of the electric field operators in a
single scattering event. This process is reviewed in Appendix
A, as an example of the transformation of the operator of the
free electric field of a moving atom. As shown there, the
basic result can be written in terms of the Heisenberg-type
microscopic Maxwell equation, where the polarization re-
sponse operator is given by a single pointlike scatterer. This
allows us to make a subsequent generalization to the situa-
tion of an arbitrary number of atoms scattering light coher-
ently in the forward direction.

We begin our discussion from the single-particle micro-
scopic problem, described by Eq.sA10d ssee Appendix A for
detailsd. For a system ofN identical scatterers randomly lo-
cated in space, it would not be so easy to generalize Eq.
sA10d to a multiparticle form allowing to follow precisely
the Heisenberg dynamics. For simplicity, we restrict the dis-
cussion to the case of the plane incident wave, as in the
experiments with gas cellsf5,6g. For a transparent medium
consisting ofN scatterers, light is scattered in any direction
other than the forward direction only incoherently. This
means that for an optically thin and transparent medium, the
probability to observe a photon randomly scattered in any

solid angle different from the direction of light propagation
is just a sum of partial probabilities of independent scattering
by each atom. In the Heisenberg formalism, this means that
the non-forward-propagating operator waves created in the
medium by single or multiple scattering events are super-
posed with random phases to a roughly zero sum. The out-
going flux associated with incoherent scattering is propor-
tional to the total number of atoms, but stays small because
of a negligible value of the off-resonant cross section. At the
same time, for light propagating in the forward direction in a
transparent medium there is a very strong coherent enhance-
ment of the scattering process. Since the Doppler shift in the
forward-scattered modes disappears, see Eq.sA8d, and the
Raman shift, caused by Zeeman splitting, does not notice-
ably change the phase of these modes, the transmitted light
reveals strong coherent superposition of all partial contribu-
tions associated with single and multiple scattering. For dis-
cussion of the off-resonant light-atom coherent scattering be-
yond the plane-wave approximation, seef15,16g.

Let us subdivide the joint dynamics of light and atomic
subsystems into time increments, during which the number
of accumulated incoherent scattering events is much less
than the total number of atoms. This simplifies our analysis
and allows us to consider only the modes coherently scat-
tered in the forward direction. In the examples we are going
to discuss below, this type of scattering is additionally stimu-
lated by the propagating mode, which has the quasiclassical
nature. Within the rotating-wave approximation, we intro-
duce a carrier frequencyv̄, coinciding with the average fre-
quency of propagating light, and define an averaged wave
number k̄=v̄ /c associated with the full set of the modes
propagating in thez direction. Then the spectral bandwidth
Dv of the continuum of the field modes, contributing to the
quantum operator expansion, should be chosen to be less
than v̄. The actual spectrum of the incident radiation, cen-
tered atv̄, has a narrower bandwidthdv, which is much less
than the detuning from the resonanceD=v̄−v0, wherev0 is
the resonance frequency of the nonperturbed optical transi-
tion. We will also assume thatuDu is much greater than natu-

ral linewidthgn, Doppler shiftk̄v̄, and Raman shiftvm8m. We
neglect the imaginary shift associated with the natural line-
width in the energy denominators. The dissipation process
associated with the spontaneous decay is neglected in our
discussion; the assumptions justifying this are discussed in
Sec. VI C. For an analysis of the role of spontaneous emis-
sion for off-resonant entangling interaction, seef9g.

Under the above-mentioned assumpltions, the basic ex-
pression for the polarization of anyath atom contributing to
the forward scatteringsA15d can be rewritten as follows:

P̂i
sa,+dsz,td =

1

S0
âi j

sadsv̄,tdd„z− zastd…Êj
s+dsz,td, s2.1d

where

âi j
sadsv̄,td = o

m,m8
o
n

sdi
adm8nsdj

adnm

− "sv̄ − vnm− k̄vzad
um8lkmusadstd

s2.2d

is the polarizability tensor andS0 is the cross-section area of
the light beam propagating through the medium in thez di-
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rection. Other notations are specified in Appendix A. Expres-
sion s2.2d gives the instantaneous value of the polarizability
tensor for theath atom, which depends on its exact Heisen-
berg evolution to the momentt. The Heisenberg operator of
the electric field on the right-hand side of Eq.s2.1d is as-
sumed to be dressed in the perturbations by other atoms lo-
cated in front of any selectedath atom but nonperturbed by
the selected atom itself. Here we use Cartesian coordinates in
the tensor notation and sum over each repeated index. The
indicesi , j take valuesx or y.

Let us consider a thin mesoscopic layer located betweenz
and z+Dz planes and containing a large number of atoms.
Such an atomic subensemble will scatter the incoming field
coherently in the forward direction by the collective polar-
ization

P̂s+dsz,td = o
a=1

N

P̂sa,+dsz,td, s2.3d

where thez coordinate is confined inside the layersz,z
+Dzd. If the medium is split in a number of thin layers along
the propagation direction, the light beam would be subse-
quently scattered by these layers in the forward direction.
Then the “coarse-grained” dynamics of the field operators
can be described by the following Heisenberg-type macro-
scopic Maxwell equation:

]2

]z2Ês+dsz,td −
1

c2

]2

]t2
Ês+dsz,td =

4p

c2

]2

]t2
P̂s+dsz,td, s2.4d

where the polarization operatorP̂s+dsz,td is subsequently
given by expressionss2.1d–s2.3d.

We conclude this section by the following remark. The
derived macroscopic Maxwell equation is coupled to the cor-
responding Heisenberg equations governing the dynamics of
the atomic subsystem, see below, and it cannot be extended
up to an arbitrary timet. Its validity is restricted by ignoring
the dissipation process of incoherent scattering. That is why
the averaging of the operator polarizabilitys2.2d gives only
the refraction part of the real polarizability tensor of normal
Maxwell equations. We will further discuss the self-
consistency of the dynamical approach in Sec. VI C.

III. DYNAMICS OF THE ATOMIC SUBSYSTEM

In this section, we discuss how the atomic variables are
modified via the interaction with the forward propagating
light. We describe the dynamics of slowly varying ground-
state operators, considering at first a single atom illuminated
with an arbitrary quantized optical field. Then we generalize
the problem to a macroscopic ensemble and introduce atomic
collective variables.

A. Dynamics of a single atom coupled to an off-resonant field

Consider an atom at the origin of the coordinate frame at
the initial moment of time and drifting in space in such a
way that during the scattering event it moves much less than
a wavelength. Let us define an arbitrary dyadic-type operator
for the ground state of this atom,

T̂ = um8lkmu ; u j0m8lk j0mu, s3.1d

where by the second equality we specify the atomic state
more precisely and introduce the atomic quantum numbers:
j0 andm,m8 are the ground-state angular momentum and its
projections on the direction of an external magnetic field
oriented along theZ axis, which in general is different from
the direction of the light propagation. Based on a perturba-
tion theory, we can expand the corresponding Heisenberg
operator up to the second order as follows:

T̂std = T̂0std + T̂2std + ¯ , s3.2d

where

T̂0std = eivm8mtum8lkmu s3.3d

is the operator in the interaction representation, and the sec-
ond term

T̂2std = −
1

"2E
0

t

dt9E
t9

t

dt8 3 †d̂st9dÊ0st9d,fd̂st8dÊ0st8d,T̂0stdg‡

s3.4d

is the second-order correction induced by a dipole-type op-
tical interaction, see Eq.sA2d.

The integral s3.4d should be evaluated in the rotating-
wave approximation by keeping only the leading terms in the
limit t@ uDu−1. These terms can only depend on normally
ordered products of the creation and annihilation field opera-
tors. In general, such products expand over all the spatial
modes, but in reality only those modes which will not vanish
after the averaging over the initial state are important. These
are planar modes propagating along thez axis. Taking into
account only the propagating modes, the expansions3.2d can
be rewritten as follows:

T̂std < T̂0std +E
0

t

dt8
i

"
fĤef fst8d,T̂0stdg + ¯ , s3.5d

where we introduce an effective interaction Hamiltonian in
the interaction representation

Ĥef fstd = − Êi
s−dsz,tdâi jsv̄,tdÊj

s+dsz,td. s3.6d

Strictly speaking, the electric field operators and the operator
of the atomic polarizability tensor should be understood here
as defined in the interaction representation and marked by

the index zero. For the electric field, these operatorsÊs±d

3sz,td are given by the expansionsA1d, defined atz→0,
where we keep only the forward propagating modes. The
operator of the polarizability tensorâi jsv̄ ,td is given by Eq.
s2.2d, transformed to the interaction representation, withv̄

and k̄=v̄ /c being the carrier frequency and wave number of
the modes interacting with an atom. As in Eq.s2.1d, the
tensor indices inside the definition of the effective Hamil-
tonian s3.6d can run only two projections, eitherx or y.

Note that in our derivation of the effective Hamiltonian,
we used a rather short time incrementt consistent with the
perturbation theory approach, with the assumption that the
atom does not noticeably change its location during the scat-
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tering event. Then there would be no difference between the
interaction and the Heisenberg representations in the evalua-
tion of the integrals3.4d and in introducing the effective
Hamiltonians3.6d. Based on a general principle of dynamical
evolution, we can straightforwardly generalize Eq.s3.6d up
to an arbitrary moment in time if we substitute there all the
operators in the Heisenberg representation. We should also
take into account a classical drift of the atom in space and
considerz=zstd coordinate as its actual location at momentt.

B. Generalization to a multiatom ensemble

Consider now an ensemble consisting of many atoms
scattering incident light coherently in the forward direction.
Although the most interesting polariton-type solutions ob-
tained further in the paper are destroyed by atomic motion,
we include the motion in our model for the sake of general-
ity. However, we ignore any possible correlations between
their spatial motion and the internal state evolution. Then
each atom is in the environment of the field scattered by the
atoms located in front of it and coupled with such a dressed
field via the partial effective Hamiltonians3.6d. The full ef-
fective Hamiltonian for the whole ensemble interacting with
the propagating field in the Heisenberg representation is
given by

Ĥef fstd = − o
a=1

N

Êi
s−d
„zastd,t…âi j

sadsv̄,tdÊj
s+d
„zastd,t…. s3.7d

We preserve here the notation for the full effective Hamil-
tonian, which was used in the previous equation in the case
of one atom.

Then operators3.1d considered for each atom of the en-
semble satisfies the following Heisenberg equation:

T̂
˙ sadstd = ivm8mT̂sadstd +

i

"
fĤef fstd,T̂sadstdg, s3.8d

wherea=1–N.
If we take into account the commutation relation between

Heiesenberg operators of the electric field propagating in the
forward direction, which are given by

fÊk
s−dsz8,td,Êi

s+dsz,tdg = −
2p"v̄

S0
dkidsz8 − zd, s3.9d

then the Maxwell equations2.4d can also be rewritten in
terms of the effective Hamiltonian,

]2

]z2Êi
s+dsz,td −

1

c2

]2

]t2
Êi

s+dsz,td = −
2v̄

"c2fĤef fstd,Êi
s+dsz,tdg.

s3.10d

This operator equation shows that, in turn, the state of the
field existing at each spatial point of the medium is defined
by the atomic operators in the Heisenberg representation,
according to their spatial distribution in space at a given time
t.

Let us make the following remark concerning the defini-
tion of d functions in Eqs.s3.9d and ins2.1d and the validity
of the dynamical equations in the forms3.10d. Our descrip-

tion of the quasiresonant radiation propagating in a disor-
dered medium in the forward direction is based on the
rotating-wave approximation. According to this approxima-
tion, the spectral bandwidth of the fieldDv is assumed to be
at least less than carrier frequencyv̄. Such a truncation of
the infinite field continuum makes it possible to consider the
commutation relations of truly Heisenberg operators in the
form s3.9d. Thus thed functions here and in Eq.s2.1d should
be correctly understood as distributed in a small mesoscopic
area of the orderc/Dv. This spatial scale is obviously longer
thanÂ but still much shorter than the sample size or than any
internal macroscopic scale associated with macroscopic sus-
ceptibilities of the medium. It is also important to think about
Eqs.s3.10d as an approximation for the more general multi-
mode Heisenberg-Langevin-type equation, where the damp-
ing processes associated with incoherent scattering would be
taken into consideration. As was mentioned before, the va-
lidity of the output Maxwell equationss2.4d and s3.10d is
actually restricted by the narrow spectral domaindv associ-
ated with the spectrum of the probe light. But in the process
of transposing the field operators by means of the commuta-
tion rule s3.9d, the whole field spectrumDv should be taken
into account.

The coupled equationss3.8d and s3.10d considered to-
gether are the main result of this section. They reveal the
joint dynamics of the field and atomic subsystems interacting
in the limit of nonsaturating off-resonant optical excitation.
Being an example of Heisenberg equations, they are valid for
the arbitrary initial quantum state of the field and of the
atomic ensemble. The main restriction comes from the model
of lossless coherent scattering. But even with such a simpli-
fication, these equations are quite complicated since they are
operator equations for aninfinite numberof the field and
atomic variables. In the following sections, we identify and
discuss special conditions when Eqs.s3.8d and s3.10d could
be converted to afinite numberof Heisenberg-type equations
for collective variables of the field and atomic subsystems.

IV. REPRESENTATION OF IRREDUCIBLE
COMPONENTS: STOKES OPERATORS
OF THE ELECTROMAGNETIC FIELD

A. Transformation of the effective Hamiltonian
to the irreducible representation

The set of dyadic-type operatorss3.1d for each atom of
the ensemble can be replaced with another set of operators,

T̂KQ
sad =Î2K + 1

2j0 + 1 o
m8,m

Cj0mKQ
j0m8 u j0m8lk j0musad,

u j0m8lk j0musad = o
KQ

Î2K + 1

2j0 + 1
Cj0mKQ

j0m8 T̂KQ
sad . s4.1d

Being the linear combination of original operators weighted

with Clebsh-Gordan coefficientsC. . .. . .
. . . , the projectorsT̂KQ

sad

become irreducible tensor operators, which possess the sim-
plest properties with respect to rotational transformations,
seef17g. The linear transformationss4.1d are consistent with
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any coordinate frame. Let us abandon the choice of the frame
with the Z axis along the magnetic field, used in the basic
definition s3.1d, and return to the original frame with thez
axis along the propagating beam, which is more natural for
the further discussion of the effective Hamiltonian approach.

For large frequency detuning, the Zeeman splitting in the
energy denominators can be neglected compared with the
average detuningD=v̄−v j j 0

, wherev j j 0
=v0 is the transition

frequency between the ground and excited states character-
ized by the angular momentaj0 and j , respectively. Then the
effective Hamiltonian can be expressed as the sum of three
terms,

Ĥef fstd = Ĥef f
s0dstd + Ĥef f

s1dstd + Ĥef f
s2dstd, s4.2d

where the dependence on time emphasizes that the contrib-
uting atom and field operators are taken in the Heisenberg
representation.

The first term in Eq.s4.2d couples the atomic population
of the whole Zeeman multiplet and their longitudinal align-
ment with the full photon flux of propagating light,

Ĥef f
s0dstd = −

2p"v̄

S0c
Fa0sv̄do

a=1

N

T̂00
sadstd +

1
Î6

a2sv̄d

3o
a=1

N

T̂20
sadstdGĴ0„zastd,t…, s4.3d

where

Ĵ0sz,td =
S0c

2p"v̄
Ês−dsz,tdÊs+dsz,td s4.4d

is the Stokes operator of the total photon flux at the spatial
point z. The isotropic polarizability of an atom is given by

a0sv̄d =
1

3Î2j0 + 1

udj0ju2

− "sv̄ − v j j 0
d
, s4.5d

wheredj0j is the reduced matrix element of the atomic dipole
moment for thej0→ j transition. The alignment component
of the atomic polarizability is given by Eq.s4.13d below.

The second term in Eq.s4.2d couples the gyrotropic or
orientation component of the atomic ensemble with the
Stokes component responsible for circular polarization of
propagating light,

Ĥef f
s1dstd =

2p"v̄

S0c
a1sv̄do

a=1

N

T̂10
sadstdĴ2„zastd,t…, s4.6d

where

Ĵ2sz,td =
S0c

2p"v̄
fÊR

s−dsz,tdÊR
s+dsz,td − ÊL

s−dsz,tdÊL
s+dsz,tdg

s4.7d

is the Stokes operator associated with circular polarization. It
is defined in terms of the photon flux operators at a spatial
point z and shows imbalance between the right-handsRd and
the left-handsLd polarizations of the field. The orientational
polarizability of an atom is given by

a1sv̄d = s− d j+j0
1
Î2
H1 1 1

j0 j0 j
J udj0ju2

− "sv̄ − v j j 0
d
. s4.8d

As follows from the Maxwell equations3.10d in the classical

limit, the termĤef f
s1d completely defines the Faraday rotation

or other gyrotropy effects existing in a bulk medium.
The third term in Eq.s4.2d couples the alignment compo-

nents of the atomic ensemble with the remaining two linear
polarized type Stokes components of propagating light,

Ĥef f
s2dstd =

2p"v̄

S0c
a2sv̄do

a=1

N

fT̂xy
sadstdĴ3„zastd,t…

+ T̂jh
sadstdĴ1„zastd,t…g, s4.9d

where

T̂xy
sadstd =

1

2
fT̂2−2

sad std + T̂22
sadstdg,

T̂jh
sadstd = −

1

2i
fT̂2−2

sad std − T̂22
sadstdg. s4.10d

The Stokes operatorĴ3sz,td, showing an imbalance between
the photon fluxes of the modes linearly polarized along thex
andy axes, is given by

Ĵ3sz,td =
S0c

2p"v̄
fÊx

s−dsz,tdÊx
s+dsz,td − Êy

s−dsz,tdÊy
s+dsz,tdg.

s4.11d

The Stokes operatorĴ1sz,td, showing an imbalance between
photon fluxes of the modes linearly polarized along thej and
h axes rotated with respect tox andy directions by thep /4
angle, is given by

Ĵ1sz,td =
S0c

2p"v̄
fÊj

s−dsz,tdÊj
s+dsz,td − Êh

s−dsz,tdÊh
s+dsz,tdg.

s4.12d

The alignment component of the atomic polarizability is de-
fined as follows:

a2sv̄d = s− d j+j0+1H1 1 2

j0 j0 j
J udj0ju2

− "sv̄ − v j j 0
d
. s4.13d

As follows from the Maxwell equations3.10d considered in

its classical limit, the termĤef f
s2d is responsible for the optical

birefringence effects with respect to either thex and y or j
andh directions.

B. Dynamical equations driven by the effective Hamiltonian

Equations3.8d in the irreducible representation transforms
into
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T̂
˙

KQ
sad std =

i

"
fĤ0std,T̂KQ

sad stdg +
i

"
fĤef fstd,T̂KQ

sad stdg, s4.14d

whereĤ0 is the unperturbed Hamiltonian responsible for the
interaction with the external magnetic field. Recall here that
in general the direction of the magnetic field does not coin-
cide with thez axis. The set of Eqs.s4.14d for a=1–N is
equivalent to the set of Eqs.s3.8d but it is written for more
convenient physical observables. The irreducible compo-
nents of a low rank, which contribute to the effective Hamil-
tonian and couple to the Stokes observables of the propagat-
ing light, allow for a more transparent interpretation than the
original projector operatorss3.1d. The zero rank component

T̂00
sadstd is the Heisenberg operator of the total population of an

ath atom in its ground state. It can be straightforwardly veri-
fied that the right-hand size of Eq.s4.14d is equal to zero in
this case and the zero rank irreducible operator is, in fact, the

identity operator. The first rank componentT̂1Q
sadstd, being the

Heisenberg operator of atomic orientation, is equivalent to
the vector of the atomic angular momentum. This vector un-
dergoes dynamical evolutionsregular precession and cou-
pling with the field variablesd caused by the perturbation of
the atomic ground state by the propagating light. The second

rank componentT̂2Q
sadstd, being the Heisenberg operator of

atomic alignment, is equivalent to the ground-state quadru-
pole moment of the atom. The quadropole tensor also under-
goes the dynamical evolution caused by interaction with the
propagating light. Other higher rank irreducible components
are important only as long as their evolution is dynamically
coupled with the evolution of the lower rank components in
the complete set of Eqs.s4.14d.

Equationss4.14d have to be solved together with the Max-
well equations. Let us introduce the slowly varying ampli-
tudes of the Heisenberg field operators,

Êi
s+dsz,td = êisz,tde−iv̄t+ik̄z,

Êi
s−dsz,td = êi

†sz,tdeiv̄t−ik̄z. s4.15d

By substituting these expressions into Eq.s3.10d and into its
Hermitian conjugated form, we obtain the following first-
order differential equations for the slowly varying ampli-
tudes:

F ]

]z
+

1

c

]

]t
Gêisz,td =

i

"c
fĤef fstd,êisz,tdg,

F ]

]z
+

1

c

]

]t
Gêi

†sz,td =
i

"c
fĤef fstd,êi

†sz,tdg. s4.16d

In such Heisenberg-transport equations, as well as in the dy-
namical equationss4.14d, we consider timet in a coarse-
grain temporal scale much longer thanuDu−1 and the coordi-
nate z on a coarse-grain spatial scale much longer thanÂ.
Any changes in the atomic subsystem and displacement of
atoms during the time increments comparable withuDu−1 as
well as any changes of the slow varying field operators on
the scale of a fewÂ are ignored. We do not actually know the
exact behavior either for the atom or for the field Heisenberg

operators, but we can approximately display their averaged
behavior by solution of coupled equationss4.14d ands4.16d.

Instead of the Heisenberg-type equations for slowly vary-
ing amplitudesêisz,td and êi

†sz,td, similar equations written
for the Stokes operators can be introduced,

F ]

]z
+

1

c

]

]t
GĴisz,td =

i

"c
fĤef fstd,Ĵisz,tdg, s4.17d

wherei =0,1,2,3. All theterms appearing on the right-hand
sides of Eqs.s4.14d and s4.17d can be expressed via the
Stokes operators. Moreover, it can be straightforwardly veri-

fied that Ĵ0sz,td stays unchanged as a function oft−z/c,
because of the conservation of the number of photons in the
forward scattering process. In turn, this means that the first
term in Eq.s4.3d, i.e., the isotropic component of the effec-
tive Hamiltonian, can be omitted in Eq.s4.17d since it com-
mutes with all the Stokes operators.

As follows from the derived equations, the main obstacle
on the way to converting the infinite number of operator
equations to the system of truncated equations, written for
the collective atomic variables, coupled with the integral or
averaged field variables, comes from the spatial dependence
of the interaction process. Such a dependence is caused by
anisotropic terms in the effective Hamiltonian, which lead to
spatially varying entanglement of different polarization
modes of light with atomic spins along the propagation path.
The spatial profile of the Heisenberg-type Stokes operators
could be considered as uniform in theJ2 component and as
accumulating the collective fluctuations of atomic spins in
the complementaryJ1 component only in one special case
of a pure Faraday effect. In this case, the anisotropic compo-
nents of the local susceptibilities of the medium would be
zero on average and would exist as fluctuations acting only
on theJ1 Stokes component via random Faraday rotation.

This can be true ifT̂10
sadstd, T̂20

sadstd, andT̂2±2
sad std operators would

be zero on average along the whole interaction cycle. But
even if we neglect the repopulation optical pumping mecha-
nism, coming from incoherent scattering, it would not be so
easy to show any realistic example of a proper atomic tran-
sition satisfying this condition.

Such an example could bej0= 1
2 → j = 1

2 or j0= 1
2 → j = 3

2
atomic transitions. Then there is no quadropole moment in
the ground state in principle and the ensemble consists of the
atoms perfectly polarizedsorientedd in the direction orthogo-
nal to the propagation direction of the probe light. The atom
with spin 1

2 in its ground state does exist in realitys3He, for
exampled, but it is not a convenient object for the
polarization-sensitive experiments. In the earlier work on en-
tanglement and quantum information protocols with atomic
continuous variablesf2–5,9,18g, realistic atoms were mod-
eled as spin-12 systems. One of the goals of this paper is to
analyze the applicability of such an approximation.

Below we derive the equations of motion in their general
form and discuss their possible conversion to the finite num-
ber of wave-type equations written in terms of spatially dis-
tributed collective variables.
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V. DYNAMICS OF THE SYSTEM IN TERMS
OF COLLECTIVE VARIABLES

As the most important practical example, we will further
discuss light propagation through an atomic ensemble pre-
pared originally in the coherent spin state, see Fig. 1. We
assume that atoms fill the cylindrical volume with the cross
sectionS0 coinciding with the cross section of the probe light
beam. The atomic ensemble is located in the homogeneous
magnetic field with the direction orthogonal to the direction
of the propagating light. Originally atoms are perfectly ori-
ented along the magnetic field in thex direction. Probe light
is in a coherent state linearly polarized along thex direction.
Such a geometry is common, e.g., for experiments aiming at
the quantum state teleportation between field and atomic spin
subsystemsf3,5,9g.

A. Field subsystem

Let us consider first the evolution of the Stokes compo-
nents. Based on the commutation relation

fĴisz8,td,Ĵ jsz,tdg = 2i«i jkcdsz− z8dĴksz,td, s5.1d

where«i jk = ±1 in dependence on order of indicesi Þ j Þk,
Eqs.s4.17d can be rewritten as follows:

F ]

]z
+

1

c

]

]t
GĴ1sz,td = ā1o

a=1

N

T̂10
sadstdd„zastd − z…Ĵ3sz,td

− ā2o
a=1

N

T̂xy
sadstdd„zastd − z…Ĵ2sz,td,

F ]

]z
+

1

c

]

]t
GĴ2sz,td = ā2o

a=1

N

T̂xy
sadstdd„zastd − z…Ĵ1sz,td

− ā2o
a=1

N

T̂jh
sadstdd„zastd − z…Ĵ3sz,td,

F ]

]z
+

1

c

]

]t
GĴ3sz,td = − ā1o

a=1

N

T̂10
sadstdd„zastd − z…Ĵ1sz,td

+ ā2o
a=1

N

T̂jh
sadstdd„zastd − z…Ĵ2sz,td,

s5.2d

where we introduced the dimensionless polarizabilities

āi =
4pv̄

S0c
aisv̄d, i = 1,2. s5.3d

These equations are valid for any type of initial conditions
and can be simplified for excitation geometry described in
the preamble to this section.

The coherent forward scattering of light linearly polarized
along thex direction does not modify the average angular
momentum orientation of the atomic ensemble. Transmitted
light also preserves its mean 100% linear polarization. This

means that in Eqs.s5.2d only T̂xy
sadstd and Ĵ3sz,td have non-

zero expectation values. Other operators exist only as fluctu-
ating quantum variables. It is possible to linearize these

equations by substitutingT̂xy
sadstd andĴ3sz,td by their average

values and leaving on the right-hand side only the linearized
contribution over quantum fluctuations. Then the evolution
of the Stokes operators is given by

F ]

]z
+

1

c

]

]t
GĴ1sz,td < − k2Ĵ2sz,td

+ ā1J̄3o
a=1

N

T̂10
sadstdd„zastd − z…,

F ]

]z
+

1

c

]

]t
GĴ2sz,td < k2Ĵ1sz,td − ā2J̄3o

a=1

N

T̂jh
sadstdd„zastd − z…,

F ]

]z
+

1

c

]

]t
GĴ3sz,td < 0, s5.4d

where J̄3=J̄0 is the average value of the corresponding
Stokes component, which is approximately unchanged for
the light beam propagating through the sample. The third line
in Eqs. s5.4d just indicates this circumstance. The coupling
parameter

k2 = ā2o
a=1

N

T̄xy
sadd„zastd − z… s5.5d

is responsible for birefringence effects, i.e., for unitary trans-
formation of linear polarizationsdefined with respect toj ,h

axesd to circular polarization and vice versa. HereT̄xy
sad is the

averaged and approximately unchanged value of the align-
ment of theath atom. For any atom, whose angular momen-
tum j0 is oriented along thex direction, the alignment term is
given by

T̄xy
sad =

f15j0s2j0 − 1dg1/2

2f2s j0 + 1ds2j0 + 1ds2j0 + 3dg1/2 ; T̄xy. s5.6d

The microscopic structure ofk2 can be averaged over a small
mesoscopic interval ofDz and substituted into Eq.s5.4d as

k2=ā2T̄xyn0, wheren0 is the linear density of atomssi.e., the
number of atoms per unit lengthd. From the classical electro-
dynamics point of view, the mesoscopically averaged prod-
uct k2Â is the difference between refraction indices for the
polarizations along thex andy directions.

The most important terms in Eqs.s5.4d are the last ones
on the right-hand sides. These terms show how any quantum
state, originally encoded in the spin fluctuations of the
atomic subsystem, can be mapped onto the polarization state
of the light subsystem. Thus these terms are responsible for
the quantum information processing in light-atoms interac-
tion.
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B. Atomic subsystem

Consider the dynamics of the orientation vector of anath
atom. Applying the commutation rule for irreducible tensor
operators

fT̂KQ
sad ,T̂K8Q8

sbd g = dabfs2K + 1ds2K8 + 1dg1/2o
K9

3f1 − s− dK+K8+K9gHK K8 K9

j0 j0 j0
J

3s− d2j0+K9CKQK8Q8
K9Q9 T̂K9Q9

sad , s5.7d

see Ref.f17g, to the right-hand side of Eqs.s4.14d, we obtain

T̂
˙

10
sadstd =

i

"
fĤ0std,T̂10

sadstdg

− ā2s− d2j0Î10H2 1 2

j0 j0 j0
JĴ3„zastd,t…T̂jh

sadstd

+ ā2s− d2j0Î10H2 1 2

j0 j0 j0
JĴ1„zastd,t…T̂xy

sadstd,

T̂
˙

1±1
sad std =

i

"
fĤ0std,T̂1±1

sad stdg

± iā2s− d2j0
Î5

2
H2 1 2

j0 j0 j0
JĴ0„zastd,t…T̂2±1

sad std

7 iā2s− d2j0
Î5

2
H2 1 2

j0 j0 j0
JĴ3„zastd,t…T̂271

sad std

+ ā2s− d2j0
Î5

2
H2 1 2

j0 j0 j0
JĴ1„zastd,t…T̂271

sad std

± iā1

Î3

2f j0s j0 + 1ds2j0 + 1dg1/2Ĵ2„zastd,t…T̂1±1
sad std.

s5.8d

As one can see, these equations are not closed, since the
right-hand sides are expressed in terms of alignment compo-
nents. Moreover, the higher rank multipoles drive the dy-
namics of the alignment components. Thus to introduce the
system of closed Heisenberg equations, it is necessary to
consider the coupled dynamics of all irreducible components
defined for each atom.

However, the dynamics of the atomic subsystem can be
approximated by the dynamics of orientation components
only as far as we are restricted to the discussion of the exci-
tation regime described in the preamble to this section. As
shown in Appendix B, Eqs.s5.8d can be transformed to the
set of nonlinear equations, where the right-hand sides are
expressed in terms of the operators of the angular momen-
tum. In a special, but the most important for us, regime of
small fluctuations, such transformed equations can be linear-
ized and simplified to the equations describing the dynamics
of the vector of the angular momentum in a closed form. Let
us define the vector of the collective angular momentum of
the ensemble as

Ĵstd = o
a=1

N

ĵ sadstd. s5.9d

Then starting from Eqs.sB7d, written for anyath atom, and
making the sum over all atoms of the ensemble, we arrive at
the following equations governing the dynamics of the col-
lective angular momentum:

Ĵ
˙

zstd < sV0 + V2dĴystd − T̄xyā2o
a=1

N

Ĵ1„zastd,t…,

Ĵ
˙

ystd < − sV0 + V2dĴzstd +
1

2
T̄xā1o

a=1

N

Ĵ2„zastd,t…,

Ĵ
˙

xstd < 0, s5.10d

where parametersV2 andT̄x are defined by expressionssB8d
andsB9d, respectively, andT̄xy is given by Eq.s5.6d. The last
source-type terms on the right-hand side of these equations
are responsible for the mapping of any quantum state, origi-
nally prepared in the Stokes fluctuations of the field sub-
system, onto a long-lived atomic spin subsystem.

Equationss5.4d and s5.10d, considered together, approxi-
mate the dynamical evolution of coupled collective variables
of light and atomic subsystems. But, as follows from the
structure of these equations, they are still not closed because
the coupling termsare not expressed by collective variables.
As we see from Eq.s5.4d, only the atoms currently located
before the wavefront contribute into formation of the fluctu-
ating Stokes variables. In turn, such spatially dependent
Stokes fluctuations, which stay actually unknown, drive the
dynamics of atomic collective angular momentum via source

FIG. 1. Schematic diagram showing the polarization response in
the probe light, transmitted through the spin oriented atomic
sample, on random gyrotropysad and random birefringencesbd.
Both processes are initiated by transverse fluctuations of the collec-
tive angular momentum.
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terms in Eq.s5.10d. However, as we show below, under cer-
tain simplifying assumptions, these equations can be further
transformed into the system of closed equations describing
the wave-type spatial and temporal distribution of the collec-
tive Heisenberg operators of the atomic and field subsystems.

C. Mesoscopic averaging

If atoms are slowly drifting in space and during the inter-
action with a short probe light pulse each atom preserves its
location inside the area much less than the length scale com-
parable withk2

−1 or with the sample size, Eqs.s5.4d and
s5.10d can be transformed into a closed form. Let us note
here that if in the experiment the duration of a probe pulse is
chosen less than a few microseconds, such a condition is
normally fulfilled even in the case of atoms at room tempera-
ture. For the case of cold trapped atoms, this assumption is
consistent with the pulse duration up to a second. Then the
equations of motion can be rewritten for any mesoscopic
layer of the sample, which gives only a small increment to
the Heisenberg operators but contains a large number of at-
oms. The atoms do not leave the layer during the interaction
time and cooperatively interact with the electromagnetic
field. If this layer has a length ofDz, we can introduce the

averaged Stokes operatorsĴ1sz,td along this layer. As a next
step, instead of total angular momentum, given by Eq.s5.9d
we can define its mesoscopic spatial distribution as follows:

Ĵsz,td =
1

Dz
o

z,za,z+Dz

ĵ sadstd, s5.11d

where the sum overa is extended only over the atoms lo-
cated inside the layer. Then the total angular momentum of
the ensemble is expressed as

Ĵstd =E
0

L

Ĵsz,tddz, s5.12d

wheredz=Dz andL is the length of the sample.
The above assumptions lead us to the following set of

closed and coupled equations for the mesoscopically aver-
aged spatial distributions of the field and atomic variables:

F ]

]z
+

1

c

]

]t
GĴ1sz,td = − k2Ĵ2sz,td + 2bJ̄3Ĵzsz,td,

F ]

]z
+

1

c

]

]t
GĴ2sz,td = k2Ĵ1sz,td − 2eJ̄3Ĵysz,td,

]

]t
Ĵzsz,td = VĴysz,td − uyJ̄xĴ1sz,td,

]

]t
Ĵysz,td = − VĴzsz,td + uzJ̄xĴ2sz,td, s5.13d

where we used the same notation for the averaged Stokes
variables as for their microscopic origins and denoted the
mesoscopic spatial distributions of angular momentum com-

ponents asĴmsz,td, with m=x,y,z. It is taken into account

that J̄xsz,td=J̄x=const. Equationss5.13d should be accom-
panied by corresponding initial and boundary conditions,
which are given by

Ĵ1s0,td = Ĵ1
instd,

Ĵ2s0,td = Ĵ2
instd,

Ĵysz,0d = Ĵy
inszd,

Ĵzsz,0d = Ĵz
inszd. s5.14d

The solution of these equations presented in the next section
shows how the swapping of quantum fluctuations between
light and spin subsystems takes place during the interaction
process.

Several new parameters appear in Eqs.s5.13d. Firstly, by
V we denote the frequencyV=V0+V2 of the regular pre-
cession caused by the external magnetic field as well as by
the light-induced shift of the Zeeman sublevels. Secondly,
there are two new parameters in the first pair of equations
describing the transformation of the Stokes variables. The
angleb

b =
Î3

2f j0s j0 + 1ds2j0 + 1dg1/2ā1 s5.15d

is the angle of Faraday-type rotation of the polarization plane
of the propagating light per one spin flip in the ensemble in
the z direction. The parametere,

e =
f15s2j0 − 1dg1/2

2f2j0s j0 + 1ds2j0 + 1ds2j0 + 3dg1/2ā2, s5.16d

is the ellipticity induced in the propagating light by the
atomic sample per one spin flip in they direction, see Fig. 1.
Thirdly, there are two angles in the second pair of equations
describing the dynamics of the spatial distribution of the
atomic angular momenta. Angleuy=e is the rotation angle of
the local collective angular momentum, originally oriented
along thex axis, around they axis per one photon propagat-
ing through the sample in eitherj-type orh-type linear po-
larization. In turn, angleuz=b is the rotation angle of the
local angular momentum around thez axis per one photon
propagating through the sample in either right-hand-type or
left-hand-type circular polarization.

VI. ENTANGLEMENT OF THE QUANTUM STATES
OF LIGHT AND ATOMS

For pedagogical purposes, we consider at first a special
example of optical excitation in the far-off-resonance wing
of j0= 1

2 → j = 1
2 or j0= 1

2 → j = 3
2 optical transitions and will

discuss the general case after that.

A. Example of j0= 1
2\ j = 1

2 , j = 3
2 optical transitions

In the case ofj0= 1
2 → j = 1

2 or j0= 1
2 → j = 3

2 transition, Eqs.
s5.13d are simplified to the following form:
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F ]

]z
+

1

c

]

]t
GĴ1sz,td = 2bJ̄3Ĵzsz,td,

F ]

]z
+

1

c

]

]t
GĴ2sz,td = 0,

]

]t
Ĵzsz,td = V0Ĵysz,td,

]

]t
Ĵysz,td = − V0Ĵzsz,td + bJ̄xĴ2sz,td, s6.1d

where it was taken into account thatā2=0 and thereforek2
=0, V2=0, e=uy=0. Because of the second line in the sys-

tem s6.1d, one hasĴ2sz,td=Ĵ2
inst−z/cd.

The straightforward solution for the distribution of the
angular momentum components leads to

Ĵzsz,td = cosV0tĴz
inszd + sinV0tĴy

inszd

+ bJ̄xE
0

t

dt8 sinV0st − t8dĴ2
inst8 − z/cd,

Ĵysz,td = − sinV0tĴz
inszd + cosV0tĴy

inszd

+ bJ̄xE
0

t

dt8 cosV0st − t8dĴ2
inst8 − z/cd s6.2d

and the Stokes componentĴ1sz,td is given by

Ĵ1sz,td = Ĵ1
inst − z/cd + 2bJ̄3E

0

z

dz8Ĵz„z8,t − sz− z8d/c…

= Ĵ1
inst − z/cd

+ 2bJ̄3E
0

z

dz8cosV0ft − sz− z8d/cgĴz
insz8d

+ 2bJ̄3E
0

z

dz8sinV0ft − sz− z8d/cgĴy
insz8d

+ 2b2J̄3J̄xE
0

z

dz8E
0

t−sz−z8d/c
dt8

3sinV0ft − t8 − sz− z8d/cgĴ2
inst8 − z8/cd. s6.3d

This solution explains the basic idea of entanglement of the
collective quantum states of atomic and field subsystems.
After the interaction cycle, the quantum state of light de-

scribed by theĴ2
in component is mapped onto the atomic

angular momentum components because of the last terms in

Eqs.s6.2d. In turn, the information written in eitherĴz
in or Ĵy

in

components of the angular momentum is mapped onto the

Ĵ1 Stokes component of light, because of the second and
third terms in Eq.s6.3d. Moreover, due to atom-field interac-

tion, there is a partial mapping of theĴ2
in component onto the

Ĵ1 component because of the last term in Eq.s6.3d.

The retardation effects, which are clearly visible in the
derived solution, are mainly important in order to preserve
the proper commutation relations for the whole set of the
Heisenberg operators involved in the process. The initial zero
moment of time is a conventional and arbitrary chosen pa-
rameter to coordinate Schrödinger and Heisenberg pictures.
Physically, the interaction cycle starts only when the wave-
front of the probe radiation crosses thez=0 point. We will
take this time as the initial momentt=0. In the Heisenberg

formalism, this means that any expectation values ofĴ1
instd

and Ĵ2
instd operators or their products are equal to zero for

time t,0. Since the goal is to evaluate the expectation val-
ues of outgoing operators, it is acceptable to substitute the
lower zero limit byt→z/c in Eq. s6.2d and byt8→z8 /c in
the internal integrals6.3d. Then the derived solution can be
further applied at any spatial pointz only for time t.z/c,
which is in accordance with physical manifestation of retar-
dation effects.

In reality, we are most interested in a correct description
of the behavior of the modes around the carrier frequencyv̄,
see definitions4.15d. For the modes distributed in the spec-
tral domain much narrower thanc/L, whereL is the length
of the sample, the retardation effects become negligible. In
this case, the above solution is simplified and can be written
in terms of transverse components of the collective angular
momentum,

Ĵzstd = cosV0tĴz
in + sinV0tĴy

in

+ bJ̄xE
0

t

dt8 sinV0st − t8dĴ2
inst8d,

Ĵystd = − sinV0tĴz
in + cosV0tĴy

in

+ bJ̄xE
0

t

dt8 cosV0st − t8dĴ2
inst8d, s6.4d

and for the output Stokes operatorĴ1
outstd,

Ĵ1
outstd = Ĵ1

instd + 2bJ̄3 cosV0tĴz
in + 2bJ̄3 sinV0tĴy

in

+ 2b2J̄3J̄xE
0

t

dt8 sinV0st − t8dĴ2
inst8d, s6.5d

which coincides, in principle, with the solution obtained ear-
lier in Refs.f5,6g.

The input-output transformations expressed by Eqs.s6.4d
and s6.5d have a simple logical structure and therefore are
attractive for possible applications to the quantum informa-
tion tasks. However, they are only valid forj0= 1

2 → j = 1
2, j

= 3
2 isolated transitions, and it is rather difficult to find a

practical example of such a transition. However, the same
simple input-output relations are effectively realized in the
case of alkali-metal atoms excited in the far wing ofD1 or D2
lines. In this case, the contributions from the components of
the upper hyperfine multiplet to the interaction add up in
such a way that the alignment effects become unimportant.
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For a transition from the ground hyperfine stateF0 to all
hyperfine statesF, we straightforwardly obtain after taking
the sum over the excited states

o
F

ā2 ~ o
F

udj0ju2

− "DF
s− dF+F0+1s2F + 1ds2F0 + 1d

3 H 1 1 2

F0 F0 F
JH I j F

1 F0 j0
J2

→ 0. s6.6d

Hence the alignment contribution vanishes for the ground-
state electronic angular momentumj0=1/2 if the frequency
detuningDF=v̄−vFF0

for each hyperfine transitionF0→F
becomes larger than the hyperfine splitting of the upper state.
The crucial inequalityuā1u@ uā2u which allows us to neglect
the alignment effects is better fulfilled the less important is
the dependence on the upper hyperfine momentum in the
denominator of Eq.s6.6d. In spite of the fact that for heavy
alkali-metal atoms the ratio of the hyperfine to fine splitting
in the upper statedEhf /dEf is really smallsit is less than 10−4

for 133Csd, which makes it possible to neglect the alignment
contribution for large detunings, such an approximation is
not always easy to fulfill under typical experimental condi-
tions. This is because for a large frequency detuning, one has
to use pulses with a very large photon number in order to
make the atom-field interaction strong enough. Large photon
numbers are often inconvenient due to either limitations of
detectors or due to a limited pulse duration, or both. There-
fore, the frequency detuningD is frequently chosen to be
comparable withdEhf. A typical detuning chosen in the ex-
perimentf5g is of the order of 900 MHz with the hyperfine
splitting in 6 2P3/2 of dEhf,200 MHz. This is one of the
motivations for the deeper analysis of Eqs.s5.13d in their
general form.

B. General solution

Equationss5.13d can be solved in the general case, which
we do first ignoring the retardation effects. This is the most
important case for practical applications to quantum informa-
tion processing. Without retardation, the system of coupled
equationss5.13d can be rewritten as follows:

]

]z
Ĵ1sz,td = − k2Ĵ2sz,td + 2bJ̄3Ĵzsz,td,

]

]z
Ĵ2sz,td = k2Ĵ1sz,td − 2eJ̄3Ĵysz,td,

]

]t
Ĵzsz,td = VĴysz,td − uyĴxĴ1sz,td,

]

]t
Ĵysz,td = − VĴzsz,td + uzJ̄xĴ2sz,td. s6.7d

This is a set of differential equations with constant coeffi-
cients and it is accompanied by initial and boundary condi-
tions s5.14d. The solution can be presented in the form of an
integral response on these conditions. For the Stokes opera-
tors, it can be written as

Ĵisz,td = o
j=1,2

E
0

t

dt8Mi jsz,t − t8dĴ j
inst8d

+ o
n=z,y

E
0

z

dz8Finsz− z8,tdĴn
insz8d s6.8d

with i =1, 2. For the operators of the spatial distributions of
the angular momentum components, the solution is

Ĵmsz,td = o
j=1,2

E
0

t

dt8Gm jsz,t − t8dĴ j
inst8d

+ o
n=z,y

E
0

z

dz8Nmnsz− z8,tdĴn
insz8d s6.9d

with m=z,y. The solution can be formally extended over the
space-time region 0, t,` and 0,z,`.

As shown in Appendix C, the kernels of the integral trans-
formations in Eqs.s6.8d and s6.9d can be expressed via the
corresponding Laplace images,

Ksz,td =
1

s2pid2E
p0−i`

p0+i` E
s0−i`

s0+i`

Ksp,sdepz+stdpds,

s6.10d

where Ksz,td is any of the matrix functions
Msz,td , . . . ,Nsz,td in Eqs.s6.8d and s6.9d andKsp,sd is its
Laplace image. The limits of integrationp0 ands0 are chosen
as arbitrary real values warranting the existence of Laplace
images for the spatial and temporal transforms, respectively.
In Appendix C, the images for all the matrices
Msp,sd , . . . ,Nsp,sd are calculated explicitly. Evaluation of
the integralss6.10d can be done numerically for any sample
when all the external parameters are defined.

Let us briefly explain how the retardation effects can be
taken into account. To do this, the retardation timet= t
−z/c should be introduced as an independent variable for
each spatial pointz at a certain moment of timet. Then the
basic systems5.13d, where all the operators are considered
now as functions ofz and t, can be converted to the form
s6.7d but with the derivative over retardation time on the
left-hand side. The initial conditions should be also modified
and written for the initial retardation timet=0, which corre-
sponds now to spatially dependent moments in the laboratory
time t=z/c. As before, we will assume that the wavefront of
the probe radiation crossesz=0 point at zero time. In this
case, we need to know the cooperative atom-field dynamics
at any spatial pointz only for time t.z/c. Then we may
ignore the interaction Hamiltonian for time 0, t,z/c and
choose the initial conditions in Eq.s5.14d in the following
form:

Ĵzsz,t = 0d = cossV0z/cdĴz
inszd + sinsV0z/cdĴy

inszd ; Ĵz
in8szd,

Ĵysz,t = 0d = − sinsV0z/cdĴz
inszd + cossV0z/cdĴy

inszd

; Ĵy
in8szd. s6.11d

There are no changes in the boundary conditions in Eq.
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s5.14d, since atz=0 the retardation timet coincides witht.
Thus in the most general case the solutions6.8d–s6.10d
should be rewritten in terms of the retardation time and
should depend onJz

in8szd and Jy
in8szd as on initial quantum

fluctuations of the atomic angular momenta.
Finally, the retardation effects give us the following cor-

rection to the spatial and temporal dynamics of the field vari-
ables:

Ĵisz,td = o
j=1,2

E
0

t−z/c

dt8Mi jsz,t − z/c − t8dĴ j
inst8d

+ o
n=z,y

E
0

z

dz8Finsz− z8,t − z/cdĴn
in8sz8d

s6.12d

and of the atomic variables

Ĵmsz,td = o
j=1,2

E
0

t−z/c

dt8Gm jsz,t − z/c − t8dĴ j
inst8d

+ o
n=z,y

E
0

z

dz8Nmnsz− z8,t − z/cdĴn
in8sz8d.

s6.13d

These expressions can be applied for calculation of expecta-
tion values of any products of operators at a spatial pointz
for the timet.z/c.

An important feature of solutionss6.12d ands6.13d is their
wave nature. As follows from the Laplace transform carried
out in Appendix C, the eigenmodes of spatial and temporal
distributions of atoms-field collective fluctuations are associ-
ated with the poles of determinantDsp,sd→0, whereDsp,sd
is defined by Eq.sC3d. For atoms with spin1

2, this condition
leads top→0 ands→ ±iV0. In the absence of the magnetic
field V0→0, there are only two collective modes associated
with the total number of atoms and with the total number of
scattering photons which undergo polarization-sensitive in-
teraction in the process of coherent forward scattering. This
makes it possible to further simplify the effective Hamil-
tonian and to discuss it in terms of integrated collective vari-
ables of the canonical typef5,19g.

However, in a general case, due to the presence of align-
ment associated effects, the conditionDsp,sd→0 gives
coupled rootss=sspd, i.e., the wave-type modes which can
survive in the sample and be excited by either time-
dependent fluctuations of the field Stokes components or by
spatial fluctuations of atomic spins. Such quantum superpo-
sition of the field and material waves can be understood as a
polariton-type spin wave generated in the medium. The mul-
timode structure of such waves does not allow entanglement
only between integrated collective variables. Instead, in gen-
eral the entanglement is distributed in all polariton modes.
From the quantum information point of view, this means that
in the case of atoms with the ground-state angular momen-
tum equal to or larger than 1, a possible entanglement re-
source hidden in the polariton modes allows for multimode
entanglement rather than a single-mode entanglement avail-
able for spin-12 systems. The quantum information then will

be mapped on spatially dependent correlations of an atomic
standing spin wave.

The following remark concerning the terminology is due
here. Let us point out the principal difference between the
spin-wave dynamics described by Eqs.s5.13d and the collec-
tive spin behavior in the spin-organized cold fermion gas,
which was discussed years ago; seef20g. In our case, the
cooperative dynamics of atomic spins is driven by the
radiation-type interaction whereas in the cold fermionic sys-
tems it is driven by the static interparticle interaction via the
longitudinal electric field.

C. Spin squeezing in an ensemble of cesium atoms

In this section, we concentrate on calculations relevant for
the existing experimental examplef5g carried out with en-
semblessd of 133Cs atoms. We first calculate the degree of
spin squeezing ignoring the alignment, i.e., following the
model adopted inf5g and describing the atomic ground state
by the spinsorientationd only. We then present the numerical
results including the alignment and show how this affects
spin squeezing of atoms.

In the experiment f5g, the entanglementstwo-mode
squeezingd was generated between two spatially separated
ensembles via a Faraday-type detection of light. For peda-
gogical reasons, we will make numerical simulations for the
case of single-mode spin squeezing, which makes no differ-
ence for the present discussion. We will completely ignore
the retardation effects and consider the spin dynamics with-
out external magnetic field.

In the case of cesium atoms, the alignment contribution
can be suppressed if the frequency detuning of the probe
light from the atomic resonance is much larger than the hy-
perfine splitting in the upper state, as described in the end of
Sec. VI A. If the alignment is ignored, the basic equations
stem from the expressionss6.4d and s6.5d, which in the ab-
sence of magnetic field read

Ĵzstd = Ĵz
in,

Ĵystd = Ĵy
in + bJ̄xE

0

t

dt8Ĵ2
inst8d,

Ĵ1
outstd = Ĵ1

instd + 2bJ̄3Ĵz
in,

Ĵ2
outstd = Ĵ2

instd. s6.14d

The input-output transformationss6.14d show the entangling
mechanism of the atoms-field variables in the process of co-
herent forward scattering. If the number of atoms and pho-

tons is large enough such asbJ̄x@1 andbJ̄3t@1, the output
quantum fluctuations become strongly entangled. Indeed, in

this case the role ofĴy
in and Ĵ1

instd terms on the right-hand
side of Eq.s6.14d becomes negligible if these fluctuations
have been originally Poissonian. After the interaction, there
would be strong correlations between fluctuations of

e0
t Ĵ1

outst8ddt8 and Ĵzstd as well as betweenĴystd and
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e0
t Ĵ2

outst8ddt8. If the observablee0
t Ĵ1

outst8ddt8 is measured by
a balanced Faraday detector, there will no longer be standard

quantum uncertainty inĴzst+0d, whose originalsat t→0d
Poissonian fluctuations will be suppressed by a factorbJ̄3t
@1. The collective spin state will become squeezed and will

accumulate its quantum uncertainty inĴyst+0d fluctuation.
It is important to recognize that even in such an ideal

scheme there is a restriction on the number of participating
atoms and photons because of an accumulation of events of
the incoherent scattering. It is clear that in each event of the
incoherent scattering one photon and one atom of the en-
semble cancel out from the entangling process. These losses
can be neglected if the number of scattering events is much
less than the total numbers of atomsNa and incoming pho-
tonsNph. This can be written as two inequalities,

sD

S0
NphNa ! Na,

sD

S0
NphNa ! Nph, s6.15d

where sD is the cross section for off-resonant incoherent
scattering in full solid angle, andS0 is the area of the light
beam, which coincides with the area of an atomic cloud.
Both inequalities lead to similar restrictions on the number of
participating atoms and photons,

Na,Nph !
S0

sD

. s6.16d

In the case of photons, this inequality can also be understood
as a restriction on the whole interaction timeT sthe probe

pulse durationd, sinceNph=J̄0T=J̄3T. Since both types of
the losses are undesirable, one can assume thatNa=Nph to
exclude any preference for atoms or photons. The number of
scattered photons can be expressed as

Nph = h
S0

sD

, s6.17d

where by small parameterh we denoted the relative number
of atoms and photons lost as a result of incoherent scattering,
see the first line of Eq.s6.15d. A detailed analysis of the role
of spontaneous emission is presented inf9g.

The scheme of energy levels of133Cs is shown in Fig. 2.
Skipping technical details of calculation of off-resonant cross
sectionsD son an atom in the Zeeman sublevelF0=4, M0
=4 of its ground stated and of estimation of the elementary
Faraday angleb, we present the final result. The square vari-
ance of any output Stokes componentJi

out, wherei =1, 2 is
given by

KFE
0

T

Ĵi
outstddtG2L = J̄3Tf1 + jisJdg, s6.18d

where the Mandel parameterjisJd, considered as a function

of the total collective angular momentumJ< J̄x, shows the
relative deviation from the shot-noise level. This deviation is
due to the variance of the atomic state mapped onto the out-

put light. For Ĵ1
out Stokes component, the original value of

the Mandel parameterj1 transforms as

j1sJd = j1 + 2hfS g

D5
,

g

D4
,

g

D3
DbJ ; j1 + k2, s6.19d

where the second line defines the dimensionless parameterk
responsible for coupling of the field and atomic subsystems
described in terms of their canonical variable, seef9g. For

Ĵ2
out component, the Mandel parameter preserves its magni-

tude, so thatj2sJd=j2. In Eq. s6.19d and throughout, we ap-
proximate the input fluctuations as a Markoviand-correlated
process in the lower-frequency domain,

kĴi
inst8dĴi

instdl = J̄3s1 + jiddst8 − td s6.20d

and assume the Poissonianscoherent stated square variance

of the angular momentumkJz
2l= J̄x/2=J/2 for the original

coherent atomic spin state. The second term in Eq.s6.19d
denotes the contribution of the Faraday effect itself, and the
function fs¯d denotes the product

b
S0

sD

; fS g

D5
,

g

D4
,

g

D3
D =

11

60

g

D5
−

7

320

g

D4
−

7

192

g

D3

3

10

g2

D5
2 +

7

10

g2

D4
2

,

s6.21d

whereg is the rate of the spontaneous decay of the upper
state, andD j =v−v j4 with j =3, 4, 5 are the frequency de-
tunings of the probe light from each exciting hyperfine tran-
sition, see Fig. 2.

Note that, as a consequence of neglecting the alignment
effects, the total angular momentumsor number of atomsd
contributes in the output Mandel parameter only in combina-
tion bJ. This parameter is the optical activity of the sample,
i.e., the angle of Faraday rotation of the planar wave for the
ensemble perfectly oriented along the probe beam, see Fig.
1. This linearity ssee dashed-dotted lines in Figs. 3–5d has

FIG. 2. Energy level diagram ofD2 line of 133Cs:D5, D4, andD3

are the frequency detunings of the probe light from hyperfine tran-
sitions participating in the process.
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been used as the benchmark for the determination of the
projection noise level of atoms in all the work related to
quantum state generation with atomic ensembles; see, for
example,f9g.

As follows from the above discussion of the role of spon-
taneous emission, a reasonable choice of parameters for spin
squeezing corresponds tobJ,F0hfs¯d=4hfs¯d. Under
typical conditions for the frequency detuningD5
,1000 MHz andh,0.1, the optical activity can bebJ,1,
which can provide spin squeezing far below the standard
quantum limit in Eq.s6.18d.

In order to calculate the corrections to the variances of the
output Stokes components for a realistic alkali-metal atom at
a finite detuning, the alignment associated effects have to be
included in calculations. This can be done only numerically
by means of the transformationss6.8d. In Figs. 3–5, we plot
the results of these calculations. The variances of the Stokes

componentsĴ1
out and Ĵ2

out are shown as a function of the
optical activity of the samplebJ, calculated for different fre-
quency offsetsD5=700, 1000, and 1200 MHz and forh
=0.1. In the figures, the solid curves represent the complete
result within the described model, whereas the dashed curves
are computed only including the partial contribution coming
from the first term in Eq.s6.8d. These curves show the ex-
cessive atomic spin fluctuations, mapped onto the Stokes col-
lective variable of the transmitted light, beyond the level of

the transformed original light fluctuations and beyond the
level of the spinsorientationd projection noise. The incoming
light is taken to be in a coherent state with Poissonian statis-
tics and withj1=j2=0. The enhancement of the light noise is

FIG. 3. The Mandel parameters for the output square variances
of the Stokes componentsJ1

out supper plotd andJ2
out slower plotd as

a function of optical activity of the sample for the frequency offset
D5=700 MHz. The dotted curve indicates the original shot-noise
level, the dashed curve is the atomic signal coming from the first
term in Eq.s6.8d, the dashed-dotted linear dependence is the Fara-
day approximations6.19d, and the solid curve is the complete out-
put variance.

FIG. 4. Same as in Fig. 3 for the frequency offsetD5

=1000 MHz.

FIG. 5. Same as in Fig. 3 for the frequency offsetD5

=1200 MHz.
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caused by higher orders of the interaction process. Consid-
ered at a certain value ofbJ, the difference between the
complete variance and the background level shows the effi-
ciency of the Faraday detector as a spin squeezer. The
scheme works better the higher this difference is. However,
because of the alignment, the squeezing has to be considered
not for a collective angular momentum but for a more com-
plex type of a spatial spin mode, which is defined by the
input-output transformationss6.8d and s6.9d. Squeezing and
entanglement for such spatial modes will be considered else-
where.

It is instructive to compare the result of numerical calcu-
lations with the approximation ignoring the alignment ef-
fects. The dashed-dotted linear dependencies in Figs. 3–5
reproduce the ideal result described by Eq.s6.19d. As we see,
for small values ofbJ the Faraday approximation fits the
exact solution with rather good accuracy and the deviation of
j2 from zero is quite small. This means that for the sample
characterized by rather small optical activity, the spin-1

2 ap-
proximation for the multilevel cesium atom is self-consistent
and potentially good for describing the real experimental
situation. Hence for such a sample the squeezed spin stand-
ing wave can be approximated by the collective angular mo-
mentum. Let us point out here that in the existing experiment
f5g, the optical activity wasbJ,0.2 and the alignment cor-
rection was not so important. However, as clearly seen for
largebJ, the difference between the input-output transforma-
tions in their general form and approximations6.14d be-
comes quite important.

VII. CONCLUSION

We have considered the quantum theory of coherent for-
ward scattering of light by an ensemble of multilevel atoms
polarized in their angular momenta. As a result of such a
scattering process, the quantum states of the field and atomic
subsystems are transformed into an entangled state. In our
discussion of the process, we followed the effective Hamil-
tonian approach, which in the semiclassical form is normally
applied for studying optical pumping processes after adia-
batic elimination of the excited state. Compared to earlier
studies of entanglement of light and atomic ensembles, we
have derived the effective Hamiltonian in a more general
form for the atoms with an arbitrary total magnetic momen-
tum. Towards this end, we have found the physical condi-
tions under which the analysis can be simplified by introduc-
ing a finite number of collective variables for light and
atoms.

We showed that under certain conditions the cooperative
atoms-field dynamics can be properly described by the wave-
type coupled equations for the space-time evolution of the
collective Heisenberg operators of the field and atomic sub-
systems. In these equations, an infinite set of atom-field op-
erators is truncated via introduction of slowly varying collec-
tive modes. The coupled equations for the time evolution of
spatially dependent operators of the Stokes components of
light and of the macroscopic fluctuations of the collective
atomic angular momentum are written in a closed form. In
the general case, the coupled dynamics of the atom and field

operators manifests itself in a spin polariton wave created in
the sample. The fluctuating components of atoms and field
become strongly entangled in the polariton wave in space
and time. Such spin polariton waves initiated by radiative
forces are different from the collective spin dynamics exist-
ing in the spin-polarized quantum gasf20g. They are also
different from the polariton modes discussed inf21g, where
polaritons of the combined atom-light state are introduced. In
our case, the quantum entanglement arises from the interac-
tion between the internal collective polarization degrees of
freedom of light and atomic subsystems. In particular, our
analysis yields the input-output transformations for the
Heisenberg operators of the collective variables of light and
atomic spins after the whole interaction cycle. Our results
suggest that a successful approach of using off-resonant
light-atomic ensemble interaction for quantum information
processing can become even more fruitful with the use of a
multimode type of entanglement provided by spin polariton
atomic variables.

Numerical simulations demonstrate the importance of the
developed formalism for application to a realistic experimen-
tal situation. We considered a well known example, when the
Faraday rotation is used as a nondemolishing measurement
of transverse fluctuations of the collective atomic spin and
can be utilized as a physical mechanism for the spin squeez-
ing in an ensemble of spin polarized atoms. We tested the
validity of the spin-12 approximation for a realistic cesium
atom, which is normally used to describe the interaction with
a far-off-resonant probe light aroundD1 or D2 transitions of
alkali-metal atoms. As shown, for small values of optical
activity this approximation is self-consistent and deviates
negligibly from the calculations based on a general solution.
However, for the samples with high optical activity, where
quantum correlations become strong, there is an important
quantitative as well as qualitative difference between the
general solution and the model of spin-1

2 atoms.
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APPENDIX A: TRANSFORMATION OF THE ELECTRIC
FIELD IN A SINGLE SCATTERING

The unperturbed electric field operator in the origin of the
coordinate frame coupled with a scattering atom, which
drifts with velocity v, is given by

Ê0std = o
km

S2p"vk

V
D1/2

s− idfekm
* akm

† eisvk−k·vdt

− ekmakme−isvk−k·vdtg

= Ê0
s−dstd + Ê0

s+dstd, sA1d
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where akm
† , akm are, respectively, the operators of creation

and annihilation of the photon with wave vectork and in the
polarization stateekm. V is the quantization volume. The sec-
ond line in Eq.sA1d defines negative and positive frequency
components of the electric field.

The dipole-type interaction operator of the atom with the
electric field is given by

V̂std = − d̂stdÊ0std, sA2d

where the operator for the atomic dipole momentd̂std and for
the electric field are defined in the interaction representation.
Based on a perturbation theoretic approach, the exact solu-
tion for the Heisenberg operator can be written as the follow-
ing expansion:

Êstd = Ê0std + Ê1std + Ê2std + ¯ sA3d

which can also be written for positiveÊs+dstd and negative

Ês−dstd frequency components. We assume that the wave
function of the joint atom-field system describes the com-
bined state where an atom occupies the ground state and the
electric field is in a weak quasicoherent state nonsaturating
the atomic transition. Then the correction of the first order in
Eq. sA3d will disappear after averaging over the wave func-
tion. Thus the second-order correction gives us the main con-
tribution, since it is responsible for the scattering process.
The second-order term in Eq.sA3d can be written as follows:

Ê2std = −
1

"2E
0

t

dt9E
t9

t

dt8†d̂st9dÊ0st9d,fd̂st8dÊ0st8d,Ê0stdg‡.

sA4d

As follows from this expression, in a complete dynamical
description of the process there is a memory of initial con-
ditions in the formal expansion of perturbation theory. How-
ever, for nonsaturating fields this solution can be spread out
over the timet@g−1, whereg is the natural radiative relax-
ation rate of the upper state. But in this case it is necessary to
take into account all the radiative correction for the retarded
and advanced Green functions of the decaying upper atomic
state. This can be done by introducing the natural decay law
into the time behavior of these functions. Then the integral
sA4d loses its dependence on the lower limit as on the initial
time coordinate. Let us also point out that there is only a
conventional choice of initial timet0→0 to coordinate the
Heisenberg and Schrödinger representations. The real physi-
cal conditions can be arranged as the wave front of probe
radiationsexpressed by expectation values of any products of
freely Heisenberg operators of the fieldd could arrive at the
interaction area at any time aftert0=0. Thus we can always
think that observation timet satisfies inequalityt@g−1. At
the same time it is important to recognize that by including
the radiation decay into the Green functions of the upper
atomic states, we average their time evolution and ignore any
random fast variation of the field and atomic operators asso-
ciated with high frequencies of the field continuum.

The integralsA4d gives us the solution for the electric
field in the origin of the frame coupled with a moving atom.
But in the zero order of relativistic effects, when only retar-
dation effects in the radiation zone have to be taken into
consideration, this solution coincides with the electric field in
the laboratory frame at the point of atom location as well as
in the small vicinity of this point. Then we can obtain the
solution for any point in the laboratory frame by using the
propagation law in free space. By this procedure, one obtains
the following expansion for the positive frequency compo-
nent of the electric field operator in the radiation zonesr
@Âd of the scattering atom:

Ês+dsr ,td = Ê0
s+dsr ,td + Ê2

s+dsr ,td + ¯ , sA5d

where

Ê0
s+dsr ,td = o

km
S2p"vk

V D1/2

e−isvkt−k·r diekmakm sA6d

and

Ê2
s+dsr ,td = o

m,m8
o
n

o
km

S2p"vk

V D1/2 1

ir
e−iv8t+ik8rum8lkmuakm

3
v82

"c2F−
isd'dnmsd ·ekmdm8n

isv8 + vnm− k8 ·vd

+
isd'dm8nsd ·ekmdnm

isvk − vnm− k ·vd − gn/2
G sA7d

and the negative frequency component is given by the Her-
mitian conjugation:Es−dsr ,td=Es+d†sr ,td. Here the origin of
the frame is chosen in the location of the atom, which is
assumed to be unchanged during the light propagation time
r /c. The scattered light frequencyv8 is defined here via the
input frequencyvk and the Raman shiftvm8m for atomic
transition uml→ um8l. There is an additional Doppler shift
caused by atomic motion, given by

v8 ; vk8 = vk − vm8m + sk8 − kd ·v. sA8d

The wave vectork8=v8r /cr, but on the right-hand side of
Eq. sA8d the Doppler correction is neglected and it is as-
sumed thatk8<vr /cr. The transition dipole moments in Eq.
sA7d are defined in the Schrödinger representation and its
transverse component is given by

d̂' = d̂ − sd̂ ·k8d
k8

k82 . sA9d

The sum overn is expanded over all possible excited transi-
tions characterized by natural linewidthsgn, but as a practi-
cal matter, the sum can be restricted to the most significant
resonance transitions and the frequencyvk;v can be asso-
ciated with the frequency of the incident mode.

Even though both the terms in Eq.sA6d are well known in
the scattering theory, seef22g, we claim that only the latter
term, constituted with the rotating-wave approximation,
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should be left in aiming for the following generalization to
multiple scattering process. Indeed, the first term contribut-
ing in Eq. sA6d reveals the quantum-mechanical phenom-
enon that the scattered photon is created before the incoming
photon was annihilated. This process has a very small, and in
fact negligible, amplitude and should be ignored if one stays
with a semiclassical-type understanding of the multiple scat-
tering process as a sequence of successive scattering events.
Moreover, as shown inf23g, the electric field transformation
in the presence of one scatterer in the formsA5d–sA7d pre-
serves the commutation relation, i.e., the unitary transforma-
tion is only in the rotating-wave approximation.

In the rotating-wave approximation, the perturbation
theory solutionsA5d–sA7d satisfies the following equation:

DÊs+dsr ,td −
1

c2

]2

]t2
Ês+dsr ,td =

4p

c2

]2

]t2
P̂'

s+dsr ,td, sA10d

where

P̂'
s+dsr ,td =E d3k8

s2pd3eik8·r P̂'
s+dsk8,td sA11d

and in turn

P̂'
s+dsk8,td = o

m,m8
o
n

o
km

S2p"vk

V D1/2

e−iv8tum8lkmu

3iakm

sd'dm8nsd ·ekmdnm

− "svk − vnm− k ·vd − i"gn/2

sA12d

is the operator of the transverse component of atomic polar-
ization responding on an external field. Frequencyv8 is
given by Eq.sA8d, but wave vectork8 is an independent
variable here.

In the above discussion, the interaction timet was as-
sumed to be short enough for validity of the perturbation
theory approach. Therefore, in the derived equations the
dyadic-type operatorsum8lkmu of the low atomic state can be
selected as referred to the interaction representation,

um8lkmu0std = eivm8mtum8lkmu. sA13d

But this operator differs only slightly from their Heisenberg
analogs during the short interaction time. Therefore, the evo-
lution of the electric field operator can be extended up to
arbitrary time t, if the final equations of this section are
modified as follows. All the dyadic-type operators should be
changed by the corresponding Heisenberg operators with
keeping the complete dynamic evolution up to momentt,

um8lkmu0std → um8lkmustd. sA14d

The drift of the atom in space cannot be further ignored, and
instead of the origin of the laboratory coordinate frame, we
should assume its actual location associated with its classical
motion r a=r astd. EquationsA10d stays valid and unchanged,
but atomic polarizationsA12d modifies to

P̂'
s+dsk8,td = o

m,m8
o
n

o
km

S2p"vk

V D1/2

eisk−k8d·r astdum8lkmustd

3iakmstd
sd'dm8nsd ·ekmdnm

− "svk − vnm− k ·vad − i"gn/2

sA15d

and va= ṙ astd. In substituting Eq.sA15d into Eq. sA10d, the
time derivation should be done only for the fast oscillating
components of the Heisenberg operators and for the expo-
nential factors.

APPENDIX B: LINEARIZED DYNAMICS OF ATOMIC
ANGULAR MOMENTA

The operators of irreducible components can be expressed
in terms of the operators of atomic angular momenta. For
anyath atom of ensemble, the orientation vector is given by

T̂1Q
sad =

Î3

f j0s j0 + 1ds2j0 + 1dg1/2 ĵQ
sad sB1d

and the alignment tensor is given by

T̂2Q
sad =

Î15

f2j0s j0 + 1ds2j0 − 1ds2j0 + 1ds2j0 + 3dg1/2

3 o
qq8

C1q1q8
2Q f ĵ q

sad ĵ q8
sad + ĵ q8

sad ĵ q
sad − s− dqdq,−q8

2
3 j0s j0 + 1dg ,

sB2d

where ĵ q
sad are the cyclic components of the operator vector of

angular momentum, which are defined by their Cartesian
components as follows:

ĵ0
sad = ĵ z

sad,

ĵ±1
sad = 7

1
Î2

f ĵ x
sad ± i ĵ y

sadg, sB3d

seef17g.
By substituting subsequently Eqs.sB1d–sB3d into Eqs.

s5.8d, the latter can be straightforwardly transformed to the
set of nonlinear equations containing only the operators of
atomic angular momenta,

j̇̂ z
sadstd = V0 ĵ y

sadstd − ā2s− d2j0

3
5

fs2j0 − 1ds2j0 + 3dg1/2H2 1 2

j0 j0 j0
JĴ3szastd,td

3f ĵ x
sadstd ĵ y

sadstd + ĵ y
sadstd ĵ x

sadstdg + ā2s− d2j0

3
5

fs2j0 − 1ds2j0 + 3dg1/2H2 1 2

j0 j0 j0
JĴ1„zastd,t…

3f ĵ x
sad2std − ĵ y

sad2stdg,
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ĵ
˙
y
sadstd = − V0 ĵ z

sadstd + ā2s− d2j0

3
5

2fs2j0 − 1ds2j0 + 3dg1/2H2 1 2

j0 j0 j0
J

3 fĴ0„zastd,t… + Ĵ3„zastd,t…gf ĵ x
sadstd ĵ z

sadstd

+ ĵ z
sadstd ĵ x

sadstdg + ā2s− d2j0
5

2fs2j0 − 1ds2j0 + 3dg1/2

3H2 1 2

j0 j0 j0
JĴ1„zastd,t…f ĵ y

sadstd ĵ z
sadstd + ĵ z

sadstd ĵ y
sadstdg

+ ā1

Î3

2f j0s j0 + 1ds2j0 + 1dg1/2Ĵ2„zastd,t… ĵ x
sadstd,

ĵ
˙
x
sadstd = − ā2s− d2j0

5

2fs2j0 − 1ds2j0 + 3dg1/2H2 1 2

j0 j0 j0
J

3 fĴ0„zastd,t… − Ĵ3„zastd,t…gf ĵ y
sadstd ĵ z

sadstd

+ ĵ z
sadstd ĵ y

sadstdg − ā2s− d2j0
5

2fs2j0 − 1ds2j0 + 3dg1/2

3H2 1 2

j0 j0 j0
JĴ1„zastd,t…f ĵ x

sadstd ĵ z
sadstd + ĵ z

sadstd ĵ x
sadstdg

− ā1

Î3

2f j0s j0 + 1ds2j0 + 1dg1/2Ĵ2„zastd,t… ĵ y
sadstd. sB4d

In their general form, these equations are quite complicated
and not closed because of their nonlinear structure, but they
can be simplified and linearized in the following assump-
tions. The dynamics of operatorsĵ x

sadstd is driven only by
those terms which, being averaged, have a quadratic scale
over fluctuations of the field and atomic variables. Recall

that J̄0=J̄3. Physically this means that there is no coherent
process demolishing the original spin orientation of a single
atom along thex direction. So far we neglected any possi-
bilities of incoherent scattering; our analysis has to be re-
stricted by the assumption that on averagej̄ x

sadstd= j0. More-
over, since this observable has a maximal possible
expectation value and it has no deviation fromj0 in the lower
orders of weak external perturbations, it is allowed to ap-
proximate the Heisenberg operatorĵ x

sadstd when it appears in
linear or in the squared nonlinear form by its nonperturbed
projector onto an atomic wave function,

ĵ x
sadstd → j0u j0, j0lk j0, j0ustd , constt. sB5d

But while substituting it in the operators’ products, one has
to follow the rule

ĵ x
sadstd ĵ y

sadstd + ĵ y
sadstd ĵ x

sadstd → s2j0 − 1d ĵ y
sadstd,

ĵ x
sadstd ĵ z

sadstd + ĵ z
sadstd ĵ x

sadstd → s2j0 − 1d ĵ z
sadstd. sB6d

This is the crucial point of the linearizing procedure. It is
expected that the left- and right-hand-side operators are co-
ordinated if the spin subsystem is slightly disturbed and the

time dynamics of off-diagonal projectorsu j0, j0lk j0, j0−1ustd
andu j0, j0−1lk j0, j0ustd is only taken into consideration. Then
orientation dynamics, described by Eq.sB4d, can be approxi-
mated by the following set of linearized equations:

ĵ
˙
z
sadstd < sV0 + V2d ĵ y

sadstd − T̄xy
sadā2Ĵ1„zastd,t…,

ĵ
˙
y
sadstd < − sV0 + V2d ĵ z

sadstd +
1

2
T̄x

sadā1Ĵ2„zastd,t…,

ĵ
˙
x
sadstd < 0, sB7d

where

V2 =
f15s2j0 − 1dg1/2

f2j0s j0 + 1ds2j0 + 1ds2j0 + 3dg1/2ā2J̄0 sB8d

is the light-induced shift betweenm= j0 andm= j0−1 sublev-

els. The average value of alignment componentT̄xy
sad is de-

fined in the body of the paper by Eq.s5.6d. Similarly, we

introduced here the orientation componentT̄x
sad, associated

with the average orientation of theath atom, as

T̄x
sad =

f3j0g1/2

fs j0 + 1ds2j0 + 1dg1/2 ; T̄x. sB9d

Here T̄x
sad is the average orientation component of 10-type

defined in the frame with theZ axis along the magnetic field,
which coincides with thex axis in our case. This component
is the same for all the atoms of the ensemble. Making the
sum over all partial equationssB7d, we come to Eqs.s5.10d
written for the collective vector of atomic angular momen-
tum.

APPENDIX C: LAPLACE TRANSFORM OF THE ATOMS-
FIELD DYNAMICAL EQUATIONS

Let us define the Laplace images of the space-time-
dependent Stokes components of the probe light and of the
collective angular momentum of atoms,

Ĵisp,sd =E
0

` E
0

`

dzdte−pz−stĴisz,td, i = 1,2,

Ĵmsp,sd =E
0

` E
0

`

dzdte−pz−stĴmsz,td, m = z,y, sC1d

where the parametersp, s.0. Then the original system of
differential equationss6.7d with initial and boundary condi-
tions s5.14d can be transformed to the following system of
linear algebraic equations for the Laplace images:

pĴ1sp,sd + k2Ĵ2sp,sd − 2bJ̄3Ĵzsp,sd = Ĵ1
inssd,

− k2Ĵ1sp,sd + pĴ2sp,sd + 2eJ̄3Ĵysp,sd = Ĵ2
inssd,

uyJ̄xĴ1sp,sd + sĴzsp,sd − VĴysp,sd = Ĵz
inspd,
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− uzJ̄xĴ2sp,sd + VĴzsp,sd + sĴysp,sd = Ĵy
inspd. sC2d

The determinant of this system is given by

D = Dsp,sd

= ss2 + V2dsp2 + k2
2d + 2seuz + buydJ̄xJ̄3sp

− 2seuy + buzdJ̄xJ̄3Vk2 + 4beuzuysJ̄xJ̄3d2 sC3d

and its solution can be easily found by means of Kramer’s
rules.

The solution is expressed as linear transformations of the
Laplace images of the boundary Stokes operators for the

field and of the initial angular momentum operators for the
atoms,

Ĵisp,sd = o
j=1,2

Mi jsp,sdĴ j
inssd + o

n=z,y
Finsp,sdĴn

inspd,

Ĵmsp,sd = o
j=1,2

Gm jsp,sdĴ j
inssd + o

n=z,y
Nmnsp,sdĴn

inspd.

sC4d

These transformations perform the Laplace images of the
integral transformss6.8d ands6.9d introduced in the body of
the paper.

The self-transformation matrixMsp,sd of the Stokes op-
erators is given by

Msp,sd =
1

Dsp,sdS pss2 + V2d + 2euzJ̄xJ̄3s, − k2ss2 + V2d + 2buzJ̄xJ̄3V

k2ss2 + V2d − 2euyJ̄xJ̄3V, pss2 + V2d + 2buyJ̄xJ̄3s
D . sC5d

The self-transformation matrixNsp,sd of the angular momentum operators is given by

Nsp,sd =
1

Dsp,sdS ssp2 + k2
2d + 2euzJ̄xJ̄3p, Vsp2 + k2

2d − 2euyJ̄xJ̄3k2

− Vsp2 + k2
2d + 2buzJ̄xJ̄3k2, ssp2 + k2

2d + 2buyJ̄xJ̄3p
D . sC6d

The cross-transformation matrixFsp,sd, which is responsible for mapping the initial angular momentum fluctuations onto the
outgoing Stokes components of the transmitted light, is given by

Fsp,sd =
1

Dsp,sdS2J̄3sbps− ek2Vd + 4beuzJ̄xJ̄3
2, 2J̄3sbVp + ek2sd

2J̄3seVp + bk2sd, − 2J̄2seps− bk2Vd − 4beuyJ̄xJ̄3
2D . sC7d

The cross-transformation matrixGsp,sd, which is responsible for mapping the input Stokes components onto the spatially
distributed angular momentum fluctuations, is given by

Gsp,sd =
1

Dsp,sdS− J̄xsuyps− uzk2Vd − 2euyuzJ̄x
2J̄3, J̄xsuyk2s+ uzVpd

J̄xsuzk2s+ uyVpd, J̄xsuzps− uyk2Vd + 2buyuzJ̄x
2J̄3

D . sC8d

Thus the Laplace images of the field and atomic variables
become fully defined.

To return to the original space-time-dependent representa-
tion, it is necessary to evaluate the integralss6.10d. As we see

from Eqs.sC3d–sC8d, the Laplace images of all the matrix
elements have polynomial structure and the return transform
could be found for any definite set of the external param-
eters, such ask2,V , . . ., etc.
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